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Abstract—Networked critical systems, such as Programmable
Logic Controllers in a factory plant, are often remotely config-
urable by administrators through web-based interfaces. However,
administrative host machines have been compromised in recent
incidents, allowing attackers to covertly alter user commands
or configurations to disrupt the proper function of remote con-
trollers. While most existing approaches focus on securing field
devices from malicious programs, the integrity of configuration
commands remains to be explored.

In this paper, we consider the presence of an untrusted host
machine and aim to ensure the integrity of user input to a
web server directly from a peripheral, such as a keyboard.
We propose INTEGRIKEY, an end-to-end integrity protection
system that leverages a user-side trusted device (the INTEGRIKEY
bridge) and a small server-side software component to ensure
the integrity of the user’s input. Based on our solution, we
also identify a new form of attack, the (user interface) UI
input integrity manipulation attack, where a compromised host
alters the UI to mislead the user into entering incorrect data.
We provide a comprehensive analysis of these attacks and the
corresponding solutions. INTEGRIKEY allows the server to accept
only authentic user input even when the attacker compromises
both the host machines and the network. INTEGRIKEY requires
no additional software on the user’s host and does not signif-
icantly affect the way the user interacts with the system. We
implement INTEGRIKEY in the context of remotely configuring
Programmable Logic Controllers and our evaluation shows that
it incurs minimal overhead in securing user input integrity.

I. INTRODUCTION

Nowadays, remote configuration and reprogramming, and
more generally, remote user input into a networked device
are commonly performed through web-based technologies.
Typically, a configurable device (e.g., a Programmable Logic
Controller, a medical device, a home automation system or an
IoT device) runs a web server that is accessed by a user’s host,
such as a computer in the control center of a plant. The web
interface allows users to configure the device or provide some
other relevant input from their hosts. Today, a wide range of
embedded systems can be configured in such a way [1]–[5]. If
the device does not run a web server, its remote control may
still be exposed through some dedicated web servers. Thus,
enabling user control from any host that runs a web browser.

Unfortunately, users’ hosts and the control network used
to configure critical (embedded) systems are often targets of
attacks, such as exploiting zero-day vulnerabilities [6] and
social engineering [7]. One example of such attacks is Stuxnet,
where the compromise of the user’s host in the control center

led to the misconfiguration of PLC programs that damaged a
power plant [8]. While web servers in critical systems can use
Transport Layer Security [9] to protect their communication
from network-level attackers, they are not secured against
host compromise or man-in-the-browser attacks. In particular,
compromised hosts can alter the commands that are issued
by users to covertly misconfigure remote devices and cause
damage. Although this problem can be partially addressed
using system hardening and best security practices, the com-
plexity of modern critical infrastructures is often too high to
systematically prevent malicious inputs or user negligence.

In this paper, we focus on the preserving the integrity of
users’ input. We propose INTEGRIKEY, an integrity verifica-
tion system that protects user’s input from an input peripheral,
such as the keyboard, to a configurable end device. Our system
consists of two components: (i) the dedicated INTEGRIKEY
bridge, which serves as a bridge between the input peripheral
and the user’s host, and (ii) a lightweight and trusted compo-
nent running on the end device that verifies the integrity of
user commands. INTEGRIKEY does not require any trust in
the user’s host computer, the browser used to access the web
interface, or any other (e.g., cloud) component that connects
the host to the end device.

INTEGRIKEY works by connecting input peripherals, such
as a USB keyboard, to the user’s host via the INTEGRIKEY
bridge. This bridge can therefore directly record the user’s
raw input and report it to the end device via the web server
in an authenticated manner. To support this, we use the new
WebUSB browser API, which allows websites to communicate
with USB devices connected to the host. Using INTEGRIKEY,
the end device receives the user’s input from both the untrusted
host browser (which sends user’s inputs into the web form)
and the INTEGRIKEY bridge. The end device verifies the
input that it receives from the host against the data received
from the INTEGRIKEY bridge while requiring only minimal
changes in the user’s behavior. The user can still use the input
peripheral, browser, and web interface in a similar manner as
if INTEGRIKEY was not deployed. INTEGRIKEY, therefore,
preserves system usability while introducing a small trusted
component at both the host’s and the device’s side to achieve
end-to-end input integrity.

However, using a dedicated secure channel to ensure the
integrity of user input is not a trivial task when the entire
host is compromised. This scenario gives rise to a new UI
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Fig. 1: We assume two possible scenarios: (i) end-system (e.g., PLC) runs its web server and (ii) end-system is placed behind a
cloud service that runs the web server and forwards the traffic to the end-system. The user accesses the end-system through the
browser in her host. We assume that the user and the end-system are trusted, whereas the host, the network, and the cloud are
untrusted and fully controlled by the attacker. We further assume that the user can deploy a trusted device (e.g., USB key) and
runs a browser that supports WebUSB/WebBluetooth (Google Chrome currently supports these APIs).

input integrity manipulation attack that is so far not sufficiently
addressed in the research. Recent work on UI manipulation
attacks mainly explored the context of authenticity and user
privacy [10], [11]. More specifically, although one can provide
end-to-end integrity guarantees on user input, the attacker can
still manipulate the appearance of the web page to influence
the sanity of the user’s input. For example, the attacker can
change the labels of a certain field to trick the user into
entering a wrong configuration value. Similarly, the attacker
can reorder the labels of fields to trick the user into entering
values in the wrong order. Such attacks affect the normal
function of the device if the possible values in the reordered
data fields are still considered valid input by the device. Based
on users’ different levels of familiarity with the web page,
we explore the possible web page manipulation attacks and
propose a comprehensive solution to reassure the integrity of
the user’s input. In particular, we develop the INTEGRIKEY
tool to identify data fields that are susceptible to label re-
ordering attacks. We then modify the server to instruct users
to manually add the label to the input value for fields whose
values may be swapped with other fields.

To demonstrate the feasibility of this approach, we develop
a prototype implementation consisting of the INTEGRIKEY
tool and the INTEGRIKEY bridge using an Arduino board.
We use the tool to process typical data fields in a wide
range of applications supported by x600m, a commercially
available browser-based PLC server. We also evaluate the
runtime performance of the bridge, and our results show that
the bridge adds no more than 1 second to the loading of the
web page on the browser and only ∼ 50 milliseconds to the
delay on user input from the user side.

The contributions of this paper are as follows:

• We propose INTEGRIKEY, a system that preserves the
end-to-end integrity and authenticity of user input to a
web server in the presence of a compromised host.

• We identify a new type of an attack: the UI input integrity
manipulation. We analyze this attack, by which the at-
tacker can trick the user into entering values in the wrong
fields. We further design a set of measures that prevent

such attacks and integrate them into INTEGRIKEY.
• We design and develop a server-side INTEGRIKEY tool

that analyses a configuration webpage to determine the
set of input fields that are vulnerable to the UI input
integrity manipulation attack.

• We show the feasibility of our approach by developing a
proof-of-concept implementation. Our evaluation shows
that INTEGRIKEY adds only minimal overhead to the
user’s operation.

The rest of the paper is organized as follows. In Section II,
we introduce the problem of preserving the integrity of users’
input into a remote web server. Section III describes the
system design of INTEGRIKEY. In Section IV, we describe
the UI input integrity manipulation attack and present our
comprehensive solution. Section V and VI provides detailed
description of the INTEGRIKEY’s prototype implementation
and evaluation of the prototype, respectively. In Section VII,
we discuss various aspects of INTEGRIKEY. We summarize
related work in Section VIII and conclude in Section IX.

II. PROBLEM STATEMENT

The main problem that we are trying to solve in this work
is to protect the integrity of end user’s input into a remote web
server that runs on a critical end device (e.g., PLC). We focus
on scenarios where the user is a remote operator whose task
is to configure such end devices. We illustrate this scenario on
Figure 1.

Protecting user input integrity is relatively simple when
the client’s system is trusted and properly configured: a TLS
session from the user’s browser to the server guarantees not
only the integrity but also the confidentiality of all data
exchanged between the client and the server.

However, numerous revelations have shown that sophisti-
cated attackers are capable of compromising the users’ host
systems, such as personal computers or smartphones, to gain
control over the communication channel and alter the users’ in-
put to critical infrastructures. Such attacks can be orchestrated
by compromising the operating system, planting hardware
bugs in the system (such as the production line attacks [12],



[13]), installing malware, etc. For the user’s input, there are
also simple attacks such as a hardware or software-based key-
loggers that intercept the input from the keyboard or the mouse
and modifies them. For web-based control interfaces, browsers
are complex applications and often susceptible to zero-day
attacks or exploits [6], [14], [15]. The wide range of attacks
on the host system grants the adversary many ways to intercept
a user’s input to remote web servers.

Motivated by the large attack surface of a typical user’s
host system, we aim to ensure the integrity of the user’s input
data entered into a web-based interface of a remote server.
We assume that the user, the user’s input peripheral (e.g.,
keyboard), and the remote server are trusted.1 However, we
assume that the adversary compromises the user’s host system,
potentially by some aforementioned attack, and is a Dolev-Yao
attacker that can eavesdrop, delete, and inject messages into
the communication channel between the host and the remote
server.

In addition to our goal, we also identify some design con-
straints for the ease of adopting our solution. Such constraints
in our solution to this problem should not change the user’s
interaction with the host. She should be able to interact with
the end-system via the browser running on her host in a
manner to which she is used. Furthermore, there should be
no need to install or maintain any new components on the
host. We also not assume any other communication channel
except the one from the host to the web server.

III. INTEGRIKEY: SYSTEM DESIGN

In what follows we describe the design of INTEGRIKEY in
more detail.

A. System Assumptions

We assume a conventional client-server system which pri-
marily involves three components. The USB/Bluetooth en-
abled input peripheral (keyboard, mouse, bulk storage), a
host which is a computer/smartphone, that connects to the
remote server through a web browser and the remote server
where the host is connected. In addition, we assume that the
user’s browser supports WebUSB/WebBluetooth. WebUSB is
an upcoming standard in development [16] by Google and is
currently implemented as a feature in Google Chrome. We-
bUSB allows JavaScript code served from a HTTPS secured
page to have direct access to USB devices. The WebUSB
API safely exposes USB functionality to the JavaScript code
allowing the website to act as a USB host and communicate
with the USB devices.

B. INTEGRIKEY

INTEGRIKEY aims to protect the integrity of user’s input
in highly adversarial settings, where user’s host and all in-
termediary systems that transfer and process user’s input to
the server are compromised. Furthermore, INTEGRIKEY aims
to achieve this without changing user’s existing behavior and

1If the remote server is compromised, then no countermeasure would work
since it can directly actuate in a malicious way.

without requiring additional software to be installed on user’s
host system, therefore, facilitating deployment.

INTEGRIKEY achieves this by adding two components to
the common client-server: an embedded INTEGRIKEY bridge,
which captures the user’s input (keyboard/mouse) and interacts
with the user’s browser and therefore with the server via
WebUSB, and a INTEGRIKEY integrity verification server
component that detects integrity violations of user’s input.

As shown in Figure 2, we assume that the user connects
its input peripheral to the INTEGRIKEY bridge, and further
connects the INTEGRIKEY bridge to its host system. This
way, the INTEGRIKEY bridge acts like a bridge between the
input peripheral and the host. These connections can be wired
or wireless depending on the interfaces that the host and
peripheral expose which will be different in the case of a phone
and computer.

When the user launches her browser and starts a connection
to the server, the server will be able to reach the INTEGRIKEY
bridge via WebUSB. The server will, then create two con-
nections, one to the browser (to serve content and take input
from the user interface), and the other one to the INTEGRIKEY
bridge (through the browser via WebUSB). The connection to
the browser will be protected using HTTPS (TLS). We assume
that common user authentication is used. The integrity (and
confidentiality) of the communication between the server and
the INTEGRIKEY bridge will also be protected. This can be
achieved in a number of ways, e.g., via pre-shared keys, or
via a fresh TLS session. We chose the latter. In INTEGRIKEY,
the server and the INTEGRIKEY bridge exchange public key
certificates and establish a TLS channel that will protect their
communication. This does not require a setup of a new PKI,
INTEGRIKEY can also leverage the existing PKI that is used
in today’s web. The INTEGRIKEY bridge can be periodically
updated with relevant CA root certificates.

When the user enters her input (text, mouse clicks), her
input will pass via the INTEGRIKEY bridge. The INTEGRIKEY
bridge will (i) forward the input to the browser so that it is
shown on user’s screen and sent via HTTPS to the server and
(ii) record the input and send it to the server via INTEGRIKEY
bridge-server TLS connection. The server will then compare
what it received from the browser and from the INTEGRIKEY
bridge. If the input values received from the INTEGRIKEY
bridge correspond to the values received from the browser,
the server will conclude that the input from the browser is
legitimate. The server will then indicate to the user (e.g., via
an LED indicator on the INTEGRIKEY bridge) if the input has
been successfully ‘committed’ to the server. This last step is
optional and depends on whether such assurance is critical for
the application.

In INTEGRIKEY the user’s experience is largely unchanged.
She will interact with the server through the web browser, fill
in the forms and submit them to the server in the same manner
as in any other system.

The main steps of the execution of INTEGRIKEY are shown
on Figure 2.

1) The user starts a browser and types in the URL of the
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Fig. 2: INTEGRIKEY operation. The user starts the browser and types in the url of the web server. The server will serve the page
that contains a script that will instruct the browser (via WebUSB) to contact the INTEGRIKEY bridge. Two secure connections will
be created: an HTTPS (TLS1) connection between the Browser and the Server and a secure connection between the INTEGRIKEY
bridge and the Server (TLS2). When the user provides the keyboard input, the INTEGRIKEY bridge will send this input to the
browser (to fill in the web form), and also send it directly via the TLS2 connection to the server2. Upon receiving the data from
both connections, the server compares them and accepts the input from the browser if it matches the one from the INTEGRIKEY
bridge.

web server. The server serves a script to the browser that
invokes WebUSB API, establishing a secure communi-
cation channel to the INTEGRIKEY bridge.

2) The user enters her input into the input peripheral device
that is connected to the INTEGRIKEY bridge. (steps 1−
2).

3) The INTEGRIKEY bridge captures the keystrokes from
the input peripheral (step 3).

4) The INTEGRIKEY bridge forwards the input to the
browser (step 4). When the user submits the form, the
browser sends the input data to the remote server via
the HTTPS (TLS1) channel (step 5).

5) The INTEGRIKEY bridge further sends the keystrokes
directly to the server through the secure channel (TLS2)
between the INTEGRIKEY bridge and the server (step 6).

6) Upon receiving the data from TLS1 and TLS2, the
server compares the data. If the keystroke data from
TLS1 matches with the data from TLS2, the server
accepts them and sends a feedback signal to the IN-
TEGRIKEY bridge via TLS2.

7) The INTEGRIKEY bridge shows the feedback to the user
to notify that the proper input is recorded by the remote
server. This feedback could be displayed via an attached
LCD screen or a LED light.

C. Security Analysis

We assume a strong attacker that controls host system (that
includes the hardware and the operating system), the browser,
the cloud/network and any other intermediate component on
the path to the server. As the attacker controls the host system,
it can manipulate or create fake user input from the browser
to the server (TLS1), as well as control the user interface.

2TLS connection can be replaced with any authenticated connection, based
on digital signatures or shared keys between the INTEGRIKEY bridge and the
server. For efficiency reasons, it is also possible that the TLS2 only carries
the signature of the keystrokes and not the data itself.

We assume that the remote server is a trusted entity and
has a public key certificate and corresponding public-private
key pair to prove its authenticity by leveraging an existing
PKI. The server serves a JavaScript snippet that uses We-
bUSB API to communicate with the INTEGRIKEY bridge.
The INTEGRIKEY bridge has a public/private key-pair and
a public key certificate that is used to establish a secure
channel (TLS2) with the server. The server can validate such
certificates e.g., through a company PKI. The user attaches
all her peripheral devices through the INTEGRIKEY bridge
to eliminate any input manipulation or forged data generated
by the malicious host. We assume an authenticated TLS
connection setup. Given this, the host cannot impersonate the
INTEGRIKEY bridge or inject input into the TLS2 channel that
was not generated by the user. Additionally, the INTEGRIKEY
bridge also provides a feedback to the user indicating if it has
been successfully reprogrammed. In case the INTEGRIKEY
bridge fails to provide the feedback, the user concludes that
the attacker is executing a denial of service attack. Protection
against denial of service is outside the scope of this work.

Since the attacker cannot inject messages into the TLS2

channel, the only remaining possibility for the attacker to
manipulate the input is to change the user interface (which
the attacker controls by controlling the host) such that the
user inputs values into the incorrect fields. This attack is
feasible since the INTEGRIKEY bridge only registers the input
keystrokes and their sequence, and assumes in which sequence
they need to be filled. However, the INTEGRIKEY bridge and
the server do not know which interface user is currently seeing
on the screen. E.g., the fields can be reordered by the adver-
sary. Depending on the end-system and its function, it might
happen that these user interface attacks prove detrimental.

We explore this attack further and propose countermeasures
in Section IV.



D. Alternative Channels

In our design of INTEGRIKEY, the dedicated connection that
the INTEGRIKEY bridge establishes with the server shares the
same physical channel as the browser, i.e., the internet connec-
tivity of the host. However, INTEGRIKEY can be configured
in such a way that the communication channel of the INTE-
GRIKEY bridge remains separated physically from the host.
This can be achieved by using a smartphone application as the
INTEGRIKEY bridge. The user connects her peripheral devices
with the smartphone, the INTEGRIKEY bridge application
communicates with the USB peripheral device and interprets
user inputs. Then the application forms a separate TLS channel
using its own network (using WiFi or cellular data). This setup
does not require any dedicated hardware device. However, it
requires trust in the smartphone and additional applications
installed in it. Moreover, such setup may not be suited for the
industrial PLC operators.

IV. PROTECTING AGAINST UI INPUT INTEGRITY
MANIPULATION ATTACKS

In the previous section, we described how INTEGRIKEY
bridge defends against the attacker’s manipulation of input
values. In this section, we describe and propose a solution
for more sophisticated attacks that compromise the integrity
of users’ input by manipulating graphical elements on the
browser. Our attacker model remains identical to the previous
solution, i.e., an attacker that compromises entire host system
and the network communications. The malicious host can
employ manipulation on the graphical interface elements such
as adding extra fields or removing some of the fields. This type
of data is effective against inexperienced users who are not
properly familiar with the user interface and the specific input
fields in a page. Note that when the server serves a specific
website, it knows what to expect when the user submits the
data into the browser. Therefore, these attacks can be readily
detected by the server using the former method due to the
discrepancy in the number of input data.

If the user is experienced with the user interface, a malicious
host can orchestrate a more sophisticated attack that swaps the
labels of input fields on the served web page. Here, the attacker
does not manipulate input values (since these values will be
signed by the INTEGRIKEY bridge) but instead presents false
labels in the web form to the user. The user is then tricked
into entering the data into incorrect fields.

The experienced users who are familiar not only with the
user interface, but also know which data fields to expect are not
susceptible to such kind of attacks. However, a malicious host
can always show a notification falsely claiming that the server
updated the UI elements due to a version upgrade. This way
the malicious host can trick even a very experienced user into
putting data into a wrong field. Therefore, we can conclude
that even the most experienced users are susceptible to the UI
manipulation attack that compromises users’ integrity.

One can argue that serving a manual or displaying the
template (as security indicator) of the website in a separate
display (may be attached with the INTEGRIKEY bridge) can

Group 1

Group 2

Group 3

Groups of swappable fields

Fig. 3: An example of a web-based PLC configuration page where
the highlighted fields can be reordered by a malicious host. Note
that Relay 1 and Relay 2 are interchangeable, where as Decimal
places 1, 2 and Relay temp 1, 2 all are swappable.

prevent UI manipulation attack. However, several existing
pieces of research [17], [18] show that in practice users tend to
ignore security indicators. Therefore, one of the design goals
of INTEGRIKEY was not to rely on any security indicator
that increases user’s cognitive load. INTEGRIKEY rather asks
the user to perform a compulsory but a very simple task that
associate her input data with the field label which she is seeing
on the host’s screen. We argue that the additional task that
the user performs is extremely simple in nature and does not
change the natural user behavior in any significant way.

THE ATTACK. Field data types can easily be identical but
interchanging the values may change the behavior of the end-
system. The server cannot notice this change since the signed
values from the INTEGRIKEY bridge will be no different from
the values entered through the web form and could be plausible
values and entered in a plausible sequence for the served web
form. E.g., the attacker can swap the labels of fields ’Decimal
Places’ and ’Relay temp 1’ in the web-form illustrated in
Figure 3. The user will then enter the values in a sequence
(’Relay temp 1’, ’Decimal Places’). The server will interpret
this as a sequence (’Decimal Places’, ’Relay temp 1’) since
this is the order that should have been imposed by the web
form. Since both values are in the expected ranges, the server
will not notice the swap, unless these values need to be related
(e.g., ’Decimal Places’<’Relay temp 1’) and the server checks
for this relation. However, in many systems, one cannot rely
on the end-device logic to check for such consistency and there
are many values that will overlap in range but will otherwise
be fully independent. Such protections, therefore, do not easily
generalize.

To prevent this attack, we, therefore, propose a mechanism
which binds input data to the input label. There are two parts
to this proposed solution, one of which is executed on the
server and the other on the INTEGRIKEY bridge at the user
side.

A. Server Side Mechanisms

We develop a tool that parses an existing web page form
and extracts the input fields. The tool then calculates the set of
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Fig. 4: High-level flow of operation of the INTEGRIKEY tool at
the server side. The tool takes a web page specification with n
input fields f1, f2, . . . fn and converts it to set of subsets of the
original fields g1, g2, . . . , gj such that all the fields in a set (g) are
swappable. One concrete example is illustrated in the Figure 3.

fields whose labels are swappable. We assume that the logic
in the server already employs some basic sanity checks to
eliminate incorrectly formatted data. This is why we focus on
the fields with values that are very closely related, which are
very hard for the server to distinguish and thus are susceptible
to the input label swapping attack. The developers provide a
fine-grained specification to our tool containing information
such as data types (integer, string, boolean, etc.),
the possible range of values(for number datatype)/lengths (for
string datatype), the regular expressions, etc.

CLASSIFICATION OF THE INPUT FIELDS. Classification
of input fields is critical to understand which input field labels
can be swapped by the attacker. Moreover, proper classification
of the field will reduce user’s load as the user only needs
to add the label with the input data corresponding to the
fields that are swappable. We design and develop the server-
side INTEGRIKEY tool that takes a web-page and developer
generated specification to calculate the set of input fields that
can be reordered. Figure 4 provides a high level operation of
INTEGRIKEY tool. INTEGRIKEY tool takes a web page speci-
fication that consists of a set of n input fields {f1, f2, . . . , fn}
including their specification. It then outputs a set of fields
groups g1, g2, . . . , gk where each g is a subset of the input
fields in the original page that are swappable. E.g., assume
input fields f1, f2, f3 where f1 and f2 can be swapped, and
f3 is not swappable with any other fields. INTEGRIKEY tool
outputs two groups g1, g2 where g1 = {f1, f2} and g2 = {f3}.

INPUT FIELD SPECIFICATION. Note that the semantic of a
field label contribute nothing to the fact whether two different
fields are swappable or not, only the characteristics of the
input field. We capture the characteristics of an input field
with specifications. Trivially, one field is always swappable
with the identical one. One example is in the home automation
system, the user can set the temperature of a specific room by
providing the input to the web application. The attacker can
swap the labels of the field with the label of the temperature
of another room.

More interesting examples are the fields which are seman-

tically disjoint but share specifications. E.g., the parameters
for the medical devices where the doctor can set ‘blood
pressure’ and ‘heart rate limit’. As the range of these two
fields is overlapping, the attacker can swap the labels of
two such fields even though the fields ‘blood pressure’ and
‘heart rate limit’ are semantically different. We notice that
some fields are strictly swappable only with another identi-
cal field. Such as an arbitrary field is not swappable with
any other IBAN number due to the specific format (e.g.,
(ISO3166−1 IBAN code)[0−9A−Z]+ with minimum and
maximum length of 20 and 30 respectively).

The developer uses the specification to specify the input
field data format to the INTEGRIKEY tool. We now illustrate
one simple example with numerical fields. Assume that there
are input fields f1, f2, f3, all of which are for numerical
input fields. Let fmax and fmin denote the maximum and
minimum possible values corresponding to the field f . If one
the following conditions hold:

fmax
i < fmin

j or fmin
i > fmax

j

Then there exist no values that are the valid inputs to fi and
fj at the same time. Otherwise, fi and fj can be swapped by
the attacker. We call this test of finding overlapping values as
“swappable test”. Algorithm 1 uses such check for numerical
fields at line no 12.

The analysis for the string type input fields is, however,
nontrivial as the INTEGRIKEY tool needs to handle various
types of string constraints. The tool contains a knowledge
database that specifies the regular expression for the well-
known fields. One such example is the name field which is an
alphabetic type and can be represented as s[a−zA−Z]+( |[a−
zA−Z])∗[min = 1,max > min]. This implies that the name
may contain alphabets from a to z in both upper and lower
cases for both the first and last name. If the person also has the
last name then it is separated from the first name by an empty
space character. Moreover, the specification describes that the
minimum (min) length of the string can be 1 but there is
no restriction on the maximum (max) length. Similarly, the
address is an alphanumerical string datatype and can be
represented as s[a−zA−Z0−9 |, |/|−]+[min = 10,max >
min], where ’|’ denotes conjunction.

We now define the formal structure of the specification of
an input field as:

datype[regx][min = x,max = y]

datatype denotes the input datatype such as string (s),
integer (i), float (f ), date (d), time (t) and boolean
(b). [regx] is valid only for the string datatype. min and
max represents the minimum and maximum length of the
data if the datatype is string, minimum and maximum
value of the data if the datatype is integer, float,
date or time. An example web page specification is
presented in Specification 1 that corresponds to the exam-
ple illustrated in Figure 3. We use XML to represent the
specification. <Label> and <RegEx> represent the input



Algorithm 1: Server-side mechanism to find set of
overlapping input fields

Input: Webpage P with a set of input fields F and the specification
S.

Output: Set of subset of fields G = {g1, . . . , gn} where all the
fields in a gi ∈ G are swappable.

1 begin
2 G← Initialize empty group
3 for ∀f ∈ F do
4 for ∀fin ∈ F do
5 if f 6= fin ∧ f.type = fin, type then
6 addF ield← false
7 if f.type = string then
8 f.regEx, fin.regEx← read from S
9 if f.regEx ⊂ fin.regEx then

addF ield← true
10 end
11 if f.type = integer ∨f.type = flaot

∨f.type = time ∨f.type = date then
12 if ¬(fmax < fmin

in ∨ fmin > fmax
in ) then

addF ield← true
13 end
14 if f.type = boolean then addF ield← true
15 if addF ield = true then
16 g ← empty set of fields
17 g.add(f, fin)
18 G.add(g)
19 addF ield← false
20 end
21 end
22 end
23 end
24 return G
25 end

field label and the corresponding regular expression (in-
cludes data type and length/value constraints), respectively.
The data fields in the web page is the set {Relay 1,
Temp relay 1, Decimal places 1, Relay 2, Temp
relay 2, Decimal places 2, Unit}.

FINDING OVERLAPPING FIELDS. Upon receiving all the
specifications, the tool evaluates all the input fields by execut-
ing swappable tests on them. The test to find the overlapping
values for the integer and the float type is discussed
above. For the string datatype, the test involves regular ex-
pression swappable criteria. For example, given the following
two expressions

RE1 = s[a− zA− Z]+[min = x,max = y]

RE2 = s[a− zA− Z0− 9]+[min = x,max = y]

=⇒ RE1 ( RE2

RE1 represents a string containing uppercase or lower-
case alphabetic characters. RE2 represents a string contain-
ing uppercase, lowercase alphabetic or numerical characters
ranging from 0 to 9. It is clear that RE1 is a subset of RE2

as all strings from RE2 are also members of RE1 but there are
strings in RE2 (e.g., abc123) that are not in RE1. This can be
verified by checking if RE1∩(RE2)

c = φ =⇒ RE1 ⊂ RE2,
where φ denotes empty set. Algorithm 1 uses this subset
check (in line no 9) to determine the overlapping fields. The

Specification 1: Specification of the input fields corresponding to
the PLC configuration page illustrated in figure 3
<InputSchema>
<Input>
<Label>Relay 1</Label>
<RegEx>s[a-zA-Z0-9]+[min=1,max>min]</RegEx>

</Input>
<Input>
<Label>Decimal places 1</Label>
<RegEx>i[0-9]*[min=0,max=5]</RegEx>

</Input>
<Input>
<Label>Temp Relay 1 (deg c)</Label>
<RegEx>i[0-9]*[min=-20,max=150]</RegEx>

</Input>
<Input>
<Label>Relay 2</Label>
<RegEx>s[a-zA-Z0-9]+[min=1,max>min]</RegEx>

</Input>
<Input>
<Label>Decimal places 2</Label>
<RegEx>i[0-9]*[min=0,max=5]</RegEx>

</Input>
<Input>
<Label>Temp Relay 2 (deg c)</Label>
<RegEx>i[0-9]*[min=-10,max=100]</RegEx>

</Input>
<Input>
<Label>Unit</Label>
<RegEx>s[unit][min=1, max=5]</RegEx>

</Input>
</InputSchema>

subset criteria may also change depending on the minimum
and maximum length of the specific input fields.

We use the swappable test to design the Algorithm 1
that generates the group containing overlapping input fields.
Finding if a regular expression is a subset of another regular
expression requires conversion of the regular expression to
a deterministic finite automaton (DFA). This has a worst-
case exponential [19] (O(2S)) timing complexity with respect
to the number of states (S) in the non-deterministic finite
automaton (NFA) that is derived from the regular expression.
Moreover, the algorithm requires computing pairwise swap-
pable tests over all the input fields in a page. This is quadratic
O(|F |2) with respect to the number of fields (|F |). Therefore,
the timing complexity of Algorithm 1 is O(|F |22|S|).

INTEGRIKEY tool takes the specification provided in Spec-
ification 1 and produces two groups: g1 ={Relay 1,
Relay 2} and g2 ={Temp Relay 1, Temp Relay 2,
Decimal places 1, Decimal places 2} that are
overlapping set of fields while the Unit field is distinct from
the rest. Note that the precise calculation of the overlapping
groups of fields requires the developer to provide a tight/well-
defined specification otherwise, the INTEGRIKEY tool may
over-approximate.

Upon finding the set of overlapping fields, the server embeds
an instruction in the web page, instructing the user to add the
label name with the input data. Note that this requires the
server to change the type of the field to accommodate the
label name (such as a date type field to a string type
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Fig. 5: An example what the server expects from the browser
when the user submits a form. We have used the specification
illustrated in the Specification 1. This figure indicates the group
of fields that are swappable.

field). E.g., for a numerical data for a field Relay temp 1
the user provides Relay temp1 : 20.

SERVER-SIDE VERIFICATION. Server-side verification ex-
ecutes after the user submits the form on the browser. For a
specific web page with a set of n input fields {f1, f2, . . . , fn},
the server expects to receive n inputs via the HTTPS payload
when the user submits the form. In this form, only the
overlapping fields require the label of the field to be added
to the data. The rest do not require the label as they have the
distinct specification. For our example scenario (the web page
is illustrated in Figure 3 and the specification is provided in the
Specification 1), the server expects that the user provides the
label information for the fields Relay 1 and Relay 2 as
these are swappable and also for the group of fields Decimal
places 1, Decimal places 2, temp relay 1 and
temp relay 2. As the field Unit is a distinct field, the
server does not expect a label added with the data as the
field is not swappable with any other field. Additionally, the
server also receives the signed data from the INTEGRIKEY
bridge (via the dedicated TLS channel) for verification. Upon
receiving the data the server executes the following steps

(1) First the server checks the number of field data corre-
sponding to the webpage. If it matches with the number of
input from the INTEGRIKEY bridge, the server proceeds to
the next step. There may exist some optional fields that are
not required to be filled by the user.
(2) After that, the server matches the data from the browser
(HTTPS) and the INTEGRIKEY bridge (TLS) and executes the
signature verification. If they match, the server proceeds to the
next step. Otherwise, it rejects the data and sends a feedback
to the INTEGRIKEY bridge.
(3) Upon successful matching of the data received from the
browser and the INTEGRIKEY bridge, the server searches for
the input field labels that are added to the data. When found,
the server splits the data from the label and parses it. After
parsing, the server checks if the data satisfies the specification
that is provided to the INTEGRIKEY tool (by matching the
data with the regular expression and value/length constraint in
the specification). In case the server does not find the label
with the data for the overlapping fields, it rejects the data.

B. User Side Mechanisms

The INTEGRIKEY bridge, which is connected to the host
system at the user’s side, executes the following steps:

(1) As described in the previous section, the browser creates a
HTTPS (TLS1) connection to the remote server. INTEGRIKEY

bridge creates another TLS channel (TLS2) with the remote
server by leveraging WebUSB API.
(2) The server sends the web page containing the input
fields to the browser. The server also embeds a text message
specifying the input fields that require the user to add the field
label. The user fills up the forms.
(3) When the user submits the form, the browser sends the
form data through the HTTPS (TLS1) connection and the
INTEGRIKEY bridge sends the data via the TLS2.

C. Security Analysis

ATTACKER MODEL. As before, we assume a strong at-
tacker that compromises the host system and the network. As
the host system is compromised, the attacker can intercept and
manipulate any user input and change any visual elements
displayed to the user. In Section III, we address the basic
attack where the attacker only changes the input data provided
by the user through the input peripherals. In this section, we
concentrate on the attack where the attacker swaps the labels
of the input fields arbitrarily in a single web page or across a
set of web pages.

ANALYSIS. We introduce the INTEGRIKEY tool in Sec-
tion IV-A to analyze the web pages and calculate the overlap-
ping input fields from the developer given specification. After
the analysis, the server includes a text message on the web
page instructing the user to add the label to the input filed
with the input data.

The fields that are not overlapping with any other input
field do not require the user to add the label. If the attacker
executes the swapping attack on such fields, the server can
easily recognize such data (due to their distinct specification)
and reject them. For the rest of the overlapping fields, the user
provides a (label, data) pairing of the input data. Note that the
INTEGRIKEY bridge sends the signed (label, data) pair using
the dedicated TLS channel. This ensures that any manipulation
attempt by the malicious host would readily be detected by the
server. Swapping across the set of web pages can be prevented
if the developer provides the combined specifications sampled
from a number of web pages together.

V. IMPLEMENTATION

We implement a fully functional INTEGRIKEY prototype
that consists of i) the INTEGRIKEY bridge based on an
Arduino board, ii) the JavaScript code snippet that uses Google
Chrome’s WebUSB API to handle the communication between
the remote server and the INTEGRIKEY bridge, and iii) the
remote server, which provides a webpage with input forms.
Figure 6 shows the INTEGRIKEY bridge prototype.

EXPERIMENTAL SETUP. All the experiments were per-
formed on a laptop with a 3.2 GHz quad-core Intel i5 CPU
and 16 GB of main memory running Ubuntu 16.10 64-bit. We
use Google Chrome version 61 and JDK v1.8 with 4GB heap
space for all the experiments.
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Fig. 6: Prototype implementation of INTEGRIKEY bridge, consist-
ing of the following: 1) an Arduino Due board that is connected
with the USB peripheral and executes cryptographic operations
in TLS, 2) an Arduino Leonardo board that communicates with
the browser using WebUSB, 3) a USB connection from the
INTEGRIKEY bridge to the host system, 4) a USB switch to
switch between the secure and insecure mode (the insecure mode
is a pass-through), 5) the connection between the INTEGRIKEY
bridge and the USB switch, 6) the keyboard connection, 7) the
host pass-through connection for the insecure mode.

A. INTEGRIKEY bridge

Figure 6 shows the INTEGRIKEY bridge prototype setup and
all the necessary modules. We build our hardware prototype
on top of the Arduino prototyping boards. The following are
the connections that connect INTEGRIKEY bridge to the host
and a USB input device.
(1) The INTEGRIKEY bridge is connected to the host system
via USB interface (3 in the Figure 6).
(2) The INTEGRIKEY bridge is connected to the USB input
devices such as keyboard via the USB interface (6 in the
Figure 6).

Our prototype implementation of the INTEGRIKEY bridge
uses an Arduino Leonardo board (1 in Figure 6, 16 MHz
AVR microcontroller) to communicate with the host system
using WebUSB and an Arduino Due (2 in Figure 6, 84 MHz
ARM Cortex-M3 microcontroller) to execute cryptographic
operations required for TLS. We used these board in master
(Leonardo)-slave (Due) configuration over the I2C [20] pro-
tocol. The INTEGRIKEY bridge takes input from the keyboard
using the USBHost library. As the current version of the
WebUSB library allows only one USB interface, the INTE-
GRIKEY bridge cannot emulate a keyboard (interrupt transfer)
and a persistent data (bulk transfer) device required for the
TLS channel at the same time. Therefore, the INTEGRIKEY
bridge sends keyboard signals to the JavaScript code running
in the browser. The JavaScript code interprets these signals
and translates them to keyboard input on the web page. This
gives an impression to the user that the device emulates a
keyboard. The keyboard is connected with the Due board via a

custom built hardware switch (4 in Figure 6). Users can toggle
between the secure mode (input processed by the device)
and the insecure mode (pass-through to the host system). We
use the Arduino cryptographic library for the TLS. The TLS
includes 128 bit AES as the symmetric cipher in counter
mode (CTR), Ed25519 & Curve25519 for elliptic curve digital
signature & Diffie-Hellman key exchange respectively and
SHA256 for the cryptographic hash function. The limited
set of cipher suites helps make the code fit into the limited
program space. The INTEGRIKEY prototype code-base is ∼ 3
KLOC (kilo lines of code).

B. Remote Server

The remote server is written using the JAVA EE Servlet API
and hosted on an Apache Tomcat web server. The server also
implements a similar reduced TLS stack like the INTEGRIKEY
bridge, using the JAVA cryptographic API. The code size of
the INTEGRIKEY server-side component is around 500 lines,
making it easy to deploy. For specific test cases such as the
web-based PLC, we use ControByWeb x600m industrial I/O
web server. Figure 7 shows one such configuration page from
the server.

C. WebUSB JavaScript code

The remote server sends a JavaScript code when the
user loads a specific website in her browser. The JavaScript
code communicates with the INTEGRIKEY bridge and es-
tablishes a TLS channel. We develop this JavaScript code
that uses Google Chrome’s WebUSB API to enumerate
and communicate with the INTEGRIKEY bridge. We use
XMLHttpRequest to communicate with the remote server.
As the attacker has full control over the browser, he can also
manipulate the JavaScript code. Therefore, no cryptographic
operations are performed inside the JavaScript code.

D. INTEGRIKEY Tool

The INTEGRIKEY server-side tool is written in JAVA based
on the JAVA AWT graphics library. The tool is around 1.5
KLOC and uses the JAVA native XML interpreter library to
read the specification and JSOUP HTML parser to parse web
pages.

VI. EVALUATION

We now evaluate the performance of individual modules of
INTEGRIKEY to demonstrate its feasibility.

A. INTEGRIKEY tool

We consider a number of browser-based web applications
and analyze their web pages for overlapping input fields.
These applications include PLC controllers, home automation
systems, medical device control, personal data management
and online banking. In Table I, we show the input fields of
the aforementioned applications, the data types of the input
fields, the regular expressions of the input format, and the
constraints on length (for string), values (for integer,
float, and boolean data types) or ranges (for date and



TABLE I: Specification (columns 2, 3, 4) of different input fields sampled from different web-applications. The reorder column
denotes that the group of input fields with X mark can be swapped with each other. Such as the current can be swapped with the
frequency field. It is trivial that all the input fields can be swapped with another identical field.

Name Type Regular expression Length/value constraints Reorder
Personal information

Email string (∗)+(@)[a− zA− Z0− 9]+(.)[a− z]+ [min = 5,max = ∗]
Name string [a− zA− Z.]+ [min = 1,max = ∗]
Address string [a− zA− Z0− 9]+ [min = 5,max = ∗]

Financial transaction
IBAN account no. string (ISO3166− 1 IBAN code)[0− 9A− Z]+ [min = 20,max = 30]

Transaction amount. float (ISO4217 currency code)[0− 9]+((.)[0− 9])∗ [min = 0,max = ∗]
Medical parameters

Heartbeat integer [0− 9]+ [min = 55,max = 210]
XBody temperature float [0− 9]+((.)[0− 9])∗ [min = 94,max = 108]

Blood pressure integer [0− 9]+ [min = 80,max = 150]

Blood sugar (Fasting) integer [0− 9]+ [min < 108,max > 126]

Web-based PLC form
Thermocouple integer [0− 9]+ [min = −15,max = 150]


X

Frequency integer [0− 9]+ [min = 0,max = 500(Hz)]

Analog Input(voltage) float [0− 9]+((.)[0− 9])∗ [min = 0,max = 12]

Current float [0− 9]+((.)[0− 9])∗ [min = 300(mA),max = 2(A)]

Logic repetition integer [0− 9]+ [min = 0,max = 9999]

Event duration integer [0− 9]+ [min = 0,max = 9999999999]

Decimal places integer [0− 9]+ [min = 0,max = 5]

Initial value integer [0− 9]+ [min = 0,max = 999999]
Relay status

boolean (0|1) [min = 0,max = 1]


X

Thermocouple status
Thermocouple status
Energy slave status
Input module status
Thermostat status
Logic start/end date date [0− 9]+(/)[0− 9]+(/)[0− 9]+ [min = 1/1/2007,max = 12/12/2029]

Logic start/end time time [0− 9]+(:)[0− 9]+ [min = 00 : 00 : 00,max = 23 : 59 : 59]

Logic Script string (∗)+ valid controller script
Module name

string [a− zA− Z0− 9]+
[min = 1,max = 20]

}
XDescription [min = 0,max = 60]

Web-based home automation
Room light toggle

boolean (0|1) [min = 0,max = 1]

X
Door lock toggle
Alarm
A/C
Room temperature integer [0− 9]+ [min = 6,max = 25]

Window shutter level integer [0− 9]+ [min = 0,max = 8]

Alarm time time [0− 9]+(:)[0− 9]+ [min = 00 : 00,max = 23 : 59]

TABLE II: INTEGRIKEY tool performance.

Web page #Fields Processing time (ms.) SD
x600m Web PLC

Register configuration 6 1.654 0.0131
Counter configuration 7 0.771 0.0089
Event configuration 8 0.622 0.0085
Action configuration 5 1.241 0.0111
Supply voltage 4 0.673 0.0099
Calender configuration 11 0.713 0.0105

Home automation
Home configuration 6 0.016 0.0018
Room configuration 5 0.012 0.0015

TABLE III: INTEGRIKEY bridge performance.

Parameter Latency (ms.) SD
Initial secure channel establishment 800 0.1235
Keystroke latency 50 0.0535

time data types). The “Reorder” column specifies if a group
of input fields additionally can be swappable with each other.

From the initial evaluation, we found that all boolean data
fields are vulnerable to the label swapping attack. In most of
the pages, the boolean type inputs are interpreted by either

TABLE IV: INTEGRIKEY server-side latencies.

Parameter Latency (µs) SD
SHA256 Hash matching (512 bytes message) 5.359 0.0303
SHA256 Hash matching (1 Kbytes message) 9.203 0.0479
Curve25519 signature verification 197.856 0.6487

a toggle button or a check-box. Converting those UI elements
to text-fields that accepts either 0 or 1, with the label of the
field added to the data can prevent such attacks.

Whether the string type fields are swappable depends on
both their lengths and their regular expressions. E.g., a PLC
application that supports Lua scripts, allowing the adminis-
trator to write a script that executes operations based on the
sensor data (e.g., heat, humidity sensor). Parameters such as
the device name and descriptions are also string type but
cannot be swapped in place of the script since they typically
do not follow the syntax of Lua. Numerical data types such
as integer and float are susceptible to swapping attacks
due to their overlapping values. E.g., the register configuration
on the PLC server, the initial value of the register and decimal
places are both of the integer types (see Table V) and



Fig. 7: Example screenshot of a ControlByWeb x600m industrial
I/O server configuration webpage in the browser.

there is an overlap in their value ranges, {0 − 99999} and
{0−5}, respectively. Even though the overlapping range only
{0 − 5}, it may lead to catastrophic results if the attacker
successfully tricks the user into entering them in the wrong
fields. There are some fields such as, start date end dates which
are classified by the INTEGRIKEY tool as overlapping fields.
However, interchanging them is not possible by the attacker
as the server will reject such invalid values. Note that this is
due to the fact the INTEGRIKEY tool is oblivious to any of
the internal logic of the application, rather solely depends on
the developer’s specifications. Hence, such over-approximation
could be avoided by providing a tighter bounds/exceptions.

We evaluate the INTEGRIKEY tool with two web applica-
tions: the PLC and the home automation controller. We first
generate the specifications based on the original web pages
of these applications. Then we feed the specifications to the
INTEGRIKEY tool to produce the groups of overlapping fields.
Table V provides the details of the evaluation. For the PLC
test case, we use ControlByWeb x600m [2] I/O server and
select six configuration pages from it. We manually generate
the specification for the data fields in these pages as an input to
the INTEGRIKEY tool. Similarly, we select two configuration
pages from a browser-based home automation system provided
by home-assistant [21]. Then we apply the INTEGRIKEY tool
to compute the set of overlapping fields.

B. INTEGRIKEY bridge performance

We evaluate the performance of the INTEGRIKEY bridge in
the following two aspects:

(1) Secure channel establishment: This represents the
elapsed time between the web page loads and the INTE-
GRIKEY bridge is ready to take input from the user. The
JavaScript code served by the remote server communicates
with the INTEGRIKEY bridge and establishes a TLS using
the WebUSB API. The additional TLS messages and the
INTEGRIKEY bridge processing introduce this delay only at
the initial loading of the page. We measure the difference
between the time when the JavaScript code gets loaded on the
browser and the time when the final TLS handshake message

from the client is sent using performance.now() that
provides the highest resolution for timing measurement.
(2) Keystroke latency: This latency is added every time the
user presses a key. This time is due to the internal processing of
the INTEGRIKEY bridge. We use the micros() function that
is provided by the Arduino library which measures elapsed
times in microsecond resolution. We place the micros()
at program point the USBHost library starts capturing the
keyboard event and at the program point the device calls
WebUSBSerial.print(), a function that sends the data
via the WebUSB interface to the browser.
Table III provides the two aforementioned latencies. We use
http-archive [22] and pingdom [23] to evaluate the load-
ing time of some of the Alexa top 100 [24] websites.
We found that google.com takes 1.1s, Wikipedia.org
takes 1s, youtube.com takes 2s, baidu.com 5.47s,
facebook.com takes 1.08s, and cnn.com takes 30s. IN-
TEGRIKEY bridge adds small overhead compared to the actual
loading time of the popular pages. The latency corresponding
to the keystroke is around 50 millisecond which is negligible.
These latencies are very specific to the INTEGRIKEY bridge
implementation. The I2C channel between the master and the
slave device is only limited to 1 kHz. We have also started
development on a standalone Arduino/Genuino Zero that is
now supported by the new version of the WebUSB driver. This
new implementation eliminates the need for the I2C channel
and can potentially reduce the latencies significantly.

C. INTEGRIKEY server side performance

INTEGRIKEY TOOL. For the performance measurement of
the INTEGRIKEY tool, we use identical test cases provided
in the Table V. Table II represents the performance statistics
for detection of the overlapping fields. The time required to
execute the performance depends on i) the number of states
in the DFA constructed from the regular expression of the
specification and ii) the number of input fields. We conclude
that the time required to do the processing is extremely short
(the highest one is 1.656 ms). Moreover, this processing is
static and can be done by the developer at the design phase
and does not incur an overhead during runtime.

INTEGRIKEY SERVER-SIDE COMPONENT. We use
Apache Tomcat web server for all our test cases. We measure
the time taken by the server to i) compare the values coming
from the browser (HTTPS) and the dedicated channel (TLS)
between the server and the INTEGRIKEY bridge, ii) verify the
signatures (Curve25519) of the messages. Table IV provides
the performance numbers for the server-side components. The
signature verification takes ∼ 198 µs and the hash matching
(for 512 bytes messages) takes ∼ 5 µs.

VII. DISCUSSION

We now discuss various aspects of INTEGRIKEY.
INTEGRIKEY DEPLOYMENT. One critical aspect of the

design of INTEGRIKEY is its compatibility and seamless
integration with the legacy systems while incurring minimal or
no cognitive load on the users. Our prototype implementation



TABLE V: Evaluation of INTEGRIKEY tool on ‘ControlByWeb x600m’ industrial I/O server and ‘home-assistant’ home automation
systems. Page column shows the actual pages that we sampled from the applications and generates their specifications. Field and
type are the corresponding input fields and datatype. Overlapping fields shows which field label can be swapped with another. menu
types are drop-down menus that are not swappable with any other data-types.

Web pages Fields Type Length/value constraint Overlapping fields
Web PLC configuration forms

Register configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Type integer [min = 1,max = 5] Units
Units string [min = 1,max = 5] Decimal place
Decimal places integer [min = 0,max = 5] Initial
Initial Value integer [min = 0,max = 999999] Type

Counter configuration

Device boolean [min = 0,max = 1] Name
Device counter number integer [min = 0,max = 50] Description
Name string [min = 1,max = 20] Device counter number
Description string [min = 0,max = 60] Decimal places
Decimal places integer [min = 0,max = 5] Debounce
Debounce integer [min = 0,max = 9999] Edge
Edge integer [min = 0,max = 6]

Event configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Type menu

 −I/O menu
Event group menu
Condition menu
Eval on powerup boolean [min = 0,max = 1]
Duration integer [min = 0,max = 9999]

Action configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Event source menu −
Type string [min = 0,max = 5]
Relay menu −

Supply voltage

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Decimal places integer [min = 0,max = 5]
Device menu −

Calendar configuration

Name string [min = 1,max = 20] Name
Description string [min = 0,max = 60] Description
Event group integer [min = 0,max = 5] Start date
Start date date [min = 01/01/2007,max = 31/12/2029] Stop date
Stop date date [min = 01/01/2007,max = 31/12/2029] Start time
Start time time [min = 00 : 00,max = 23 : 59] Stop time
Stop time time [min = 00 : 00,max = 23 : 59] Occurrence
All day boolean [min = 0,max = 1] Repeat val
Repeat type menu −
Repeat val integer [min = 10,max = 9999]
Occurrences integer [min = 0,max = 999999]

Web Home automation configuration forms

Home configuration

Room door lock boolean
[min = 0,max = 1]

Room door lock
Alarm boolean Alarm
Water lawn boolean Water lawn
Alarm time time [min = 00 : 00,max = 23 : 59]
Nest (thermostat) integer [min = 16,max = 25]
Sound selection menu −

Room configuration

Table lamp boolean
[min = 0,max = 1]

Table lamp
TV back light boolean TV back light
Celling lights boolean Celling lights
AC integer [min = 16,max = 25]
Window shutter level integer [min = 0,max = 10]

shows that INTEGRIKEY can be easily deployed on a large
scale for the following reasons:

• As we envision that WebUSB will be supported out-of-the-
box by all browsers, the setup of the INTEGRIKEY bridge
would require no additional software on the host system.
• The INTEGRIKEY server-side component introduces min-
imal changes on the server. Only the JavaScript code that
handles the WebUSB functionality needs to be included in the
web page of the web server. This requires one additional line
in the web page i.e., <script>jsFile.js</script>.
• The INTEGRIKEY tool is a preprocessing tool that the

developer uses at the time of designing the web page. Thus,
it does not add any overhead to the online operation of the
server.

OTHER USE-CASES. INTEGRIKEY has the potential in
other use cases such as the authenticated logging of user
input in the context of intrusion detection. The INTEGRIKEY
bridge can act as a keylogger that stores the commands given
by the users. This data can be stored in the secure internal
storage of the INTEGRIKEY bridge and can be presented as
a proof later on. More importantly at the time of providing
the commands to the remote server, the INTEGRIKEY bridge



can authenticate the user as the valid administrator besides
conventional credentials like passwords. Apart from the web-
based interfaces, INTEGRIKEY can be used in any applications
that are used to configure remote systems. One only has to
provide the mechanism to communicate with the (USB based)
INTEGRIKEY bridge, similar to WebUSB in browsers) for
secure communication with the remote server.

USAGE OF WEBBLUETOOTH. WebBluetooth is also an
upcoming web standard like WebUSB that allows a JavaScript
code to communicate with Bluetooth enabled devices. INTE-
GRIKEY can also be implemented using WebBluetooth by
attaching a Bluetooth module to the INTEGRIKEY bridge. This
setup allows the INTEGRIKEY bridge to communicate with
the browser over Bluetooth. Alternatively, smartphones can be
used as the INTEGRIKEY bridge (discussed in Section III-D)
that connects to the host system over the Bluetooth channel.

VIII. RELATED WORK

We now summarize related works on improving the integrity
of control data and compare them with our approach.

PLC SECURITY. Garcia et al. [25] explore the security of
programmable logic controllers that are typically deployed in
physical infrastructures such as the power grid. Their attack,
HARVEY, consists of a PLC rootkit that modifies legitimate
outward control commands and inward sensor data to covertly
damage power equipment. As a mitigation, they propose using
remote software attestation, secure booting, and a bump-in-
the-wire device to detect malicious modifications. In contrast,
our approach secures control commands sent from users (e.g.
administrators in the control center) and therefore require no
detection of malicious input on the channel.

Zonouz et al. [26] propose a way detect malware in indus-
trial control devices by automatically analyzing PLC software.
They designed the Trusted Safety Verifier (TSV) that runs on
a minimal trusted computing base and verifies the PLC code
against predefined safety checks before executing it. Malchow
et al. [27] present PLC Guard as an improvement to TSV
that allows engineers to inspect changes between different
versions of PLC code to identify potential threats. Fachkha
et al. [28] provide a complete summary of security solutions
for cyber-physical systems, showing that most of the work
on improving PLC security by analyzing/detecting protocol
vulnerabilities [29]–[34], verifying safety-critical codes [35],
process variables [36]–[39], and sensor data [40], [41]. By
comparison, our work focuses on administrators’ control input
and defends against a compromised host that attempts to send
malicious administrative commands to benign PLCs.

USB SECURITY. As USB is a ubiquitous interface, many
security concerns arrive. The paper [42] talks about a system
USBSec that incorporates host authentication to defend against
software threats. The paper [43] talks about the end-point
security of USB device in case of theft. Bang et al. [44]
provided the design and implementation of a secure USB
bypassing tool that bypasses the USB security functions. Tian
et al. propose GoodUSB [45] and USBFilter [46] that provide
protection against malicious USB firmware.

COMPROMISED HOSTS. Lin et al. in their paper [12]
describe one of the first known fabrication time attacks. Yang
et al. in their paper A2 [13] describes a fabrication time
attack that leverages analog circuits to create a small and
stealthy hardware attack. The paper, ghost on the browser [47]
analyzes browser-based malware. Man in the browser [48]
describes attacks such as stealing authentication and altering
transaction data to benefit the attacker. Drive-by-download
is another well-known way to infect victim host systems
with malware. Papers such as [49]–[56] analyze and propose
mitigation techniques. Zero-day exploits are one of the most
effective ways to compromise hosts where the exploits are
completely unknown to the hardware/software manufacturers.
Bilge et al. in their paper [14] conducted an empirical study
on the zero-day attacks in the real world. Other papers such
as [6], [15] discussed malware based on the zero-day exploits
and the markets of the zero-day exploits. Grace et al. [57] pro-
posed defenses against android based zero-day exploits. Other
solutions/detection techniques can be found in like: [58]–[61].

SECOND-FACTOR SECURITY. Many other works consider
the use of a device as an additional factor to improve security
guarantees. Mannan et al. [62] proposed to use a personal
device (e.g., phone) to provide long-term low entropy secret
such as the password. They also proposed a protocol MP-auth
and implemented a prototype. Kiljan et al. [63] propose a de-
vice where the user provides a single transaction information,
it signs the values and give it to the computer. The solution
requires the user to look at the display of the external device
and confirm the values. The proposed method is vulnerable to
replay attack and does not consider any UI manipulation or
compromised host. Several other second factor authentication
proposals can be found in [64]–[69].

IX. CONCLUSION AND FUTURE WORK

We designed, implemented, and evaluated INTEGRIKEY,
a system that provides end-to-end integrity for peripheral
devices. We identified and analyzed a new form of attack—the
UI integrity manipulation attack—that can be orchestrated by a
malicious host by manipulating the web page elements shown
in the browser. INTEGRIKEY preserves the integrity of user
input in the presence of such attacks. INTEGRIKEY is very
easy to deploy, making it very practical to use in legacy and
modern systems alike, such as industrial PLCs, medical pro-
grammers, home automation systems, etc. The INTEGRIKEY
bridge can be used in many client systems and be paired with
any USB based peripheral devices. Our evaluation showed that
the INTEGRIKEY server-side component and the INTEGRIKEY
bridge on the user’s side introduce only minimal overhead.
Currently, INTEGRIKEY is limited to character-based input
devices such as the keyboard. As future work, we aim to
explore the integration of other input devices, such as mice,
touchscreen and more complex UI elements.
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[12] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, Trojan
Side-Channels: Lightweight Hardware Trojans through Side-Channel
Engineering.

[13] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in 2016 IEEE Symposium on Security and Privacy
(SP).

[14] L. Bilge and T. Dumitras, “Before we knew it: an empirical study of
zero-day attacks in the real world,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012.

[15] S. Egelman, C. Herley, and P. C. Van Oorschot, “Markets for zero-day
exploits: Ethics and implications,” in Proceedings of the 2013 workshop
on New security paradigms workshop. ACM.

[16] [Online]. Available: https://wicg.github.io/webusb/
[17] A. P. Felt, R. W. Reeder, A. Ainslie, H. Harris, M. Walker,

C. Thompson, M. E. Acer, E. Morant, and S. Consolvo, “Rethinking
connection security indicators,” in Twelfth Symposium on Usable
Privacy and Security (SOUPS 2016). Denver, CO: USENIX
Association, 2016, pp. 1–14. [Online]. Available: https://www.usenix.
org/conference/soups2016/technical-sessions/presentation/porter-felt

[18] A. P. Felt, R. W. Reeder, H. Almuhimedi, and S. Consolvo, “Experiment-
ing at scale with google chrome’s ssl warning,” in ACM CHI Conference
on Human Factors in Computing Systems, 2014.

[19] K. Salomaa and S. Yu, NFA to DFA transformation for finite languages.
Springer Berlin Heidelberg, 1997.

[20] “I2c.” [Online]. Available: https://learn.sparkfun.com/tutorials/i2c
[21] “Home assistant demo.” [Online]. Available: https://home-assistant.io/

demo/
[22] “Http archive - web sites.” [Online]. Available: http://httparchive.org/

websites.php
[23] “Pingdom tools.” [Online]. Available: https://tools.pingdom.com/
[24] “The top 500 sites on the web.” [Online]. Available: https:

//www.alexa.com/topsites
[25] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. Mohammed,

and S. A. Zonouz, “Hey, my malware knows physics! attacking plcs with
physical model aware rootkit,” in 24th Annual Network & Distributed
System Security Symposium (NDSS), 2017.

[26] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security & Privacy.

[27] J.-O. Malchow, D. Marzin, J. Klick, R. Kovacs, and V. Roth, “Plc
guard: A practical defense against attacks on cyber-physical systems,”
in Communications and Network Security (CNS), 2015.

[28] C. Fachkha, E. Bou-Harb, A. Keliris, N. Memon, and M. Ahamad,
“Internet-scale probing of cps: Inference, characterization and orches-
tration analysis,” in Proceedings of NDSS, 2017.

[29] I. Garitano, R. Uribeetxeberria, and U. Zurutuza, A Review of SCADA
Anomaly Detection Systems.

[30] C. Bellettini and J. L. Rrushi, “Vulnerability analysis of scada protocol
binaries through detection of memory access taintedness,” in 2007 IEEE
SMC Information Assurance and Security Workshop.

[31] E. Byres, D. Huffman, and N. Kube, “On shaky ground-a study of
security vulnerabilities in control protocols,” American Nuclear Society,
555 North Kensington Avenue, La Grange Park, IL 60526 (United
States), Tech. Rep., 2006.

[32] A. Treytl, T. Sauter, and C. Schwaiger, “Security measures for industrial
fieldbus systems-state of the art and solutions for ip-based approaches,”
in Factory Communication Systems, 2004. Proceedings. 2004 IEEE
International Workshop on.

[33] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA security scientific symposium, 2007.

[34] N. Goldenberg and A. Wool, “Accurate modeling of modbus/tcp for
intrusion detection in scada systems,” International Journal of Critical
Infrastructure Protection, 2013.

[35] S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel, “A
trusted safety verifier for process controller code.” in NDSS, 2014.
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