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Abstract. In modern cryptography, block encryption is a fundamental
cryptographic primitive. However, it is impossible for block encryption
to achieve the same security as one-time pad. Quantum mechanics has
changed the modern cryptography, and lots of researches have shown
that quantum cryptography can outperform the limitation of traditional
cryptography.
This article focuses on block encryption of quantum data. Based on pseu-
dorandom functions, we construct a quantum block encryption (QBE)
scheme, and prove it has indistinguishable encryption under chosen plain-
text attack. Moreover, the combination of the QBE and quantum mes-
sage authentication scheme has indistinguishable encryption under cho-
sen ciphertext attack. In addition, QBE can achieve perfect security in a
particular case. Comparing with quantum one-time pad (QOTP), QBE
scheme can be the same secure as QOTP, and the secret key can be reused
(no matter whether the eavesdropping exists or not). Thus, block encryp-
tion based on quantum mechanics can break the limitation of perfectly
secure encryption, and can be used as the new cryptographic primitive
instead of QOTP. In order to physically implement the QBE scheme, we
only need to implement two kinds of single-qubit gates (Pauli X gate and
Hadamard gate), so it is within reach of current quantum technology.

Keywords: Quantum cryptography, quantum encryption, block encryp-
tion, quantum pseudorandom functions, perfect security

1 Introduction

The combination of quantum mechanics and information science forms a new
science – quantum information science, in which the information extends to
quantum information. The requirement of processing quantum information oc-
curs, and we have to develop quantum cryptographic technology for quantum
information, e.g. encryption of quantum information. Since the quantum infor-
mation can be seen as an extension of classical information in complex Hilbert
space, the cryptographic schemes for quantum information are suitable for clas-
sical information, but not vice versa.

Quantum information encryption is a kind of basic quantum cryptographic
primitive, especially the quantum one-time pad (QOTP), which has been applied
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in various quantum cryptographic schemes. For example, the quantum message
authentication (QMA) is applied in the constructions of secure multiparty quan-
tum computation [1] and quantum interactive proof [2], and the authenticity of
QMA can be guaranteed by quantum encryption [3].

QOTP (or private quantum channel) [4–7] is the first kind of quantum in-
formation encryption scheme, which uses preshared classical symmetric key and
has perfect security. However, the secret key cannot be reused. The recycling is-
sues of QOTP-key have been studied in some literatures [8]. Zhou et al. propose
another symmetric-key encryption algorithm [9], which uses quantum-classical
hybrid keys.

Public-key encryption of quantum messages is firstly studied by Yang [10],
in which both the public key and private key are classical. Because the scheme
is constructed based on NP-complete problem, it has computational security
at the most. Later, public-key encryption schemes with computational security
are studied in more literatures [11–13]. In addition, public-key encryption with
information-theoretic security is also studied [14, 15].

Alagic et al.[16] propose a private-key scheme and a public-key encryption
scheme for quantum data, both of which have computational security. The
private-key scheme is constructed based on quantum pseudorandom function
(PRF) and QOTP, but its indistinguishability against chosen ciphertext attack
is falsely proved. The public-key scheme is constructed based on quantum trap-
door one-way permutation and QOTP.

There are some literatures about QMA [3, 17, 18] or non-malleable quantum
encryption [19, 20]. Because authenticity of QMA implies encryption [3], those
secure quantum authentication schemes can also be used as quantum message
encryption scheme; However, the secret key cannot be reused or can be recycled
partially.

1.1 Our Results

We present a detail description of EHE encryption. In the notation “EHE”,
each E represents a different quantum encryption operation, and H represents
a transversal Hadamard transformation. Actually, QOTP can be viewed as a
special case of EHE encryption, where each E is implemented by encrypting
quantum superpositions using classical one-time pad.

Based on two PRFs, we construct a secure quantum block encryption (QBE)
scheme in the form of EHE encryption. The idea is described in Fig.1. E(F )
and E(G) are two classical block encryption (BE) schemes that are constructed
based on two PRFs F and G. E ′(F ) and E ′(G) are insecure QBE schemes that are
constructed using E(F ) and E(G). The whole procedure of quantum encryption
E(F,G) : σ ∈ M1 → ρ ∈ C2 can be finished in the three steps: (1) the quantum
message σ ∈M1 is encrypted using the first QBE scheme E ′(F ), and the obtained
ciphertext is ρ1 ∈ C1; (2) perform transversal Hadamard transformation on
ρ1 ∈ C1, and obtain ρ2 ∈ C ′1; (3) If C ′1 ⊆ M2, then ρ2 ∈ M2 can be encrypted
using the second QBE scheme E ′(G), and the obtained ciphertext is ρ ∈ C2.
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Fig. 1. Construction of quantum block encryption scheme E(F,G). The rectangles
represent cryptographic primitives or related computational steps. The elliptic frames
represent plaintext space or ciphertext space. The gray frames represent the detailed
procedure of the scheme E(F,G): the quantum message in space M1 is encrypted using
the first scheme E ′(F ), and then be transformed using H, and finally be encrypted
using the second scheme E ′(G).

We study the security of QBE scheme E(F,G), and obtain the main results
as follows.

Theorem 1 (informal). If PRFs F,G are chosen independently and have stan-
dard security in the quantum computation setting, then E(F,G) is an IND-CPA-
secure QBE scheme.

Theorem 2 (informal). F,G are independent PRFs with standard security. If
{F (∗, x)}x and {G(∗, x)}x are two families of permutations, then E(F,G) is a
perfectly secure QBE scheme.

Theorem 1 states that our QBE scheme can be IND-CPA-secure. The plain-
text block has the same length as ciphertext block. Moreover, we show in Section
3.4 that the combination of an IND-CPA-secure QBE scheme and a QMA scheme
can achieve an IND-CCA-secure QBE scheme. Theorem 2 states that the QBE
scheme can have the same security as QOTP in some particular case. Comparing
with QOTP, the advantage of QBE scheme is that the secret key can be reused
securely.

QOTP has been widely applied in the theoretical design of various quantum
encryption and authentication schemes [1–3, 14, 18]. Based on our results, we
can consider modifying those QOTP-based schemes by replacing QOTP with
perfectly secure QBE, and expect an obvious optimization, for example, recycling
all the keys of the scheme in Ref.[18] or lifting weak authentication to total
authentication [17].

1.2 Related works

How to construct quantum cryptographic primitives from classical
ones. Based on quantum mechanics, the information extends to quantum in-
formation, and the computation extends to quantum computation. A natural
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question is whether or not the modern cryptography based on the information
and computation could extend to quantum cryptography. Concretely, how to
extend classical cryptographic primitive to quantum one? Our results give an
answer from the aspect of BE (or pseudorandom functions). In addition, there
are also some other related works.

In Ref.[10], a quantum public-key encryption scheme is proposed based on
classical McEliece public-key cryptosystem. Later, more constructions are pro-
posed [11]. In order to improve the security, Yang and Liang [13] propose double-
encryption technique, which is the original source of EHE encryption.

Garg et al. [17] propose the “Auth-QFT-Auth” pattern used to construct
QMA scheme (denoted as Auth2(H(Auth1(ρ)))), where Auth1, Auth2 are the
classical Wegman-Carter MAC schemes and H is the quantum Hadamard trans-
form. Obviously, this pattern is very similar to EHE encryption.

In fact, QOTP can be viewed as an EHE-like construction based on classical
OTP: quantum states are encrypted using the classical one-time pad in the basis
{|0〉, |1〉}, and then using the classical one-time pad in the basis {|+〉, |−〉}.

Quantum encryption with key recycling. OTP is a perfectly secure en-
cryption scheme, but the key cannot be reused; In BE scheme, the key can be
reused, but the security is weaker than OTP. In quantum cryptography, there
exists the same problem: QOTP has the same security as OTP, but the key
cannot be reused (Though we can use a QOTP with quantum key distribution,
this would need more rounds of interaction and more communication.). In order
to settle this problem, the researchers begin to consider how to recycle part of
the keys or conditionally reuse the keys.

Damgard et al.[21, 22] show how to encrypt a classical message in a quantum
state and recycle the key. Oppenheim and Horodecki [8] study how to encrypt a
quantum message and recycle the key. Fehr and Salvail [23] propose a classical-
message-oriented quantum authentication scheme with key recycling, in which
the partial randomness can be extracted and be used as the OTP-key or QOTP-
key. Then the combination of the authentication scheme and OTP (or QOTP)
becomes a quantum encryption scheme with key recycling, and can be used to
encrypt the classical or quantum information.

There are also some researches about QMA with key recycling [17, 18]. The
“Auth-QFT-Auth” authentication scheme [17] allows conditionally recycling part
of the keys: the inner key can be recycled upon successful verification, and the
outer key unfortunately cannot be. Because any scheme to authenticate quan-
tum messages must also encrypt them [3], these authentication schemes can also
be used as encryption schemes with key recycling.

In all these schemes, the keys cannot be totally reused, and we will solve this
problem through QBE scheme.

1.3 Organization

In Section 2, we introduce some basic notations, and review three kinds of PRFs.
In Section 2.3, we describe the EHE encryption technique. In Section 3, we show
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how to construct IND-CPA-secure or IND-CCA-secure QBE schemes, and prove
the perfectly secure scheme is achievable. Finally, we conclude and discuss these
results.

2 Preliminaries

2.1 Notations and definitions

Funcn = {f |f : {0, 1}n → {0, 1}n} denotes the set of all the functions that
map n bits to n bits. Define YX as the set of functions {f |f : X → Y}, then
Funcn = NN , where N = {0, 1}n.

Any classical computable function f ∈ YX can be implemented by a quan-
tum computer, or be implemented as an oracle which is queried on quantum
superpositions.

Uf :
∑

x∈X ,y∈Y
αx,y|x〉|y〉 −→

∑
x∈X ,y∈Y

αx,y|x〉|y ⊕ f(x)〉, (1)

where X and Y are the domain and range, respectively.
∑
x∈X ,y∈Y can be briefly

written as
∑
x,y without leading to any misunderstanding. A|f〉 represents the

quantum adversary A can access to f with quantum superposition queries. Af
represents the (classical or quantum) adversary A can access to f classically

Of : (x, y)→ (x, y ⊕ f(x)),∀x ∈ X , y ∈ Y. (2)

PRF is the basic primitive in modern cryptography. A PRF is a polynomial-
time computable function F : K×X → Y, where K, X and Y are the key space,
the domain and range, respectively. Denote K × X = {(k, x) : k ∈ K, x ∈ X}.
K,X ,Y are implicit functions of the security parameter n. We write y = Fk(x)
or y = F (k, x).

Definition 1 (PRF). A function F : K×X → Y is PRF, if for any probabilistic
polynomial-time (PPT) adversary A, the advantage of A while distinguishing
Fk,∀k from a truly random function f

AdvPRFF (A) =
∣∣∣Pr

k
R←−K[AFk() = 1]− Pr

f
R←−Funcn

[Af () = 1]
∣∣∣

is negligible. We write k
R←− K to represent the key k is drawn from K uniformly

and randomly. f
R←− Funcn represents the function f is randomly drawn from

Funcn. The notations can be briefly written as k ← K and f ← Funcn.

“ε(n) is negligible” means that, for any polynomial p(n), there exists n0 such
that ε(n) < 1

p(n) ,∀n > n0.

Pauli X gate and Z gate can be represented as: X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
,

and Hadamard gate is H = 1√
2

(
1 1
1 −1

)
. Given any unitary matrix U and a
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n-bit string b = b1b2 · · · bn (bi is the i-th bit of the string b), we write U b to
denote

⊗n
i=1 U

bi . Particularly, U⊗n =
⊗n

i=1 U = U11···1.
For two n-bit strings a, b ∈ {0, 1}n, define a� b =

∑n
i=1 aibi(mod2).

We write [[pk, Uk, k ∈ K]] to represent a quantum message encryption scheme

that performs encryption operator Uk and decryption operator U†k using the
symmetric key k ∈ K, where k is chosen with probability pk and cannot be
reused. Then QOTP can be described by the notation [[pab = 1

22n , X
aZb, a, b ∈

{0, 1}n]].

2.2 Quantum pseudorandom functions

Following the definitions in Ref.[24], there are two security notions of PRF under
quantum computation model. The first notion is standard security, where the
quantum adversary can only access to the function classically; We denote this
kind of PRF as “sPRF”. The second one is quantum security, where the quantum
adversary can access to the function with quantum superposition queries; We
denote this kind of PRF as “qPRF”.

Definition 2 (sPRF). A PRF F : K×X → Y is standard secure, if no quan-
tum polynomial-time (QPT) adversary A making classical queries can distin-
guish between a truly random function and the function Fk,∀k. That is, for
every such A, there exists a negligible function ε = ε(n) such that∣∣Prk←K[AFk() = 1]− Prf←Funcn [Af () = 1]

∣∣ < ε.

Definition 3 (qPRF). A PRF F : K ×X → Y is quantum secure, if no QPT
adversary A making quantum queries can distinguish between a truly random
function and the function Fk,∀k. That is, for every such A, there exists a neg-
ligible function ε = ε(n) such that∣∣∣Prk←K[A|Fk〉() = 1]− Prf←Funcn [A|f〉() = 1]

∣∣∣ < ε.

For sPRF F , defineAdvsPRFF (A) =
∣∣Prk←K[AFk() = 1]− Prf←Funcn [Af () = 1]

∣∣.
For qPRF F , defineAdvqPRFF (A) =

∣∣Prk←K[A|Fk〉() = 1]− Prf←Funcn [A|f〉() = 1]
∣∣,

where A is QPT adversary.
When quantum queries are allowed, QPT adversary has more advantage

while distinguishing PRF and truly random function. That is AdvsPRFF (A) <

AdvqPRFF (A). If AdvqPRFF (A) < ε(n), then AdvsPRFF (A) < ε(n), where ε(n) is
negligible. Thus, if a PRF F is a qPRF, then it is also a sPRF.

How to directly construct a sPRF that is not a qPRF? In fact, Even-Mansour
block cipher is a sPRF [25], but it is not a qPRF [26]. In addition, CBC-MAC
is also not quantum-secure as a PRF [27].

Lemma 1. Given a function G, if G is independent of PRF {Fk}k∈K, then∣∣Prk←K[AFk,G() = 1]− Prf←Funcn [Af,G() = 1]
∣∣ < ε(n),

where A is any PPT adversary and ε(n) is negligible.
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Proof. Define a new quantum adversary AG, where the adversary A is allowed
to access to the function G classically. Because G is independent of {Fk}k∈K, we
have ∣∣Prk←K[AFk,G() = 1]− Prf←Funcn [Af,G() = 1]

∣∣
=
∣∣∣Prk←K[AFk

G () = 1]− Prf←Funcn [AfG() = 1]
∣∣∣

= AdvPRFF (AG).

Fk is a PRF, so AdvPRFF (AG) is negligible. Thus complete the proof. 2

The are two similar results for sPRF and qPRF, respectively.

Lemma 2. Given a function G, if G is independent of sPRF {Fk}k∈K, then∣∣Prk←K[AFk,G() = 1]− Prf←Funcn [Af,G() = 1]
∣∣ < ε(n),

where A is any QPT adversary and ε(n) is negligible.

Lemma 3. Given a function G, if G is independent of qPRF {Fk}k∈K, then∣∣∣Prk←K[A|Fk〉,|G〉() = 1]− Prf←Funcn [A|f〉,|G〉() = 1]
∣∣∣ < ε(n),

where A is any QPT adversary and ε(n) is negligible.

Remark 1. If G is a PRF {Gk}k∈K and is independent of {Fk}k∈K, then the
results in Lemmas 1,2 and 3 hold as well.

Theorem 3 (Parallel Composition). If {Fk}k∈K and {Gk}k∈K are two in-
dependent sPRFs, then Hk = (Fk1 , Gk2),∀k = k1 ‖ k2 is also a sPRF. That is,
for any QPT adversary A, there exists a negligible function ε(n) such that∣∣Prk←K×K[AHk() = 1]− Prf←Func2n [Af () = 1]

∣∣ < ε(n).

Proof. According to Definition 2, if F is a sPRF, then for any QPT adversary
A1 there exists a negligible function ε1(n) such that∣∣∣Prk←K[AFk

1 () = 1]− Prf1←Funcn [Af11 () = 1]
∣∣∣ < ε1(n).

If G is a sPRF, then for any QPT adversary A2 there exists a negligible function
ε2(n) such that∣∣∣Prk←K[AGk

2 () = 1]− Prf2←Funcn [Af22 () = 1]
∣∣∣ < ε2(n).

Thus for any QPT adversary A, we have the following deduction according to
Lemma 2 and Remark 1.∣∣Prk1←K,k2←K[AFk1

,Gk2 () = 1]− Prf1←Funcn,f2←Funcn [Af1,f2() = 1]
∣∣

≤
∣∣Prk1←K,k2←K[AFk1

,Gk2 () = 1]− Prf1←Funcn,k2←K[Af1,Gk2 () = 1]
∣∣

+
∣∣Prf1←Funcn,k2←K[Af1,Gk2 () = 1]− Prf1←Funcn,f2←Funcn [Af1,f2() = 1]

∣∣
< ε1(n) + ε2(n).

Let ε(n) = ε1(n) + ε2(n), then ε(n) is negligible. Let Hk = (Fk1 , Gk2) and
f = (f1, f2). Thus complete the proof. 2
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2.3 EHE encryption

In Ref.[13], we have improved the security of quantum McEliece PKE using
double-encryption technology. Here, the “double-encryption” is named as “EHE
encryption”. The new name “EHE encryption” can accurately reflect its struc-
tural characteristic.

Based on EHE encryption, secure quantum encryption scheme can be con-
structed by combining two insecure ones. EHE is a universal technology for
the construction of quantum cryptographic schemes. The basic framework can
be summarized in the following three steps: (1) Encrypt using the first insecure
quantum encryption scheme; (2) Perform transversal Hadamard transformation;
(3) Encrypt again using the second insecure quantum encryption scheme.

Suppose (Gi, Ei, Di), i = 1, 2 denote the two insecure quantum encryption
schemes, where Gi,Ei,Di represent the key generation, encryption and decryp-
tion algorithms, respectively. H(·) is the transversal Hadamard transformation
being performed on all the input qubits. General framework of EHE encryption
is completely described in the following three algorithms.

KeyGen: k1 ← G1(1n), k2 ← G2(1n), output k1, k2;
Enc(k1, k2, σ): σ1 ← E1(k1, σ), σ2 ← H(σ1), ρ← E2(k2, σ2), output ρ;
Dec(k1, k2, ρ): ρ1 ← D2(k2, ρ), ρ2 ← H(ρ1), σ ← D1(k1, ρ2), output σ.

The two encryption schemes (Gi, Ei, Di), i = 1, 2 should satisfy the condi-
tions Di(ki, Ei(ki, σ)) = σ,∀σ, i = 1, 2. It is straightforward that

Dec(k1, k2, Enc(k1, k2, σ)) = σ, ∀σ,

so the combined construction can decrypt the ciphertext correctly.

3 Quantum block encryption

3.1 Some definitions

[[pk, Uk, k ∈ K]] is a kind of symmetric-key quantum encryption scheme, where
each key k is chosen with probability pk and cannot be reused. In this section,
we propose the QBE scheme, which is another kind of symmetric-key scheme,
and its secret key can be reused many times.

Definition 4 (QBE). QBE scheme is defined by a triplet (KeyGen,Enc,Dec),
where KeyGen,Enc,Dec are key generation, encryption and decryption algo-
rithms, respectively. K is the key space, and HM and HC are the quantum plain-
text/ciphertext spaces. The randomness R is optional.

KeyGen: given a security parameter n, it generates a secret key k ∈ K;
Enc: choose a random number r ∈ R and perform the encryption transformation

Enc : K ×HM → R×HC with the key k ∈ K;
Dec: perform the decryption transformation Dec : K×R×HC → HM with the

key k ∈ K.
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These algorithms satisfy the condition Dec(k,Enc(k, σ)) = σ, ∀k ∈ K, σ ∈ HM .

Similar to the security notions of classical encryption, we can define the
quantum versions of indistinguishability (IND), indistinguishability against cho-
sen plaintext attack (IND-CPA), indistinguishability against chosen ciphertext
attack (IND-CCA). These definitions can also be referred to Refs.[14][16][28].

Definition 5 (IND). A QBE scheme (KeyGen,Enc,Dec) is IND-secure, if
for any QPT adversary A,∣∣∣∣∣Pr[A(

∑
k∈K

pkEnc(k, σ1)) = 1]− Pr[A(
∑
k∈K

pkEnc(k, σ2)) = 1]

∣∣∣∣∣ < ε(n),

where ε(n) is negligible, σ1, σ2
R←− HM , pk = Pr[k ← KeyGen(1n)], and the

probability in these terms is taken over the internal randomness of the algorithms
KeyGen, Enc and A.

Next, we introduce another definition of IND. Obviously, the two definitions
are equivalent.

Definition 6 (IND). A QBE scheme (KeyGen,Enc,Dec) is IND-secure, if
for any QPT adversary A,∣∣∣∣∣Pr[A(

∑
k∈K

pkEnc(k, σ)) = 1]− Pr[A(
∑
k∈K

pkEnc(k,
I

2n
)) = 1]

∣∣∣∣∣ < ε(n),

where ε(n) is negligible, σ
R←− HM , pk = Pr[k ← KeyGen(1n)], and the prob-

ability in these terms is taken over the internal randomness of the algorithms
KeyGen, Enc and A.

Definition 7 (IND-CPA). A QBE scheme (KeyGen,Enc,Dec) is IND-CPA-
secure, if it is IND-secure when the QPT adversary A is allowed to access to the
encryption oracle Enc(k, ∗), where k is the secret key.

Definition 8 (IND-CCA). A QBE scheme (KeyGen,Enc,Dec) is IND-CCA-
secure, if it is IND-CPA-secure when the QPT adversary A is allowed to access
to the decryption oracle Dec(k, ρ),∀ρ ∈ HC\{ρb} (ρb is the challenge ciphertext),
where k is the secret key.

All the notions IND, IND-CPA and IND-CCA define the computational se-
curity. In addition, we can define information-theoretic security and perfect se-
curity. Actually, QOTP is a kind of perfectly secure quantum encryption. In
quantum cryptography, there exist some other cryptographic schemes that can
achieve perfect security.

Definition 9 (Perfect Security). A QBE scheme (KeyGen,Enc,Dec) is per-
fectly secure, if Definition 5 (or Definition 6) holds for ε(n) ≡ 0 when A is
computationally unbounded quantum adversary.
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In QOTP [[pab = 1
22n , X

aZb, a, b ∈ {0, 1}n]], a secret key of 2n bits is nec-
essary for perfectly encrypting n qubits. Suppose we set a restriction on a and
b such that a ≡ b, then we get a new encryption scheme [[pc = 1

2n , X
cZc, c ∈

{0, 1}n]]. The length of the key would decrease to n, however, the security will
also decrease.

Proposition 1. The quantum encryption scheme [[pc = 1
2n , X

cZc, c ∈ {0, 1}n]]
is not IND-secure.

Proof. Suppose n = 1. Two quantum states 1√
2
(|0〉+ i|1〉) and |0〉 are chosen as

the challenge messages. Consider the two messages are encrypted. The density
matrixes of the two messages are written as σ1 and σ2, respectively.

The key c ∈ {0, 1} is chosen with probability 1
2 . Because the adversary does

not know the value of c, the ciphertexts corresponding to σ1 and σ2 should be
represented as two mixed states ρ1, ρ2.

ρ1 =
∑

c∈{0,1}

pcEnc(c, σ1) =
1

2
Enc(0, σ1) +

1

2
Enc(1, σ1) =

(
1/2 −i/2
i/2 1/2

)
,

ρ2 =
∑

c∈{0,1}

pcEnc(c, σ2) =
1

2
Enc(0, σ2) +

1

2
Enc(1, σ2) =

(
1/2 0
0 1/2

)
.

The trace distance of the two ciphertexts is D(ρ1, ρ2) = 1
2 , and the adversary

can efficiently distinguish the ciphertexts of σ1 and σ2. In fact, the adversary
chooses { 1√

2
(|0〉+i|1〉), 1√

2
(|0〉−i|1〉)} as the measurement basis. If the adversary

measures ρ1 in the basis, he can obtain 1√
2
(|0〉+ i|1〉) with probability 1; If the

adversary measures ρ2 in the basis, he can obtain 1√
2
(|0〉+ i|1〉) with probability

1
2 , and obtain 1√

2
(|0〉−i|1〉) with probability 1

2 . Thus, the adversary can efficiently

distinguish ρ1 and ρ2 with successful probability 1
2 .

For any value of n, we choose the two states 1√
2n

(|0〉 + i|1〉)⊗n and |0〉⊗n
as the challenge messages, and analyze the security in the same way. Then the
adversary can efficiently distinguish their ciphertexts with successful probability
1− 1

2n . Thus complete the proof. 2

3.2 An insecure construction from classical block encryption

Next, we introduce the PRF-based classical BE scheme E(F ), and construct a
QBE scheme E ′(F ) which is insecure.

Construction 1(Construction 5.3.9 in Ref.[29]): Let F : K×{0, 1}n →
{0, 1}n be a PRF. Define classical BE scheme E(F ) = (GF , EF , DF ) as follows.

GF (1n): k
R←− K, output k;

EF (k,m): r
R←− {0, 1}n, c← m⊕ F (k, r), output (r, c);

DF (k, (r, c)): m← c⊕ F (k, r), output m.
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Based on the classical scheme E(F ), we can construct a QBE scheme E ′(F ) =
(G′F , E

′
F , D

′
F ) for encrypting any quantum message σ ∈ HM . Assume without

loss of generality that the quantum message is a pure state σ =
∑
m αm|m〉,

where
∑
m |αm|2 = 1. According to the encryption operator E′F defined in Con-

struction 2, the obtained ciphertext is also pure state, which can be written as
ρ =

∑
c αc|c〉.

Construction 2: Let E(F ) = (GF , EF , DF ) be a classical BE scheme defined
in Construction 1, define the QBE scheme E ′(F ) = (G′F , E

′
F , D

′
F ) as follows.

G′F (1n): k ← GF (1n), output k;

E′F (k, σ): r
R←− {0, 1}n, ρ←

∑
m αm|m⊕ F (k, r)〉, output (r, ρ);

D′F (k, (r, ρ)): σ ←
∑
c αc|c⊕ F (k, r)〉, output σ.

If the quantum message is a mixed state, then the encryption and decryption
algorithms defined in Construction 2 can be described in the form of unitary
operators.

E′F (k, σ) =
(
r,XF (k,r)σXF (k,r)

)
, D′F (k, (r, ρ)) = XF (k,r)ρXF (k,r). (3)

Next we show that the QBE scheme E ′(F ) in Construction 2 is insecure.

Theorem 4. The QBE scheme E ′(F ) = (G′F , E
′
F , D

′
F ) in Construction 2 is not

IND-secure.

Proof. Choose two quantum plaintexts |ϕ1〉 = 1√
2n

∑
m∈{0,1}n |m〉 and |ϕ2〉 =

|0〉⊗n. Suppose the secret key is k, the ciphertexts of |ϕ1〉 and |ϕ2〉 are

E′F (k, |ϕ1〉) = (r,
1√
2n

∑
m∈{0,1}n

|m⊕ F (k, r)〉) = (r,
1√
2n

∑
m∈{0,1}n

|m〉) = (r, |ϕ1〉),

E′F (k, |ϕ2〉) = (r, |F (k, r)〉).

With respect to the adversary (who does not know the key k), the ciphertexts
of |ϕ1〉 and |ϕ2〉 should be written in the mixed states as follows.∑

k∈K

pkE
′
F (k, |ϕ1〉) = (r, |ϕ1〉〈ϕ1|),

∑
k∈K

pkE
′
F (k, |ϕ2〉) = (r,

1

|K|
∑
k∈K

|F (k, r)〉〈F (k, r)|).

The adversary performs quantum measurement on the ciphertexts in the basis
{|+〉, |−〉}. Because |ϕ1〉 = |+〉⊗n, while measuring its ciphertext, the outcome
would be 00 · · · 0 with probability 1; While measuring the ciphertext of |ϕ2〉, the
outcome would be 00 · · · 0 with probability at most 1

|K|
∑
k∈K

1
2n = 1

2n . Thus,

the adversary can successfully distinguish the two ciphertexts with probability
at least 1− 1

2n . Thus complete the proof. 2
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Theorem 4 can be extended to the case that replacing E(F ) = (GF , EF , DF )
with any quasi-length-preserving encryption scheme. See the eprint version of
Ref.[30] for the definition of quasi-length-preserving encryption.

Theorem 5. Given any quasi-length-preserving classical BE scheme, the QBE
scheme constructed according to Construction 2 is not IND-secure.

Proof. The proof is similar to Theorem 4. 2

From Theorems 4 and 5, it is insecure to use any quasi-length-preserving
classical BE schemes in the following two cases. The first case is that the classi-
cal scheme is directly used to encrypt quantum superpositions on the quantum
computer. The second case is that the classical scheme is embedded into the
quantum cryptographic protocols.

3.3 IND-CPA quantum block encryption

If F and G are PRFs, two insecure QBE schemes can be defined following the
constructions in Section 3.2. Denote the two schemes as E ′(F ) = (G′F , E

′
F , D

′
F )

and E ′(G) = (G′G, E
′
G, D

′
G), respectively. Next, we propose a secure QBE scheme

E(F,G) = (KeyGen,Enc,Dec) following the framework of EHE encryption.

Construction 3: Given two schemes E ′(F ) = (G′F , E
′
F , D

′
F ) and E ′(G) =

(G′G, E
′
G, D

′
G), define a new QBE scheme E(F,G) = (KeyGen,Enc,Dec) as

follows.

KeyGen(1n): k1 ← G′F (1n), k2 ← G′G(1n), output (k1, k2);

Enc(k1, k2, σ): (r1, σ1) ← E′F (k1, σ),σ2 ← H(σ1), (r2, ρ) ← E′G(k2, σ2), output
(r1, r2, ρ);

Dec(k1, k2, (r1, r2, ρ)): σ2 ← D′G(k2, (r2, ρ)), σ1 ← H(σ2), σ ← D′F (k1, (r1, σ1)),
output σ.

According to the QBE scheme E(F,G) defined in Construction 3, we encrypt
n qubits σ with the keys k1, k2, and obtain

Enc(k1, k2, σ) = (r1, r2, X
G(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2))

4
= (r1, r2, ρ). (4)

We decrypt the ciphertext (r1, r2, ρ) with the keys k1, k2, and obtain

Dec(k1, k2, (r1, r2, ρ)) = XF (k1,r1)H⊗nXG(k2,r2)ρXG(k2,r2)H⊗nXF (k1,r1). (5)

Notice that

XG(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2)

= H⊗nZG(k2,r2)XF (k1,r1)σXF (k1,r1)ZG(k2,r2)H⊗n. (6)
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Then we can make a slight modification to the encryption/decryption operators
(in Equations (4) and (5)) as follows.

Enc(k1, k2, σ) = (r1, r2, Z
G(k2,r2)XF (k1,r1)σXF (k1,r1)ZG(k2,r2)), (7)

Dec(k1, k2, (r1, r2, ρ)) = XF (k1,r1)ZG(k2,r2)ρZG(k2,r2)XF (k1,r1). (8)

It can be seen that, the only modification is that the quantum operator H⊗n

is discarded. Because the operator H⊗n does not contain variable parameters,
the modification would not affect its security essentially. However, there exists
a slight disadvantage that is analyzed as follows.

Upon the modifications (defined by Equations (7) and (8)), if |m〉 is encrypted
with the keys k1, k2 and the randomness are r1, r2, then the ciphertext would be
|m⊕F (k1, r1)〉 (ignoring the global phase which depends on G); If the ciphertext
is encrypted and the same randomness r1, r2 are used, then the original message
|m〉 would be restored. In the same way, we consider the original QBE scheme
(defined by Equations (4) and (5)). If |m〉 is encrypted twice in sequence using the
same randomness, then we can obtain |m⊕F (k1, r1)⊕G(k2, r2)〉, instead of |m〉.
For this tiny difference, we decide to choose the original scheme in Construction
3. That is, the Hadamard transformation H⊗n is kept in the scheme.

It can be seen that the QBE scheme E(F,G) = (KeyGen,Enc,Dec) is very
similar to QOTP. The difference is that, the QOTP-key is replaced with the
pseudorandom numbers generated from the PRFs F,G with the keys k1, k2 and
randomness r1, r2. According to Construction 3, the keys of the PRFs (or clas-
sical BE schemes) are used as the key of QBE scheme E(F,G). Because the keys
of the PRFs (or classical BE schemes) can be reused, the key of E(F,G) can also
be reused. However, the randomness r1, r2 cannot be reused, or else the security
would decrease. The proof is as follows.

Proposition 2. For the QBE scheme E(F,G) = (KeyGen,Enc,Dec) defined
in Construction 3, if it is allowed to reuse the randomness (r1, r2), then the
scheme is not IND-CPA-secure.

Proof. Let k1, k2 be the secret key of QBE scheme, and choose the randomness
(r1, r2). For the first time, the sender encrypts the quantum message σ, and
obtains the ciphertext

Enc(k1, k2, σ) = (r1, r2, X
G(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2))

4
= (r1, r2, ρ).

In the CPA model, the adversary is allowed to access to the quantum encryption
oracle. Given the input ρ, the adversary can query the quantum encryption
oracle OEnc(k1,k2,∗). If the randomness (r1, r2) are reused, then the adversary
would obtain the new ciphertext

OEnc(k1,k2,∗)(ρ) = (r1, r2, X
G(k2,r2)H⊗nXF (k1,r1)ρXF (k1,r1)H⊗nXG(k2,r2))

= (r1, r2, X
F (k1,r1)⊕G(k2,r2)ZF (k1,r1)⊕G(k2,r2)σZF (k1,r1)⊕G(k2,r2)XF (k1,r1)⊕G(k2,r2))

= (r1, r2, X
cZcσZcXc),
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where c
4
= F (k1, r1)⊕G(k2, r2). The ciphertextXcZcσZcXc can be viewed as the

outcome of performing quantum encryption scheme [[pc = 1
2n , X

cZc, c ∈ {0, 1}n]]
on the quantum message σ. From Proposition 1, we conclude the QBE scheme
in Construction 3 is not IND-CPA-secure if the randomness is reused. 2

According to Proposition 2, while applying the QBE scheme E(F,G), the
randomness r1, r2 cannot be reused, and should be chosen randomly in every
execution of encryption.

Next we prove the security of QBE scheme E(F,G) in Construction 3.

Theorem 6. If F,G : K × {0, 1}n → {0, 1}n are two independent sPRFs, then
E(F,G) = (KeyGen,Enc,Dec) in Construction 3 is an IND-CPA-secure QBE
scheme.

Proof. If the scheme in Construction 3 adapts the truly random functions f1, f2 ∈
Funcn (instead of PRFs F,G), then the scheme E(f1, f2) would be the same as
QOTP. So the scheme would have perfect security.

Next we show the QBE scheme is IND-secure while using the two sPRFs F
and G.

According to the QBE scheme, if totally mixed state I
2n is encrypted, the

outcome is (r1, r2,
I
2n ), where r1, r2 are chosen randomly. Given any QPT adver-

sary A, assume A can distinguish the two ciphertexts of arbitrary state σ and
I
2n with advantage∣∣∣∣∣∣Pr

A(r1, r2,
1

|K|2
∑
k1,k2

XG(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2)) = 1


−Pr

[
A(r1, r2,

I

2n
) = 1

]∣∣∣∣ = ε(n). (9)

Then we prove ε(n) is negligible as follows. For the pair of sPRFs (F,G), we
construct a distinguisher D invoking the QPT adversary A. The distinguisher
D can classically query a pair of functions, and should make a judgement about
the queried functions, e.g. the queried functions are a pair of PRFs (F,G) or
truly random functions (f1, f2).

Construction of distinguisher D. D is given an input 1n and a pair of
accessible classical random oracle (O1, O2), whereOi : {0, 1}n → {0, 1}n, i = 1, 2.

1. Choose a pair of random values r1, r2 ∈ {0, 1}n;
2. Access to the pair of classical random oracles (O1, O2) with input r1, r2, and

obtain the outcome (s1, s2) = (O1(r1), O2(r2));
3. Randomly choose a plaintext σ (σ 6= I

2n ). The output (s1, s2) is used as the
key to encrypt σ as follow: σ → (r1, r2, X

s2H⊗nXs1σXs1H⊗nXs2); Denote
the ciphertext as (r1, r2, ρ);

4. Invoke the QPT adversary A on input (r1, r2, ρ), and output whatever A
does.
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In the above distinguisher, D may access two kinds of classical random oracles.
The first one is for truly random functions (f1, f2), and the second one is for
PRFs (F,G). We discuss the two cases as follows.

(a) If D access to the truly random functions (f1, f2), then (s1, s2) is a random
element in {0, 1}2n. In addition, the value of (s1, s2) is not accessible to
A in the distinguisher. From the aspect of A, the ciphertext (r1, r2, ρ) can
be written as a mixed state (r1, r2,

1
22n

∑
s1,s2

Xs2H⊗nXs1σXs1H⊗nXs2)

(That is (r1, r2,
I
2n )). Thus,

Pr[Df1,f2() = 1] = Pr[A(r1, r2,
I

2n
) = 1], (10)

where f1, f2 are chosen randomly and independently from the set Funcn.

(b) If D access to PRFs (F,G), then (s1, s2) = (F (k1, r1), G(k2, r2)). From the
aspect of A (who does not know k1, k2), the ciphertext (r1, r2, ρ) can be writ-
ten as (r1, r2,

1
|K|2

∑
k1,k2

XG(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2)). It

can be concluded that

Pr[DFk1
,Gk2 () = 1] = (11)

Pr[A(r1, r2,
1

|K|2
∑
k1,k2

XG(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2)) = 1],

where k1, k2 ∈ K are chosen randomly and independently.

From the equations (9)(10)(11), it can be deduced that

|Pr[DFk1
,Gk2 () = 1]− Pr[Df1,f2() = 1]| = ε(n). (12)

A is a QPT algorithm, then the distinguisher D invoking A is also a QPT
algorithm. Using Theorem 3, if F,G are sPRFs, then ε(n) in Equation (12)
is negligible. From Equation (9) and Definition 6, the QBE scheme E(F,G) is
IND-secure.

Consider the case that the adversary A is allowed to access to quantum
encryption oracle

OEnc(k1,k2,∗) : σ → (r1, r2, X
G(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2)).

If the randomness used by OEnc(k1,k2,∗) have also been used in challenge query,
then it would be insecure (According to Proposition 2, the advantage of A while
distinguishing the challenge ciphertexts would be non-negligible). However, the
encryption oracle will use a fresh randomness that is chosen uniformly and in-
dependently, so the probability that OEnc(k1,k2,∗) uses the same randomness as
the challenge query is negligible. Then allowing A to access to encryption oracle
OEnc(k1,k2,∗) has negligible effect on all the above proof of IND security. Thus
the QBE scheme E(F,G) is IND-CPA-secure. 2
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Remark 2. From the proof of Theorem 6, the distinguisher can classically access
to the oracles of PRFs (or truly random functions). The PRFs are not required
to have quantum security. The PRFs with standard security are sufficient to
assure the IND security of the QBE scheme.

Corollary 3.6.7 in Ref.[29] has shown that the existence of one-way function
implies the existence of PRF. Zhandry [24] has proved that, if PRF exists then
there exists sPRF that is not qPRF. Thus, from Theorem 6, we reduce IND-
CPA-secure QBE scheme to the existence of one-way function. That is, if there
exist one-way functions, then IND-CPA-secure QBE schemes exist as well.

Definition 10. A function F : K × {0, 1}n → {0, 1}n is pairwise independent
sPRF, if the two probability distributions (Fk1(Un), Fk2(Un)),k1, k2 ∈ K and
f(U2n) are QPT-indistinguishable, where Un is uniformly distributed over {0, 1}n
and f is a truly random function in Func2n. That is∣∣Pr(k1,k2)←K×K[AFk1

,Fk2 () = 1]− Prf←Func2n [Af () = 1]
∣∣ < ε(n), (13)

where ε(n) is negligible, and A is any QPT adversary. A accesses to the two
functions Fk1(∗), Fk2(∗) with independently chosen random inputs.

If F is a pairwise independent PRF, letG = F , then a QBE scheme E(F, F ) =
(KeyGen,Enc,Dec) can be constructed from EHE encryption technology.

Construction 4: Given a pairwise independent PRF F : K × {0, 1}n →
{0, 1}n, an insecure QBE scheme E ′(F ) = (G′F , E

′
F , D

′
F ) can be constructed fol-

lowing Constructions 1 and 2. Then a secure QBE scheme E(F, F ) = (KeyGen,Enc,Dec)
can be constructed as follows.

KeyGen(1n): k1 ← G′F (1n), k2 ← G′F (1n), output (k1, k2);
Enc(k1, k2, σ): (r1, σ1)← E′F (k1, σ), σ2 ← H(σ1), (r2, ρ)← E′F (k2, σ2), output

(r1, r2, ρ);
Dec(k1, k2, (r1, r2, ρ)): σ2 ← D′F (k2, (r2, ρ)), σ1 ← H(σ2), σ ← D′F (k1, (r1, σ1)),

output σ.

According to the QBE scheme E(F, F ) in Construction 4, we encrypt n qubits
σ with the keys k1, k2, and obtain

Enc(k1, k2, σ) = (r1, r2, X
F (k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXF (k2,r2))

4
= (r1, r2, ρ). (14)

We decrypt the ciphertext (r1, r2, ρ) with the keys k1, k2, and obtain

Dec(k1, k2, (r1, r2, ρ)) = XF (k1,r1)H⊗nXF (k2,r2)ρXF (k2,r2)H⊗nXF (k1,r1). (15)

Theorem 7. If F is a pairwise independent PRF and has standard security,
then E(F, F ) in Construction 4 is an IND-CPA-secure QBE scheme.

Proof. The proof is similar to Theorem 6. Definition 10 is used in the proof. The
details are omitted. 2
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3.4 CCA-secure construction

Firstly, we prove the QBE schemes in Constructions 3 and 4 are not IND-CCA-
secure.

Theorem 8. The QBE schemes E(F,G) and E(F, F ) (in Constructions 3 and
4) are not IND-CCA-secure.

Proof. We give a proof only to the QBE scheme E(F,G). The other one is similar.
According to the construction of E(F,G), the sender encrypts n-qubit challenge
plaintext σ = |m〉〈m| with the keys k1, k2, and obtains challenge ciphertext

Enc(k1, k2, σ) = (r1, r2, X
G(k2,r2)H⊗nXF (k1,r1)σXF (k1,r1)H⊗nXG(k2,r2))

4
= (r1, r2, ρ).

From the definition of IND-CCA (Definition 8), the adversary A can access to
quantum decryption oracle with arbitrary input except the challenge ciphertext.
When A obtains the challenge ciphertext ρ, he can perform a Pauli operation
Zw (∀w ∈ {0, 1}n) on it and get a new ciphertext

ρ′ = ZwρZw = XG(k2,r2)H⊗nXF (k1,r1)(XwσXw)XF (k1,r1)H⊗nXG(k2,r2)

= XG(k2,r2)H⊗nXF (k1,r1)(|m⊕ w〉〈m⊕ w|)XF (k1,r1)H⊗nXG(k2,r2).

Then he can access to the quantum decryption oracle with the input ρ′, and
get the corresponding plaintext |m⊕w〉〈m⊕w|. Finally, using the value w, the
adversary can restore the challenge plaintext |m〉〈m|. Thus, the QBE scheme
E(F,G) is not IND-CCA-secure. 2

Similar to the above proof, we can also prove the scheme 1 in Ref.[16] is not
IND-CCA-secure.

QBE schemes in Constructions 3 and 4 are IND-CPA-secure. If it is required
to be secure against chosen ciphertext attack, we can try to compose it with
QMA schemes [3][17][18]. A QMA scheme consists of three algorithms

QMA = (QmaKey,Auth, V erify),

where QmaKey(1n) generates an authentication key, Auth(authkey, σ) gener-
ates an authentication tag qTag for a message σ, and V erify(authkey, σ, qTag)
checks if qTag is a valid authentication tag for quantum message σ. By com-
posing the QBE and QMA schemes, we can construct a new QBE scheme as
follows.

Construction 5: Given a QBE scheme E(F,G) = (KeyGen,Enc,Dec) and
a QMA scheme QMA = (QmaKey,Auth, V erify), define a new QBE scheme
E ′(F,G) = (KeyGen′, Enc′, Dec′) as follows.

KeyGen′(1n): (k1, k2)← KeyGen(1n), authkey ← QmaKey(1n), output (k1, k2,
authkey);
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Enc′(k1, k2, authkey, σ): (r1, r2, ρ)← Enc(k1, k2, σ), qTag ← Auth(authkey, ρ),
output (r1, r2, ρ, qTag);

Dec′(k1, k2, authkey, (r1, r2, ρ, qTag)): Check V erify(authkey, ρ, qTag)
?
= 1; Out-

put Dec(k1, k2, (r1, r2, ρ)) if it holds, and output otherwise.

Theorem 9. If E(F,G) = (KeyGen,Enc,Dec) is an IND-CPA-secure QBE
scheme and QMA = (QmaKey,Auth, V erify) is a secure QMA with negligible
soundness error ε, then E ′(F,G) in Construction 5 is an IND-CCA-secure QBE
scheme.

Proof (Proof sketch). Comparing the new scheme E ′(F,G) in Construction 5
with E(F,G) in Construction 3, the new scheme only appends an authentica-
tion tag qTag to the ciphertext ρ, which is generated by E(F,G). Then the new
scheme is also IND-CPA-secure. While analyzing the CCA security of E ′(F,G),
the adversary can access to the decryption oracle of E ′(F,G). However, he can-
not access to the decryption oracle with the challenge ciphertext ρ. So he should
modify the ciphertext ρ, and then access to the oracle with the modified ci-
phertext. Because an authentication tag is appended to the challenge ciphertext
ρ, if he modifies the ciphertext ρ and accesses to the decryption oracle, then
the modified ciphertext passes through the V erify’s checking with a negligible
probability ε. That is, the decryption oracle would output with probability at
least 1− ε. Though the adversary is allowed to access to the decryption oracle of
E ′(F,G), it is still useless to him. Thus, E ′(F,G) is still IND-CPA-secure while
the decryption oracle is accessible. Thus complete the proof. 2

Alagic and Majenz [20] propose non-malleable quantum encryption. In the
future, we will consider whether the QBE scheme defined in Construction 5
satisfies the non-malleability or not.

3.5 Perfectly secure case

In Section 3.3, the QBE scheme in Construction 3 has been proved to be IND-
CPA-secure. Next we show the QBE scheme can achieve higher security in a
particular case.

It is well known that, BE cannot achieve the same security as OTP in clas-
sical cryptography. However, based on quantum mechanics, there may be an
important breakthrough – QBE can achieve the same security as QOTP. Next
we show the QBE scheme E(F,G) = (KeyGen,Enc,Dec) can achieve perfect
security in certain special case.

Theorem 10. Given two independent sPRFs F,G : K × X → Y, where K =
X = Y = {0, 1}n, if for any fixed x, both F (∗, x) : K → Y and G(∗, x) : K → Y
are permutations, then E(F,G) in Construction 3 is a perfectly secure QBE
scheme.

Proof. From Theorem 6, E(F,G) in Construction 3 is an IND-CPA-secure QBE
scheme. Next we prove it can achieve perfect security if F (∗, x) and G(∗, x) are
permutations.
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Suppose a block of quantum plaintext has n qubits, and its density operator
σ can be written as a 2n × 2n matrix with trace tr(σ) = 1. Given a set of all
2n × 2n matrixes, it is an inner space if we define inner product as (M1,M2) =

tr(M1M
†
2 ), where M1 and M2 are 2n×2n matrixes. Then the set {XαZβ |α, β ∈

{0, 1}n} is a group of complete orthogonal bases. Thus the density operator σ can
be expressed as σ =

∑
α,β aα,βX

αZβ , where aα,β = 1
2n tr(σZ

βXα). According
to the QBE scheme E(F,G), quantum plaintext σ is encrypted with the keys
k1, k2 ∈ {0, 1}n as follows.

Enc(k1, k2, σ)

= (r1, r2,
∑
α,β

aα,βX
G(k2,r2)H⊗nXF (k1,r1)XαZβXF (k1,r1)H⊗nXG(k2,r2)).

The keys k1, k2 are unknown to the adversary and every k1, k2 are used
with identical probability. Thus, from the aspect of the adversary, the quantum
ciphertext should be represented as an equal mixture of a quantum plaintext σ
encrypted under all possible keys with uniform probability

1

22n

∑
k1,k2

Enc(k1, k2, σ)

= (r1, r2,
1

22n

∑
α,β

aα,β
∑
k1,k2

XG(k2,r2)H⊗nXF (k1,r1)XαZβXF (k1,r1)H⊗nXG(k2,r2)).

Using the following three equations

ZβXF (k1,r1) = (−1)β�F (k1,r1)XF (k1,r1)Zβ , (16)

H⊗nXαZβH⊗n = ZαXβ , (17)

XG(k2,r2)Zα = (−1)α�G(k2,r2)ZαXG(k2,r2), (18)

one can conclude that

1

22n

∑
k1,k2

Enc(k1, k2, σ)

= (r1, r2,
1

22n

∑
α,β

aα,β
∑
k1,k2

(−1)β�F (k1,r1)(−1)α�G(k2,r2)ZαXβ). (19)

If F (∗, r1) : K → Y and G(∗, r2) : K → Y are permutations, then

1

2n

∑
k1

(−1)β�F (k1,r1) = δβ,0,∀β ∈ {0, 1}n, (20)

1

2n

∑
k2

(−1)α�G(k2,r2) = δα,0,∀α ∈ {0, 1}n, (21)
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where the function δx,y =

{
1, x=y;
0, otherwise.

Using Equations (20)(21), it can be

deduced that

1

22n

∑
k1,k2

Enc(k1, k2, σ) = (r1, r2,
∑
α,β

aα,βδα,0δβ,0Z
αXβ)

= (r1, r2, a0,0I) = (r1, r2,
tr(σ)

2n
I) = (r1, r2,

I

2n
). (22)

The facts aα,β = tr(σZβXα)/2n and tr(σ) = 1 are used in the above deduction.
r1, r2 are randomly chosen and are independent of the plaintext. Then the ad-
versary can obtain nothing from the quantum ciphertext (r1, r2,

I
2n ). Thus the

QBE scheme E(F,G) has perfect security. 2

Because the perfectly secure QBE scheme is just a special case of the con-
structions in previous sections, the related results and discussions in Sections 3.3
and 3.4 are also suitable for the perfectly secure QBE scheme. So the keys k1, k2
are reusable and would not decrease the security. If the randomness (r1, r2) are
reused, the security would decrease.

Both the QBE scheme E(F,G) and QOTP can achieve perfect security and
must use the 2n-bit key while encrypting n qubits in a message block. However,
there exist two differences between them. Firstly, the key can be used only once
in QOTP, and the key is reusable in the QBE scheme. Secondly, the QBE scheme
can be implemented using Pauli X and H gates, and the number is at most 3n
(n is the length of one block); the QOTP can be implemented using Pauli X
gate and Z gate, and the number is at most 2n. Thus, the QBE scheme has
nearly the same difficulty and complexity as QOTP from the aspect of physical
implementation. Currently, QOTP has been used as a basic quantum primitive
in various cryptographic protocols and algorithms [1–3, 14, 18]. If the QOTP in
these protocols or algorithms is replaced with perfectly secure QBE scheme, then
optimized schemes could be obtained.

As is well known that, “QKD+OTP” can perfectly encrypt classical mes-
sages in theory, and there are many applications in practice. However, lots of
interaction and communication are necessary, and the efficiency would decrease.
Actually, the QBE scheme can also be used to encrypt classical messages. For
example, the classical message m can be viewed as a quantum state |m〉, and
each bit mi is encrypted to a qubit XG(k2,r2)iHXF (k1,r1)i |mi〉, which belongs
to the set {|0〉, |1〉, |+〉, |−〉}. Then, while encrypting classical messages, we can
use a perfectly secure QBE scheme. Because no interaction is needed in QBE
scheme, it would be more efficient than “QKD+OTP”.

4 Conclusions and discussions

The EHE encryption has been described and be used in the construction of QBE
scheme. Firstly, we show how to construct an insecure QBE scheme based on
PRF. Then, we propose a secure construction from two insecure QBE schemes
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according to EHE encryption. It is shown that the QBE scheme is IND-CPA-
secure if there exist PRFs with standard security. Moreover, the QBE scheme
combined with QMA scheme can achieve IND-CCA security. Finally, we show
the QBE scheme can have the same security as QOTP when the PRFs satisfy
an additional condition.

For perfect secrecy, Ref.[31] proposed a strict mathematical proof that the
key must have at least the same length as the plaintext. In Section 3.5, we have
shown the BE scheme based on quantum mechanics can break the limitation
of perfectly secure encryption. In QOTP, 2n-bit key is necessary to perfectly
encrypt n qubits. However, in the QBE scheme, 2n-bit key can perfectly encrypt
O(n2n) qubits.
EHE encryption is a kind of generic transformation used for the construction

of quantum encryption scheme. It can convert classical encryption or insecure
quantum encryption scheme into secure quantum encryption scheme. The QBE
scheme constructed based on EHE encryption can be seen as an extension of
classical BE scheme, and it is also suitable for encryption of the classical mes-
sages. Thus, EHE encryption has established the direct connection between the
quantum and classical BE schemes.

Finally, two problems are left for the future research.

– Construct more cryptographic schemes in the EHE-like way. It is proved
that Wegman-Carter MAC is insecure while authenticating quantum mes-
sage Auth(ρ) [32], however, it can be converted into a secure QMA scheme
in the Auth2(H(Auth1(ρ))) pattern [17]. In addition, our results show that
EHE encryption can convert insecure QBE scheme into secure QBE scheme.
Is there any other quantum cryptographic scheme that can be constructed
in the EHE-like way?

– Replace the QOTP with the QBE in those QOTP-based (encryption, authen-
tication or others) schemes. QOTP has been used as an important building
block in many quantum schemes. Because the perfectly secure QBE scheme
in Section 3.5 has many advantages, we could replace the QOTP with the
QBE and expect an obvious optimization, for example, recycling all the keys
of the scheme in Ref.[18] or lifting weak authentication to total authentica-
tion [17].
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