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Abstract Post-quantum cryptography has attracted much attention from worldwide cryptologists. In ISIT

2010, Kuwakado and Morii gave a quantum distinguisher with polynomial time against 3-round Feistel networks.

However, generalized Feistel schemes (GFS) have not been systematically investigated against quantum attacks.

In this paper, we study the quantum distinguishers about some generalized Feistel schemes. For d-branch Type-1

GFS (CAST256-like Feistel structure), we introduce (2d−1)-round quantum distinguishers with polynomial time.

For 2d-branch Type-2 GFS (RC6/CLEFIA-like Feistel structure), we give (2d+1)-round quantum distinguishers

with polynomial time. Classically, Moriai and Vaudenay proved that a 7-round 4-branch Type-1 GFS and 5-

round 4-branch Type-2 GFS are secure pseudo-random permutations. Obviously, they are no longer secure in

quantum setting.

Using the above quantum distinguishers, we introduce generic quantum key-recovery attacks by applying the

combination of Simon’s and Grover’s algorithms recently proposed by Leander and May. We denote n as the bit

length of a branch. For (d2−d+ 2)-round Type-1 GFS with d branches, the time complexity is 2(
1
2
d2− 3

2
d+2)·n

2 ,

which is better than the quantum brute force search (Grover search) by a factor 2(
1
4
d2+ 1

4
d)n. For 4d-round

Type-2 GFS with 2d branches, the time complexity is 2
d2n
2 , which is better than the quantum brute force search

by a factor 2
3d2n

2 .
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1 Introduction

It is well known that several public key cryptosystem standards, such as RSA and ECC, have been

broken by Shor’s algorithm [16] with a quantum computer. Recently, researchers find that quantum

computing not only impacts the public key cryptography, but also could break many secret key schemes,

which includes the key-recovery attacks against Even-Mansour ciphers [12], distinguishers against 3-round

Feistel networks [11], key-recovery and forgery attacks on some MACs and authenticated encryption

* Corresponding author (email: xiaoyunwang@tsinghua.edu.cn)



2 LI Z, et al. Sci China Inf Sci

Table 1 Results on Type-1 (CAST256-like) GFS in quantum settings

Branches Distinguisher
Key-recovery Rounds Complexity (log) Trivial Bound (log)

d > 3 Round 2d− 1
r0 = d2 − d+ 2 ( 1

2d
2 − 3

2d+ 2) · n2
(d2−d+2)n

2

r > r0 ( 1
2d

2 − 3
2d+ 2) · n2 + (r−r0)n

2
rn
2

ciphers [10], key-recovery attacks against FX constructions [13], and others. So to study the security

of more classical and important cryptographic schemes against quantum attacks is urgently needed. At

Asiacrypt 2017, NIST [18] reports the ongoing competition for post-quantum cryptographic algorithms,

including signatures, encryptions and key-establishment. The ship for post-quantum crypto has sailed,

cryptographic communities must get ready to welcome the post-quantum age.

In a quantum computer, the adversaries could make quantum queries on some superposition quantum

states of the relevant cryptosystem, which is the so-called quantum-CPA setting [4]. It is known that

Grover’s algorithm [7] could speed up brute force search. Given an m-bit key, Grover’s algorithm allows

to recover the key using O(2m/2) quantum steps. It seems that doubling the key-length of one block

cipher could achieve the same security against quantum attackers. However, Kuwakado and Morii [12]

identified a new family of quantum attacks on certain generic constructions of secret key schemes. They

showed that the Even-Mansour ciphers could be broken in polynomial time by Simon algorithm [17],

which could find the period of a periodic function in polynomial time in a quantum computer. The

following works by Kaplan et al. [10] revealed that many other secret key schemes could also be broken

by Simon algorithm, such as CBC-MAC, PMAC, GMAC and some CAESAR candidates.

Feistel block ciphers [6] are extremely important and extensively researched cryptographic schemes.

It adopts an efficient Feistel network design. Historically, many block cipher standards such as DES,

Triple-DES, MISTY1, Camellia and CAST-128 [9] are based on Feistel design. At CRYPTO 1989, Zheng

et al. [19] summarised some generalized Feistel schemes (GFS) as Type-1/2/3 GFS. Many block ciphers

are based on GFS designs. CAST-256 is based on Type-1 GFS, CLEFIA and RC6 are based on Type-2

GFS, MARS is based on Type-3 GFS, so Type-1/2/3 GFS are also denoted as CAST256-like Feistel

scheme, RC6/CLEFIA-like Feistel scheme, and MARS-like Feistel scheme [15]. Chinese standard block

cipher SMS4 is based on a different contracting Feistel scheme, we denote it as SMS4-like GFS.

In a seminal work, Luby and Rackoff [14] proved that a three-round Feistel scheme is a secure pseudo-

random permutation. However, Kuwakado and Morii [11] introduced a quantum distinguisher attack

on 3-round Feistel ciphers, that could distinguish the cipher and a random permutation in polynomial

time. At Asiacrypt 2000, Moriai and Vaudenay [15] studied some generalized Feistel schemes (GFS)

and proved a 7-round 4-branch CAST256-like GFS and 5-round 4-branch RC6/CLEFIA-like GFS are

secure pseudo-random permutations. Quantum distinguishers against those generalized Feistel schemes

are missing.

In this paper, we study the quantum distinguisher attacks on Type-1 GFS (CAST256-like), Type-2

GFS (RC6/CLEFIA-like) and others. For d-branch Type-1 GFS, we introduce (2d− 1)-round quantum

distinguishers with polynomial time. For 2d-branch Type-2 GFS (RC6/CLEFIA-like Feistel structure), we

give (2d+ 1)-round quantum distinguishers with polynomial time. Classically, Moriai and Vaudenay [15]

proved that a 7-round 4-branch Type-1 GFS and 5-round 4-branch Type-2 GFS are secure pseudo-random

permutations. Obviously, they are no longer secure in quantum setting. Denote the branch size as n. We

introduce generic quantum key-recovery attacks on Type-1 and Type-2 GFS by applying the combination

of Simon’s and Grover’s algorithms recently proposed by Leander and May. As shown in Table 1, for

(d2 − d + 2)-round Type-1 GFS with d branches, the time complexity is 2(
1
2d

2− 3
2d+2)·n2 , which is better

than the quantum brute force search (Grover search) by a factor 2(
1
4d

2+ 1
4d)n. As shown in Table 2, for

4d-round Type-2 GFS with 2d branches, the time complexity is 2
d2n
2 , which is better than the quantum

brute force search by a factor 2
3d2n

2 .
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Table 2 Results on Type-2 (RC6/CLEFIA-like) GFS in quantum settings

Branches Distinguisher
Key-recovery Rounds Complexity (log) Trivial Bound (log)

2d > 4 Round 2d+ 1
r0 = 4d d2

2 n 2d2n

r > r0
d2+(r−r0)d

2 n rdn
2

2 Notations

x0j the jth branch in the input;

xij the jth branch in the output of ith round, i > 1, j > 1;

d the branch number of CAST256-like GFS;

2d the branch number of RC6/CLEFIA-like GFS;

n the bit length of a branch;

Ri the ith (i > 1) round function of Type-1 (CAST256-like) GFS, the input and output are n-bit

string, n-bit key is absorbed by Ri;

Rij the jth (1 6 j 6 d) round function in the ith (i > 1) round function of Type-2 ( RC6/CLEFIA

-like) GFS, the input and output are n-bit string, n-bit key is absorbed by Rij .

3 Related works

Our quantum attacks are based the two popular quantum algorithms, i.e. Simon algorithm [17] and

Grover algorithm [7].

3.1 Simon’s problem

Given a boolen function f {0, 1}n → {0, 1}n, that is known to be invariant under some n-bit XOR period

a, find a. In other words, find a by given: f(x) = f(y)↔ x⊕ y ∈ {0n, a}.
Classically, the optimal time to solve the problem is O(2n/2). However, Simon [17] gives a quantum

algorithm that provides exponential speedup and only requires O(n) quantum queries to find a. The

algorithm includes five quantum steps:

I. Initializing two n-bit quantum registers to state |0〉⊗n|0〉⊗n, one applies Hadamard transform to the

first register to attain an equal superposition:

H⊗n|0〉|0〉 =
1√
2n

∑
x∈{0,1}n

|x〉|0〉. (1)

II. A quantum query to the function f maps this to the state

1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉.

III. Measuring the second register, the first register collapses to the state:

1√
2

(|z〉+ |z ⊕ a〉).

IV. Applying Hadamard transform to the first register, we get:

1√
2

1√
2n

∑
y∈{0,1}n

(−1)
y·z

(1 + (−1)
y·a

)|y〉.
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Figure 1 3-round quantum distinguisher

V. The vectors y such that y · a = 1 have amplitude 0. Hence, measuring the state yields a value y

that y · a = 0.

Repeat O(n) times, one obtains a by solving a system of linear equations.

Kuwakado and Morii [11] introduced a quantum distinguish attack on 3-round Feistel scheme by using

Simon algorithm. As shown in Figure 1, α0 and α1 are arbitrary constants:

f : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ αb ⊕ x32, where (x31, x
3
2) = E(αb, x),

f(b, x) = R2(R1(αb)⊕ x)).

f is periodic function that f(b, x) = f(b ⊕ 1, x ⊕ R1(α0) ⊕ R1(α1)). Then using Simon’s algorithm, one

can get the period s = 1||R1(α0)⊕R1(α1) in polynomial time.

3.2 Grover’s algorithm

The task is to find a marked element from a set X. We denote by M ⊆ X the subset of marked elements.

Classically, one solve the problem with time |X|/|M |. However, in a quantum computer, the problem is

solve with high probability in time
√
|X|/|M | using Grover’s algorithm. The steps of the algorithm is as

follows:

I. Initializing a n-bit register |0〉⊗n. One applies Hadamard transform to the first register to attain

an equal superposition:

H⊗n|0〉 =
1√
2n

∑
x∈{0,1}n

|x〉 = |ϕ〉. (2)

II. Construct an oracle O: |x〉 O−→ (−1)f(x)|x〉, where f(x) = 1 if x is the correct state, and f(x) = 0

otherwise.

III. Apply Grover iteration for R ≈ π
4

√
2n times:

[(2|ϕ〉〈ϕ| − I)O]R|ϕ〉 ≈ |x0〉.

IV. return x0.

Later, Brassard et al. [3] generalized the Grover search as amplitude amplification.

Theorem 1. (Brassard, Hoyer, Mosca and Tapp [3]). Let A be any quantum algorithm on q

qubits that uses no measurement. Let B : Fq2 → {0, 1} be a function that classifies outcomes of A as good

or bad. Let p > 0 be the initial success probability that a measurement of A|0〉 is good. Set k = d π4θ e,
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oracle. However, in the quantum CPA-model the scheme is completely insecure.
The main idea of [18] was to consider the function

f(x) := EncEM (x) + P (x) = P (x+ k1) + k2 + P (x),

where + is the bitwise XOR.

As this function fulfills f(x) = f(x + k1) for all x, one can use Simon’s
quantum algorithm [7, 25], that allows to compute the unknown period k1 of
function f in linear time. Once k1 is computed, computing k2 is trivial even on a
classical computer. It should be pointed out that Kaplan et al. [13] and Santoli,
Schaffner [23] solved the technical issue of dealing with a function that does not
fulfill Simon’s promise, namely that f(x) = f(y) iff y ∈ {x, x+ k1}, see Section 2
for more details.

The same idea was then used by Kaplan et al. [13] (and independently in [23])
to construct polynomial time quantum-CPA attacks on many modes of operations.
Kaplan et al. further showed how slide attacks can profit from using a quantum
computer.

The natural question that arises from the attacks on a generic cipher using
Grover’s algorithm and the attack on the Even-Mansour scheme using Simon’s
algorithm is the following: How secure is the FX construction against quantum
adversaries?

This construction, proposed by Killian and Rogaway in [15, 16], is an elegant
way of extending the key-length of a given block cipher and is the natural
combination of the Even-Mansour construction and a generic cipher. For this, we
assume we are given a (secure) block cipher E, encrypting n bit messages under
an m bit key k0, and we introduce two more n bit keys k1 and k2 as pre- and
post-whitening keys. The new block cipher is given as

Enc(x) = Ek0(x+ k1) + k2.

m

k1

Ek0

k2

c

From an efficiency point of view, the overhead of this modification is negligible.
Moreover, in an idealized model, one can prove that (using classical computers)
in order to attack the FX construction scheme, the success probability of an

attacker is bounded by q2

2n+m , where q is the number of queries to the encryption
scheme and to the underlying block cipher.

Initially, when considering Grover’s algorithm only, this scheme seems to
provide significantly more resistance against quantum computers, since now
(k0, k1, k2) ∈ Fm+2n

2 define the key space. Moreover, Simon’s algorithm does not
apply either, as the function Enc(x) +Ek(x) is periodic only for the correct guess
of k = k0.

3

Figure 2 FX constructions
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Figure 3 Quantum key-recovery attacks on 5-Round Feistel structures

where θ is defined via sin2(θ) = p. Moreover, define the unitary operator Q = −AS0A−1SB, where the

operator SB changes the sign of the good state

|x〉 7→
{
−|x〉 if B(x) = 1,

|x〉 if B(x) = 0,

while S0 changes the sign of the amplitude only for the zero state |0〉. Then after the computation of

QkA|0〉, a measurement yields good with probability a least max{1-p, p}.
Assuming |ϕ〉 = A|0〉 is the initial vector, whose projections on the good and the bad subspace are

denoted |ϕ1〉 and |ϕ0〉. The state |ϕ〉 = A|0〉 has angle θ with the bad subspace, where sin2(θ) = p. Each

Q iteration increase the angle to 2θ. Hence, after k ≈ π
4θ , the angle roughly equals to π/2. Thus, the

state after k iterations is almost orthogonal to the bad subspace. After measurement, it produces the

good vector with high probability.

3.3 Combining Simon and Grover algorithms

At Asiacrypt 2017, Leander and May [13] gave a quantum key-recovery attack on FX-construction shown

in Figure 2: Enc(x) = Ek0(x + k1) + k2. They introduce the function f(k, x) = Enc(x) + Ek(x) =

Ek0(x + k1) + k2 + Ek(x). For the correct key guess k = k0, we have f(k, x) = f(k, x + k1) for all x.

However, for k 6= k0, f(k, ·) is not periodic. They combine Simon and Grover algorithm to attack FX

ciphers (such as PRINCE [2], PRIDE [1], DESX) in the quantum-CPA model with complexity roughly

232.

Then Dong et al. [5] and Hosoyamada et al. [8] independently applied Leander et al.’s [13] attack

to generic feistel constructions. As shown in Figure 3, they append 2-round feistel networks under the

3-round quantum distinguisher in Figure 1 to give a quantum key-recovery attack on 5-round feistel

construction.



6 LI Z, et al. Sci China Inf Sci

Suppose the state size is n, then the length of ki is n/2. The following functions is defined:

f(b, xR0
) = R2(k2, x

0
2 ⊕R1(k1, αb)) = αb ⊕ x32 = αb ⊕R4(k4, R5(k5, x

5
2)⊕ x51)⊕ x52, (3)

where b ∈ F2, αb ∈ Fn/22 is arbitrary constant and α0 6= α1, (x51||x52) = Enc(αb||x02). It is easy to

verify that f(b, x02) = f(b⊕ 1, x02 ⊕R1(k1, α0)⊕R1(k1, α1)). Therefore, with the right key guess (k4, k5),

f(b, x02) = αb ⊕ R4(k4, R5(k5, x
5
2)⊕ x51) has a nontrivial period s = 1||R1(k1, α0)⊕ R1(k1, α1). However,

if the guessed (k4, k5) is wrong, f(b, x02) is a random function and not periodic with high probability.

Theorem 2. [5] Let g: Fn2 × Fn/2+1
2 7→ Fn/22 with

(k4, k5, y) 7→ f(y) = f(b, x) = αb ⊕R4(k4, R5(k5, x
5
2)⊕ x51)⊕ x52,

where α0, α1 are two arbitrary constants, (x51||x52) = Enc(αb||x). Given quantum oracle to g and Enc,

(k4, k5) and R1(k1, α0)⊕R1(k1, α1) could be computed with n+ (n+ 1)(n+ 2 + 2
√
n/2 + 1) qubits and

about 2n/2 quantum queries.

Under the right key guess k4, k5, g(k4, k5, y) = g(k4, k5, y ⊕ s). Let, h: Fn2 × F(n/2+1)l

2 7→ F(n/2)l

2 with

(k4, k5, y1, ..., yl) 7→ g(k4, k5, y1)||...||g(k4, k5, yl). (4)

Let Uh be a quantum oracle that maps

|k4, k5, y1, ..., yl,0, ...,0〉 7→ |k4, k5, y1, ..., yl, h(k4, k5, y1, ..., yl)〉. (5)

Similar to the work [13], Dong and Wang [5] constructed the following quantum algorithm A.

1. Preparing the initial (n+ (n/2 + 1)l + nl/2)-qubit state |0〉.

2. Apply Hadamard H⊗n+(n/2+1)l on the first n+ (n/2 + 1)l qubits resulting in∑
k4,k5∈Fn/2

2 ,y1,...,yl∈Fn/2+1
2

|k4, k5〉|y1〉...|yl〉|0〉, (6)

where we omit the amplitudes 2−(n+(n/2+1)l)/2.

3. Applying Uh to the above state, we get:∑
k4,k5∈Fn/2

2 ,y1,...,yl∈Fn/2+1
2

|k4, k5〉|y1〉...|yl〉|h(k4, k5, y1, ..., yl)〉. (7)

4. Apply Hadamard to the qubits |y1〉...|yl〉 of the above state, we get:

|ϕ〉 =
∑

k4,k5∈Fn/2
2 ,u1,...,ul,y1,...,yl∈Fn/2+1

2

|k4, k5〉(−1)〈u1,y1〉|u1〉...(−1)〈ul,yl〉|ul〉|h(k4, k5, y1, ..., yl)〉. (8)

If the guessed k4, k5 is right, after measurement of |ϕ〉, the period s is orthogonal to all the u1, ..., ul.

According to Lemma 4 of [13], choosing l = 2(n/2 + 1 +
√
n/2 + 1) is enough to compute a unique s .

Without measurement and considering the superposition |ϕ〉, Dong and Wang [5] introduced a classifier

B:

Classifier B. Define B : Fn+(n/2+1)l
2 7→ {0, 1} that maps (k4, k5, u1, ..., ul) 7→ {0, 1}.

1. Let U = 〈u1, ..., ul〉 be the linear span of all ui. If dim(U) 6= n/2, output 0. Else, use Lemma 4

of [13] to compute the unique period s.

2. Check g(k4, k5, y) = g(k4, k5, y ⊕ s) for a random given y. If the identity holds, output 1. Else

output 0.
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Figure 4 Round i of CAST256-like GFS with d branches

Classifier B partitions |ϕ〉 into a good subspace and a bad subspace: |ϕ〉 = |ϕ1〉+ |ϕ0〉, where |ϕ1〉 and

|ϕ0〉 denotes the projection onto the good subspace and bad subspace, respectively. For the good one |x〉,
B(x) = 1.

Classifier B defines a unitary operator SB that conditionally change the sign of the quantum states:

|k4, k5〉|u1〉...|ul〉 7→
{
−|k4, k5〉|u1〉...|ul〉 if B(k4, k5, u1, ..., ul) = 1,

|k4, k5〉|u1〉...|ul〉 if B(k4, k5, u1, ..., ul) = 0.
(9)

The complete amplification process is realized by repeatedly for t times applying the unitary operator

Q = −AS0A−1SB to the state |ϕ〉 = A|0〉, i.e. QtA|0〉.
Initially, the angle between |ϕ〉 = A|0〉 and the bad subspace |ϕ0〉 is θ, where sin2(θ) = p = 〈ϕ1|ϕ1〉.

When p is smaller enough, θ ≈ arcsin(
√
p) ≈ 2−

n
2 . According to Theorem 1, after k = d π4θ e = d π

4×2−
n
2
e

Grover iterations Q, the angle between resulting state and the bad subspace is roughly π/2. The proba-

bility Pgood that the measurement yields a good state is about sin2(π/2) = 1.

The whole attack needs (n + (n/2 + 1)l + nl/2) = n + (n + 1)(n + 2 + 2
√
n/2 + 1) qubits. About

k = d π

4×2−
n
2
e = 2n/2 quantum queries are required to recover k4, k5. Thus, in our quantum cryptanalysis

on GFS, the first step is to find new quantum distinguishers, and then give a similar quantum key-recovery

attacks by appending several rounds to the distinguishers.

4 Quantum cryptanalysis on Type-1 (CAST256-like) GFS

4.1 Quantum distinguishers on Type-1 (CAST256-like) GFS

As shown in Figure 4, the input of the cipher is divided into d branches, i.e. x0j for 1 6 j 6 d, each of

which has n-bit, so the blocksize is d × n. Ri is the round function that absorbs n-bit secret key and

n-bit input. We construct the corresponding quantum distinguisher on the (2d− 1)-round cipher.

The intermediate state after the ith round is xij for 1 6 j 6 d, especially the output of the (2d− 1)th

round is denoted as x2d−11 ||x2d−12 ||...||x2d−1d . For the input of round function Rd, we compute its symbolic

expression with x0j for 1 6 j 6 d:

Rd−1(Rd−2(...R3(R2(R1(x01)⊕ x02)⊕ x03)...⊕ x0d−2)⊕ x0d−1)⊕ x0d. (10)

Similarly, the output of round function Rd is x01 ⊕ x2d−12 . Thus, we get the following equation:

Rd(Rd−1(Rd−2(...R3(R2(R1(x01)⊕ x02)⊕ x03)...⊕ x0d−2)⊕ x0d−1)⊕ x0d) = x01 ⊕ x2d−12 . (11)

In Equation (11), let x01 = αb(b = 0, 1, α0, α1 are arbitrary constants, α0 6= α1), x0d = x, and all of

x01, x
0
2, ..., x

0
d be constants, we get

Rd(Rd−1(Rd−2(...R3(R2(R1(αb)⊕ x02)⊕ x03)...⊕ x0d−2)⊕ x0d−1)⊕ x) = αb ⊕ x2d−12 . (12)

Denote h(αb) = Rd−1(Rd−2(...R3(R2(R1(αb)⊕ x02)⊕ x03)...⊕ x0d−2)⊕ x0d−1), then Equation (12) becomes

Rd(h(αb)⊕ x) = αb ⊕ x2d−12 . We construct function f as following:
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Figure 5 7-round distinguisher on CAST256-like GFS with d = 4

f : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ αb ⊕ x2d−12 , where x2d−11 ||x2d−12 ||...||x2d−1d = E(αb, x),

f(b, x) = Rd(h(αb)⊕ x).

So f(0, x) = f(1, x⊕h(α0)⊕h(α1)) = Rd(h(α0)⊕x), f(1, x) = f(0, x⊕h(α0)⊕h(α1)) = Rd(h(α1)⊕x).

Thus f(b, x) = f(b ⊕ 1, x ⊕ h(α0) ⊕ h(α1)). Therefore, function f satisfies Simon’s promise with s =

1||h(α0)⊕ h(α1).

Example case of Type-1 (CAST256-like) with d = 4:

When d = 4, we get 7-round quantum distinguisher as shown in Figure 5. Thus, h(αb) = R3(R2(R1(αb)⊕
x02)⊕ x03), where x02 and x03 are constants.

4.2 Quantum key-recovery attacks on Type-1 (CAST256-like) GFS

We first study the quantum key-recovery attack on CAST256-like GFS with d = 4 branches. Following

the similar idea that combines Simon’s and Grover’s algorithms to attack Feistel structure [5] shown in

Section 3.3, we append 7 rounds under the 7-round distinguisher to launch the attack. As shown in

Figure 6, there are 4n-bit key needed to be guessed by Grover’s algorithm, which are highlighted in the

red boxes of round functions. Thus, the 14-round quantum key-recovery attack needs about 22n time and

O(n2) qubits. If we attack r > 14 rounds, we need guess 4n+ (r − 14)n key bits by Grover’s algorithm.

Thus, the the time complexity is 22n+
(r−14)n

2 .

Generally, for d > 3, we could get (2d−1)-round quantum distinguisher. We append d2−3d+3 rounds

under the quantum distinguisher to attack r0 = d2−d+ 2 rounds CAST256-like GFS. Similarly, we need

to guess ( 1
2d

2 − 3
2d + 2)n-bit key by Grover’s algorithm. Thus, for r0 rounds, the time complexity is

( 1
2d

2− 3
2d+2) · n2 queries, and O(n2) qubits are needed. If we attack r > r0 rounds, we need guess (1

2d
2−

3
2d+ 2)n+ (r− r0)n key bits by Grover’s algorithm. Thus, the time complexity is 2(

1
2d

2− 3
2d+2)·n2 +

(r−r0)n
2 .

If we use the quantum brute force search (Grover search) to recover the key, for r-round d-branch

cipher, totally, rn-bit key need to be found, the complexity is 2rn/2. Thus, our attack is better than the

quantum brute force search (Grover search) by a factor 2rn/2−((
1
2d

2− 3
2d+2)·n2 +

(r−r0)n
2 ) = 2(

1
4d

2+ 1
4d)n.
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Figure 7 Round i of RC6/CLEFIA-like GFS with 2d branches

5 Quantum cryptanalysis on Type-2 (RC6/CLEFIA-like) GFS

5.1 Quantum distinguishers on Type-2 (RC6/CLEFIA-like) GFS

As shown in Figure 7, the input of the cipher is divided into 2d branches, i.e. x0j for 1 6 j 6 2d, each of

which has n-bit, so the blocksize is 2d × n. Ril (1 6 l 6 d) is the jth round function in ith round that

absorbs n-bit secret key and n-bit input. We construct the corresponding quantum distinguisher on the

(2d+ 1)-round cipher.

The intermediate state after the ith round is xij for 1 6 j 6 2d, especially the output of the (2d+ 1)th

round is denoted as x2d+1
1 ||x2d+1

2 ||...||x2d+1
2d .

Case study, 2d = 4:

As shown in Figure 8 with 2d = 4, for the input of round function R4
1 about x0j for 1 6 j 6 4, we

compute its symbolic expression:R3
1(R2

1(R1
1(x01) ⊕ x02) ⊕ x03) ⊕ R1

2(x03) ⊕ x04. The output of R4
1 can be

expressed as x01 ⊕ x54 ⊕R2
2(R1

2(x03)⊕ x04). Through R4
1, we obtain the following equation

R4
1(R3

1(R2
1(R1

1(x01)⊕ x02)⊕ x03)⊕R1
2(x03)⊕ x04) = x01 ⊕ x54 ⊕R2

2(R1
2(x03)⊕ x04). (13)

Let x01 = αb, x
0
2 = x, x03, x04 be constants, it becomes

R4
1(R3

1(R2
1(R1

1(αb)⊕ x)⊕ x03)⊕R1
2(x03)⊕ x04) = αb ⊕ x54 ⊕R2

2(R1
2(x03)⊕ x04). (14)
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Figure 8 5-round distinguisher on RC6/CLEFIA-like GFS with 2d = 4

f4 : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ αb ⊕ x54 ⊕R2
2(R1

2(x03)⊕ x04), where x51||x52||x53||x54 = E(αb, x),

f4(b, x) = R4
1(R3

1(R2
1(R1

1(αb)⊕ x)⊕ x03)⊕R1
2(x03)⊕ x04).

Thus f4(b, x) = f4(b⊕ 1, x⊕R1
1(α0)⊕R1

1(α1)). Therefore, function f4 satisfies Simon’s promise with

s = 1||R1
1(α0)⊕R1

1(α1).

Case study, 2d = 6:

As shown in Figure 9 with 2d = 6, for the input of round function R6
1 about x0j for 1 6 j 6 6, we

compute its symbolic expression:R5
1(R4

1(R3
1(R2

1(R1
1(x01)⊕ x02)⊕ x03)⊕ R1

2(x03)⊕ x04)⊕ R2
2(R1

2(x03)⊕ x04)⊕
x05)⊕R3

2(R2
2(R1

2(x03)⊕ x04)⊕ x05)⊕R1
3(x05)⊕ x06.

The output of R6
1 can be expressed as x01 ⊕ x76 ⊕ R2

3(R1
3(x05) ⊕ x06) ⊕ R4

2(R3
2(R2

2(R1
2(x03) ⊕ x04) ⊕ x05) ⊕

R1
3(x05)⊕ x06). Through R4

1, we obtain the following

R6
1[R5

1(R4
1(R3

1(R2
1(R1

1(x01)⊕ x02)⊕ x03)⊕R1
2(x03)⊕ x04)⊕R2

2(R1
2(x03)⊕ x04)⊕ x05)⊕R3

2(R2
2(R1

2(x03)⊕ x04)⊕ x05)

⊕R1
3(x05)⊕ x06] = x01 ⊕ x76 ⊕R2

3(R1
3(x05)⊕ x06)⊕R4

2(R3
2(R2

2(R1
2(x03)⊕ x04)⊕ x05)⊕R1

3(x05)⊕ x06).

(15)

Let x01 = αb, x
0
2 = x, x03, x04, x05, x06 be constants, it becomes

R6
1[R5

1(R4
1(R3

1(R2
1(R1

1(αb)⊕ x)⊕ x03)⊕R1
2(x03)⊕ x04)⊕R2

2(R1
2(x03)⊕ x04)⊕ x05)⊕R3

2(R2
2(R1

2(x03)⊕ x04)⊕ x05)

⊕R1
3(x05)⊕ x06] = αb ⊕ x76 ⊕R2

3(R1
3(x05)⊕ x06)⊕R4

2(R3
2(R2

2(R1
2(x03)⊕ x04)⊕ x05)⊕R1

3(x05)⊕ x06).

(16)

f6 : {0, 1} × {0, 1}n → {0, 1}n

b, x 7→ αb ⊕ x76 ⊕R2
3(R1

3(x05)⊕ x06)⊕R4
2(R3

2(R2
2(R1

2(x03)⊕ x04)

⊕x05)⊕R1
3(x05)⊕ x06),where x51||x52||x53||x54||x55||x56 = E(αb, x),

f6(b, x) = R6
1[R5

1(R4
1(R3

1(R2
1(R1

1(αb)⊕ x)⊕ x03)⊕R1
2(x03)⊕ x04)

⊕R2
2(R1

2(x03)⊕ x04)⊕ x05)⊕R3
2(R2

2(R1
2(x03)⊕ x04)⊕ x05)⊕R1

3(x05)⊕ x06].

Thus f6(b, x) = f6(b⊕ 1, x⊕R1
1(α0)⊕R1

1(α1)). Therefore, function f6 satisfies Simon’s promise with

s = 1||R1
1(α0)⊕R1

1(α1).

Similarly, for the 2d-branch version, we can get corresponding function f2d satisfies Simon’s promise

with s = 1||R1
1(α0)⊕R1

1(α1) at 2dth round.
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Figure 10 8-round quantum key-recovery attack on RC/CLEFIA-like GFS with 2d = 4

5.2 Quantum key-recovery attacks on Type-2 (RC6/CLEFIA-like) GFS

Firstly, we study the quantum key-recovery attack on RC6/CLEFIA-like GFS with 2d = 4 branches.

Similarly, combining Simon’s and Grover’s algorithms shown in Section 3.3, three rounds are appended

under the 5-round distinguisher to launch the attack. As shown in Figure 10, there are 4n-bit key needed

to be guessed by Grover’s algorithm, which are highlighted in the red boxes of round functions. Thus,

the 8-round quantum key-recovery attack needs about 22n queries and O(n2) qubits. If we attack r > 8

rounds, we need guess 4n + (r − 8) × 2n key bits by Grover’s algorithm. Thus, the time complexity is

22n+
(r−8)×2n

2 = 2(r−6)n.

Then, for the case of 2d = 6, we append 5 rounds after the 7-round distinguisher to launch the 12-

round quantum key-recovery attack as shown in Figure 11. 9n key bits highlighted in red need to be

guessed by Grover’s algorithm. Thus, the time complexity is 2
9n
2 and O(n2) qubits are needed. When

we attack r > 12 rounds, 9n + (r − 12) × 3n key bits need to be guessed by Grover’s algorithm. So the

time complexity is 2
9n
2 +

(r−12)×3n
2 = 2

(r−9)3n
2 .

Generally, for 2d > 4, we could get (2d + 1)-round quantum distinguisher. We append 2d − 1 rounds

under the quantum distinguisher to attack r0 = 4d round RC/CLEFIA-like GFS. Similarly, we need to

guess d2n-bit key by Grover’s algorithm. Thus, for r0 rounds, the time complexity is d2n
2 queries, and

O(n2) qubits are needed. If we attack r > r0 rounds, we need guess d2n+ (r− r0)dn key bits by Grover’s
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Figure 11 12-round quantum key-recovery attack on RC/CLEFIA-like GFS with 2d = 6

algorithm. Thus, the time complexity is 2
d2+(r−r0)d

2 n.

If we use the quantum brute force search (Grover search) to recover the key, for r-round 2d-branch

cipher, totally, rdn-bit key need to be found, the complexity is 2rdn/2. Thus, our attack is better than

the quantum brute force search (Grover search) by a factor 2rdn/2−
d2+(r−r0)d

2 n = 2
3d2n

2 .

6 Conclusion

This paper studies quantum distinguishers and quantum key-recovery attacks on two generalized Feistel

schemes (GFS): Type-1 (CAST256-like) and Type-2 (RC6/CLEFIA-like) GFS. For d-branch Type-1

GFS, we introduce (2d − 1)-round quantum distinguishers with polynomial time. For 2d-branch Type-

2 GFS, we give (2d + 1)-round quantum distinguishers with polynomial time. Classically, Moriai and

Vaudenay [15] proved that a 7-round 4-branch Type-1 GFS and 5-round 4-branch Type-2 GFS are secure

pseudo-random permutations. Obviously, they are no longer secure in quantum setting.

Using the above quantum distinguishers, we introduce generic quantum key-recovery attacks by ap-

plying the combination of Simon’s and Grover’s algorithms recently proposed by Leander and May. We

denote n as the bit length of a branch. For (d2 − d + 2)-round Type-1 GFS with d branches, the time

complexity is 2(
1
2d

2− 3
2d+2)·n2 , which is better than the quantum brute force search (Grover search) by a

factor 2(
1
4d

2+ 1
4d)n. For 4d-round Type-2 GFS with 2d branches, the time complexity is 2

d2n
2 , which is

better than the quantum brute force search by a factor 2
3d2n

2 .

Open discussion: The Chinese standard block cipher SMS4 is based on a different contracting

Feistel scheme, we denote it as SMS4-like GFS. For the 4-branch case, we could find a 5-round quantum

distinguisher that works with O(n). However, Zhang and Wu [20] proved that 7-round 4-branch SMS4-

like GFS is a pseudo-random permutation. So our quantum distinguisher does not violate Zhang and

Wu’s claim. It will be interesting to find quantum distinguisher with more rounds.
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