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Abstract

We construct a delegation scheme for verifying non-deterministic computations, with com-
plexity proportional only to the non-deterministic space of the computation. Specifically, let-
ting n denote the input length, we construct a delegation scheme for any language verifiable
in non-deterministic time and space (T (n),S(n)) with communication complexity poly(S(n)),
verifier runtime n · polylog(T (n)) + poly(S(n)), and prover runtime poly(T (n)).

Our scheme consists of only two messages and has adaptive soundness, assuming the exis-
tence of a sub-exponentially secure private information retrieval (PIR) scheme, which can be
instantiated under standard (albeit, sub-exponential) cryptographic assumptions, such as the
sub-exponential LWE assumption. Specifically, the verifier publishes a (short) public key ahead
of time, and this key can be used by any prover to non-interactively prove the correctness of
any adaptively chosen non-deterministic computation. Such a scheme is referred to as a non-
interactive delegation scheme. Our scheme is privately verifiable, where the verifier needs the
corresponding secret key in order to verify proofs.

Prior to our work, such results were known only in the Random Oracle Model, or under
knowledge assumptions. Our results yield succinct non-interactive arguments based on sub-
exponential LWE, for many natural languages believed to be outside of P.
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1 Introduction

Efficient verification of computation, also known as delegation of computation, is one of the most
fundamental notions in computer science. Indeed, one of the most basic computational objects
in computer science is the complexity class NP – that is defined as the class of problems whose
computation can be verified in polynomial time.

The broader importance of the problem of delegating computation has become evident in re-
cent years due to the increasing popularity of cloud computing. In this setting, one participant,
the client or delegator (or verifier), would like to offload the computation of a function f to another
participant, the server or worker (or prover). Such a client may not trust the server, and would
therefore want the server to “prove” that the computation was done correctly. Clearly, the com-
plexity of verifying such a proof should be significantly lower than the complexity of running f ,
while at the same time, not significantly blowing up the running time of the prover. The appli-
cability of delegation schemes goes beyond cloud computing. For example, efficient verification of
computation is used as a building block in some widely used crypto currencies [BCG+14].

In a non-interactive delegation scheme, which is the focus of this work, the verifier computes
and publishes a common reference string (CRS), and any prover can use this CRS to generate
succinct proofs. We emphasize that in non-interactive delegation schemes soundness is guaranteed
even if a cheating prover chooses the computation adaptively depending on the CRS.

Two types of such delegation schemes were considered in the literature: publicly verifiable and
privately verifiable. In a publicly verifiable scheme, in order to verify a proof, all that is needed
is the CRS (and the proof). In a privately verifiable scheme the verifier generates the CRS along
with a secret key, and in order to verify a proof one needs to use the secret key, and the scheme
remains sound as long as the secret key is hidden from the prover.

In this work, we construct a non-interactive privately verifiable delegation scheme for non-
deterministic computations, that is sound under standard sub-exponential hardness assumptions.
Specifically, assuming sub-exponentially secure succinct PIR, we construct a non-interactive, pri-
vately verifiable, delegation scheme for NTISP(T (n),S(n)), which is the class of all non-deterministic
computations requiring time T (n) and space S(n). The prover runs in time poly(T (n)) given a wit-
ness for the computation, and the communication complexity is poly(S(n)), and the verifier running
time is n · polylog(T (n)) + poly(S(n)), where n denotes the instance length.1 Similar to previous
privately verifiable delegation schemes (for deterministic computations), our scheme is vulnerable
to the “verifier rejection problem”: A cheating prover that observes whether or not the verifier
rejects a large number of maliciously crafted proofs, can completely learn the verifier’s secret key
and violate soundness.

Perspective: the challenge of non-determinism. The problem of constructing succinct del-
egation from standard complexity assumptions has been studied in a long sequence of works (see
Section 1.1 for a comprehensive exposition on prior work). However, until our work, all known work
based on standard assumptions either only worked for deterministic computations or for batch ver-
ification of multiple NP statements. Thus, the following question has been a guiding inspiration
for research on delegation over the last several years:

Is it possible to obtain succinct non-interactive arguments (SNARGs) for delegating
non-deterministic computations, based on standard and well-studied assumptions?

Unfortunately, Gentry and Wichs [GW11] showed that it is impossible to achieve delegation
for all of NP generically under standard assumptions, via black-box proofs of security. Despite

1For simplicity of exposition, we assume here that poly(S(n)) is larger than the security parameter.
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the negative result of Gentry and Wichs, we tackle succinct non-interactive delegation for non-
deterministic computations from well-studied assumptions.

Evading the barrier of [GW11] for non-deterministic computations. While the Gentry-
Wichs [GW11] barrier may make it appear that the situation is hopeless, our first observation
is that, looking more closely, it is plausible to circumvent this barrier for many interesting non-
deterministic computations.

Consider, for example, the subset-sum problem. An instance x := (N, y1, . . . yN , t), where
each yi ∈ {0, . . . , 2`}, is in the language Subset.Sum` if and only if there exists S ⊆ [N ] such that
Σi∈Syi = t. Note that the length of the witness for Subset.Sum` is N . However, this problem can be
decided with non-deterministic space O(`), because such a machine can non-deterministically decide
whether to include each yi in the partial sum, and updating the partial sum only takes space O(`).2

Therefore, Subset.Sum` is in DTIME(2O(`)). Why is this interesting? Because looking more closely
at the negative result of [GW11], we see that their result only implies that a delegation scheme from
standard assumptions for Subset.Sum` would require communication complexity roughly Ω(`). And
yet, Subset.Sum` is very interesting even when ` � N . Indeed, even for values of ` = polylog(N),
subset-sum is believed to be outside of P . Is it possible to achieve delegation with complexity
growing with poly(`) as opposed to growing with N?

We give a positive answer to this question. In fact, as already described above, we address the
more general setting of languages in NTISP(T (n),S(n)), and construct a non-interactive delegation
scheme for such languages, with communication complexity poly(S(n)) and verifier runtime n ·
polylog(T (n))+poly(S(n)). Note that before our work, there were no known constructions of such a
delegation scheme, even under strong but “standard-type” assumptions such as indistinguishability
obfuscation3.

Beyond subset-sum, there are many examples of computations where the non-deterministic
space complexity S is small. For example, verifying that a Merkle (or more generally any) tree
hash value was correctly computed on some message requires space just O(κ), where κ denotes
the security parameter. We expand further on other interesting instantiations when discussing our
results below.

1.1 Prior Work

There is a long body of work on delegating computation. The question of delegation of computation
was first studied by Kilian [Kil92] and Micali [Mic94]. Kilian gave a four-message protocol for
delegating NP computations, and Micali showed how to obtain a non-interactive delegation for
NP in the random oracle model. Indeed, especially from the point of view of applications, non-
interactive delegation protocols are significantly more interesting.

The works of [GKR08, RRR16] construct delegation schemes with statistical soundness (i.e.,
security against computationally unbounded cheating provers). These schemes are inherently in-
teractive, and also inherently only handle bounded classes of computations. Specifically, the del-
egation scheme from [GKR08] is sound for bounded depth (deterministic) computation, and the
delegation scheme from [RRR16] is sound for bounded space (deterministic) computation.

2As is standard when defining space complexity, we do not count the length of the input in the space usage of the
machine.

3The work of [SW14] built such protocols assuming indistinguishability obfuscation, but they require a long CRS
(as long as the witness). In this work, we focus on the truly succinct setting where both the CRS and proof are
significantly smaller than the size of the input and witness.
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Non-interactive delegation schemes are inherently only computationally sound, i.e., soundness is
only guaranteed against cheating provers that cannot break some hardness assumption. Indeed most
previous work in the literature (as well as this work) focus on achieving computational soundness.
These prior works can be roughly clustered into two sets.

Delegating non-deterministic computations based on non-standard assumptions. There
is an extensive body of work (including [Gro10, Lip12, DFH12, GGPR13, BCI+13, BCCT13,
BCC+14, BISW17]), achieving non-interactive, publicly verifiable, delegation for all non-deterministic
computations under so called knowledge assumptions. These works get the strongest possible re-
sults at the price of relying on non-standard assumptions. Knowledge assumptions are of a different
nature than standard complexity assumptions, as (similarly to the random oracle model) they re-
strict the class of adversaries considered to those that perform computations in a certain way.4 We
emphasize that currently we do not know how to construct such delegation schemes even under
strong assumptions such as indistinguishability obfuscation (iO).

Delegating deterministic computations. The literature on delegation schemes for determin-
istic computations can be partitioned into two classes: Those that rely on standard cryptographic
assumptions but are privately verifiable [KR09, KRR13, KRR14, KP15, DNR16, BHK17], and
those that are publicly verifiable but rely on indistinguishability obfuscation [BGL+15, CHJV15,
CH16, CCHR15, KLW15, CCC+16, ACC+15], or on other non-standard assumptions (seemingly
related to obfuscation) [PR17]. Our work follows the former line of works.

We emphasize that most of these works construct a two-message delegation scheme, where
the first message does not depend on the instance chosen by the prover. The difference between
this and a non-interactive delegation scheme (as also described in [BHK17]) is that the former only
guarantees non-adaptive soundness, namely, soundness is guaranteed only if the prover first chooses
the computation, and then succeeds in proving correctness for a random message (CRS) sent by
the verifier. Non-interactive delegation guarantees adaptive soundness, even if the prover chooses
the computation depending on the CRS. The only known works from this list that construct non-
interactive delegation are [PR17, BHK17], where [PR17] relies on non-standard assumptions and
[BHK17] relies on the existence of a succinct PIR scheme. Recently, [JKKR17] also constructed
(non-succinct) arguments achieving variants of zero-knowledge in this setting. Our work follows the
footsteps of [BHK17] in this regard and achieves adaptive soundness assuming a (sub-exponentially
secure) succinct PIR scheme.

1.2 Our Results

Our main result is the following:

Informal Theorem 1. Assuming sub-exponentially secure succinct PIR, we construct non-interactive,
privately verifiable, delegation scheme for NTISP(T (n),S(n)), where the prover runs in time poly(T (n)),
the communication complexity is poly(S(n)), and the verifier running time is n · polylog(T (n)) +
poly(S(n)), where n denotes the instance length.5

We refer the reader to Theorem 1 in Section 5 for our formal theorem. As mentioned above,
before our work, there were no known constructions of such a delegation scheme, even under

4For example, the Knowledge-of-Exponent assumption [Dam92] assumes that any adversary that given (g, h)
computes (gz, hz), must do so by “first” computing z and then computing (gz, hz).

5We assume that poly(S(n)) is larger than the security parameter.
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strong but “standard-type” assumptions such as indistinguishability obfuscation. Moreover, even
2-message delegation schemes for such languages were only known under knowledge assumptions.

More details on the barrier of [GW11]. Recall that the Gentry-Wichs [GW11] barrier shows
that it is impossible to construct a succinct non-interactive delegation scheme for NP, and prove
that it is sound via a black-box reduction to a standard assumptions. This result has left many
researchers hopeless, and willing to settle for relying on (non-standard) knowledge assumptions.
Surprisingly, we observe that it is possible to circumvent this barrier for many interesting non-
deterministic computations.

In particular, the high-level idea behind the [GW11] impossibility result, is that a reduction that
breaks the assumption, cannot distinguish between pairs (x, π) generated by a (possibly inefficient)
cheating prover, where x /∈ L and π is a proof of length `, and a pair (x̃, π̃) where x̃ ∈ L and π̃ is
an efficiently generated proof. This is true, assuming the underlying NP language is 2`-hard.

We note that any computation in NTISP(poly(n),S(n)) is also in DTIME
(
poly(n) · 2S(n)

)
, and

hence is not poly(n) · 2O(S(n))-hard. Therefore, the [GW11] does not rule out the possibility of a
non-interactive delegation scheme where the proofs are of length poly(S(n)), which is exactly what
we show is possible. The [GW11] result does show that our results are somewhat tight.

Remark. As noted above, since NTISP(T (n),S(n)) is contained in DTIME
(
T (n) · 2S(n)

)
, if we

were not concerned with the running time of the prover, it would have been possible to use [KRR14,
BHK17] to achieve succinctness and verifier runtime according to Informal Theorem 1, but with
prover running time as high as poly(T (n) · 2S(n)). A key challenge, that is addressed by our work,
is to maintain the honest prover’s running time to be poly(T (n)), while obtaining succinctness. We
stress that retaining the prover’s running time as close as possible to T (n) is critical for applications.

Natural languages in NTISP(T (n),S(n)). We observe that the class NTISP(T (n),S(n)), where
the non-deterministic space complexity S(n) is small compared to T (n), contains many natural NP
languages. These include problems in NP such as subset-sum for interesting parameter settings, as
well as other languages that admit dynamic programming solutions such as the knapsack problem
and the partition problem. Another natural NP relation in this class is verifying tree-based com-
putations, such as checking if a Merkle hash value was correctly computed on some message. This
requires space proportional only to the depth of the tree. More generally, the class NSCk, which
is equal to NTISP(poly(n), logk(n)), for k > 2 is not known to be in P and contains interesting
problems including special variants of SAT. We also note that batch verification of multiple NP
statements requires space proportional to that required for verification of one statement. Thus,
in particular, we get an adaptive non-interactive delegation scheme for batch NP (assuming sub-
exponentially secure PIR scheme). This is in contrast to the work of [BHK17], which constructed
a 2-message (non-adaptive) delegation scheme for batch NP assuming a polynomially secure PIR
scheme. We refer the reader to Appendix A for details.

1.3 Brief Overview of Our Techniques

We begin with a very high level overview of the main new ideas in our work. In the next section,
we explain our techniques in more detail.

Our work builds upon, but fundamentally departs from, the ideas of [KRR13, PR17, BHK17].
Loosely speaking, these works show that if there exists a (possibly cheating) prover that convinces
the verifier to accept a computation, say M(x) = 1, then the prover can be converted into a
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“local assignment generator” on the intermediate values of the computation. The local assignment
generator, with locality ` (which depends on the communication complexity of the delegation
scheme), takes as input a set of ` intermediate wires of the computation, and outputs an assignment
to the results of these intermediate wires, such that the assignment is locally consistent.

All prior work, implicitly or explicitly, first convert any cheating prover that generates accepting
proofs in the underlying delegation protocol, into a local assignment generator, and then argue that
the existence of a local assignment generator implies that the computation must be correct.

Prior works on delegating deterministic computation argued soundness, while only relying on
low locality of the assignment generator. Loosely speaking, this was done by inductively arguing
that when such a local assignment generator is invoked repeatedly on different subsets of wires, all
the wires must be assigned their correct value with overwhelming probability.

We emphasize that for deterministic computations, the notion of “correctness” of a wire assign-
ment with respect to a fixed input x, is well defined. However, we deal with non-deterministic
computations, and hence there may be many non-deterministic choices that make many assignments
correct, but these assignments are inconsistent with each other. This is a problem because these
conflicting non-deterministic choices cannot be pieced together; one set of correct non-deterministic
choices may be incompatible with another set of correct non-deterministic choices.

Due to this discrepancy between deterministic and non-deterministic computations, it was be-
lieved that this blueprint is only applicable to deterministic computations. This is supported by the
known result that only deterministic languages, computable in time T , have MIPs with no-signaling
soundness with communication complexity polylog(T ). Nevertheless in this work, we do use this
blueprint for non-deterministic computations.

To this end, we give up entirely on trying to piece together different computations to argue
about the correctness of one global computation, as was done in all previous work. Instead, we
use a special property of space-S non-deterministic computations: that in fact, in time 2O(S), it is
possible to determine whether a particular intermediate configuration of the computation, of size
O(S), can ever lead to an accepting state, regardless of what non-deterministic choices were made
before or after reaching this intermediate configuration. We call such an intermediate configuration
an accepting configuration. We then use cryptographic tools to argue that our protocol ensures that
every accepting intermediate configuration must be preceded by another accepting intermediate
configuration.

Notably, we use the fact that it is possible to check whether a configuration is accepting in time
2O(S) only in a “mental experiment” within the proof of soundness; the actual running time of the
honest prover is not impacted. We are able to argue via induction that a cheating prover can only
cause the verifier to accept if in fact there exists a sequence of non-deterministic choices that would
have caused the computation to accept.

We describe this in much more detail, but still informally, in the following section, where we
also point out other bottlenecks that we must overcome to achieve our result.

2 Detailed Technical Overview

We now provide a more detailed overview of our main techniques. We begin by discussing known
approaches to delegating computation, and the key bottlenecks in previous work.

2.1 Prior Work and Key Bottlenecks

Our work is based on the heuristic suggested by [BMW98], that uses any multi-prover interactive
proof (MIP) scheme and any succinct PIR scheme to construct a 2-message delegation scheme. For
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simplicity, in this overview we use a special kind of succinct PIR – a fully homomorphic encryp-
tion (FHE) scheme. Such a scheme allows to perform homomorphic computations on ciphertexts,
allowing the transition FHEpk(x) → FHEpk(f(x)) with computational complexity proportional to
that of f .

The model of multi-prover interactive proofs was introduced by Ben-Or et. al. [BGKW88]. In
this model, the verifier interacts with two (or more) provers, it sends each prover a query and each
prover replies with an answer. Importantly, it is assumed that the provers do not communicate
during the protocol, so that each answer depends only on the corresponding query. Intuitively, this
can be enforced by placing the provers in different rooms (without any connection to the outside
world). This proof model was proven to be extremely powerful. Babai, Fortnow and Lund [BFL91]
proved that any proof of length T can be converted into a 2-prover interactive proof where the two
queries and two answers are of length polylog(T ). Namely, [BFL91] proved that MIP = NEXP.

Thus, if we were willing to assume the existence of two non-communicating provers, then we
could use these results from the early 90’s to construct a delegation scheme, where the client inter-
acts with two servers, and soundness is ensured as long as these two servers do not interact during
the proof process. However, we do not want to make such an assumption, since in many applica-
tions (such as for crypto-currencies) this is not a realistic assumption, and for other applications
(such as cloud computing) the non-communicating assumption may be too strong, or at the very
least simply expensive.

The [BMW98] heuristic uses cryptography to emulate two (or more) non-communicating provers
using a single prover. This heuristic is simple and elegant: First the verifier generates the queries for
the MIP provers, and encrypts each query independently under a different (independently generated)
public key, and sends all the encrypted queries to the (single) prover. Then, the prover computes
the answer to each query homomorphically, and sends all the encprypted answers to the verifier.
The verifier decrypts these answers, and accepts if the MIP verifier would have accepted these
answers.

The intuition for why this heuristic was believed to be sound is the following: When a cheating
prover answers each of the queries, the other queries are encrypted using different (independently
generated) keys, and hence are indistinguishable from encryptions of 0 (by the security of the FHE
scheme). Therefore, each answer should be indistinguishable from the answer the cheating prover
would have provided in the case where the other queries were all 0, and clearly having encryptions
of 0 cannot help a prover cheat, since he can generate these encryptions on his own.

Surprisingly, despite this intuition, Dwork et. al. [DLN+01] showed that this heuristic, in general,
can be insecure. The reason is that the soundness of the MIP is ensured only against cheating provers
that answer each query locally, only as a function of the corresponding query. In this delegation
scheme a cheating prover is not restricted to use local strategies. Rather the security of the FHE
scheme ensures that each answer (provided by a cheating prover) does not “signal” information
about the other queries, since if it did then we could use this prover to break the security of the
FHE scheme.

However, there are strategies that are neither signaling nor local. Dwork et. al. [DLN+01] refer
to such strategies as “spooky interactions”. Such strategies are known in the quantum literature as
no-signaling strategies. The intuition above suggests that these no-signaling strategies are useless.
However, in the quantum literature it is well known that this is not the case.

Very recently, [DHRW16] showed that indeed the [BMW98] heuristic is insecure! Specifically,
they construct an MIP scheme and a FHE scheme, for which when applying the [BMW98] heuristic
to these MIP and FHE schemes, the resulting delegation scheme is not sound. To this end, they
construct an MIP scheme whose soundness can be broken via a no-signaling strategy, and this
no-signaling strategy can be implemented under the layer of the FHE.
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Yet, [KRR13] and other follow-up works, showed that the approach of [BMW98] can be proven
sound if the underlying MIP is sound against (statistically) no-signaling provers. Such provers are
not restricted to answering each query locally (as required by classical MIPs), rather each answer
can be a function of all the queries, as long as the answer does not signal information about the other
queries. More formally, the requirement is that for any subset of queries, the marginal distribution
of the answers to this subset of queries, are (statistically) independent of the other queries. The
work of [KRR13] consists of two parts:

1. First, they show that any prover that cheats in the delegation scheme (constructed via the
[BMW98] heuristic) with noticeable probability, can be converted into a (statistically) no-
signaling prover that cheats in the underlying MIP with noticeable probability. This step
involves relying on the underlying FHE scheme to guarantee the no-signaling property.

2. Second, they construct an MIP scheme with soundness against (statistically) no-signaling
cheating provers.

This approach was later explored further in context of public verifiability by [PR17], and ex-
tended (in the privately verifiable setting) to RAM computations and to non-interactive (as opposed
to 2-message) delegation by [KP15, BHK17].

An immediate barrier for non-deterministic computations. It appears that this approach
is doomed to fail for general non-deterministic computations, since it is known that MIP’s with
no-signaling soundness (with polynomial time verifiers and polynomial communication complexity)
exist only for languages in EXP. We show a new approach that can nevertheless be made to work
for low-space non-deterministic computation. To unravel how this is achieved, we give some more
details about the overall approach used by prior work, and how we (fundamentally) deviate from
it. Many of these works relied on an abstraction developed by [PR17], which abstracts techniques
from [KRR13], known as a local assignment generator. We give an informal description of this
primitive, since it is relevant for our work.

Local Assignment Generator. For any (fixed) Turing machine M that decides a language, it
will be useful to think of a circuit CM (parameterized appropriately by input length, which we skip
here for simplicity), as a tableau or layered circuit that describes the evolution of the computation
of M . For any input {0, 1}n, an `-local assignment generator for the computation M(x) = y, is an
oracle Turing machine that on input a subset of wires for the circuit CM , outputs assignments of
values to these wires. This generator is required to output assignments to wires that satisfy the
following properties:

◦ Everywhere `-Local Consistency. The wire assignments output by CM to any subset of
at most ` wires, must be locally consistent with each other, and consistent with the input x
and the output y, with overwhelming probability.

◦ No-Signaling. For any two subsets of wires Q1, Q2, let Q := Q1 ∩Q2. Then, the marginal
distribution of assignments to wires in Q when the assignment generator is queried on Q1

should be indistinguishable from the marginal distribution of assignments to wires in Q when
the assignment generator is queried on Q2.

If these two distributions are computationally indistinguishable then the local assignment
generator is said to satisfy the computational no-signaling criterion. If these two distributions
are T -indistinguishable (i.e., indistinguishable by circuits of size poly(T )) then we say that
the local assignment generator satisfies the T -no-signaling criterion.
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In all prior work in this line or work, the analysis (implicitly or explicitly) consists of converting
any (possibly cheating) prover that generates an accepting proof in the underlying delegation scheme
(with non-negligible probability), into a local assignment generator (for that computation), where
the locality ` of the local assignment generator is proportional to the communication complexity of
the delegation scheme. It is useful to think of the communication complexity as being polynomial
in the security parameter κ (we will elaborate more on this later): note that the size of the instance
and the tableau are allowed to be much larger than κ, and in particular can be as large as 2κ.

Deriving Soundness via the Local Assignment Generator. The existence of a local assign-
ment generator with locality equal to the size of the entire tableau naturally implies soundness.
However, such high locality would blow up the communication complexity, and the corresponding
delegation protocol would no longer be succinct.

On the other hand, `-local consistency (for small `) only guarantees that assignments to
`-sized subsets of wires are consistent with respect to each other; however, it may be possi-
ble that an entire subset of wires could be set incorrectly and yet consistently with each other
(note that intuitively the verifier can only check consistency, not correctness). Nevertheless, the
works of [KRR13, KRR14, KP15] argue inductively, that local consistency, together with no-
signaling, actually implies correctness of all wire assignments6. We note that to this end, the
works of [KRR14, KP15] had to change the tableau of the computation CM ; indeed in [KRR14]
a low degree extension was added to each layer in CM (this was referred to as the “augmented
circuit”), and in [KP15] Merkle hashes were added to each layer of the computation.

The work of [BHK17] extends this to the adaptive setting, where the instance x is output
by the prover and therefore by the local assignment generator based on the verifier message. In
this setting, the instance x may change each time the local assignment generator is queried. These
works show that it is possible to convert an (adaptive) prover for the delegation scheme that outputs
accepting proofs for x 6∈ L with noticeable probability, to an (adaptive) local assignment generator
that outputs x 6∈ L together with assignments, that are no-signaling and locally consistent with
overwhelming probability.

The Key Barrier to Non-Determinism. This approach breaks down completely when trying
to extend it to non-deterministic computations. The first reason is that it is no longer clear how
to argue or even define “correctness” of wire assignments any more. Indeed, it is known that local
consistency does not imply global consistency in this setting.

For non-deterministic computations, it may be tempting to consider defining correctness of
wire assignments with respect to both the instance x and the witness w. However, even when the
instance x is fixed in advance, the purported witness w being used by the prover is unknown and
can change every time the prover is queried! This witness is too large to send in its entirety, and
hence is not well defined, and in particular, one cannot define correctness of an assignment with
respect to this (undefined) witness.7

At a more intuitive level, the key issue is the following: When the circuit CM requires reading
the ith bit of the witness w at two different steps in the computation, the no-signaling `-local assigner
that invokes a cheating prover, may output different assignments to wi every time it is queried. It is
possible that these assignments are always locally consistent with neighboring wires, and yet when
assigning values to the global circuit, both steps in the computation are assigned different values
for wi. The local assignment generator therefore does not output a globally consistent assignment

6This is also referred to as global consistency.
7This can be overcome if the witness is hashed (using a Merkle Hash) in advance; see [KP15].
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to CM , and it is no longer clear that soundness holds. This presents an avenue for attack by the
adversary that existing techniques did not know how to overcome.

2.2 New Techniques

Our first observation is that if the non-deterministic circuit CM reads each bit of the witness
only once, then the intuitive attack described in the previous paragraph is no longer valid. Armed
with this observation, we consider the class NTISP(T (n),S(n)) of all languages recognizable by non-
deterministic Turing Machines in time O(T (n)) and space O(S(n)). Recall that a non-deterministic
Turing Machine allows each step of the computation to non-deterministically transition to a new
state. Thus, in a sense, this corresponds to the setting where each bit of the witness is read at most
once.8 An alternative way to describe this class is as the class of languages L with a corresponding
witness relation RL, recognizable by a deterministic Turing Machines with access to an input tape
and a read-only, read-once witness tape, in addition to a work tape where only O(S(n)) space is
used, and that runs in O(T (n)) time. Any such Turing Machine M can be converted into a layered
circuit CMn,m, parameterized by n = |x| and m = m(n) = |w|, that on input a pair (x,w) outputs 1
if and only if RL(x,w) = 1. Each layer of gates in this circuit has input wires that directly read
the instance, or directly read the witness, or are the output wires of gates in the previous layer.
Moreover, each bit of the witness is read by at most one layer. This circuit has depth D = O(T (n))
and width W = O(S(n)), where W may be smaller than n.

This corresponds to exactly the type of circuit we described above – where no two different layers
read the same bit of the witness. We next describe why for such computations, local consistency
implies global consistency, assuming the locality is as large as the space, and describe the technical
hurdles that we encounter along the way.

From Local Consistency to Soundness. As already noted, any Turing Machine M that rec-
ognizes languages in NTISP(T (n),S(n)) can be represented by a layered circuit CMn,m that takes

input (x,w) where |x| = n, |w| = m. Moreover, CMn,m has depth D = O(n · T (n)) and width
W = O(S(n)), and is such that every layer of gates obtains input wires that either directly read
the instance, or directly read the witness, or are output wires from a previous layer. Finally, each
bit of the witness is read (directly) by at most one layer.

As mentioned above, it is not clear how to define “correctness” of a wire assignment in this
(non-deterministic) setting. We therefore give up on trying to formalize any notion of “correctness”
of wire assignments. Our key insight is that instead we can define the notion of an “accepting layer”.

Defining Accepting Layers. We define the notion of an accepting layer inductively, starting
from the output layer.9

One can define a layer in terms of the gates in that layer, or in terms of the wires that are input
to the gates in that layer. We choose the latter. In particular, the output layer consists only of the
output wire, and thus the only valid assignment for this layer is the symbol 1. For each layer i, we
partition the wires that are input to gates in layer i into three sets: intermediate wires, instance
wires, and witness wires. Intermediate wires for layer i are all the wires connecting gates in layer
(i − 1) to gates in layer i; instance wires for layer i are all wires that directly read the instance x

8If a non-deterministic Turing Machine wishes to remember what non-deterministic choices it made, it has to
write them down to its work tape.

9 Here again, our approach departs from all prior works in that we must perform induction top down (as opposed
to previous works which perform the induction bottom up).
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and are input to gates in layer i; and witness wires for layer i are all wires that directly read the
witness and are input to gates in layer i.

For each layer i ≤ D, the set Accix is defined recursively in a similar manner. We define AccDx
as the set of all possible assignments to intermediate wires connecting a gate in layer (D − 1) to
a gate in layer D, such that when the instance wires for layer D are set consistently with x, there
exists some assignment to the witness wires for layer D, such that the transition function applied
to these wires results in output 1. For i < D, we define Accix as the set of all possible assignments to
intermediate wires connecting gates in layer (i− 1) to gates in layer i, such that when the instance
wires for layer i are set consistently with x, there exists an assignment to the witness wires for layer
i, such that the transition function applied to these wires outputs intermediate wires for layer i+ 1
that lie in the set Acci+1

x .
We note that the lowest i for which this definition is meaningful is i = 2, since there are no

intermediate wires before the first layer. Moreover, by definition, for every i ≥ 2, and for any
assignment to the intermediate wires for layer i, such that the assignment is in Accix, it holds that
there exists a (partial) assignment to the witness such that this layer i configuration, on the input x
and on the (partial) witness, proceeds to an accepting output configuration. This follows from the
fact that each bit of the witness is read by at most one layer, and hence the bits of the witness read
in each layer can be pasted together in a consistent manner, to lead a configuration in Accix to an
accepting output configuration, as desired.

This fact leads to the following important observation: Suppose the local assignment generator,
when queried on all input wires to layers 1 and 2 (simultaneously), outputs an assignment that
satisfies the following properties (with overwhelming probability):

◦ The assignment is locally consistent.

◦ The assignment to intermediate wires in layer 2 is in Acc2
x.

Then there must exist an accepting witness for x. This follows from the following simple analysis:
The local consistency implies that there exists a partial witness that leads from the input layer to
layer 2 in Acc2

x. As noted above, by the definition of Acc2
x, there is a partial witness that leads

from the layer 2 assignment in Acc2
x to the output 1 in the final layer. The fact that each bit of the

witness is read by at most one layer, implies that these two partial witnesses can be pasted together
in a consistent manner, to lead from the input layer to the output layer being 1, as desired.

It thus remains to prove that the local assignment generator indeed outputs a locally consistent
assignment in Acc2

x (with overwhelming probability). The local consistency property is ensured by
the definition of a local assignment generator. We thus focus on proving that the assignment to
the intermediate wires for layer 2 is in Acc2

x (with overwhelming probability).
This follows from the crucial observation that for any width W and depth D computation, it is

possible to decide whether a set of wire assignments are in Accix, for any i ∈ [D] in time poly(D, 2W ).
This is done via a straightforward dynamic programming approach.

Moreover, crucially, we ensure that the local assignment generator we obtain from the cheating
prover is poly(D, 2W )-no-signaling, so that when querying the local assignment generator with the
intermediate wires for layer i, possibly along with other queries, whether the assignment to these
intermediate wires is in Accix or not is independent of the other queries. This is ensured by assuming
that the underlying PIR (or FHE) scheme is poly(D, 2W )-secure, which in turn is done by setting
the security parameter to be κ = poly(W, logD), and assuming sub-exponential security of the PIR
(or FHE) scheme.

Given this, we can prove the more general claim that for every i ∈ [D] when querying the local
assignment generator on all intermediate wires for layers i (possibly along with other queries) then
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it outputs an assignment in Accix (with overwhelming probability). We prove this by backward
induction.

◦ In the base case, this holds for layer D just by local consistency between the input wires of
layer D and the output of the circuit.

◦ Next, assume by induction that the local assignment generator, when queried on intermediate
wires for layer i+1 (possibly along with other queries), outputs an assignment that is in Acci+1

x

(with overwhelming probability).

◦ Query the local assignment generator on all the wires for i and all the wires for layer i+1 (si-
multaneously). By our induction hypothesis, the assignment generator outputs an assignment
to the intermediate wires for layer i+ 1 that is in Acci+1

x (with overwhelming probability).

◦ Next, by local consistency of the assignment generator, the assignments to the wires for layer i
must be consistent with the assignment for the wires for layer (i + 1), with respect to some
witness assignment for this layer and with respect to the instance x. Thus, if the assignment
in layer (i+1) is accepting, the assignment in layer i must also be in Accix (with overwhelming
probability).

◦ It remains to note that by the poly(D, 2W )-no-signaling property, the assignment for the
intermediate wires for layer i are in Acci+1

x when queried with any wires.

This completes a rough overview of our induction strategy. Our actual proof requires additional
care, including handling adaptive choices of instance x, and ensuring that negligible factors in the
induction do not grow exponentially. A detailed exposition is provided in upcoming sections. In
Section 3, we describe basic notation and primitives that we use, and in Section 4 we state our new
definitions (and notations). In Section 5, we state and prove our formal theorem.

3 Preliminaries

We begin by introducing some notation. Throughout this paper, we denote the security parameter
by κ. For any function T(κ) we denote by negl(T(κ)) any function that vanishes faster that

1
poly(T(κ)) for every large enough κ.

Definition 1. Two distribution ensembles {Xκ}κ∈N and {Yκ}κ∈N are said to be T-indistinguishable
if for every distinguisher D of size poly(T(κ)),

|Prx←Xκ [D(x) = 1]− Pry←Yκ [D(y) = 1]| = negl(T(κ)).

The following definition of succinct PIR is taken from [BHK17].

Definition 2 (Succinct PIR). A succinct 2-message PIR scheme is a tuple of PPT algorithms
(PIR.Send,PIR.Respond,PIR.Decode) where:

◦ (q, s)← PIR.Send(1κ, i): Given 1κ and i ∈ [2κ], outputs a query string q and secret state s.

◦ a ← PIR.Respond(q,D): Given a query string q and database D ∈ {0, 1}≤2κ, outputs a
response string a.

◦ x← PIR.Decode(1κ, s, a): Given an answer a and state s, outputs an element x ∈ {0, 1}κ.
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These algorithms form a succinct PIR if they satisfy the succinctness, correctness and security
properties described below:

◦ The scheme is succinct if |a| = poly(κ).

◦ The scheme is (perfectly) correct if for every i ≤ 2κ and every D ∈ {0, 1}≤2κ with |D| ≥ i,
when setting (q, s) ← PIR.Send(1κ, i), a ← PIR.Respond(q,D) and x ← PIR.Decode(1κ, s, a),
then x = D[i] with probability 1.

◦ The scheme is T(κ)-secure if for any i, i′ ∈ [2κ], for (q, s) ← PIR.Send(1κ, i) and (q′, s′) ←
PIR.Send(1κ, i′), it holds that q and q′ are T-indistinguishable.

Delegating Non-Deterministic Computation We now describe our model for private-key
non-interactive delegation for non-deterministic computations.

Our model is similar to prior work, and in particular is similar to [BHK17], except that we
consider the Turing machine model of computation instead of the RAM model from [BHK17]. In
our protocols, we will fix a (universal) non-deterministic Turing machine M and its maximum
running time T ahead of time for simplicity. As we describe later, this can be removed without
loss of generality. Below, we describe the syntax of a private-key delegation scheme.

A non-interactive delegation scheme corresponding to a fixed non-deterministic Turing machine
M consists of PPT algorithms, (Setup,Prove,Verify) with the following syntax:

◦ Setup(1κ)→ (pp, sk): A PPT algorithm that takes as input 1κ, and outputs public parameters
pp and secret key sk.

◦ Prove(1κ, pp, x, w) → π: A deterministic algorithm that takes input public parameters pp,
runs in time poly(T (|x|), κ) and outputs a proof π that Turing machine M on input x outputs
1 within T -time steps.

◦ Verify(1κ, pp, sk, x, π)→ b: A deterministic algorithm that outputs an acceptance bit b.

4 Definitions

The Class NTISP. NTISP(T (n),S(n)) is defined as the class of languages accepted by non-
deterministic Turing machines taking time T (n) and using space S(n). Alternately, we can think
of it as the class of languages that can be verified in deterministic time T (n) and space S(n) with
read-once access to the witness tape, on any input of length n.

Fix any L ∈ NTISP(T (n),S(n)). Denote by RL its corresponding NP relation, and denote by
M = ML a T (n)-time S(n)-space (non-deterministic) Turing machine for deciding L. We can think
of M as a deterministic two-input Turing machine, that takes as input a pair (x,w) and outputs 1
if and only if (x,w) ∈ RL.

Corresponding Layered Circuit CMn,m. Any such Turing machine M can be converted into

a layered circuit, denoted by CMn,m, which takes as input a pair (x,w), where n = |x| and |w| =
m = m(n) (where m(n) is an upper bound on the length of a witness corresponding to a length n
instance), and outputs 1 if and only if M(x,w) = 1.

Moreover, CMn,m is a layered circuit, with W = O(S(n)) denoting the maximum of the number
of gates and number of wires in each layer, and depth D = O(T (n)), such that a child of a gate
in layer i+ 1 is either an input gate (or a negation of an input gate), or a witness gate (i.e., a gate
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corresponding to the witness part of the input), or a gate in layer i. Moreover, any witness gate
has fan-out 1 (this corresponds to read-once access to the witness tape). In addition, there is a
deterministic Turing machine of space O(log T ) that on input n outputs the (description of the)
circuit CMn,m.

Notation for Wires of CMn,m. We introduce some detailed notation for the wires of CMn,m.
We call all wires that are inputs to gates in layer i, the wires for layer i. The set of wires for

layer i is denoted by qi, and a set of assignments to these wires is denoted by ai. The jth wire in
layer i is denoted by qij , and a (boolean) assignment to this wire is denoted by aij .

We partition the wires for layer i into three sets, denoted by Instancei,Witnessi, Intermediatei,
where Instancei is the set of all wires for layer i that read the instance x, Witnessi is the set of all
wires for layer i that read the witness w, and Intermediatei is the set of remaining wires for layer i
which are output wires of gates in layer (i− 1).

Notation. In what follows, for simplicity we abuse notation: for two vectors q = (q1, . . . , q`) and
q′ = (q′1, . . . , q

′
`′), we denote by q′ ⊆ q the fact that for all i ∈ [`′], there exists j such that q′i = qj .

Definition 3 (Adaptive Local Assignment Generator). We let {Cn,m} denote a family of circuits
that take two inputs (x,w), where |x| = n, |w| = m = m(n), and Q[n] denote the set of all wires of
Cn,m.

For any T = T(κ), n = n(κ), and `max = `max(κ), a (T, n, `max)-adaptive local assignment
generator Assign for the family of circuits {Cn,m} is a probabilistic Turing machine that takes as
input a security parameter 1κ, and a tuple of wire-identifiers q ∈ [Q(n)]` of Cn,m’s wires, where

n = n(κ) and ` ≤ `max(κ), and outputs an input x ∈ {0, 1}n and assignments a ∈ {0, 1}`, that
satisfy the following properties:

◦ Everywhere (`max,T)-Local Consistency. For every security parameter 1κ, and any vec-
tor of wires q = (q1, . . . q`) ∈ [Q(n)]`, where n = n(κ) and ` ≤ `max(κ), with probability
1− negl(T(κ)) over a draw:

(x,a = (a1, . . . a`))← Assign(1κ,q),

the assignment a is locally consistent with the computation of Cn,m on input (x, ·). That is,
for all i, j, k ∈ [`] :

1. If qi = qj, then ai = aj.

2. If qi, qj are the input wires of an AND gate and qk is its output wire, then ak = ai · aj.
3. If qi is an input wire of a NOT gate and qj is its output wire, then aj = 1− ai.
4. If qi is an input wire in Cn,m then the value ai is consistent with x.

5. If qi is the output wire of C|x|,m(|x|) then ai = 1.

◦ T-Computational No-signaling. For every security parameter 1κ, every ` ≤ `max, every
wire-vector q = (q1, . . . q`) ∈ [Q(n)]`, every `′ ≤ ` and q′ , (q′1, . . . q

′
`′) such that q′ ⊆ q, the

distributions:
(x′,a′) and (x,a|q′)

are T-indistinguishable (according to Definition 1), over the randomness of sampling (x,a)←
Assign(1κ,q) and (x′,a′)← Assign(1κ,q′).
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From Succinct Delegation to Adaptive Local Assignment Generators. As in [BHK17],
we fix a Turing machine M and a time bound T , and consider a succinct non-interactive delegation
scheme with the following syntax: the verifier V on input 1κ computes a pair (pp, sk) and outputs
pp to the prover P . Next, the prover P on input (1κ, pp) outputs an instance x together with
a proof π that Turing machine M on input x outputs 1 within T -time steps. The verifier, upon
receiving a pair (x, π) from the prover, uses his secret key sk, to compute the output 0 or 1, denoting
whether or not the proof was accepted.

Imported Theorem 1. [KRR14, BHK17] Fix any (possibly non-deterministic) Turing machine
M , and fix functions n = n(κ) ≤ 2κ and T = T (n) such that T (n(κ)) ∈ [max{n, κ}, 2κ], and
any locality parameter ` = `(κ) ∈ [κ, T (n)]. Fix any function T = T(κ) ∈ [κ, 2κ] and assume the
existence of a succinct T-secure succinct PIR scheme. Then there exists a (succinct) non-interactive
argument (P, V ) for proving that M , on input x of length n, outputs 1 within T (n) steps, such that
for any security parameter κ the following holds:

◦ The communication complexity10 of (P, V ) on input 1κ is ` · poly(κ).

◦ The runtime of V , on input 1κ and upon receiving an instance x of length n from the prover,
is n · polylog(T (n)) + ` · poly(κ). Moreover, if the verifier has oracle access to the low-degree
extension of the instance x generated by the prover,11 then by making a single oracle call on
a random point, the verifier’s runtime can be reduced to ` · poly(κ).

◦ The runtime of P given (x,w), where |x| = n and M(x,w) outputs 1 within T = T (n) steps,
is poly(T (n)).

◦ Completeness. For every κ ∈ N and every (x,w) such that |x| = n and M(x,w) = 1 within
T (n) steps,

Pr[(P (x,w), V )(1κ) = 1] = 1− negl(κ),

where the probability is over the randomness of V .

◦ Local Soundness. For any constant c ∈ N there exists a probabilistic polynomial time
oracle machine Assignc such that the following holds: If there exists a poly(T(κ))-size cheating
prover P ∗ such that for infinitely many κ ∈ N,

Pr[P ∗(1κ, pp) = (x, π) : (pp, sk)← V (1κ) ∧ (1κ, sk, x, π) ∈ CHEAT] ≥ 1

κc
,

where (1κ, sk, x, π) ∈ CHEAT if and only if V (1κ, sk, x, π) = 1, |x| = n(κ), and M on in-
put x does not output 1 within T (n) time steps, then for these κ’s, AssignP

∗
c is an adap-

tive (T, n, `)-local assignment generator for the layered circuit CMn,m corresponding to the

Turing machine M . Furthermore, the marginal distribution of x output by AssignP
∗

c is T-
indistinguishable from the marginal distribution of x output by P ∗ conditioned on succeeding
in the proof.

10We do not include the statement x as part of the communication.
11The low degree extension is w.r.t. H,F,m described in [KRR14, BHK17], where |H| ≈ log T ,m ≈ log log T , and

F is a field containing H of size ≈ polylog(T ).

15



5 Succinct Delegation for Computations in NTISP(T ,S)
In this section, we state and prove our main theorem, which roughly says that there exists a succinct
non-interactive delegation scheme for languages in NTISP(T (n),S(n)), where the communication
complexity is poly(S(n), κ), the verifier’s runtime is n·polylog(T (n))+poly(S(n), κ), and the prover’s
runtime is poly(T (n)). The actual theorem is stated assuming S(n) ≥ κ, so that we get a delegation
scheme with communication complexity poly(κ), verifier runtime n · polylog(T (n)) + poly(κ), and
prover runtime poly(T (n)).

Theorem 1. Fix any (possibly non-deterministic) Turing machine M . Fix functions n = n(κ) and
T = T (n) such that T(κ) , T (n) · 2W (n) ≤ 2κ, where W = W (n) denotes the width of the layered
circuit CMm,n (described in Section 4), and such that T (n) ≥ max{n, κ}. Assume the existence of a
succinct T-secure PIR scheme. Then there exists a (succinct) non-interactive argument (P, V ) for
proving that M , on an input x of length at most n, outputs 1 within T (|x|) steps, such that for any
security parameter κ the following holds:

◦ The communication complexity of (P, V ) on input 1κ is poly(κ).

◦ The runtime of V , on input 1κ and upon receiving an instance x such that |x| ≤ n from the
prover, is |x| · polylog(T (n)) + poly(κ). Moreover, as in Imported Theorem 1, if the verifier
has oracle access to the low-degree extension of x, then the verifier’s runtime can be reduced
to poly(κ).

◦ The runtime of P given (x,w), where |x| ≤ n and M(x,w) outputs 1 within T = T (|x|) steps,
is poly(T (|x|), κ).12

◦ Completeness. For every κ ∈ N and every (x,w), such that |x| ≤ n and M(x,w) = 1 within
T (|x|) steps,

Pr[(P (x,w), V )(1κ) = 1] = 1− negl(κ),

where the probability is over the randomness of V .

◦ Soundness. For any poly(T)-size cheating prover P ∗,

Pr[P ∗(1κ, pp) = (x, π) : (pp, sk)→ V (1κ) ∧ (1κ, sk, x, π) ∈ CHEAT] = negl(κ),

where (1κ, sk, x, π) ∈ CHEAT if and only if V (1κ, sk, x, π) = 1, and |x| ≤ n, and M on input
x does not output 1 within T (|x|) time steps.

Remark 1. We emphasize that even though in Theorem 1, the Turing machine M and time
bound T are fixed in advance, this theorem gives full adaptivity. This is the case, since one can set
the (fixed in advance) Turing machine to be a universal Turing machine U and set a time bound T
as in the theorem statement. The prover can now choose an input (M,x, T ) adaptively, and U on
input (M,x, T ) outputs 1 if and only if M on input x outputs 1 within T steps, and T ≤ T .

The running time of the honest prover can be further reduced to poly(T (|x|), κ) instead of
poly(T (|x|), κ), by having the verifier send (in parallel) a message corresponding to Ti = 2i for
every i ∈ [log |max{n, κ}|, κ− 2W ], and having the prover choose the specific i adaptively.

Proof. In order to prove Theorem 1, we show that it suffices to prove the following lemma, which
is identical to Theorem 1, except that we restrict |x| = n (as opposed to |x| ≤ n). We state the
lemma formally for the sake of completeness.

12Note that |x| can be arbitrarily small, and thus poly(T (|x|)) may be significantly smaller than κ.
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Lemma 1. Fix any (possibly non-deterministic) Turing machine M . Fix functions n = n(κ) and
T = T (n) such that T(κ) , T (n) · 2W (n) ≤ 2κ, where W = W (n) denotes the width of the layered
circuit CMm,n (described in Section 4), and such that T (n) ≥ max{n, κ}. Assume the existence of a
succinct T-secure PIR scheme. Then there exists a (succinct) non-interactive argument (P, V ) for
proving that M , on an input x of length n, outputs 1 within T (n) steps, such that for any security
parameter κ the following holds:

◦ The communication complexity of (P, V ) on input 1κ is poly(κ).

◦ The runtime of V , on input 1κ and upon receiving an instance x such that |x| = n from the
prover, is n · polylog(T (n)) + poly(κ). Moreover, as in Imported Theorem 1, if the verifier
has oracle access to the low-degree extension of x, then by making a single oracle call on a
random point, the verifier’s runtime can be reduced to poly(κ).

◦ The runtime of P given (x,w), where |x| = n and M(x,w) outputs 1 within T = T (n) steps,
is poly(T (n)).

◦ Completeness. For every κ ∈ N and every (x,w), such that |x| = n and M(x,w) = 1 within
T (n) steps,

Pr[(P (x,w), V )(1κ) = 1] = 1− negl(κ),

where the probability is over the randomness of V .

◦ Soundness. For any poly(T)-size cheating prover P ∗,

Pr[P ∗(1κ, pp) = (x, π) : (pp, sk)→ V (1κ) ∧ (1κ, sk, x, π) ∈ CHEAT] = negl(κ),

where (1κ, sk, x, π) ∈ CHEAT if and only if V (1κ, sk, x, π) = 1, and |x| = n, and M on input
x does not output 1 within T (n) time steps.

We first prove Lemma 1, and later prove that Lemma 1 implies Theorem 1.

Proof of Lemma 1. The succinct delegation scheme that we use is exactly the one from Imported
Theorem 1 with locality ` = `(κ) = W (n) · poly(κ). The completeness and efficiency guarantees
follow immediately from the guarantees of Imported Theorem 1, where the latter follows from the
fact that W (n) ≤ poly(κ). Thus, it suffices to prove soundness.

Assume for contradiction that for the non-interactive argument (P, V ), given by Imported The-
orem 1 with locality parameter `, there exists a (non-uniform) poly(T)-size cheating prover P ∗ and
there exists a constant c > 0, such that for infinitely many κ ∈ N,

Pr[P ∗(1κ, pp) = (x, π) : (pp, sk)← V (1κ) ∧ (1κ, sk, x, π) ∈ CHEAT] ≥ 1

κc
,

where (1κ, sk, x, π) ∈ CHEAT if and only if V (1κ, sk, x, π) = 1, and |x| = n, and M on input x does
not output 1 within T (n) time steps.

By the local soundness property of (P, V ), there exists a PPT oracle machine Assignc such
that for these κ’s, AssignP

∗
c is a (T, n, `)-adaptive local assignment generator for the corresponding

layered circuit CMn,m of depth D = O(T ) and width W . We will use this machine to derive a
contradiction.

17



Notation. In what follows, we introduce additional notation about the circuit CMn,m that is used

in the remaining proof. We assume that there are exactly W wires in any layer of CMn,m. This
assumption is without loss of generality since the number of wires is at most W , and we can ensure
exactly W wires by padding with dummy wires. We let

δi : {0, 1}W → {0, 1}|Intermediatei+1|

denote the corresponding transition function that takes as input an assignment to all wires for layer
i and outputs an assignment to all intermediate wires for layer i+ 1.

We next define the sets Accix for all layers i of CMn,m.

Defining the set Accix. For any layer i ∈ [D], we define the set Accix recursively, as follows:

◦ AccDx is the set of all possible assignments {aDj }j:(qDj ∈IntermediateD) to intermediate wires, such

that when the assignment {aDj }j:(qDj ∈InstanceD) to the wires in InstanceD are set consistently

with x, there exists an assignment to the witness wires {aDj }j:(qDj ∈WitnessD) such that for this

assignment,
δD(aD = {aD1 , aD2 , . . . aDW }) = {1}.

In other words, we require that the output of the Dth layer (and hence the output of the
circuit) is 1.

◦ For i ∈ [D − 1], Accix is defined as the set of all possible assignments {aij}j:(qij∈Intermediatei) to

intermediate wires such that when the assignment {aij}j:(qij∈Instancei) to wires in Instancei are

set consistently with x, there exists an assignment to the witness wires {aij}j:(qij∈Witnessi) such

that for this assignment,
δi(a

i = {ai1, ai2, . . . aiW }) ∈ Acci+1
x

We begin by proving the following claim.

Claim 1. There exists a Turing machine Y, that takes as input a triplet (x,a, k) where |x| = n,
runs in time D(n) · 22W (n) and decides whether a ∈ Acckx for k ∈ [D(n)].

Proof. The Turing machine Y on input (x,a, k) does the following: By backward induction, starting
from i = D(n) until i = k, it computes a table consisting of all the elements in Accix. We note
that given the table of all the elements in Acci+1

x it takes time 22W (n) to compute the table of all
elements in Accix. Thus, going one by one from i = D(n) to i = k, it takes time D(n) · 22W (n) to
compute all such tables. Once Y computes the table of all the elements in Acckx, all that remains
is to check whether a is in this table. The Turing machine Y is formally described in Figure 1.

It is easy to verify by inspection that Y outputs 1 if and only if a ∈ Acckx. Furthermore, for
every layer, the Turing machine Y checks at most 22W (n) sets of assignments, each in time at most
poly(W (n), n). Since there are at most D(n) layers, Y runs in time D(n) · 22W (n), as desired.

We next prove the following claim.

Claim 2. For every i ∈ [D(n)− 1],

Pr[aiIntermediate ∈ Accix] = 1− negl(κ), (1)

where the probability is over the randomness of sampling (x, (ai,ai+1))← AssignP
∗

c (1κ, (qi,qi+1)).

This is the key technical claim that helps prove soundness.
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Description of Turing machine Y

◦ Obtain input (x,a, k).

1. Set AccD+1
x = {1}.

2. Set i = D.

3. While i ≥ k, compute Accix as follows:

– List all possible assignments to intermediate wires {aij}j:qij∈Intermediatei for gates

in layer i, such that:
When instance wires {aij}j:(qij∈Instancei) are set consistently with x, there exists

an assignment to the witness wires {aij}j:(qij∈Witnessi) such that for this assign-

ment, {ai+1
j }j:(qi+1

j ∈Intermediatei+1) ∈ Acci+1
x , where δi(a

i = {ai1, ai2, . . . aiW }) =

{ai+1
j }j:(qi+1

j ∈Intermediatei+1).

– Set i = i− 1 and repeat Step 3.

4. Output 1 if a ∈ Acckx, else output 0.

Figure 1: Algorithm to decide if a ∈ Acckx for any a, x and any k ∈ [2, D].

Proof of Claim 2. First, we show that Equation (1) holds for i = D(n). This follows directly
by everywhere (`,T)-local consistency of AssignP

∗
c (see Definition 3), applied to i = D(n).

Suppose for contradiction that Equation (1) does not hold for some j ∈ [D(n)−1]. This implies
that there exists some index i ∈ [D(n)− 1] such that for infinitely many κ ∈ N,

Pr[ai+1
Intermediate ∈ Acci+1

x ]− Pr[aiIntermediate ∈ Accix] ≥ 1

p(κ) ·D(n)
, (2)

where the first probability is over sampling (x, (ai+1,ai+2)) ← AssignP
∗

c (1κ, (qi+1,qi+2)), and the
second is over the randomness of sampling (x, (ai,ai+1))← AssignP

∗
c (1κ, (qi,qi+1)).

First, by the T-no-signaling property of the adaptive local assignment generator (see Defini-
tion 3), the distributions (x̃, ãi+1) and (x,ai+1) are T-indistinguishable (as per Definition 1), where
the first is sampled as (

x̃, (ãi+1, ãi+2)
)
← AssignP

∗
c

(
1κ, (qi+1,qi+2)

)
and the second is sampled as(

x, (ai,ai+1)
)
← AssignP

∗
c

(
1κ, (qi,qi+1)

)
.

Therefore, ∣∣Pr[ãi+1
Intermediate ∈ Acci+1

x̃ ]− Pr[ai+1
Intermediate ∈ Acci+1

x ]
∣∣ = negl(T(κ)) (3)

where the first probability is over sampling
(
x̃, (ãi+1, ãi+2)

)
← AssignP

∗
c

(
1κ, (qi+1,qi+2)

)
and the

second is over sampling (x, (ai,ai+1))← AssignP
∗

c (1κ, (qi,qi+1)).
This is because if Equation (3) did not hold, then by Claim 1, it is possible to distinguish

between the distributions (x̃, ãi+1) and (x,ai+1) in time T (n) · 22W (n) = poly(T(κ)) by checking

19



whether the assignment is in Acci+1
x , and this would contradict the T-indistinguishability.

Combining Equation (3) with Equation (2), we have that for the index i ∈ [j,D−2] that satisfies
Equation (2):

Pr[ai+1
Intermediate ∈ Acci+1

x ]− Pr[aiIntermediate ∈ Accix] ≥ 1

2p(κ)D(n)
(4)

where both probabilities are over the randomness of sampling (x, (ai,ai+1))← AssignP
∗

c (1κ, (qi,qi+1)).

We next show that Equation (4) and everywhere (`,T)-local consistency of AssignP
∗

c according
to Definition 3 contradict each other.

Recall that for (ai,ai+1, x) ← AssignP
∗

c

(
1κ, (qi,qi+1)

)
, if Pr[ai+1

Intermediate ∈ Acci+1
x ] ≥ 1

poly(T(κ)) ,
local consistency implies that:

Pr[aiIntermediate ∈ Accix|ai+1
Intermediate ∈ Acci+1

x ] = 1− negl(T(κ))

where the probability is over (ai,ai+1, x)← AssignP
∗

c

(
1κ, (qi,qi+1)

)
. This implies that

Pr[(aiIntermediate ∈ Accix) ∧ (ai+1
Intermediate ∈ Acci+1

x )] = Pr[ai+1
Intermediate ∈ Acci+1

x ] · (1− negl(T(κ)))

= Pr[ai+1
Intermediate ∈ Acci+1

x ]− negl(T(κ))

where the probability is over (ai,ai+1, x)← AssignP
∗

c

(
1κ, (qi,qi+1)

)
. Therefore,

Pr[aiIntermediate ∈ Accix] ≥ Pr[ai+1
Intermediate ∈ Acci+1

x ]− negl(T(κ))

where the probability is over (ai,ai+1, x)← AssignP
∗

c

(
1κ, (qi,qi+1)

)
. This contradicts Equation (4)

and completes the proof of Claim 2.

In what follows we use Claim 2 to complete the proof of Lemma 1. Intuitively, we would like to
use Claim 2 with i = 1, and argue that if (a1

Intermediate ∈ Acc1
x) then it must be the case that indeed

M(x) = 1 within T (n) steps. However, note that a1
Intermediate is the empty set, since the first layer

of gates only reads the instance (we assume without loss of generality that the first layer of gates
does not read any witness wires). Thus, a2

Intermediate is the very first non-trivial layer of intermediate
wires in the circuit.

By the definition of Acc2
x and because each bit of the witness is read by at most one layer

starting at layer 2, (a2
Intermediate ∈ Acc2

x) if and only if ∃w : CMn,m(x,w) = 1.
By Claim 2 (for i = 2),

Pr[a2
Intermediate ∈ Acc2

x] = 1− negl(κ)

where the probability is over sampling (a2,a3, x)← AssignP
∗

c (1κ, (q2,q3)).
Thus,

Pr[a2
Intermediate ∈ Acc2

x] = 1− negl(κ) (5)

must also hold over the randomness of sampling (a1,a2, x) ← AssignP
∗

c (1κ, (q1,q2)). This follows
by the T no-signaling property of the adaptive local assignment generator (see Definition 3) applied
similarly as in the proof of Equation (3) above.

This implies that
Pr[∃w : CMn,m(x,w) = 1] = 1− negl(κ),
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where the probability is over sampling ((a1,a2), x)← AssignP
∗

c (1κ, (q1,q2)).
However, recall that P ∗ generates x such that M(x) does not output 1 within T (n) steps, and

the instance x generated by AssignP
∗

c is T-indistinguishable from the instance x generated by P ∗.
Therefore, the instance x generated by AssignP

∗
c is such that with probability 1−negl(κ), M(x) does

not output 1 within T (n) steps. This gives a contradiction and completes the proof of Lemma 1.

We now complete the proof of Theorem 1. Note that the main difference between Theorem 1
and Lemma 1 is that Lemma 1 restricts |x| to be an a-priori fixed value n. The prover’s runtime
for the delegation scheme in Lemma 1 grows as a function of this fixed n. On the other hand, in
Theorem 1, we allow the prover to pick any x where |x| ≤ n, such that the prover’s runtime only
grows as a function of |x|.

Given a delegation scheme satisfying Lemma 1 with inputs of fixed length n, we describe how
to generically build a delegation scheme satisfying Theorem 1.

◦ First, we sparsify the inputs of the Turing machine M as follows: assume that M takes only
inputs of length 2i for i ∈ N. This assumption is without loss of generality since we encode
each input x ∈ {0, 1}n as an input of length exactly 2dlog (n+1)e. This is done by padding each
such x with a single 1 followed by zero’s. Moreover, we think of the Turing machine M as
first removing the padding from the padded input, and only then running M .

◦ Let us denote by Πi the succinct delegation scheme for inputs of length 2i, satisfying Lemma 1.

Given a bound n = 2j on the size of x according to Theorem 1, we construct protocol Π̃ for
Theorem 1 where the verifier sends the first message for all the j protocols Π1,Π2, . . . ,Πj , in
parallel. Recall that for each i ≤ j, the protocol Πi is for a fixed input size 2i.

The prover on input instance x of length 2i for some i ≤ j, sends the requisite prover message
according to Πi, and does not provide a message for any of the other protocols.

The protocol Π̃ is described formally in Figure 2.

Description of Succinct Delegation Protocol Π̃ = (P
Π̃
, V

Π̃
).

1. Let Πi denote the succinct delegation protocol from Lemma 1 for inputs of length 2i.

2. V
Π̃

(1κ) computes (ppi, ski)← VΠi(1
κ), saves {ski}i∈[j] and outputs {ppi}i∈[j].

3. P
Π̃

(
1κ, {ppi}i∈[j], x, w

)
computes i = log(|x|) and runs PΠi(1

κ, ppi, x, w) to output
(x, π).

4. V
Π̃

(1κ, {ppi}i∈[j], {ski}i∈[j], x, π) executes VΠi(1
κ, ppi, ski, x, π) for i = log(|x|).

Figure 2: Succinct Delegation with Prover Runtime poly(T (|x|)).

Completeness and soundness of Π̃ follow directly from that of Π. The fact that j ≤ κ implies
that the communication complexity of Π̃ remains poly(κ), the runtime of P and V remain the same
(up to a multiplicative factor in the security parameter κ). This gives the required protocol for
Theorem 1 with running time of the prover only growing with |x|, thus completing the proof.
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Remark 2. We note that Theorem 1 can be optimized so that the communication complexity and
verifier running time only grow with the space required by the configurations of the Turing machine
that make a non-deterministic step (as opposed to the space required by all configurations of the
Turing machine). This is done by augmenting the deterministic layers of the circuit using [KRR14,
BHK17] and relying on [BHK17] to achieve adaptive soundness with locality only O(κ) for the
deterministic layers. We defer additional details to a future version of the paper.
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A Natural Languages Computable in Low Non-Deterministic Space

Computation in NSCk. Our results are especially relevant for the class NSCk, which is defined
to be the class of languages in NTISP(poly, logkn). Note that NSCk for k > 2 is not known to be in
P . As an example, SAT of tree-width logkn is contained in NSCk+1 [ACL+14].

We now consider more general NP-complete languages that require low non-deterministic space
(and for specific parameter settings, lie in NSCk).

NP-Complete Languages Decidable in Low Non-Deterministic Space. We observe that
variants of the subset sum, knapsack and partition problems lie in NTISP(poly(n),S(n)) for small
S(n) (eg., S(n) = O(polylog(n)). These problems are known to admit (super-polynomial time)
dynamic programming solutions that are significantly more efficient than brute-force solutions.

Subset Sum. On input a set of N numbers, each of size ` bits, and a target value V , the
problem is to find some subset S of these N numbers such that the sum of all elements in S equals
V . Formally, the NP language is defined as follows:

SUBSET.SUM`,N =

{
T = (V, x1, . . . , xN ) where ∀i ∈ [N ], |xi| = `

∣∣∣ ∃ S ⊆ 2N s.t. Σi∈S xi = V

}

We note that |V | = (` logN) bits, and |(x1, . . . xN )| = `N bits. A canonical representation of
the witness w has a single bit indicating whether or not xi is part of the solution set for i ∈ [N ],
therefore |w| = N bits. The certificate checking algorithm is as follows. Given an input T and a
witness w represented as an N bit vector, do:

◦ Initialize sum to 0.

◦ For each i ∈ [N ], if w[i] = 1, do sum = sum + xi.

◦ If sum = V , output 1 indicating that T ∈ SUBSET.SUM`,N . Else, output 0.
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The space required by the above algorithm reading each bit of the witness once is at most
(logN + `), which is just the space needed to maintain a running sum. Therefore, setting the size
of input n = `N and setting ` = polylog(N), SUBSET.SUM`,N ∈ NTISP(poly(n), polylog(n)).

We remark that another NP-Complete problem – partition – is in fact, just a special case of
the Subset Sum problem and hence also fits the analysis above.

Knapsack. On input a set of N items and an associated (weight, value) pair for each item, a
target weight W and a target value V , the goal is to determine a subset S of the N items such that
the sum of the weights of all the items in the set is at most W and the sum of the values of all the
items in the set is at least V . Formally, the NP language is defined as:

KNAP`,N =

{
T = (V,W, v1, . . . , vN ,wt1, . . . ,wtN ) where ∀i ∈ [N ], |vi| = |wti| = `

∣∣∣ ∃ S ⊆ 2N s.t. Σi∈S vi ≥ V and Σi∈S wti ≤W

}
The size of input n = |W |+ |V |+N ·(2`) bits, where |W |, |V | ≤ ` logN . A canonical representation
of the witness w has a single bit indicating whether or not the ith item is a part of the solution,
therefore |w| = N bits. The certificate checking algorithm is as follows, on input T and witness w:

◦ Initialize weight and value to 0.

◦ For each i ∈ [N ], if w[i] = 1, do value = value + vi and weight = weight + wti.

◦ If value ≥ V and weight ≤W , output 1 indicating that T ∈ KNAP`,N . Else, output 0.

The space required by this algorithm reading each bit of the witness once is at most 4` logN . There-
fore, setting the size of input n = `N and setting ` = polylog(n), KNAP`,N ∈ NTISP(poly(n), polylog(n)).

Tree-Based Computation. Tree based computations are commonly used in cryptography. We
formally define a class of languages whose verification requires computing over a tree structure,
and while on inputs of length n the witness size may be exponential in n, these languages lie in
NTISP(poly(n), poly(n)).

Definition 4 (Tree-Computable Languages). Consider an NP language L with an associated
witness-checking Turing Machine A that computes RL, namely given as input a statement x of
length n and a witness w = (w1, . . . , wN ) where N = N(n) and |wi| = n for all i ∈ N , outputs 1 if
and only if x ∈ L. Then we say that L is defined to be Tree-Computable if the Turing machine A
has the following structure:

◦ First, create a binary tree with the leaves of the tree corresponding to the witness w. That is,
∀i ∈ [N ], wi is the ith leaf of the tree.

◦ Consider all pairs of leaves wi, wi+1 for all odd i ∈ [N ]. Their parent node is computed by
applying a deterministic function that takes as input (wi, wi+1, x) and outputs a string of
length n using space O(n).

◦ Repeat recursively on each layer until there is only one node at the root. This requires saving
O(logN) nodes in memory, which is the depth of the tree. Let value denote the root node.
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◦ Finally, A outputs 0 or 1 by evaluating a deterministic function that takes as input (value, x).

Setting parameters such that n ≥ polylog(N), we can see that any tree-computable NP language

L is in NTISP(poly(n), poly(n)). Note that the witness may be as large as N = exp(n1/c) in size,
where c ≥ 0 is a constant. As a result, such proofs will be significantly shorter than the witness.

An example of a tree-computable language is the following. Consider the FHE-based construc-
tion of somewhere statistically binding hash in [HW15]. In this construction, the hash key contains
an FHE public key, and the range of this hash function consists only of valid ciphertexts under
this key. This gives rise to a hash tree function H : {0, 1}nN → {0, 1}n. Given a target output V ,
we say that (H,V ) is in the language L if and only if there exists a message m = (m1,m2, . . .mN )
such that H(m1,m2, . . .mN ) = V . It is immediate that L is a tree-computable language. Here,
it can be useful to have a prover computing a hash tree provide a (succinct) proof that the hash
computation was correctly done, and this will ensure that the output of the prover corresponds
to a valid ciphertext. We anticipate that our proof systems will also find use in other tree-based
computations.

Non-Interactive Batch Delegation of Non-Deterministic Computation. Our protocol
yields succinct non-interactive (adaptive) delegation for non-deterministic computation, which al-
lows a prover to prove, given {(xi, wi)}i∈[N ] where |xi| ≤ n for all i, that x1, . . . xN are all in L which
is a NTISP(T (n),S(n)) language. This is done with verification and communication complexity
proportional to the non-deterministic space complexity of verifying one computation. Using the
optimization from Remark 2, this will be at most the size of a single witness.

Corollary 2. Assume the existence of sub-exponentially secure succinct PIR. Then for any language
L in NTISP(T (n),S(n)) with corresponding relation RL, there exists a (succinct) non-interactive
argument (P, V ) for proving that

∧
i∈[N ] xi ∈ L where |xi| = n for i ∈ [N ], satisfying completeness

and soundness properties against adaptive PPT provers as defined in Theorem 1.
The communication complexity of the protocol and the run time of the verifier V on input 1κ

is poly(S(n), κ, logN, log(T (n))) and nN · polylog(T (n)) + poly(S(n), κ, logN, log(T (n))) respec-
tively13. The run time of the prover P given {(xi, wi)}i∈[N ] such that RL(xi, wi) = 1 for all i ∈ [N ],
is poly(N · T (n), κ).

Prior to our work, [BHK17] achieved non-adaptive security, communication complexity and
verifier run-time growing with the length of one witness, while relying on polynomially secure
succinct PIR.

13As in Imported Theorem 1, if the verifier has oracle access to the low-degree extension of {xi}i∈[N ], then the
verifier’s runtime can be reduced to poly(S(n), κ, logN).
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