
Breakdown Resilience
of Key Exchange Protocols

and the Cases of NewHope and TLS 1.3

Jacqueline Brendel, Marc Fischlin, and Felix Günther

Cryptoplexity, Technische Universität Darmstadt, Germany
{jacqueline.brendel, marc.fischlin, felix.guenther}@cryptoplexity.de

Abstract. Broken cryptographic algorithms and hardness assumptions
are a constant threat to real-world protocols. Prominent examples are
hash functions for which collisions become known, or number-theoretic
assumptions which are threatened by advances in quantum comput-
ing. Especially when it comes to key exchange protocols, the switch to
quantum-resistant primitives has begun and aims to protect today’s se-
crets against future developments, moving from common Diffie–Hellman-
based solutions to Learning-With-Errors-based approaches. Remarkably,
the authentication step in such protocols is usually still carried out with
quantum-vulnerable signature schemes. The intuition here is that the
adversary would need to break this protocol primitive today, without
having quantum power yet. The question we address here is if this intu-
ition is justified, and if so, if we can show this rigorously.
To this date there exists no security notion for key exchange protocols
that could capture the scenario of breakdowns of arbitrary cryptographic
primitives to argue security of prior sessions. In this work we introduce
an extension to the common Bellare–Rogaway model that can provide
security guarantees in what we call the breakdown scenario and we term
the resulting security notion breakdown resilience. The model allows to
make security claims even in case of unexpected failure of primitives in
the protocol, may it be hash functions, signature schemes, key derivation
functions, etc. To validate the proposed security model with respect to
real-world protocols we show that breakdown resilience for certain prim-
itives is achieved by both an authenticated variant of the recently intro-
duced post-quantum secure key exchange protocol NewHope (Alkim et
al., USENIX Security 2016), as well as by TLS 1.3, which is currently
being developed by the Internet Engineering Task Force.

1 Introduction

Modern designs of cryptographic protocols are accompanied by a security proof
which reduces the security of the protocol to the security of the employed cryp-
tographic primitives. The security guarantee of the protocol is ultimately tied to
the security of each individual primitive: with only one of the primitives being
broken, all bets are usually off. However, the actual security guarantees that
remain may vary with the protocol under consideration.

Particularly in the area of key exchange, protocols often rely on a significant
number of cryptographic primitives and hardness assumptions (e.g., collision
resistant hash functions, unforgeable signature schemes, Diffie–Hellman-type as-
sumptions, etc.). Yet, not all of them may contribute equally to the protocol’s
overall security at every point in time. While indeed one expects future sessions
to be vulnerable once the security of a component in a key exchange is broken,
the question is: what can we say about the secrecy of sessions established prior
to that breakdown? The notion of forward secrecy answers this question only
partially, as we will see, for the usage of long-term secrets. An holistic notion of
security against later breakdowns of arbitrary (keyed and unkeyed) primitives
as well as cryptographic hardness assumptions is lacking, though.

1.1 Breakdowns and Mitigations in Practical Key Exchange
Protocols

The lack of a precise understanding of primitive breakdowns is despite such dis-
ruptions being an ever present threat, through failures or significant weakening of
cryptographic algorithms and assumptions. With computational and cryptana-
lytic capabilities steadily evolving, examples of such incidences abound and range
from weak ciphers like RC4 [36,2] over poor Diffie–Hellman parameter choices [1]
to advances in breaking widely deployed hash functions like MD5 [26,55,53] or
SHA-1 [54,50,52,51] also enabling key-exchange-level attacks [11].

Moreover, the anticipated advent of quantum computers promises to render
many of the currently used cryptographic algorithms and hardness assumptions
obsolete. To remedy this situation, post-quantum secure schemes and in partic-
ular key exchange protocols are already developed (e.g., [15,3,14]) and in parts
experimentally deployed today (e.g., [17]). However, often only the most cru-
cial cryptographic algorithms are replaced by post-quantum secure alternatives.
Other components of the protocol, especially signature schemes, remain “classi-
cal” for the time being. The reasoning behind this is that exploits for these com-
ponents would need to happen during the protocol execution to enable attacks
on the key exchange, and not only once quantum computers reach maturity.

Indeed, the authors of the quantum-secure key-exchange protocol NewHope
argue that “[. . .] attacks on the [classical] signature will not compromise previous
communication” [3]. While this intuition may be correct, there are no formal
justifications for such statements at this point.

1.2 Our Contributions

There is hence a need for a formal tool to assess the precise security of key
exchange protocols in case (some) underlying primitives or hardness assump-
tions break. To this end, we introduce a novel security model that captures
Bellare–Rogaway-style key exchange security under the breakdown of crypto-
graphic primitives and assumptions. We then study the post-quantum design
NewHope by Alkim et al. [3] as well as draft-21 of the upcoming Transport

2

Layer Security protocol version 1.3 [48] developed by the Internet Engineering
Task Force (IETF) with respect to their resilience against such breakdowns.

Security model for breakdown resilience. To provide a formal ground for analyses
concerning the effects primitive breakdowns have on key exchange protocols, we
propose a formal key exchange security model in Section 3 capturing such break-
downs as an extension to the well-established model by Bellare and Rogaway [7]
(which we first recap in Section 2).

In our model, we concretely formalize the effects resulting from the break-
down of some security properties of (instances of) cryptographic primitives or
hardness assumptions by specifying the additional capabilities the adversary
gains through such a breakdown.1 For example, we model the breakdown of an
encryption scheme by granting the adversary access to secret keys, or the break-
down of collision resistance of a hash function by enabling the adversary (from
the point of breakdown onwards) to define inputs to the hash function to collide
arbitrarily. Our model can generically handle other choices for consequences of
breakdowns. The conservative choice here of considering strong break capabil-
ities, such as being able to find arbitrary collisions, makes the adversary more
powerful and thus provides stronger security guarantees of resistant protocols. It
also saves us from specifying dedicated break possibilities for different protocols,
potentially proving breakdown resistance in one case, while being susceptible to
attacks in other protocols.

The resulting novel security notion of breakdown resilience (for a specified set
of primitives and corresponding security assumptions) then demands that keys
established in sessions prior to the point of breakdown remain secure. That is,
such keys should still be indistinguishable from random for the adversary, even
when capable of breaking the given primitives.2 It turns out that “half-open”
sessions need a special treatment in this regard, in order to also appropriately
capture active attacks on past sessions within the model.

We formalize breakdowns via an additional Break oracle provided to the
adversary beyond the classical oracles given in a Bellare–Rogaway-style key ex-
change model. When invoked, the Break oracle fixes the point in time of the
breakdown and grants the adversary with a response and/or further oracle ac-
cesses, enabling it to break the set of primitives and hardness assumptions spec-
ified as a parameter of the model. As we will see, this mechanism is extremely
versatile. Along with our model, we provide possible descriptions for the be-
havior of Break for a number of cryptographic primitives and assumptions com-
monly employed in key exchange protocols, including encryption and signature

1 For any protocol in practice, it will be a specific instance (e.g., MD5 or SHA-1)
of a class of primitives (e.g., hash functions) that is weakened and whose security
property breaks down. Our model accordingly allows to distinguish breakdowns of
the primitive (instance) MD5 and the primitive (instance) SHA-1.

2 Naturally, we consider any breakdown of a cryptographic component devastating for
the employing key exchange protocol’s future security (as the component could be
omitted otherwise), thus we demand security only for previously completed sessions.

3

schemes, hash functions, key derivation functions, hardness of the discrete log-
arithm problem, and more. Most importantly, however, our Break oracle can
easily be extended to capture further primitives or different types of security-
assumption breakdowns by simply specifying the information provided to the
adversary in case of a breakdown of that primitive or assumption.

Breakdown resilience of NewHope. We then exercise our model in Section 4 on
an authenticated variant of NewHope, a post-quantum key exchange protocol
proposed by Alkim et al. [3] based on previous work by Bos et al. [15]. The
protocol gained widespread attention and experimental deployment in Google
Chrome Canary [17]. For this, we first define Auth-NewHope as a natural,
authenticated version of NewHope as envisioned by the authors of the latter
by employing authentication via (classical) signatures and MACs following the
SIGMA (SIGn-and-MAC) approach proposed by Krawczyk [39], which has been
adopted in major Internet security protocols like IPsec and TLS.

Using our novel formalism, we confirm the intuition that, in particular, a sig-
nature breakdown does not compromise the security of prior completed sessions.
For this, we provide a security proof in our model, establishing breakdown re-
silience for both signature and MAC unforgeability as well as for the extendable-
output function employed in the protocol modeled as a random oracle. As the
Auth-NewHope protocol employs a generic SIGMA-style [39] authentication
step following the basic NewHope protocol, our results can furthermore be seen
as a validation of the breakdown resilience (for signatures and MACs) achieved
by applying SIGMA-style authentication to an unauthenticated key exchange
protocol as a compiler.

Breakdown resilience of TLS 1.3. As the second example, we assess in Section 5
the breakdown resilience of the key exchange (the so-called handshake) specified
in the draft-21 of the upcoming Transport Layer Security protocol, TLS 1.3 [48].
To this end, we consider two major handshake modes, the full (elliptic-curve)
ephemeral-Diffie–Hellman ((EC)DHE) handshake as well as the resumption-style
(PSK) handshake based on pre-shared keys.

For the (EC)DHE handshake, we prove breakdown resilience for collision re-
sistance of the hash function used to compute transcript hashes (for key deriva-
tion, signatures, etc.) as well as unforgeability of both the employed signature
and MAC scheme. In our analysis, we restrict ourselves to the security of the
main application data key established in a mutually authenticated handshake,
omitting more advanced features of TLS 1.3 in order to focus our attention on
the achieved breakdown resilience properties.

For the PSK(-only) handshake, we determine that—perhaps surprisingly at
first glance—no breakdown resilience at all is provided. This is despite the PSK
mode following a similar structure as the full handshake and hence possibly
raising hope for similar resistance to a hash function breakdown (signatures are
not used in the PSK mode and MACs do not contribute to its security). However,
for reasons rooted in technical details of the key derivation schedule which we
will discuss, (strong) hash collision attacks lead to a complete break of the PSK

4

mode’s key exchange security. Along with this negative result, we discuss both
mitigations and practical concerns as well as why including ephemeral Diffie–
Hellman shares (in the combined PSK-(EC)DHE handshake mode) is favorable
for not only providing forward secrecy but also recovering breakdown resilience
(for the employed hash function and MAC scheme).

1.3 Related Work and Delineation
Our work shares or extends and definitely is inspired by conceptual ideas of
prior work on the security of both key exchange specifically and cryptographic
protocols more broadly. Yet, the notion of breakdown resilience we introduce is
novel and unmet by any (combination) of previously defined security goals, as
we discuss in the following.

Forward secrecy. While similar in spirit, breakdown resilience should not be
confused with the concept of forward secrecy [35,27,21]. Forward secrecy as a
security property of session keys derived in a key exchange protocol demands
that even if an involved party’s long-term secret is compromised, any key derived
previously remains secure. While this property is closely related to our scenario,
breakdown resilience takes a conceptually distinct approach to forward secrecy
(and also stronger security models allowing ephemeral key reveal [21,44]) in that
our focus is on the breakdown of complete primitives or hardness assumptions
rather than on the exposure of specific protocol values. Furthermore, the break-
down resilience scenario also covers breaks of unkeyed cryptographic building
blocks (e.g., breaking collision resistance of hash functions) and more generally
cryptographic hardness assumptions such as the discrete logarithm problem.

To make the distinction even more explicit, consider a KEM-based key ex-
change protocol [16] like the recently proposed scheme based on the Kyber
KEM [13]. In such schemes a static KEM instance usually serves authentication
purposes and an ephemeral KEM instance, based on the same hardness assump-
tion, is used to establish the key and to provide forward secrecy. A breakdown
of the underlying KEM assumption, however, would also reveal the secret keys
of all past sessions. This demonstrates that not all effects of future compromises
of keyed primitives can be captured through the notion of forward secrecy, let
alone breakdowns of unkeyed primitives or assumptions.

Bitcoin security in the presence of broken primitives. Giechaskiel, Cremers, and
Rasmussen [34] were the first to systematically explore how broken or weakened
hash functions and/or signatures affect the security of Bitcoin. While their study
was focused on Bitcoin, we present a general framework that can be applied
to analyze a whole class of cryptographic protocols, namely authenticated key
exchange protocols, and may very well be transferable in spirit to other kinds of
protocols as well.

Post-compromise security. With their notion of post-compromise security, Cohn-
Gordon, Cremers, and Garratt [22] establish security guarantees for communi-
cation after participants have been compromised to various degrees. Breakdown

5

resilience differs from this notion in that it considers not the compromise of
single parties but the global breakdown of cryptographic building blocks on a
protocol level. Our notion is furthermore concerned with the security of sessions
that were completed before such a breakdown occurred.

Downgrade resilience. A breakdown of a primitive or hardness assumption will-
ingly employed by both parties conducting a key exchange is conceptually dif-
ferent from a downgrade of a connection to an insecure cipher suite during the
negotiation phase. In the breakdown resilience setting we are concerned with
the security of past sessions after a breakdown has occurred, while downgrade
resilience, formally treated by Bhargavan et al. [9] and Dowling and Stebila [30],
assures that weak cipher suites will never be successfully negotiated in case
matching stronger suites are preferred by both participants.

Security analyses of NewHope and TLS 1.3. Prior work on the security of
NewHope focused on the security as an unauthenticated key exchange proto-
col [3]. We augment NewHope to include authentication and study its security
not only as an authenticated key exchange protocol but also with respect to
breakdown resilience.

TLS 1.3 has received substantial attention from the research community on
its way to standardization; we specifically point to analyses of the handshake
protocol in both computational or symbolic models as well as through formal
verification [28,29,24,33,45,41,32,8,23] and also refer to [47] for a review of the
standardization process. In this work we do not aim at providing a full key
exchange security analysis of the TLS 1.3 handshake modes specified, but focus
on the novel property of breakdown resilience in two main modes, (EC)DHE and
PSK, which has not been studied for TLS 1.3 so far.

2 The Bellare–Rogaway Model for Authenticated Key
Exchange

We begin by recapping key exchange security in the style of the model by Bellare
and Rogaway [7] which forms the basis for our model of breakdown resilience.
This model provides strong security guarantees for authenticated key exchange in
the presence of an active adversary. As formalized in the following, the adversary
interacts with protocol instances via oracle queries with the goal to distinguish
the real session key established in a ‘test’ session of its choice from a randomly
chosen one (via a Test oracle). The adversary is considered to have full control
over the network (modeled via a Send oracle delivering messages to key exchange
sessions). It is furthermore able to corrupt some of the parties’ long-term secrets
(via a Corrupt oracle) and to reveal some of the established session keys in honest
sessions (via a Reveal oracle).

In this work we focus on the case of mutually authenticated key exchange
protocols with pre-specified peer identities, but note that the model can be ex-
tended to capture unilaterally authenticated or anonymous key exchange as well

6

as post-specified peers. We furthermore distinguish between protocols providing
and not providing forward secrecy.

Notation and overview. The participants in a key exchange protocol KE are
given by elements U from the set of users U , each of whom holds a long-term
public key pkU with corresponding secret key skU . Each participant can act as
initiator or responder of a protocol execution and may run multiple instances,
so-called sessions, of the key exchange protocol in parallel. To uniquely refer to
the k-th session owned by user U ∈ U with intended communication partner
V ∈ U on an administrative level, we use the notation πkU,V . Each such session
is associated with the following set of variables:

– role ∈ {initiator, responder} is the session owner’s role in this session.
– stexec ∈ {running, accepted, rejected} denotes the current state of execution.

The default value upon creation of the session is running.
– sid ∈ {0, 1}∗ ∪ {⊥} indicates the session identifier. The default value is ⊥.
– stkey ∈ {fresh, revealed} indicates the state of the session key K. The default

value is fresh.
– K ∈ {0, 1}∗ ∪{⊥} indicates the established session key. The default value is
⊥.

– tested ∈ {true, false} indicates whether the session key K has been tested or
not. Default value for each key is false.

To be able to refer to a specific entry for a session πkU,V , we use the nota-
tion πkU,V .entry. For example, πkU,V .role specifies the session owner U ’s role in
session πkU,V . For simplicity, we sometimes simply write π and π′ to refer to
sessions in a general context where the specific indices do not matter.

Partnering of sessions. The partnering of sessions is defined via the session
identifiers. More precisely, we call the session πkU,V owned by U partnered with
the session πk′V ′,U ′ owned by V ′ (and vice versa), if the sessions share the same
session identifier, i.e., πkU,V .sid = πk

′

V ′,U ′ .sid 6= ⊥. We require that any non-
tampered execution between honest instances is partnered.

2.1 Adversary Model

We model the adversary as a probabilistic polynomial time (PPT) Turing ma-
chine denoted by A. The adversary is active and in full control over the network.
This implies in particular that—additional to the interception of messages—the
adversary can schedule when (and if) message delivery occurs. Furthermore, the
adversary may alter and inject messages. We assume the adversary learns if a
participant in the protocol has terminated and/or accepted.

Adversarial queries. In order to break key secrecy, the goal of the adversary is to
distinguish real from random session keys. Not all interactions of the adversary
with the protocol are admissible at any point. In particular, there are conditions

7

under which the adversary trivially loses the game, e.g., when both revealing and
testing session keys of partnered sessions as mentioned before. To keep track if
one of these cases has occurred, we leverage a flag lost initialized to false. The
adversary interacts with the protocol via the following oracle queries:

NewSession(U, V, role): Establishes a new session πkU,V for U (with k being
the next counter value for sessions of U with intended partner V), stores
the given role value in πkU,V .role← role, and returns the identifier πkU,V .

Send(πkU,V ,m): Causes the message m to be sent to the session πkU,V . If there
exists no session πkU,V , the query outputs ⊥. Else the response of the session
owner U upon receipt of message m is returned, and the state of execution
stexec is updated. If stexec changes to accepted with an intended communica-
tion partner V that was previously corrupted, then set stkey ← revealed.

Reveal(πkU,V): Returns the session key K of session πkU,V . If there exists no
session πkU,V or if stexec 6= accepted, then return ⊥. Otherwise, set stkey to
revealed and return K to the adversary.

Corrupt(U): Returns the long-term secret key skU of U to the adversary. No
further queries may be issued to sessions owned by U . In the case of no
forward secrecy, stkey is set to revealed in all sessions πkV,W where V = U or
W = U .

Test(πkU,V): Tests the session key of session πkU,V . The oracle uses a test bit btest
chosen uniformly at random at the outset and then fixed during the game
execution. For simplicity, we restrict the adversary to ask a single Test query
only.
If there exists no session πkU,V or if πkU,V .stexec 6= accepted, the query returns
⊥. Otherwise, πkU,V .tested is set to true. If btest = 0, a key K $←− D is sampled
at random from the session key distribution D. If btest = 1, K in contrast is
set to the actual session key πkU,V .K. Return K.

2.2 Bellare–Rogaway AKE Security Games

We adopt the approach of Brzuska et al. [20,19] to separate the overall BR
security properties into the notions of BR-Match security and BR key secrecy. The
conditions of BR-Match security guarantee that the session identifiers sid ensure
an appropriate identification of partnered sessions. BR key secrecy then ensures a
protocol establishes session keys that are indistinguishable from random strings
and (implicitly) mutually authenticated.

Definition 1 (BR-Match Security).
Let λ be the security parameter. Furthermore let KE be a key exchange pro-

tocol and A a PPT adversary interacting with KE via the queries defined in
Section 2.1 in the following game GBR-Match

KE,A (λ):

Setup. The challenger generates long-term public/private-key pairs with cer-
tificates for each participant U ∈ U .

8

Query. The adversary A receives the generated public keys and has access to
the queries NewSession, Send, Reveal, Corrupt, and Test.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GBR-Match
KE,A (λ) = 1, if at least one of the

following conditions holds:

1. There exist two distinct sessions π and π′ with π.sid = π′.sid 6= ⊥, and
π.stexec, π

′.stexec 6= rejected, but π.K 6= π′.K. (Different session keys in part-
nered sessions.)

2. There exist two sessions π := πkU,V and π′ := πk
′

V ′,U ′ such that π.sid =
π′.sid 6= ⊥ , π.role = initiator, and π′.role = responder, but U 6= U ′ or
V 6= V ′. (Different intended partner.)

3. There exist at least three sessions π, π′, and π′′ such that π, π′, π′′ are
pairwise distinct, but π.sid = π′.sid′ = π′′.sid 6= ⊥. (More than two sessions
share the same session identifier.)

We say KE is BR-Match-secure if for all PPT adversaries A the advantage func-
tion

AdvBR-Match
KE,A := Pr

[
GBR-Match

KE,A (λ) = 1
]

is negligible in the security parameter λ.

Definition 2 (BR Key Secrecy). Let λ be the security parameter. Furthermore
let KE be a key exchange protocol with key distribution D and let A be a PPT
adversary interacting with KE via the queries defined in Section 2.1 within the
following game GBR,D

KE,A(λ):

Setup. The challenger generates long-term public/private-key pairs for each
participant U ∈ U , chooses the test bit btest

$←− {0, 1} at random, and sets
lost← false.

Query. The adversary A receives the generated public keys and has access to
the queries NewSession, Send, Reveal, Corrupt, and Test.

Guess. At some point, A stops and outputs a guess bguess.
Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two
(not necessarily distinct) sessions π, π′ such that π.sid = π′.sid, π.stkey =
revealed, and π′.tested = true. (Adversary has tested and revealed the key in
a single session or in two partnered sessions.)

We say that A wins the game, denoted by GBR,D
KE,A(λ) = 1, if bguess = btest and

lost = false. Note that the winning conditions are independent of the forward
secrecy property of KE, as forward secrecy is already taken into account in the
Corrupt query.

We say that KE provides BR key secrecy with/without forward secrecy if for
all PPT adversaries A the advantage function

AdvBR,D
KE,A(λ) := Pr

[
GBR,D

KE,A(λ) = 1
]
− 1

2
is negligible in the security parameter λ.

9

Definition 3 (BR Security). We say a key exchange protocol KE is BR-secure
(with/without forward secrecy) if KE provides BR-Match security and BR key
secrecy (with/without forward secrecy), according to Definitions 1 and 2.

3 Modeling Breakdown Resilience

In the following, we describe how to integrate breakdown resilience into the
generic (Bellare–Rogaway-style) security model for authenticated key exchange.

3.1 Discussion

For breakdown resilience, we are interested in the security of completed sessions
in the case that one or multiple cryptographic primitives or hardness assumptions
underlying the key exchange protocol’s security break. Figure 1 illustrates the
kind of executions we cover in our model, as well as the cases that are excluded
due to reasons we discuss in the following. Although one may still hope for some
form of security for future sessions after a breakdown of a primitive, for general
schemes one cannot expect any security guarantees anymore (since the primitive
may be crucial). We are therefore interested in the question if the expected
security level is still achieved in past sessions and thus exclude sessions that are
still active at the time of breakdown (cf. Figure 1, Scenario 3).

It is however not only the status of the test session which is crucial for the
security guarantees, but also that of a potential (unfinished) communication
partner, which we refer to as the associated session. A breakdown of a primitive
in the middle of the communication may enable the adversary to interfere with
the correct partnering of sessions, leading to trivial attacks on the session key in
question which we need to capture in our model. Consider, for example, a test
session that has accepted and has output its last message, say, to authenticate
itself, waiting to be delivered to its intended partner session. Such final-message
authentication is indeed very common in key exchange protocols. An adversary
with breakdown capabilities can now modify this last message, e.g., by forging
a new signature, to cause the intended partner to accept with a different session
identifier. Yet, the intended partner may still derive the same key as our test
session as the relevant key material is already established. The adversary could
hence safely learn the session key through a Reveal query on the now unpartnered
session, trivially distinguishing the tested key from random. This situation is
depicted in Scenario 4 of Figure 1.

Hence, we need to exclude sessions from being tested that accepted prior to
the breakdown but have a “semi-completed” partner session that, at the time,
already holds all the relevant cryptographic material for the final key derivation
(Scenario 4). We use the notion of contributive identifiers (cid) to identify such
almost-partnered sessions. Identical contributive identifiers indicate that sessions
may eventually derive the same key, despite not being partnered yet.

An alternative to using contributive identifiers would be to demand that only
sessions that fully completed before breakdown with an honest partner would

10

breakdown

1

π∗ π∗a
cid

3T

2

π∗ π
∗
a

3T

3

π∗ (π∗a)
cid

7T

4

π∗ π∗a
cid

7T

Fig. 1: Illustration of (non-)permissible Test queries wrt. a breakdown. The dot-
ted line indicates the point in time of a breakdown with respect to the four
scenarios of running or completed sessions; T denotes a test query on session
π∗; π∗a denotes an associated session (semi-)partnered with π∗ holding the same
contributive identifier (cid); a checkmark 3 (resp. a cross 7) indicates if the test
is admissible (or not).

be considered valid test sessions (as in Scenario 1). This, however, would limit
the adversary to purely passive attacks in the pre-breakdown phase. In contrast,
our approach with contributive identifiers is less restrictive, as we still allow the
adversary to test completed sessions without an honest partner (Scenario 2),
e.g., where the adversary communicated with a party.

To capture resilience against breakdowns, we augment our model with a Break
query that allows the adversary to break the security of cryptographic primitives
or hardness assumptions contained in a dedicated, specified set FBDR. More pre-
cisely, this set has the form FBDR = {(f1, sec-prop1), (f2, sec-prop2), . . . }, i.e.,
FBDR contains tuples (f, sec-prop), determining all primitives/hardness assump-
tions f for which some security property sec-prop may break. As a result of
the Break query, the adversary may—depending on the broken security prop-
erty of the primitive or assumption—be given certain key material or access
to additional oracles in the model. To capture that we expect only sessions to
remain secure that completed before the breakdown occurred, we introduce a
flag breakdown which is set when Break is called and checked within the (accord-
ingly modified) Send query.

These changes enable us to formalize a model for breakdown resilience in a
generic way. As we will see, our notion of a Break query is versatile and can
capture a wide variety of breakdowns. Primitives and assumptions for which we
provide a concrete specification of a breakdown include, e.g., the unforgeability
of signatures, CCA security of encryption schemes, collision resistance of hash
functions, or the discrete logarithm problem. Formal definitions for a number of
these security properties can be found in Appendix A. As it turns out, breakdown
resilience (with/without forward secrecy) provides strictly stronger security than
the notion of BR security given in the previous section.

Applicability to hybrid key exchange protocols. We note that the proposed model
for breakdown resilience can be easily adjusted to cover the security analysis of

11

so-called hybrid key exchange protocols. Hybrid key exchange protocols follow
the idea of [37] and combine classically secure DH-based key exchange with
post-quantum secure key exchange protocols. This approach allows the gradual
introduction of post-quantum secure designs while still retaining the security of
today’s classical key exchanges. The security of hybrid key exchange protocols
should thus be retained both for past and ongoing/future sessions, if only a single
one of the two employed hardness assumption breaks. The breakdown resilience
framework proposed in this paper can effortlessly handle the analysis of these
protocols by not employing the modified version of the Send query and slightly
adjusting the definition of BDR Key Secrecy.

3.2 Extensions to the Security Model

In the following, we specify the formal extensions made to the basic Bellare–
Rogaway-style security model from Section 2 to capture breakdown resilience.

Breakdown flag. We introduce a global flag breakdown (initialized to false) in the
security game, indicating whether the adversary has issued a Break query.

Contributive identifiers. We augment the model with the concept of contribu-
tive (session) identifiers.3 Intuitively, contributive identifiers relate two sessions
which exchanged the messages establishing the key material (e.g., values gx and
gy in a Diffie–Hellman-style protocol), but are not yet partnered (e.g., because
the authenticating signatures have not been sent yet). In the breakdown setting,
contributive identifiers enable us to specify that we do not expect security of
sessions that, at time of breakdown, had a “semi-partnered” session that shares
the same key material. The reason is that the adversary could eventually make
this “semi-partnered” party accept after the breakdown for the same session key
but a different session identifier, e.g., by forging the final protocol signature after
the breakdown; in this case achieving key indistinguishability would be impos-
sible. We thus demand that the tested session accepted prior to the breakdown
and does not share a contributive identifier with another session that was still
running at the time of breakdown.

Formally, we add the following variables to the set associated with each
session πkU,V :

– cid ∈ {0, 1}∗ ∪ {⊥} indicates the contributive identifier. The default value
is ⊥.

– stbd
exec ∈ {running, accepted, rejected,⊥} denotes the state of execution at the

time of breakdown (i.e., when the Break query was issued the first time).
The default value prior to breakdown is ⊥.

3 We here use the formalization by Dowling et al. [28] from their analysis of TLS 1.3
candidate handshakes in the multi-stage key exchange setting. Contributive identi-
fiers are furthermore related to the concept of “origin-sessions” for partnering based
on matching conversation introduced by Cremers and Feltz [25] and the notion of
(peer-)exchange variables used by Bhargavan et al. [10].

12

To avoid trivial choices and to relate the contributive identifiers to session
identifiers we add two requirements for Match security: First, as in [28], same ses-
sion identifiers must imply same contributive identifiers, capturing the intuition
that partnered session should in particular be contributively partnered. Second,
since we restrict the Test query based on common contributive identifiers, we
demand that at most two sessions share the same contributive identifier to pre-
vent that Test queries are excluded by trivial choices of colliding contributive
identifiers.

Break query. We add a Break query that complements the adversarial queries
described in Section 2.1 and allows the adversary to schedule the timing of
breakdowns. The query will set breakdown to true, record the current execution
state of sessions, and provide the adversary with the capability to break the
security of any (f, sec-prop) ∈ FBDR, where FBDR is a fixed parameter of the
security game.

Which capability the adversary is given when breaking the security sec-prop
of a primitive or assumption f depends on the latter’s type and may, e.g., be
exposing all key material used within f to the adversary or granting it access
to additional oracles. We discuss options for the common primitives below in
Section 3.3 and specify the corresponding behavior of Break in Table 1. As we
will see, additional primitives and assumptions can easily be added to capture
further key exchange designs as the Break query itself is generic.

Break(): Causes for all (f, sec-prop) ∈ FBDR the breakdown of the security
property sec-prop of the cryptographic primitive or hardness assumption f .
If breakdown = false, for all sessions π record the current state of execution
as π.stbd

exec ← π.stexec. Set breakdown← true. Depending on the entries in the
set FBDR, provide the adversary with the responses and/or oracle accesses
specified in Table 1. The Break oracle may be queried repeatedly, which
enables the adversary to obtain an updated response in order to, e.g., receive
further key material used in an encryption scheme since the last call of Break.

Modified Send query. Once the breakdown flag is set to true, ongoing sessions and
sessions that are initiated after the breakdown must be considered revealed as
we expect their keys to be affected by the breakdown. To enforce this, we replace
the Send query from Section 2.1 by the following slightly modified version that
sets the session key state to revealed if breakdown = true; the change is underlined
in the following description.

SendBDR(πkU,V ,m): Causes the message m to be sent to the session πkU,V . If
there exists no session πkU,V , the query outputs ⊥. Else the response of the
session owner U upon receipt of message m is returned, and the state of ex-
ecution stexec is updated. If stexec changes to accepted with an intended com-
munication partner V that was previously corrupted or if breakdown = true,
then set stkey ← revealed.

13

Primitive/Hardness
Assumption (f)

Algorithms Security Assumption
(sec-prop)

Break Response

Encryption E E = (EKG,Enc,Dec) IND-CCA2
(indistinguishability under
adaptive chosen ciphertext
attack)

return all previous outputs (pk, sk) or
sk for which (pk, sk) ← EKG or sk ←
EKG

Signatures S S = (SKG, Sig,SVf) EUF-CMA
(existential unforgeability
under chosen message
attack)

return all previous pairs (pk, sk)
for which (pk, sk)← SKG

MACM M = (MKG,MAC,MVf) EUF-CMA
(existential unforgeability
under chosen message
attack)

return all previous values sk for which
sk← MKG

Hash Function H H = (HKG,Hash) STD-Coll-Res
(standard-model collision re-
sistance)

programmable access to Hash:
After breakdown, A sets output of
Hash queries on previously unseen
values

H = (HKG,RO) RO-Coll-Res
(random-oracle collision re-
sistance)

programmable access to RO:
After breakdown, A sets output of RO
queries on previously unseen values

H = (HKG,RO) RO-Rand
(random-oracle randomness)

return all previous s for which
s← RO(·)

H = (HKG,RO) RO-One-Way
(random-oracle one-
wayness)

return all previous pairs (x, s) for
which s← RO(x)

Key Derivation KDF KDF KDF-sec
(output pseudorandomness)

return all previous values k for which
k ← KDF

KDF = RO RO-Rand
(random-oracle randomness)

return all previous k for which
k ← RO(·)

KDF = RO RO-One-Way
(random-oracle one-
wayness)

return all previous pairs (k, x) for
which k ← RO(x)

PRF P P = (PKG,PRF) PRF-sec
(output pseudorandomness)

return all previous values k for which
k ← PKG

P = (PKG,RO) RO-Rand
(random-oracle randomness)

return all previous s for which s ←
RO(·)

P = (PKG,RO) RO-One-Way
(random-oracle one-
wayness)

return all previous pairs (x, s) s.t.
s← RO(x)

Discrete Log GroupExp(x) = g(x) in
multiplicative cyclic
group G = 〈g〉

Discrete Logarithm
Problem

return all previous pairs (x, gx) for
which gx ← GroupExp(x)

Factoring GenModulus(1n) = (N,
p, q) s.t. N = p · q where
p, q are n-bit primes

Prime Factorization return all previous tuples (N, p, q) for
which (N, p, q)← GenModulus(·)

Table 1: Break oracle specification.

3.3 Breakdown of Primitives and Assumptions

We next specify the behavior of the Break query and capabilities the adversary
is provided with for a number of common cryptographic primitives and hard-
ness assumptions. In Table 1 we cover a wide range of standard primitives and
assumptions underlying the security of most key exchange protocols (and in par-
ticular the NewHope [3] and TLS 1.3 [48] protocols we will analyze in Sections 4
and 5).

For keyed primitives (both public-key and secret-key ones), the basic idea
for the Break oracle is to hand to the adversary all secret keys which have been
created in protocol executions so far. Since the adversary in our model can
call the Break oracle multiple times it may also access subsequently generated
keys. In order for Break to provide the necessary information, we make the key

14

generation algorithm of a primitive explicit and have all honest parties invoke it
when generating key material for this primitive. For example, any keys used for
an encryption scheme E = (EKG,Enc,Dec) in honest sessions will be generated
via the key generation algorithm EKG, with the challenger in the security game
storing the output. This approach enables the challenger to return an exhaustive
list of all secret keys of a primitive up to the point of breakdown when a Break
query is asked.

In key exchange protocols it is common that keys for keyed primitives are not
derived via an explicit key generation algorithm but, e.g., sampled at random
or generated through a key derivation function. We implicitly treat such key
derivations as a trivial (identity function) key generation algorithm in our model,
hence recording also such keys for exposure through a Break query.

For unkeyed primitives with a secret input, such as key derivation functions,
we model a break of the output behavior by returning all outputs of evaluations
so far. This means for example that the function is no longer unpredictable or
pseudorandom. To capture this formally, we again assume that the challenger
keeps a list of all function outputs generated by honest sessions, in order to
provide the according list to the adversary in case of a Break query.

For public primitives like a hash function H and security properties like
collision resistance we have to capture the increased capabilities of the adversary
A after the breakdown differently. Here, regardless of whether H is modeled as
a random oracle RO or considered in the standard model, the adversary A must
be able to generate collisions after the break. To this end, we allow A to program
H globally on previously unseen input values after the breakdown occurred. In
particular, after the break A answers all queries by honest sessions to the hash
function H itself (but consistently with previous replies). If, on the other hand,
we aim at modeling breakdown of the one-wayness of a random oracle, we instead
hand the adversary all input-output pairs which honest parties have evaluated.

Finally, we can also treat the breakdown of interesting cryptographic as-
sumptions for key exchange via the Break oracle. We illustrate this here by the
discrete logarithm problem (DLP) and the factoring problem, which we treat
similarly to public-key primitives. For the example of DLP, we mandate that
honest sessions invoke a given algorithm GroupExp for group exponentiations,
which then allows the challenger in the security game to provide the adversary
with all secret exponents employed in honest sessions on a Break query. Note
that for related cryptographic assumptions, the breakdown of one assumption
can imply the breakdown of the other. For example, we can restrict our attention
to DLP for Diffie–Hellman-style protocols, as (resilience against) a breakdown of
DLP in particular implies (resilience against) the breakdown of other commonly
used assumption like DDH and CDH.

We stress that Table 1 only gives recommendations on how the Break oracle
can be implemented for the most common primitives and hardness assumptions
in the area of key exchange. Depending on the security properties required from
the primitives in a specific key-exchange setting, one may wish to specify different

15

responses for the Break query. Again, this is easily possible in our model as the
Break query itself is generic.

3.4 Breakdown-Resilient AKE Security Games

We are now ready to define the security notion of breakdown resilience (BDR)
for an authenticated key exchange protocol. Extending the Bellare–Rogaway-like
model from Section 2, we similarly divide the security properties into BDR-Match
security and BDR key secrecy. Both security notions differ from the original
Bellare–Rogaway-like notions by the model including the set of primitive break-
downs FBDR under consideration and the novel Break query as well as replacing
the original Send oracle by the modified SendBDR version. The BDR-Match defini-
tion furthermore reflects that contributive identifiers must coincide in matching
sessions but be distinct otherwise, while BDR key secrecy leverages the intro-
duced contributive identifiers to exclude test sessions with semi-completed part-
ners at the time of breakdown.

Definition 4 (BDR-Match Security). Let λ be the security parameter. Fur-
thermore let KE be a key exchange protocol and A a PPT adversary interacting
with KE via the queries NewSession, SendBDR, Reveal, Corrupt, and Break in the
following game:

Setup. The challenger generates long-term public/private-key pairs with cer-
tificates for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to
the queries NewSession, SendBDR, Reveal, Corrupt, Test, and Break.

Stop. At some point, the adversary stops with no output.

Let FBDR be a set of cryptographic primitives and hardness assumptions the
adversary can break in the model. We say that A wins the above game, denoted
by GBDR-Match(FBDR)

KE,A (λ) = 1, if at least one of the following conditions holds:

1. There exist two distinct sessions π and π′ with π.sid = π′.sid 6= ⊥, and
π.stexec, π

′.stexec 6= rejected, but π.K 6= π′.K. (Different session keys in part-
nered sessions.)

2. There exist two distinct sessions π and π′ such that π.sid = π′.sid 6= ⊥,
but π.cid 6= π′.cid or π.cid = π′.cid = ⊥. (Different or unset contributive
identifiers in partnered sessions.)

3. There exist two sessions π := πkU,V and π′ := πk
′

V ′,U ′ such that π.sid =
π′.sid 6= ⊥ , π.role = initiator, and π′.role = responder, but U 6= U ′ or
V 6= V ′. (Different intended partner.)

4. There exist at least three sessions π, π′, and π′′ such that π, π′, π′′ are
pairwise distinct, but π.sid = π′.sid′ = π′′.sid 6= ⊥ or π.cid = π′.cid′ =
π′′.cid 6= ⊥. (More than two sessions share the same session or contributive
identifier.)

16

We say KE is BDR-Match-secure for FBDR if for all PPT adversaries A the
advantage function

AdvBDR-Match(FBDR)
KE,A := Pr

[
G

BDR-Match(FBDR)
KE,A (λ) = 1

]
is negligible in the security parameter λ.

Definition 5 (BDR Key Secrecy). Let λ be the security parameter. Further-
more let KE be a key exchange protocol with key distribution D and let A be a
PPT adversary interacting with KE via the queries NewSession, SendBDR, Reveal,
Corrupt, Break, and Test within the following game:

Setup. The challenger generates long-term public/private-key pairs for each
participant U ∈ U , chooses the test bit btest

$←− {0, 1} at random and sets
lost← false.

Query. The adversary A receives the generated public keys and has access to
the queries NewSession, SendBDR, Reveal, Corrupt, Test, and Break.

Guess. At some point, A stops and outputs a guess bguess.
Finalize. The challenger sets the lost flag to lost← true if at least one of the

following conditions hold:
1. There exist two (not necessarily distinct) sessions π, π′ such that π.sid =

π′.sid, π.stkey = revealed, and π′.tested = true. (Adversary has tested
and revealed the key in a single session or in two partnered sessions.)

2. There exist two distinct sessions π, π′ such that π.tested = true, π.cid =
π′.cid, and π′.stbd

exec = running. (Adversary has tested a session whose
contributive partner session was running at the time of breakdown.)

Let FBDR be a set of cryptographic primitives and hardness assumptions the
adversary can break in the model. The adversary A wins the game, denoted by
G

BDR(FBDR),D
KE,A (λ) = 1, if bguess = btest and lost = false.
We say that KE provides BDR key secrecy for FBDR with/without forward

secrecy if for all PPT adversaries A the advantage function

AdvBDR(FBDR),D
KE,A (λ) := Pr

[
G

BDR(FBDR),D
KE,A (λ) = 1

]
− 1

2

is negligible in the security parameter λ.

Definition 6 (Breakdown Resilience). We say a key exchange protocol KE
is breakdown resilient for FBDR (with/without forward secrecy) if KE provides
BDR-Match security and BDR key secrecy for FBDR (with/without forward se-
crecy), according to Definitions 4 and 5.

3.5 Fundamental Properties

Since the model for breakdown resilience is a proper extension of the Bellare–
Rogaway model for authenticated key exchange given in Section 2, breakdown
resilience implies BR security.

17

Proposition 1. If a key exchange protocol KE achieves breakdown resilience
for any FBDR (incl. FBDR = ∅) with/without forward secrecy according to Def-
inition 6, then KE is also BR-secure with/without forward secrecy according to
Definition 3.

Proof. If the Break query is not asked by the adversary, the flag breakdown
and the modification to the original Send query are essentially not touched and
may thus be omitted. Likewise, the Finalize condition 2 in Definition 5 becomes
void as stbd

exec = ⊥ for all sessions. But then the models and in particular the
Match security definition (modulo contributive identifiers) and the key secrecy
definition for breakdown resilience and original BR security coincide.

As mentioned earlier, it is often convenient to consider breakdown resilience
for a stronger cryptographic hardness assumption than the one employed in a
(non–breakdown-resilient) security proof, with DLP vs. DDH and CDH being a
specific example. We hence make this relation more precise via the following
proposition, which may prove useful when considering the breakdown of a cryp-
tographic hardness assumption X whose breakdown implies the ability to break
some other assumption Y . In our setting this means that one can provide the
reply of the Break oracle for Y by the answer for X. We say that solving X
implies solving Y .

Proposition 2. Let Π be some protocol and let X and Y be some cryptographic
hardness assumptions with X ∈ FBDR, but Y 6∈ FBDR. Assume that solving X
implies solving Y . Then, if Π is breakdown resilient for FBDR, then Π is also
breakdown resilient for F ′BDR = FBDR ∪ {Y }.

Proof. We can straightforwardly simulate the Break query for F ′BDR via a Break
query for FBDR, since the Break response for X allows to provide the Break
response for Y .

Remark 1. Perhaps surprisingly at first glance, breakdown resilience (for the
according set of long-term secret primitives) does not imply forward secrecy.
While both settings permit the exposure of long-term secrets after the tested
session has accepted, breakdown resilience comes with slightly more restrictive
(but necessary) conditions on when such exposure is permissible.

More precisely, Condition 2 in the BDR key secrecy definition (Definition 5)
forbids a Test query to a session that had a contributive partner at the time of
breakdown. In contrast, forward secrecy places no restrictions on when to corrupt
a test session’s owner beyond that the test session must have accepted before
(a restriction that applies analogously to Break queries). This can result in a
situation where a forward-secret Corrupt query enables an attacker to make two
sessions derive the same key without being partnered, e.g., by re-randomizing a
signature in a signed-Diffie–Hellman protocol where the signature enters the ses-
sion identifier but not the key derivation. At the same time, the session deriving
the same key as the test session may be contributively partnered to that session
and hence, in the breakdown setting, the adversary’s strategy—using a Break

18

query instead of the Corrupt to learn the long-term secrets—is not permissible.
The example protocol hence would enjoy breakdown resilience for the employed
signature scheme, but no forward secrecy.

4 NewHope

As a first application of our new security model, we analyze the breakdown re-
silience of an authenticated version of the (originally unauthenticated) NewHope
protocol [3]. NewHope is a post-quantum secure key exchange protocol which
was introduced in 2016 by Alkim et al. and has gained widespread attention, not
least because of its experimental deployment in Google Chrome Canary [17]. The
protocol’s post-quantum security is based on the ring learning with errors prob-
lem (RLWE), which states that as+ e for secret s, public a, and small error e is
indistinguishable from random. NewHope improves the previous work by Bos
et al. [15] with respect to efficiency and parameter size.

The efficiency improvement was to a great extent achieved by using errors e
sampled from the centred binomial ψ16 instead of the usual discrete Gaussian
χ. This results in a much more efficient sampling procedure with, as argued
by the authors of [3], only a small loss in the security of the overall protocol.
Furthermore, Alkim et al. made the scheme less susceptible to backdoors and all-
for-the-price-of-one attacks by generating the usually fixed parameter a freshly
in each protocol execution by applying SHAKE128 to a uniformly random seed
seed at the outset of the protocol execution. SHAKE128 is a so-called extendable-
output function (XOF) which allows for an input bit string to be extended to
any desired output length. It was introduced alongside a higher-security variant
SHAKE256 in the FIPS 202 SHA-3 standard [46].

4.1 The Auth-NewHope Protocol

The NewHope protocol has Alice and Bob exchange their RLWE public keys
(b and b′, respectively) and combines them in a Diffie–Hellman-like manner.
However, due to the nature of the ring elements, Alice and Bob only agree
on approximately the same value: Alice holds the value v′ = ass′ + e′s, while
Bob holds the value v = ass′ + es′ + e′′. In order for them to agree on the
common value w that will be the input to the final key derivation, they have
to execute a so-called error-reconciliation mechanism. This is achieved by Bob
providing additional reconciliation information from his value v via the function
HelpRec(v) and sending the resulting value r to Alice. Both can then apply the
reconciliation function Rec(·, ·) to their noisy shared value with the reconciliation
vector r to arrive at the exact shared value w with high probability. From this
common shared value they then derive the session key via the function KDF(w);
in NewHope the SHA3-256 function is used as KDF.

In its originally proposed form, NewHope provides unauthenticated key
agreement. For our analysis, we consider an authenticated version of NewHope,
in the following referred to as Auth-NewHope. The authenticated version of

19

the protocol is depicted in Figure 2, where the original protocol (above the
double line) is followed by a SIGMA-style authentication step as introduced by
Krawczyk [39]. For details on the unauthenticated protocol, especially concern-
ing the formal definition of the functions HelpRec(·) and Rec(·, ·), we refer the
interested reader to the original protocol description in [3].

For illustrative purposes, the protocol description of Auth-NewHope here
has been divided according to the two phases of the unauthenticated NewHope
protocol and the ensuing SIGMA-style authentication. One can, of course, con-
dense the entire protocol in a three-move key exchange by having Alice send
rA in the first step and Bob attach B, rB , σB , τb to its last message in the
NewHope step. This does not affect our security proof of breakdown resilience.

4.2 Cryptographic Assumptions
Auth-NewHope relies on the following cryptographic primitives and hardness
assumptions: random-oracle randomness of the extendable-output function XOF,
pseudorandomness of the key derivation function KDF, hardness of the decisional
Ring-LWE problem, and existential unforgeability of the signature scheme S and
MAC scheme M. The definition for the standard cryptographic assumptions,
such as the unforgeability of signatures and KDF security can be found in Ap-
pendix A. Before we can define the decisional Ring-LWE problem formally, we
first need to fix some commonly used notation.

Notation. Let R = Z[X]/Xn + 1 for n = 2m,m ≥ 0 be the ring of integers
of the 2n-th cyclotomic number field. For q an integer, define Rq to be the
ring R/qR ∼= Zq[X]/(Xn + 1). By x $←− χ we denote the sampling of x from a
probability distribution χ. Let U(S) denote the uniform distribution over some
set S.

With this, we can state the decisional version of the Ring-LWE problem:
Definition 7 (DRLWE Problem). Let n, q,R,Rq be defined as above. Let χ be
some probability distribution over Rq. The decisional Ring-LWE problem DRLWE
states that given (a, b) Rq × Rq, it is hard to decide if b = as + e for s, e $←− χ
small ring elements or if b is a uniform ring element b $←− U(Rq). More precisely,
the distinguishing advantage for b = as+ e and b′ $←− Rq is given by

AdvDRLWE
q,n,χ,A := |Pr[A(a, b) = 1]− Pr[A(a, b′) = 1]| .

The key exchange part of Figure 2 is a modified version of the so-called
Decision Diffie–Hellman-like problem (DDH`):
Definition 8 (DDH` Problem). Let q, n, χ be Ring-LWE parameters. Given
reconciliation information r, the decision Diffie–Hellman-like problem (DDH`)
for parameters q, n, χ asks to distinguish (a, b, b′, r, w) from (a, b, b′, r, w′), where
a ← U(Rq), s, s′, e, e′′ $←− χ, b ← as + e, b′ ← as′ + e′, v ← bs′ + e′′, r $←−
HelpRec(v), w ← Rec(v, r), and w′ $←− U({0, 1}n). For an algorithm A define the
distinguishing advantage to be

AdvDDH`
q,n,χ,A := |Pr[A(a, b, b′, r, w) = 1]− Pr[A(a, b, b′r, w′) = 1]| .

20

Alice Bob

seed $←− {0, 1}256

a← XOF(seed)
s, e $←− ψn16 s′, e′, e′′ $←− ψn16
b← as+ e b, seed

a← XOF(seed)
b′ ← as′ + e′

v ← bs′ + e′′

r $←− HelpRec(v)b′, r

v′ ← b′s
w ← Rec(v′, r) w ← Rec(v, r)

Kapp ← KDF(w, "KE")

Kmac ← KDF(w, "MAC")
t← (b, seed, b′, r)

rA
$←− {0, 1}λ rA

rB
$←− {0, 1}λ

σB ← Sig(skB , "0"||t||rA||rB)
τB ← MAC(Kmac, "0"||B)

B, rB , σB , τB

abort if SVf(pkB , "0"||t||rA||rB , σB) = 0
or if MVf(Kmac, "0"||B, τB) = 0

cid = (b, seed, b′, r, rA, rB , B)

σA ← Sig(skA, "1"||t||rA||rB)
τA ← MAC(Kmac, "1"||A) A, σA, τA

abort if SVf(pkA, "1"||t||rA||rB , σA) = 0
or if MVf(Kmac, "1"||A, τA) = 0

K = Kapp, sid = (b, seed, b′, r, rA, rB , A,B)

Fig. 2: The Auth-NewHope protocol, with the original, unauthenticated
NewHope protocol [3] above the double line.

21

It turns out that if the decision Ring-LWE problem is hard, so is the decision
Diffie–Hellman-like problem:

Theorem 1 (Hardness of DDH` Problem). Let q be an odd integer, n some
parameter and χ be a distribution on Rq. It holds: if the decision Ring-LWE
problem for q, n, χ is hard, then the DDH-like problem for q, n, χ is hard, i.e.,
there exist efficient adversaries B1,B2 such that

AdvDDH`
q,n,χ,A ≤ AdvDRLWE

q,n,χ,B1
+ AdvDRLWE

q,n,χ,B2
.

The proof of the theorem can for example be found in [15].

4.3 Breakdown Resilience of Auth-NewHope

In the following, we show that Auth-NewHope is breakdown resilient for
FBDR = {(XOF,RO-Rand), (S,EUF-CMA), (M,EUF-CMA)} with forward secrecy
by establishing the corresponding BDR-Match security and BDR key secrecy.
Note that FBDR neither contains the hardness assumptions DRLWE (and DDH`)
nor the key derivation function KDF. This is due to the fact that a break of
any of these makes key secrecy impossible to achieve. Without the hardness of
DRLWE (and hence DDH`) we cannot replace the input to the key derivation
function by a uniform random value in order to later argue indistinguishability.
Furthermore, the break of KDF causes the adversary to see all previous outputs
of the key derivation function, thus trivially enabling it to distinguish real from
random keys.

Theorem 2 (BDR-Match security of Auth-NewHope).
Let FBDR = {(XOF,RO-Rand), (S,EUF-CMA), (M,EUF-CMA)}. Then Auth-
NewHope is BDR-Match-secure for FBDR. For any efficient adversary A we
have

AdvBDR-Match(FBDR)
A-NH,A ≤ n2

s ·min
{
c, 2−256, 2|nonce|, 2−|r|

}
,

where ns is the maximum number of sessions, c is the negligible probability that
the same small element is sampled from ψn16 twice, |nonce| = 256 is the bit-length
of the nonces rA and rB, and |r| denotes the bit length of the reconciliation
vector r.

Proof. In order to achieve BDR-Match Security, we need to show that the four
conditions are satisfied (cf. Definition 4). Recall that the session identifiers are
defined as sid = (b, seed, b′, r, rA, rB , A,B), containing public information only,
and that the contributive identifiers are set as cid = (b, seed, b′, r, rA, rB , B).
Ad (1). Since the session identifier already determines all inputs to the key
derivation function KDF, partnered sessions necessarily also agree on the session
key.
Ad (2). Since cid contains all entries in sid except for A’s identity, it trivially
holds that same session identifiers imply identical contributive identifiers.

22

Ad (3). Both identifiers A and B are comprised in the session identifier. Thus,
agreement on the session identifier implies agreement on the intended partner’s
identity.
Ad (4). In order for three sessions sharing the same session or contributive iden-
tifier, with respect to two honest sessions a third honest session must pick, as
responder, its random values s′, e′, e′′, r, and rB such that they collide or, as
initiator, pick colliding random values seed, s, e, and rA. This will only hap-
pen with probability at most min{c, 2−256, 2−|r|, 2−|nonce|}. There are at most n2

s

many combinations of the initial two sessions, where ns denotes the maximum
number of protocol executions, arriving at the final bound.

Theorem 3 (BDR key secrecy of Auth-NewHope).
Let FBDR = {(XOF,RO-Rand), (S,EUF-CMA), (M,EUF-CMA)}. Then Auth-
NewHope achieves breakdown-resilient key secrecy for FBDR with forward se-
crecy. More precisely, for any efficient, adversary A there exist efficient adver-
saries B1, . . . , B4 such that:

AdvBDR(FBDR),D
A-NH,A ≤ n2

s · 2−|nonce| + ns ·
(
nu · AdvEUF-CMA

S,B1

+ ns ·
(
AdvDDH`

B2
+ AdvKDF-sec

KDF,B3
+ AdvEUF-CMA

M,B4

))
,

where ns is the maximum number of sessions, nu is the maximum number of
users, and |nonce| is the bit-length of the nonces rA and rB.

Proof. For the proof, we proceed in a sequence of games, bounding the difference
in the adversary’s advantage introduced in each step, until we reach a game where
the adversary cannot win anymore.

Game 0. The original BDR key secrecy game GBDR(FBDR),D
A-NH,A .

Game 1. We abort the game if there are two sessions of honest parties which
generate the same nonce rA resp. rB . The probability of this happening is at
most ns · 2−|nonce|, where ns denotes the maximum number of sessions, since
nonces in any n2

s possible pair of sessions are both chosen at random.
We thus have

AdvG0
A-NH,A ≤ AdvG1

A-NH,A + n2
s · 2−|nonce|.

Game 2. We proceed by guessing the tested session, thus reducing our reduc-
tion’s advantage by a factor of at most 1

ns
:

AdvG1
A-NH,A ≤ ns · AdvG2

A-NH,A.

In the following, this allows us to know the tested session, denoted by π∗, in
advance. Observe that π∗ must have accepted (and received all incoming mes-
sages) prior to the first Break query issued by A in order for the latter to win,
as otherwise its session key would be considered revealed.

23

Game 3. Next, we abort the game if the tested session π∗, run by some party P
(where P may be Alice or Bob), obtains a valid signature σQ on ("b"||t||rA||rB)
which has not been signed by an honest party Q at this point. Recall that this
message must have been received prior to any Break query, in particular before
a breakdown of S, as otherwise π∗ would be considered revealed and could not
be tested. Furthermore, long-term secrets of the involved parties may not be
corrupted before the test session has accepted. Forward secrecy is achieved since
a subsequent Corrupt query on the owner of the test session π∗ (or its intended
partner) does not contradict the fact that π∗ receives an honestly generated
signature according to this game hop.
We now show that the probability of an abort happening for this reason can
be bounded by the success probability of the following reduction B1 against the
unforgeability of the signature scheme S. The reduction B1 receives a public
key pk∗ as challenge and guesses the party Q under whose name the forgery ob-
tained in π∗ is issued. It creates all parameters for the key exchange as specified,
except for setting pkQ = pk∗. Any signature creation of Q is performed through
a query to the signature oracle, all other steps can be carried out by B1 itself. If
at some point the tested session π∗ accepts a signature for a previously unsigned
message, then B1 outputs this message-signature pair as a forgery. In this case,
since the nonces are unique and the valid signature has not been created by
an honest party before, party Q cannot have signed ("b"||t||rA||rB) earlier, only
("b’"||t||rA||rB) for b′ = 1 − b (if at all). With probability 1

nu
, where nu is the

total number of users, our reduction predicts the party Q correctly, such that
we have

AdvG2
A-NH,A ≤ AdvG3

A-NH,A + nu · AdvEUF-CMA
S,B1

.

Game 4. In the next step, we guess the honest session π∗a of party Q which has
sent the valid signature σQ received by π∗ in Game 3 and abort if we guessed
incorrectly. This session is unique because the nonces are unique and there must
be such a session which creates the signature according to the previous game.
Still, the session may not necessarily be partnered with the test session, but
must (at least) have the same contributive identifier, such that we call this
session associated.
Changing the game like this reduces the adversary’s advantage by a factor of at
most 1

ns
, with ns again being the maximum number of sessions. Hence, we have

AdvG3
A-NH,A ≤ ns · AdvG4

A-NH,A.

Game 5. As the next step, we replace the value w in the test session (and its
associated session π∗a) by a uniformly random value w̃ $←− {0, 1}256. If the adver-
sary A can distinguish Game 5 from Game 4, then there exists an adversary B2
that can solve the DDH` problem as follows.
Algorithm B2 obtains a DDH` challenge (â, b̂, b̂′, r̂, ŵ) and simulates the envi-
ronment for A picking the according seed seed′ upfront and programming the

24

random oracle modeling XOF such that XOF(seed′) = â before any execution
starts. In the predicted sessions π∗ and π∗a algorithm B2 then sets a = â, b = b̂,
b′ = b̂′, and r = r̂. Note that it is irrelevant for the argument if another hon-
est session accidentally picks the same seed seed′ and thus derives the same â
since the non-uniqueness of the parameter does not affect the security of the
protocol in terms of key secrecy. In fact, in many Ring-LWE-based KE schemes,
this parameter is globally fixed upfront for all executions. Furthermore, a break-
down of XOF does not imply any advantage for the adversary in detecting the
simulation (as the value â will appear to have been validly generated in an hon-
est execution) or disturbing the programming of the random oracle (since the
breakdown can only happen after the test session has been completed). Thus,
when computing the keys Kapp and Kmac in the two sessions, the given value
ŵ is used instead as input to the key derivation function KDF. At some point,
A terminates and outputs a guess bit bguess. Upon this, B2 also terminates and
outputs the same bguess.

If ŵ is genuine, then the simulation above is as in Game 4. If ŵ is random,
B2 simulates Game 5. Hence, if the efficient adversary A can distinguish the two
games with non-negligible advantage, then B2 can solve DDH` efficiently with
non-negligible advantage. It follows that

AdvG4
A-NH,A ≤ AdvG5

A-NH,A + AdvDDH`
B2

.

Since DDH` is not part of FBDR, this bound especially holds in the BDR scenario.

Game 6. Next, we replace the session key K = Kapp and the MAC key Kmac by
uniformly random values K̃app and K̃mac in π∗ and π∗a . Distinguishing Game 6 and
Game 5 by A would immediately imply the existence of an efficient adversary B3
that breaks the pseudorandomness of KDF with non-negligible advantage. For
this, B3 simply replaces KDF executions keyed with w̃ by oracle calls in the
pseudorandomness game, simulating one of the two games depending on the
oracle response. Thus, we have

AdvG5
A-NH,A ≤ AdvG6

A-NH,A + AdvKDF-sec
KDF,B3

.

As (KDF, ·) 6∈ FBDR, this bound again particularly holds in the BDR scenario.

There are now four possibilities for the status of the associated session π∗a . First,
at the point of the breakdown query, the associated session had not accepted yet,
i.e., if π∗a owned by Q is a Bob instance and waited for the final authentication
message. But then π∗a ’s state was running and its contributive identifier was,
and is, identical to the one in P ’s session π∗, since the signature is over the
entries in cid and Q knows resp. sent its identifier. This however means that the
adversary is not allowed to test the session it has actually tested, by definition
of a successful attack.

If the associated session π∗a had already finished upon the breakdown query,
then it either is partnered with the test session (and thus cannot be revealed),
or rejected (in which case it does not hold a session key), or it has accepted

25

but is not partnered with the test session. The latter case would mean that the
adversary would be allowed to safely reveal the session key of the associated
but unpartnered session and could break key secrecy. Yet, this would lead to a
contradiction of the unforgeability of the MAC, as we discuss next.

Game 7. As the next change, we abort the game if the associated session π∗a of
party Q accepts before the breakdown query with a session identifier π∗a .sid 6= ⊥
which does not equal π∗.sid. This can only happen if the adversary is able to
make π∗a obtain a valid signature σR and MAC τR for some identity R 6= P
since all entries except for the peer identity of π∗a .sid are already fixed at this
point. We assume that the associated session has already accepted and that no
Break query has occurred yet. In particular, while the adversary may be able
to sign under a corrupt party’s identifier R for which the adversary may know
the signing key due to a Corrupt query, the MAC scheme, on the other hand,
must still be secure. Furthermore, the MAC tag depends on the key Kmac shared
between the honest parties P and Q and includes the sender’s identity.
Similarly to Game 3, the probability of an abort happening for this reason can be
bounded by the success probability of an adversary B4 against the unforgeability
of the MAC scheme M. That is, since we have already replaced the key Kmac
by an independent random value, we can use an external MAC oracle for an
unknown key in a simulation instead, and use oracle queries to create the MACs
for "b"||P and "b’"||Q for b′ = 1 − b as required in the test session and its
associated session. It follows that a valid MAC τR for "b"||R created by the
adversary for identity R 6= P in the associated session constitutes a successful
forgery for a fresh message. We have

AdvG6
A-NH,A ≤ AdvG7

A-NH,A + AdvEUF-CMA
M,B4

.

To complete the proof we note that the adversary expects the challenge
value K to be either a uniformly random string (btest = 0) or to be the output
of KDF(w, ”KE”) (btest = 1). At this point, both cases btest = 0 and btest = 1
are indistinguishable for A since both keys are drawn independently and uni-
formly at random from {0, 1}256. Furthermore, the session key in the associated
session (which coincides with the now random key K in case of btest = 1 and
is independent of K for btest = 0) cannot be revealed, because that session is
either partnered or held the same contributive identifier upon breakdown. Thus
A cannot learn any information about the bit btest. The only strategy for A is
to guess and thus we have the final bound:

AdvG7
A-NH,A ≤ 0.

Remark 2. The security of the extendable-output function XOF (modeled as
random oracle) does not enter into the security bound for key secrecy. We recall
that in NewHope the function XOF is applied to a uniformly random chosen
seed to generate the public parameter a freshly for each protocol execution.

26

This is done to avoid backdoors and all-for-the-price-of-one-attacks. However, the
security of RLWE-based protocols does not rely on a being indistinguishable from
random as it is in general public and fixed for all executions (cf. for example [15]).
Furthermore, note that the KDF and XOF proposed in [3] both rely on the
(pseudo-)randomness of SHA3. In our analysis we treat these two primitives as
independent and generic cryptographic building blocks such that a break of XOF
does not imply a break in the key derivation function KDF (and vice versa). This
result shows that the protocol can withstand breakdowns of XOF if KDF is based
on a different primitive.

Remark 3. It may be surprising at first that the unforgeability of the signature
and MAC scheme enter into the security bound of Theorem 3 although the
signature scheme S as well as the MAC schemeM are afflicted by the breakdown.
However, both the valid signature obtained by π∗ in Game 3 as well as the
MAC tag in Game 7 must necessarily have been created before a breakdown
had occurred. Thus, both unforgeability assumptions still hold at the respective
points in time.

5 TLS 1.3

We now turn towards the second protocol for our exemplary breakdown resilience
analysis, the Transport Layer Security (TLS) protocol in version 1.3, which is
currently being developed by the Internet Engineering Task Force (IETF) with
the most recent draft version being draft-22 [49]. Although not specifically de-
signed with breakdown resilience as a security goal in mind, the TLS 1.3 key
exchange (the so-called handshake) can achieve resilience against the breakdown
of some of its cryptographic components, as we will see.

TLS 1.3 (in draft-21) essentially specifies four handshake modes: a full Diffie–
Hellman-based handshake (referred to as (EC)DHE mode), a resumption-style
pre-shared key mode (PSK), a PSK mode combined with a Diffie–Hellman
exchange (PSK-(EC)DHE), and a low-latency, zero round-trip (0-RTT) mode
based on the PSK modes. Providing a full key exchange security analysis of
these modes is beyond the scope of this work; for this we refer to prior analyses
of earlier TLS 1.3 drafts [28,29,24,33,45,41,32,8,23]. In our analysis, we focus on
the full/(EC)DHE and PSK(-only) handshake modes, which suffice to demon-
strate some essential breakdown-resilience properties of TLS 1.3.

Interestingly, despite both handshake modes following the same overall pro-
tocol structure, the (EC)DHE and PSK modes differ in the provided breakdown
resilience. More precisely, the (EC)DHE mode offers resilience against break-
down of the authentication signature and MAC schemes’ unforgeability as well
as collision resistance of the hash function used to compute hashed transcript
values, which is consistent with the high-level expectations from the protocol
design. Maybe surprisingly at first glance, the PSK-only handshake in contrast
does not provide the same resilience against a hash function breakdown, the
reason essentially being that transcripts are hashed before being used in the key

27

derivation. While there are engineering reasons for this particular design, as we
will discuss later, our analysis exhibits how seemingly minor technical design
choices (even from a cryptographic point of view) can have a noticeable impact
on the breakdown resilience of a key exchange protocol.

5.1 The TLS 1.3 Handshake Protocol
As we analyze the breakdown resilience of the TLS 1.3 (EC)DHE and PSK hand-
shake modes, we accordingly limit the presentation of the TLS 1.3 handshake in
the following to these modes. In order to focus attention on the breakdown re-
silience properties, we furthermore restrict ourselves to the security of the main
application data key established in a mutually authenticated TLS 1.3 handshake,
also omitting more advanced aspects like 0-RTT and 0.5-RTT key establishment
and post-handshake messages. We note that our security model for breakdown
resilience can in principle be extended to the setting of multi-stage key exchange
protocols [31] in order to capture breakdown resilience for the multiple keys
derived in TLS 1.3 with varying authentication properties (see also [28,29]).

Full/(EC)DHE mode. We begin with explaining the full handshake mode
based on (elliptic-curve) ephemeral Diffie–Hellman ((EC)DHE) key exchange.
Figure 3 shows the TLS 1.3 handshake protocol flow; messages and computations
marked with [. . .]� are only included in the PSK-based handshake mode and can
be ignored for now.

The protocol begins with client and server exchanging random nonces rc
and rs and ephemeral Diffie–Hellman shares gx and gy within the ClientHello
resp. ServerHello and accompanying KeyShare extension messages.4 Both sides
then derive an intermediate handshake traffic key tkhs, consisting of client- and
server-side sending keys tkchs and tkshs. This key is derived from the shared Diffie–
Hellman value DHE = gxy via an intermediate handshake secret HS, using the
HKDF key derivation function [40] in an extract-then-expand paradigm.5

The remaining handshake is encrypted under tkhs. For authentication, first
the server and then the client send a certificate on their public key (within the
Certificate messages), a signature over the communication transcript up to
this point under the corresponding secret key (in CertificateVerify), and a
Finished message containing a MAC over the transcript so far. Finally, both
sides derive a master secret MS via HKDF.Extract and then expand from it the
main application traffic key tkapp (again with server- and client-side compo-
nent tkcapp and tksapp) as the session key K.
4 We also use abbreviated names for the TLS 1.3 messages exchange, e.g., CH for

ClientHello, CKS for ClientKeyShare, etc.
5 We adopt the following common notation for the two HKDF functions, both based on
HMAC [5]: HKDF.Extract(XTS,SKM) on input an extractor salt XTS and source key
material SKM outputs a pseudorandom key PRK. HKDF.Expand(PRK,CTXinfo)
on input a pseudorandom key PRK and context information CTXinfo outputs some
key material KM (we omit the third output-length parameter in Expand and assume
it to be fixed to L = λ for our security parameter λ).

28

Client Server

ClientHello: rc $←− {0, 1}256

[+ ClientKeyShare: X ← gx]†
[+ ClientPreSharedKey: psk_id1, . . .]

�

ServerHello: rs $←− {0, 1}256

[+ ServerKeyShare: Y ← gy]†
[+ ServerPreSharedKey: psk_id]�

H1 ← Hash(CH||SH) (incl. extensions)
[PSK← 0]†

ES← HKDF.Extract(0,PSK)
XES← HKDF.Expand(ES, "derived")

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�
HS← HKDF.Extract(XES,DHE)

HTSC/HTSS ← HKDF.Expand(HS, label1/label2||H1)
tkchs/tk

s
hs ← HKDF.Expand(HTSC/HTSS, label3)

{EncryptedExtensions}
{CertificateRequest}

{ServerCertificate}: pkS
H2 ← Hash(CH|| . . . ||SCRT)
{ServerCertificateVerify}: Sign(skS , H2)

H3 ← Hash(CH|| . . . ||SCV)
SFK← HKDF.Expand(HTSS, "finished")

{ServerFinished}: HMAC(SFK, H3)

cid = (ClientHello, ServerHello)

check Verify(pkS , H2, SCV) = 1
check SF = HMAC(SFK, H3)
{ClientCertificate}: pkC

H4 ← Hash(CH|| . . . ||CCRT)
{ClientCertificateVerify}: Sign(skC , H4)

CFK← HKDF.Expand(HTSC, "finished")
H5 ← Hash(CH|| . . . ||CCV)

{ClientFinished}: HMAC(CFK, H5)

check Verify(pkC , H4, CCV) = 1
check CF = HMAC(CFK, H5)

XHS← HKDF.Expand(HS, "derived")
MS← HKDF.Extract(XHS, 0)
H6 ← Hash(CH|| . . . ||SF)

TSS/TSC ← HKDF.Expand(MS, label4/label5||H6)
tkapp = (tkcapp/tksapp)← HKDF.Expand(TSS/TSC, label3)

K = tkapp, sid = (ClientHello, . . . , ClientCertificateVerify)

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
+ MSG message sent as extension within previous message
{MSG} message MSG AEAD-encrypted with tkc

hs/tk
s
hs

[. . .]† message/computation only when including DHE
[. . .]� message/computation only when including PSK
a/b alternative usage of a or b in analogous computation

Fig. 3: The TLS 1.3 draft-21 [48] handshake protocol (in full/(EC)DHE, PSK,
and PSK-(EC)DHE mode).

29

PSK mode. In the pre-shared key (PSK) handshake mode, client and server
agree on an (identifier for a) previously established shared secret key within the
PreSharedKey messages. This pre-shared secret PSK enters the key derivation in
an HKDF extract-then-expand step prior to deriving the handshake secret HS.
Optionally, both sides can also send Diffie–Hellman shares (within KeyShare
messages) to be included in the key derivation; this variant constitutes the PSK-
(EC)DHE mode.

Both in PSK-only and PSK-(EC)DHE mode, authentication relies on the
pre-shared key only through the Finished messages, i.e., no certificates and
signatures are exchanged and, accordingly, the messages CertificateRequest,
Certificate, and CertificateVerify (from both sides) are omitted.

5.2 Breakdown Resilience of the TLS 1.3 (EC)DHE Handshake

The TLS 1.3 (EC)DHE handshake security relies on the following cryptographic
primitives and hardness assumptions: hardness of Diffie–Hellman-type assump-
tions in the employed group G, collision resistance of the hash function Hash for
hashing the transcripts, pseudorandomness of the key derivation function HKDF,
and unforgeability of the signature scheme S and of the MAC scheme HMAC.

We cannot hope for breakdown resilience for the Diffie–Hellman assump-
tions on G (as they might allow an adversary to recover the secrecy source gxy
of earlier handshakes) or pseudorandomness of HKDF (as non-pseudorandom
output may enable an adversary to distinguish the session key from a random
string). As we will show next, the TLS 1.3 (EC)DHE handshake however does
achieve resilience against breakdown of the hash function, signature scheme, and
MAC, ensuring security of completed sessions even in case these core primitives
break. More precisely, we consider resilience against breakdown of the collision
resistance of the hash function Hash (which we model as a standard-model hash
function) as well as existential unforgeability of the signature scheme S and MAC
scheme HMAC, i.e., breakdown resilience for FBDR = {(Hash,STD-Coll-Res),
(S,EUF-CMA), (HMAC,EUF-CMA)}.6

In the following, we establish breakdown resilience of the TLS 1.3 (EC)DHE
handshake for FBDR (with forward secrecy) through the corresponding BDR-Match
security and BDR key secrecy.

Theorem 4 (BDR-Match security of TLS-(EC)DHE). The TLS 1.3 (EC)DHE
handshake TLS-(EC)DHE is BDR-Match-secure for FBDR = {(Hash,STD-Coll-Res),
(S,EUF-CMA), (HMAC,EUF-CMA)}. For any efficient adversary A we have

AdvBDR-Match(FBDR)
TLS-(EC)DHE,A ≤ n2

s · 1/q · 2−|nonce|,

6 Note that the HMAC-based key derivation function HKDF in TLS 1.3 internally
involves the same hash function for which we consider collision resistance breakdown.
Still, we deem it reasonable to distinguish between collisions in the hash function
and randomness of the HKDF output, as one property might break without the
other one breaking as well. More generally, one may also instantiate HKDF based
on a different hash function than the one used for computing transcript hashes.

30

where ns is the maximum number of sessions, q is the Diffie–Hellman element
group order, and |nonce| = 256 is the bit-length of the nonces rc and rs.

Proof. We need to show that the four conditions for BDR-Match security (cf.
Definition 4) are satisfied.
Ad (1). Sessions accepting with the same session identifier also derive the same
session key, as the session identifier fixes all components entering the key deriva-
tion.
Ad (2). Partnered sessions agree on the contributive identifier as they contain a
subset of the session identifier entries.
Ad (3). Partnered sessions agree on the intended partner as the session identifier
contains both participant’s identities within the Certificate messages.
Ad (4).More than two sessions sharing the same session or contributive identifier
requires that a third session picks the same nonce and group element as one of
the two sessions already partnered. The probability of such a collision can be
upper-bounded by n2

s ·1/q·2−|nonce|, where ns is the maximum number of sessions,
q is the Diffie–Hellman element group order, and |nonce| = 256 is the bit-length
of the nonces rc and rs.

Note that the session identifiers do not rely on any cryptographic primitive
and hence the BDR-Match security bound is independent of potential Break
queries issued.

Theorem 5 (BDR key secrecy of TLS-(EC)DHE). The TLS 1.3 (EC)DHE
handshake TLS-(EC)DHE achieves breakdown-resilient key secrecy for FBDR =
{(Hash,STD-Coll-Res), (S,EUF-CMA), (HMAC,EUF-CMA)} with forward secrecy.
More precisely, for any efficient adversary A there exist efficient adversaries B1,
. . . , B11 such that:

AdvBDR(FBDR),D
TLS-(EC)DHE,A ≤ n

2
s · 2−|nonce| + AdvCOLL

Hash,B1
+ ns ·

(
nu · AdvEUF-CMA

S,B2

+ ns ·
(
AdvDDH

G,B3
+ Advdual-PRF-sec,G

HKDF.Extract,B4
+ AdvPRF-sec

HKDF.Expand,B5
+ AdvPRF-sec

HKDF.Expand,B6

+ AdvPRF-sec
HKDF.Extract,B7

+ AdvPRF-sec
HKDF.Expand,B8

+ AdvPRF-sec
HKDF.Expand,B9

+ AdvPRF-sec
HKDF.Expand,B10

+ AdvEUF-CMA
HMAC,B11

))
.

where ns is the maximum number of sessions, nu is the maximum number of
users, and |nonce| = 256 is the bit-length of the nonces rc and rs.

Proof. We proceed via the following sequence of games.

Game 0. The original BDR key secrecy game GBDR(FBDR),D
TLS-(EC)DHE,A.

Game 1. First, we exclude that two honest sessions generate the same random
nonce rc or rs, aborting the game in such cases. The probability of this happening
can be upper bounded by n2

s · 2−|nonce| where |nonce| = 256 is the bit-length of
the nonces rc and rs, i.e.,

AdvG0
TLS-(EC)DHE,A ≤ AdvG1

TLS-(EC)DHE,A + n2
s · 2−|nonce|.

31

Game 2. As the next step, we exclude hash collisions (in honest sessions) prior
to the breakdown of the hash function Hash. More precisely, we abort the game
if in any two honest sessions’ computation two distinct inputs to Hash yield the
same output while breakdown = false, i.e., before A issued a Break query. Such
a hash collision can be directly reduced to the collision resistance of Hash via a
reduction B1 that simulates the game faithfully and aborts when the collision
occurs, outputting the two input values. Hence we can bound the introduced
advantage difference as

AdvG1
TLS-(EC)DHE,A ≤ AdvG2

TLS-(EC)DHE,A + AdvCOLL
Hash,B1

.

Through this change, we are ensured that no hash collisions occur before the
breakdown (hence, in particular, not before the test session accepts). After the
breakdown, hash collisions may occur; we will see in the later game changes why
those cannot affect the test session’s security anymore.

Game 3. We let the challenger guess the tested session π∗ and abort the game
if that guess was incorrect. This can reduce the adversary’s advantage by a factor
of at most 1

ns
, thus

AdvG2
TLS-(EC)DHE,A ≤ ns · AdvG3

TLS-(EC)DHE,A.

Game 4. Next, we abort the game if the tested session receives within the
CertificateVerify message a valid signature under the public key of some
user V that no honest session of V issued. We can upper-bound the probability
of such an abort by the advantage of a reduction B2 against the unforgeability of
the signature scheme S. Here, we use that neither can the signature scheme be
broken nor can the long-term secrets of the involved parties be corrupted before
the test session has accepted. Note that forward secrecy is not affected by this
game hop as a later Corrupt query on the test session’s owner or partner identity
does not infringe with the test session receiving an honestly generated signature
at this point.
The reduction B2 simulates the game, guessing V and picking all but the user V ’s
long-term keys itself. For any signature to compute for V , algorithm B2 queries
its signing oracle. When the test session receives the forged signature, B2 outputs
it as its own forgery. It thereby provides a sound simulation forA and wins in case
the above abort occurs and it correctly guessed the forgery’s source identity V
(among the at most nu users). Hence we can bound

AdvG3
TLS-(EC)DHE,A ≤ AdvG4

TLS-(EC)DHE,A + nu · AdvEUF-CMA
S,B2

.

Game 5. From now on, we are ensured that the signature obtained by the tested
session π∗ was honestly issued by some session π∗a , which we call associated. Note
that π∗a is not necessarily partnered with π∗, but holds the same contributive

32

identifier and is unique due to Game 1. We let the challenger guess π∗a (and abort
on incorrect guess), reducing the advantage of A by a factor at most 1

ns
:

AdvG4
TLS-(EC)DHE,A ≤ ns · AdvG5

TLS-(EC)DHE,A.

Game 6. The signature obtained in the test session in particular covers the
(hashed) Diffie–Hellman shares sent by π∗ and π∗a , which the adversary hence
cannot have tampered with. In particular, the adversary cannot have sent the test
session Diffie–Hellman shares under a signature over a colliding hash value with
some other honest session, as we excluded hash collisions prior to a breakdown
in Game 2 and the test session must have accepted before any Break query is
issued (as it otherwise is considered revealed).
As the next step, we can therefore replace the derived DHE value in π∗ and π∗a
with a random group element D̃HE $←− G. The difference in A’s advantage in-
troduced by this change can be bounded by the advantage of an algorithm B3
in breaking the DDH assumption [12].7 For this, B3 simulates the game truth-
fully, but encodes the DDH challenge values ga, gb in the Diffie–Hellman shares
sent by π∗ and π∗a , and uses as value DHE in the sessions π∗ and π∗a the chal-
lenge value h being either gab or gc for random c. Depending on the value h, B3
perfectly simulates either Game 3 or Game 4, hence establishing the bound

AdvG5
TLS-(EC)DHE,A ≤ AdvG6

TLS-(EC)DHE,A + AdvDDH
G,B3

.

Game 7. At this point, D̃HE in π∗ and π∗a is a uniformly random group element
independent of all other values. This allows us to replace the handshake secret HS
in both sessions with a uniformly random value H̃S $←− {0, 1}λ. The advantage
difference introduced for A by this step can be bounded by a reduction B4 to
the (dual) PRF security [4,6] of the HKDF.Extract function when keyed with a
random group element from G in the source key material input. For this, B4
relays the computation of HS ← HKDF.Extract(. . . , D̃HE) to its PRF oracle,
hence simulating either Game 4 or Game 5. Thus,

AdvG6
TLS-(EC)DHE,A ≤ AdvG7

TLS-(EC)DHE,A + Advdual-PRF-sec,G
HKDF.Extract,B4

.

Games 8–13. We now replace the values HTSC, HTSS, and XHS (jointly) ex-
panded from HS, CFK expanded from HTSC, MS extracted from XHS, TSS and
TSC (jointly) expanded from MS, tkcapp expanded from TSC and tksapp expanded
7 Focusing on the main application traffic key tkapp only, which we consider derived
after exchanging signatures in both directions, the DDH assumption suffices in this
proof step. This is in contrast to analyses covering also the handshake traffic key (e.g.,
[42,29]) which employ the stronger pseudorandom-function oracle-Diffie–Hellman
(PRF-ODH) assumption [38,18] or the Gap-Diffie–Hellman assumption (in the ran-
dom oracle model).

33

from TSS in a sequence of six games with random values independently sam-
pled from {0, 1}λ, in π∗ and (for matching computations) π∗a . More specifically,
we replace invocations of the HKDF.Expand resp. HKDF.Extract functions in π∗
and π∗a using the respective source key by invocations of random functions. Each
of these steps can be bounded in advantage difference via a reduction to the PRF
security of HKDF.Expand resp. HKDF.Extract, similar to the step in Game 7.
As the PRF keys are random values chosen independently of any other value, the
derived keys are independent, uniformly random values as well. This indepen-
dence in particular is upheld due to the distinct PRF keys even if the adversary
gains the capability to create collisions under Hash through a Break query (at
some pointer after the test session accepted) and lets honest sessions compute
keys under a transcript hash colliding with that of the test session, which is not
excluded by Game 2.

Naming the reductions B5, . . . , B10 we hence obtain the following bound:

AdvG7
TLS-(EC)DHE,A ≤ AdvG13

TLS-(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Expand,B6

+ AdvPRF-sec
HKDF.Extract,B7

+ AdvPRF-sec
HKDF.Expand,B8

+ AdvPRF-sec
HKDF.Expand,B9

+ AdvPRF-sec
HKDF.Expand,B10

.

Note that the handshake traffic keys tkchs/tkshs are not affected by the re-
placements and that, in particular, our replacements do not infringe with any
honest session’s capability to send and receive encrypted handshake messages
under those keys.

At this point, the session key K = (tkcapp, tksapp) in the tested session π∗ (and
potentially π∗a) is an independent random value. It remains to argue that the
adversary cannot learn that value through a Reveal query on π∗a .

As for the proof of Auth-NewHope (cf. Theorem 3), there are four possi-
bilities for the status of the associated session π∗a . First, π∗a may still be running
at the time of breakdown. However, as it holds the same contribute identifier as
the test session (covered by the obtained signature in Game 4), this makes the
adversary lose the game due to the according Finalize condition. Second, π∗a may
have rejected at the time of breakdown; in this case it does not hold a session
key at all. Third, π∗a may have accepted prior to breakdown and is partnered
with π∗, hence by definition of a successful attack may not be revealed. Finally,
π∗a may have accepted prior to breakdown without being partnered with π∗,
i.e., π∗.sid 6= π∗a .sid, and hence may be revealed. We will however exclude this
case by showing that it implies a successful MAC forgery in the exchanged
ClientFinished message through the following game hop.

Note that we are only interested in the case that π∗a holds the same session
key as π∗. We can therefore focus on those cases where π∗a and π∗ agree on the
messages up to ServerFinished, as otherwise the hash value H6 entering the
session key derivation (when computing TSS/TSC), yielding a uniformly random
key independent of that in π∗. In particular, the key derivation from the hashed
transcript is not affected by a breakdown of the hash function, since π∗a accepted
prior to the breakdown.

34

Game 14. Let Game 14 now be as before except that the challenger aborts if
π∗a accepts with π∗a .sid 6= π∗.sid. We show that when this happens, the adver-
sary made the server side of π∗ or π∗a accept with a forged MAC value in the
ClientFinished message.
First of all observe that π∗ and π∗a agree on the client finished key CFK, as
it is derived from DHE using the hash of ClientHello and ServerHello, all
agreed upon under the shared contributive identifier by the obtained signature
in Game 4. At this point, CFK was replaced in both sessions by an independent
random key C̃FK, which enables the following reduction B11 to the EUF-CMA
unforgeability of the MAC scheme HMAC. Note that both π∗ and π∗a accept
prior to a breakdown, hence particularly the EUF-CMA breakdown of HMAC via
a Break query does not affect the argument here, as both sessions using the then
exposed MAC key C̃FK terminated prior to the breakdown.

In the reduction, B11 uses its MAC oracle to compute the ClientFinished
message computed with key C̃FK over H5 = Hash(CH|| . . . ||CCV) exchanged be-
tween π∗ and π∗a . Recall that ClientFinished covers the (hashed) full session
identifier sid, both π∗ and π∗a accept prior to the potential breakdown of the
hash function Hash, and we excluded collisions under Hash before breakdown
in Game 2. The associated session π∗a accepting with a different session identi-
fier π∗a .sid 6= π∗.sid than π∗ hence implies the server-side session obtained a MAC
value within ClientFinished on a different message, hence constituting a valid
existential MAC forgery.

Having B11 output the obtained ClientFinished MAC we can hence bound
the advantage difference introduced by Game 14 as

AdvG13
TLS-(EC)DHE,A ≤ AdvG14

TLS-(EC)DHE,A + AdvEUF-CMA
HMAC,B11

.

Finally, in Game 14, the session key K = (tkcapp, tksapp) in the tested session π∗
is an independent random value and the Test query thus independent of the
test bit btest. Furthermore, in case the associated session π∗a derives the same
key, the adversary is not allowed to reveal π∗a . The adversary A hence cannot
determine btest better than guessing and so

AdvG14
TLS-(EC)DHE,A ≤ 0,

which, together with the bounds above, completes the proof.

5.3 Breakdown Resilience of the TLS 1.3 PSK Handshake

We now turn to the preshared-key-based TLS 1.3 (draft-21) handshake, focusing
on the PSK-only mode. Its security only relies on the collision resistance of the
hash function Hash and pseudorandomness of the key derivation function HKDF.
As for the (EC)DHE handshake, we cannot hope for breakdown resilience of the
pseudorandomness of HKDF, as this may enable an adversary to distinguish
real session keys from uniformly random strings. In contrast to the (EC)DHE

35

mode, and perhaps surprisingly at first glance, the PSK-only handshake mode in
general also does not achieve resilience against breakdown of collision resistance
of the hash function Hash.

The lack of breakdown resilience for Hash is due to the deterministic key
derivation from PSK using hashed transcripts as context values within the expan-
sion function HKDF.Expand, where—unlike in the (EC)DHE case with its per-
session DH values—potentially the same pre-shared key PSK is used throughout
multiple sessions. Consider an adversaryA that, after running an honest protocol
for the test session, breaks the collision resistance of Hash (via the Break query).
It can then run another honest protocol execution using the same pre-shared
key PSK (unknown to the adversary), programming Hash to yield hash values
for the transcript of this session that collide with those computed in the test
session.8 The adversary may then reveal the later session which will derive the
same session key as the test session, allowing it to distinguish the Test query’s
output.

As a consequence, the TLS 1.3 PSK-only handshake does not provide break-
down resilience against any of its core cryptographic components. We hence
omit a (non-breakdown-resilient) security analysis and instead refer to estab-
lished computational results for this mode (e.g., [28,29,8]). We note that re-
silience against collision resistance breakdown of the hash function Hash could
be achieved by using the non-hashed session transcript (or parts thereof, like
the nonces) in the key derivation. However, for engineering reasons a hashed
transcript may be beneficial in terms of state and computation overhead.9 One
could furthermore argue that the attack window for a Hash breakdown may be
relatively small in practice, as pre-shared keys are specified to be limited in life-
time (cf. [48]). Finally, when using pre-shared keys derived from the resumption
master secret established in a prior full handshake, TLS 1.3 draft-21 suggests
that such PSKs (issued via so-called tickets) should be used only once [48, Sec-
tion 4.6.1], which, beyond privacy benefits, prevents the collision attack above.

TLS 1.3 PSK-(EC)DHE. As a final remark on TLS 1.3, we note that includ-
ing Diffie–Hellman shares in the PSK-(EC)DHE handshake recovers breakdown
resilience for hash collision resistance (and also achieves resilience against break-
down of the MAC scheme). Without going into further technical details, the
DHE value added as key derivation input ensures that different sessions derive
distinct session keys even under colliding hashed transcripts, following a similar
argument to that employed in the analysis of the full (EC)DHE handshake (cf.
Theorem 5). We therefore, and since it would require a security model supporting
long-term pre-shared keys, omit a full analysis of the PSK-(EC)DHE here, but
remark that the PSK-(EC)DHE handshake of TLS 1.3 hence not only achieves

8 To be precise, the adversary will target a collision in H6 ← Hash(CH|| . . . ||SF), in-
cluded when deriving TSS/TSC. All other values on the way to tkapp are derived
deterministically from PSK with fixed labels only.

9 This aspect is reminiscent of the comment by Dowling et al. [28] on upstream hashing
in the signatures sent in the TLS 1.3 (EC)DHE handshake.

36

forward secrecy (against PSK compromise) but also breakdown resilience (for
the hash and MAC function employed).

6 Conclusion

We presented the first extension to a variant of the widely used Bellare–Rogaway
model [7] for authenticated key exchange which allows to assess the impact of
a break of cryptographic building blocks on already completed sessions. The
resulting security notion is termed breakdown resilience. We showed that both an
authenticated version of NewHope as well as the TLS 1.3 (EC)DHE handshake
mode achieve breakdown resilience for varying broken primitives. The case of the
TLS 1.3 PSK(-only) mode illustrates that seemingly minor design choices can
significantly impact the breakdown resilience of protocols.

We are confident that the presented ideas can also be integrated into other
relevant models for authenticated key exchange, such as the CK model [21], its
extension eCK [43], the ACCE model [38], as well as the multi-stage setting [31].
Moreover, the notion may even be transferred to different classes of cryptographic
protocols. A particularly interesting direction is to apply the BDR model to the
analysis of so-called hybrid key exchange protocols which combine two (or more)
key exchange algorithms with differing hardness assumptions with the aim to
achieve security even if one of them breaks.

References

1. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow, S. Z.
Béguelin, and P. Zimmermann. Imperfect forward secrecy: How Diffie-Hellman fails
in practice. In ACM CCS 15, pages 5–17, 2015. (Cited on page 2.)

2. N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N.
Schuldt. On the security of RC4 in TLS. In 22nd USENIX Security Symposium
(USENIX Security 13), pages 305–320, 2013. (Cited on page 2.)

3. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum Key Ex-
change—A New Hope. In 25th USENIX Security Symposium (USENIX Security
16), pages 327–343, 2016. (Cited on pages 2, 4, 6, 14, 19, 20, 21, and 27.)

4. M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In CRYPTO 2006, pages 602–619, 2006. (Cited on page 33.)

5. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In CRYPTO’96, pages 1–15, 1996. (Cited on page 28.)

6. M. Bellare and A. Lysyanskaya. Symmetric and dual PRFs from standard as-
sumptions: A generic validation of an HMAC assumption. Cryptology ePrint
Archive, Report 2015/1198, 2015. http://eprint.iacr.org/2015/1198. (Cited
on page 33.)

7. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
CRYPTO’93, pages 232–249, 1994. (Cited on pages 3, 6, and 37.)

8. K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference im-
plementations for the TLS 1.3 standard candidate. In 2017 IEEE Symposium on
Security and Privacy, pages 483–502, 2017. (Cited on pages 6, 27, and 36.)

37

http://eprint.iacr.org/2015/1198

9. K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and S. Z. Béguelin.
Downgrade resilience in key-exchange protocols. In 2016 IEEE Symposium on
Security and Privacy, pages 506–525, 2016. (Cited on page 6.)

10. K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and S. Zanella
Béguelin. Proving the TLS handshake secure (as it is). In CRYPTO 2014, Part II,
pages 235–255, 2014. (Cited on page 12.)

11. K. Bhargavan and G. Leurent. Transcript collision attacks: Breaking authentica-
tion in TLS, IKE and SSH. In NDSS 2016, 2016. (Cited on page 2.)

12. D. Boneh. The decision diffie-hellman problem. In Algorithmic Number Theory:
Third International Symposiun, pages 48–63, 1998. (Cited on page 33.)

13. J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
and D. Stehlé. CRYSTALS – kyber: a CCA-secure module-lattice-based KEM.
Cryptology ePrint Archive, Report 2017/634, 2017. http://eprint.iacr.org/
2017/634. (Cited on page 5.)

14. J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghu-
nathan, and D. Stebila. Frodo: Take off the ring! Practical, quantum-secure key
exchange from LWE. In ACM CCS 16, pages 1006–1018, 2016. (Cited on page 2.)

15. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In 2015 IEEE
Symposium on Security and Privacy, pages 553–570, 2015. (Cited on pages 2, 4,
19, 22, and 27.)

16. C. Boyd, Y. Cliff, J. G. Nieto, and K. G. Paterson. Efficient one-round key exchange
in the standard model. In ACISP 08, pages 69–83, 2008. (Cited on page 5.)

17. M. Braithwaite. Google Security Blog: Experimenting with post-
quantum cryptography. https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html, 2016. (Cited on pages 2, 4, and 19.)

18. J. Brendel, M. Fischlin, F. Günther, and C. Janson. PRF-ODH: Relations, in-
stantiations, and impossibility results. In CRYPTO 2017, Part III, pages 651–681,
2017. (Cited on page 33.)

19. C. Brzuska. On the Foundations of Key Exchange. PhD thesis, Technis-
che Universität Darmstadt, Darmstadt, Germany, 2013. http://tuprints.ulb.
tu-darmstadt.de/3414/. (Cited on page 8.)

20. C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams. Composability of
Bellare-Rogaway key exchange protocols. In ACM CCS 11, pages 51–62, 2011.
(Cited on page 8.)

21. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In EUROCRYPT 2001, pages 453–474, 2001. (Cited on
pages 5 and 37.)

22. K. Cohn-Gordon, C. J. F. Cremers, and L. Garratt. On Post-compromise Security.
In IEEE 29th Computer Security Foundations Symposium (CSF 2016), pages 164–
178, 2016. (Cited on page 5.)

23. C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe. A compre-
hensive symbolic analysis of TLS 1.3. In ACM CCS 17, pages 1773–1788, 2017.
(Cited on pages 6 and 27.)

24. C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated analysis and
verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In 2016
IEEE Symposium on Security and Privacy, pages 470–485, 2016. (Cited on pages 6
and 27.)

25. C. J. F. Cremers and M. Feltz. Beyond eCK: Perfect forward secrecy under actor
compromise and ephemeral-key reveal. In ESORICS 2012, pages 734–751, 2012.
(Cited on page 12.)

38

http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://tuprints.ulb.tu-darmstadt.de/3414/
http://tuprints.ulb.tu-darmstadt.de/3414/

26. B. den Boer and A. Bosselaers. Collisions for the compressin function of MD5. In
EUROCRYPT’93, pages 293–304, 1994. (Cited on page 2.)

27. W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992. (Cited on
page 5.)

28. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In ACM CCS 15, pages 1197–1210,
2015. (Cited on pages 6, 12, 13, 27, 28, and 36.)

29. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of
the TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081, 2016. http://eprint.iacr.org/2016/081. (Cited on
pages 6, 27, 28, 33, and 36.)

30. B. Dowling and D. Stebila. Modelling ciphersuite and version negotiation in the
TLS protocol. In ACISP 15, pages 270–288, 2015. (Cited on page 6.)

31. M. Fischlin and F. Günther. Multi-stage key exchange and the case of Google’s
QUIC protocol. In ACM CCS 14, pages 1193–1204, 2014. (Cited on pages 28
and 37.)

32. M. Fischlin and F. Günther. Replay Attacks on Zero Round-Trip Time: The Case
of the TLS 1.3 Handshake Candidates. In 2017 IEEE European Symposium on
Security and Privacy (EuroS&P 2017), pages 60–75, 2017. (Cited on pages 6
and 27.)

33. M. Fischlin, F. Günther, B. Schmidt, and B. Warinschi. Key confirmation in
key exchange: A formal treatment and implications for TLS 1.3. In 2016 IEEE
Symposium on Security and Privacy, pages 452–469, 2016. (Cited on pages 6
and 27.)

34. I. Giechaskiel, C. J. F. Cremers, and K. B. Rasmussen. On bitcoin security in the
presence of broken cryptographic primitives. In ESORICS 2016, Part II, pages
201–222, 2016. (Cited on page 5.)

35. C. G. Günther. An identity-based key-exchange protocol. In EUROCRYPT’89,
pages 29–37, 1990. (Cited on page 5.)

36. S. S. Gupta, S. Maitra, G. Paul, and S. Sarkar. (Non-)random sequences from
(non-)random permutations - analysis of RC4 stream cipher. Journal of Cryptology,
27(1):67–108, 2014. (Cited on page 2.)

37. D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust combiners
for oblivious transfer and other primitives. In EUROCRYPT 2005, pages 96–113,
2005. (Cited on page 12.)

38. T. Jager, F. Kohlar, S. Schäge, and J. Schwenk. On the security of TLS-DHE in
the standard model. In CRYPTO 2012, pages 273–293, 2012. (Cited on pages 33
and 37.)

39. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In CRYPTO 2003, pages 400–425, 2003.
(Cited on pages 4 and 20.)

40. H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In CRYPTO 2010, pages 631–648, 2010. (Cited on page 28.)

41. H. Krawczyk. A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In ACM CCS 16, pages
1438–1450, 2016. (Cited on pages 6 and 27.)

42. H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE
European Symposium on Security and Privacy (EuroS&P 2016), pages 81–96, 2016.
(Cited on page 33.)

39

http://eprint.iacr.org/2016/081

43. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger Security of Authenticated
Key Exchange, pages 1–16. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
(Cited on page 37.)

44. B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated
key exchange. In ProvSec 2007, pages 1–16, 2007. (Cited on page 5.)

45. X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu. Multiple handshakes security of TLS
1.3 candidates. In 2016 IEEE Symposium on Security and Privacy, pages 486–505,
2016. (Cited on pages 6 and 27.)

46. NIST. Federal Information Processing Standard 202, SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, 2015. (Cited on
page 19.)

47. K. G. Paterson and T. van der Merwe. Reactive and proactive standardisation
of TLS. In Security Standardisation Research (SSR 2016), pages 160–186, 2016.
(Cited on page 6.)

48. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-21. https://tools.ietf.org/html/draft-ietf-tls-tls13-21, 2017.
(Cited on pages 3, 4, 14, 29, and 36.)

49. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-22. https://tools.ietf.org/html/draft-ietf-tls-tls13-22, 2017.
(Cited on page 27.)

50. M. Stevens. New collision attacks on SHA-1 based on optimal joint local-collision
analysis. In EUROCRYPT 2013, pages 245–261, 2013. (Cited on page 2.)

51. M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first
collision for full SHA-1. In CRYPTO 2017, Part I, pages 570–596, 2017. (Cited
on page 2.)

52. M. Stevens, P. Karpman, and T. Peyrin. Freestart collision for full SHA-1. In
EUROCRYPT 2016, Part I, pages 459–483, 2016. (Cited on page 2.)

53. M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In EUROCRYPT 2007, pages
1–22, 2007. (Cited on page 2.)

54. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In
CRYPTO 2005, pages 17–36, 2005. (Cited on page 2.)

55. X. Wang and H. Yu. How to break MD5 and other hash functions. In EURO-
CRYPT 2005, pages 19–35, 2005. (Cited on page 2.)

40

https://tools.ietf.org/html/draft-ietf-tls-tls13-21
https://tools.ietf.org/html/draft-ietf-tls-tls13-22

Supplementary Material

A Security Assumptions

Definition 9 ((Public Key) IND-CCA2 Security). Let λ be the security pa-
rameter. Furthermore let E = (KG,Enc,Dec) be a public key encryption scheme
and let A be a PPT algorithm. We define the following IND-CCA2 security game
GIND-CCA2

Enc,A (λ):

Setup. Generate a key pair (pk, sk) $←− KG(1λ) and give pk to the adversary
A.

Query Phase 1. In the next phase A can adaptively query polynomially many
messages m to the encryption oracle and polynomially many ciphertexts to
the decryption oracle.

Challenge Phase. The adversary A submits two distinct messages m0,m1
to the challenger. The challenger chooses a bit b $←− {0, 1} uniformly at
random, and returns the challenge ciphertext c∗ = Enc(pk,mb) to the ad-
versary.

Query Phase 2. The adversary may make further (polynomially many) calls
to the encryption and decryption oracle with the sole limitation that A may
not query the challenge ciphertext c∗ to the decryption oracle.

Output. At some point, A outputs a bit b′. Output 1 iff b = b′.

We define the advantage function as

AdvIND-CCA2
E,A (λ) := Pr

[
GIND-CCA2

Enc,A (λ) = 1
]
− 1

2 .

We say that a public key encryption scheme E is IND-CCA2 secure, if for any
PPT adversary A the advantage function is negligible (as a function in λ).

Definition 10 (EUF-CMA Security). Let λ be the security parameter. Fur-
thermore let S = (SKG,Sig,SVf) be a signature scheme and let A be a PPT
algorithm. We define the following EUF-CMA security game GEUF-CMA

S,A (λ):

Setup. Generate a key pair (pk, sk) $←− SKG(1λ) and give pk to the adversary
A.

Query Phase. In the next phase A can adaptively query messagesm1,m2, . . . ,mq ∈
{0, 1}∗ with q ∈ N arbitrary, which the signing oracle answers with σ1 ←
Sig(sk,m1), σ2 ← Sig(sk,m2), . . . , σq ← Sig(sk,mq).

Output. At some point, A outputs a message m∗ and a potential signature
σ∗. Output 1 iff SVf(pk,m∗, σ∗) = 1 and m∗ 6= mi for all i = 1, 2, . . . , q.

We define the advantage function as

AdvEUF-CMA
S,A (λ) := Pr

[
GEUF-CMA
S,A (λ) = 1

]
.

We say that a signature scheme S is EUF-CMA secure, if for any PPT adver-
sary A the advantage function is negligible (as a function in λ).

41

The unforgeability of a message authentication schemeM = (MKG,MAC,MVf)
is defined analogously.

Definition 11 (Collision Resistance). Let λ be the security parameter. Fur-
thermore let H = (HKG,Hash) be a hash function and let A be a PPT algorithm.
We define the following Coll-Res security game GColl-Res

H,A (λ):

Setup. Generate a key s $←− HKG(1λ) and give s to the adversary A.
Output. At some point, A outputs x, x′. Output 1 iff x 6= x′ and Hashs(x) =

Hashs(x′).

We define the advantage function as

AdvColl-Res
H,A (λ) := Pr

[
GColl-Res
H,A (λ) = 1

]
.

We say that a hash function H is collision resistant, if for any PPT adversary A
the advantage function is negligible (as a function in λ).

Definition 12 (PRF Security). Let λ be the security parameter. Furthermore
let F : K × X → Y be a PRF and let A be a PPT algorithm. We define the
following PRF-sec security game GPRF-sec

F,A (λ):

Setup. Sample a bit b $←− {0, 1}, a key k $←− K, and some f $←− Fun[X → Y],
where Fun[X → Y] denotes the set of all functions from X to Y .

Query Phase The adversary A may now query polynomially many labels
xi ∈ X to the challenger and, depending on the bit b, receives either the
value F (k, xi) for b = 0 or f(xi) for b = 1.

Output. At some point, A outputs its guess b′. Output 1 iff b = b′.

We define the advantage function as

AdvPRF-sec
F,A (λ) := Pr

[
GPRF-sec
F,A (λ) = 1

]
.

We say that F is PRF-secure, if for any PPT adversary A the advantage function
is negligible (as a function in λ).

Definition 13 (KDF Security). Let λ be the security parameter. Let kdf :
Σ×N× Salt×Context→ {0, 1}l be a key derivation function with inputs source
keying material σ from Σ, l ∈ N the output length and optional parameters
s ∈ Salt and c ∈ Context. Furthermore, let A be a PPT algorithm. We define the
following KDF-sec security game GKDF-sec

kdf,A (λ):

Setup. Sample (secret) keying material σ with auxiliary information a from
source Σ, as well as a salt value s $←− Salt from all possible salt values. Give
s and a to the adversary A.

Query Phase 1. The adversary A may now query polynomially many pairs
(li, ci) ∈ N×Context to the challenger and receives the values kdf(σ, li, s, ci).

42

Challenge Phase. The adversary A submits (l∗, c∗) to the challenger. The
challenger chooses a bit b $←− {0, 1} uniformly at random, and depending on
the bit b returns the challenge yb where y0 = kdf(σ, l∗, s, c∗) for b = 0 and
y1

$←− {0, 1}l∗ for b = 1 to the adversary.
Query Phase 2. The adversary may make (polynomially many) further calls
to the kdf oracle as in Query Phase 1, with the sole limitation that A may
not query the challenge pair (l∗, c∗).

Output. At some point, A outputs its guess b′. Output 1 iff b = b′.

We define the advantage function as

AdvKDF-sec
kdf,A (λ) := Pr

[
GKDF-sec

kdf,A (λ) = 1
]
.

We say that kdf is KDF-secure, if for any PPT adversary A the advantage func-
tion is negligible (as a function in λ).

43

	Breakdown Resilience of Key Exchange Protocols and the Cases of NewHope and TLS 1.3

