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Abstract. Broken cryptographic algorithms and hardness assumptions are a constant threat to real-
world protocols. Prominent examples are hash functions for which collisions become known, or number-
theoretic assumptions which are threatened by advances in quantum computing. Especially when it
comes to key exchange protocols, the switch to quantum-resistant primitives has begun and aims to
protect today’s secrets against future developments, moving from common Diffie–Hellman-based solu-
tions to Learning-With-Errors-based approaches, often via intermediate hybrid designs.

To this date there exists no security notion for key exchange protocols that could capture the scenario of
breakdowns of arbitrary cryptographic primitives to argue security of prior or even ongoing and future
sessions. In this work we extend the common Bellare–Rogaway model to capture breakdown resilience
of key exchange protocols. Our extended model allows us to study security of a protocol even in case
of unexpected failure of employed primitives, may it be number-theoretic assumptions, hash functions,
signature schemes, key derivation functions, etc. We then apply our security model to analyze two
real-world protocols, showing that breakdown resilience for certain primitives is achieved by both an
authenticated variant of the post-quantum secure key encapsulation mechanism NewHope (Alkim et
al.) which is a second round candidate in the Post Quantum Cryptography standardization process
by NIST, as well as by TLS 1.3, which has recently been standardized as RFC 8446 by the Internet
Engineering Task Force. Finally, we analyze the security of a generic hybrid key exchange protocol,
formally showing how such designs ensure resilience against breakdowns of one of their key exchange
components.

1 Introduction
Modern designs of cryptographic protocols are accompanied by a security proof which reduces the security
of the protocol to the security of the employed cryptographic primitives. The security guarantees for the
protocol are ultimately tied to the security of each individual primitive: with only one of the primitives
being broken, all bets are usually off. However, the actual security guarantees that remain may vary with
the protocol under consideration.

Key exchange protocols in particular often rely on a significant number of cryptographic primitives
and hardness assumptions (e.g., collision resistant hash functions, unforgeable signature schemes, Diffie–
Hellman-type assumptions, etc.). Yet, not all of them may contribute equally to the protocol’s overall
security at every point in time. While in general it is indeed expected that future sessions are vulnerable
once the security of a component in a key exchange is broken, the question is: what can we say about the
secrecy of sessions established prior to that breakdown? For special protocol designs with built-in resilience
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to component failures, we may even be asking for security of ongoing and future sessions if a subset of
components breaks down. The notions of forward secrecy [Gün90, DVOW92, CK01] and post-compromise
security [CCG16] answer these questions only partially, as we will see, for the usage of long-term secrets.
A comprehensive notion of security against breakdowns of arbitrary (keyed and unkeyed) primitives as
well as cryptographic hardness assumptions is however lacking.

1.1 Breakdowns and Mitigations in Real-World Key Exchange

The absence of a precise understanding of primitive breakdowns is despite such disruptions being an
ever present threat, through failures or significant weakening of cryptographic algorithms and assump-
tions. With computational and cryptanalytic capabilities steadily evolving, examples of such incidences
abound and range from weak ciphers like RC4 [GMPS14, ABP+13] over poor Diffie–Hellman parame-
ter choices [ABD+15] to advances in breaking widely deployed hash functions like MD5 [dB94, WY05,
SLdW07] or SHA-1 [WYY05, Ste13, SKP16, SBK+17] enabling key-exchange-level attacks [BL16].

Moreover, the anticipated advent of quantum computers promises to render many of the currently used
cryptographic algorithms and hardness assumptions obsolete. To remedy this situation, post-quantum
secure schemes and in particular key exchange protocols are already developed (e.g., [BCNS15, ADPS16b,
BCD+16, BDK+18]) and have in parts been experimentally deployed (e.g., [Bra16, Lan18]). However,
often only the most crucial cryptographic algorithms are replaced by post-quantum secure alternatives.
Other components of the protocol, especially signature schemes, remain “classical” for the time being.
The reasoning behind this is that exploits for these components would need to happen during the protocol
execution to enable attacks on the key exchange, and not only once quantum computers reach maturity.
Indeed, for example, the authors of the quantum-secure key-exchange protocol NewHope argue that “[. . .]
attacks on the [classical] signature will not compromise previous communication” [ADPS16b]. While this
intuition may be correct, there are no formal justifications for such statements at this point.

Until full confidence in the recently proposed post-quantum schemes and their parameter selection
is established (see, e.g., the NIST post-quantum cryptography standardization effort [NIS17]), so-called
hybrid schemes are seen as a suitable way to guard today’s communications from “record-today-then-
break-later” adversaries, which are often referred to as future quantum adversaries. These key exchange
schemes combine classical and post-quantum secure mechanisms such that the resulting session key remains
secure as long as one of the two (or more) components remains secure. Academia has recently investigated
how to build such hybrid schemes, e.g., from KEM combiners [GHP18, BBF+19]. While [GHP18] solely
treats the construction of KEM combiners, [BBF+19] additionally introduces security notions for hybrid
authenticated key exchange with respect to quantum adversaries, but focuses exclusively on KEM-based
protocols.

1.2 Our Contributions

There is hence a need for a generic formal tool to assess the precise security of key exchange protocols in
case (some) arbitrary underlying primitives or hardness assumptions break.

In this work, we introduce a novel security model that captures Bellare–Rogaway-style key exchange se-
curity under the breakdown of cryptographic primitives and assumptions. We then study the post-quantum
design NewHope by Alkim et al. [AAB+18] as submitted to the NIST post-quantum standardization pro-
cess as well as the Transport Layer Security (TLS) protocol in its latest version 1.3 [Res18] with respect to
their resilience (of past communication) against such breakdowns. Our analyses formally confirm some of
the intuition above, but also exhibit that seemingly minor technical design choices can unforeseenly impair
the breakdown resilience of protocols.
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Through a stronger version of our model, we furthermore capture the impact of cryptographic break-
downs on ongoing and future sessions. While classical key exchange protocols in general guarantee no
security in this setting, for special designs such as hybrid protocols, this notion becomes meaningful. We
demonstrate this by showing how hybrid key exchange designs can satisfy this stronger notion of breakdown
resilience.

Security model for breakdown resilience. To provide a formal ground for analyses concerning the
effects primitive breakdowns have on key exchange protocols, we propose a formal key exchange security
model in Section 3 capturing such breakdowns as an extension to the well-established model by Bellare
and Rogaway [BR94] (which we first recap in Section 2).

In our model, we concretely formalize the effects resulting from the breakdown of some security prop-
erties of (instances of) cryptographic primitives or hardness assumptions by specifying the additional
capabilities the adversary gains through such a breakdown.1 For example, we model the breakdown of an
encryption scheme by granting the adversary access to secret keys, or the breakdown of collision resistance
of a hash function by enabling the adversary (from the point of breakdown onwards) to define inputs to
the hash function to collide arbitrarily. Our model can generically handle other choices for consequences
of breakdowns. The conservative choice here of considering strong break capabilities, such as being able to
find arbitrary collisions, makes the adversary more powerful and thus provides stronger security guarantees
of resistant protocols. It also saves us from specifying dedicated break possibilities for different protocols,
potentially proving breakdown resistance in one case, while being susceptible to attacks in other protocols.
We however stress that our model flexibly supports tailored choices for break capabilities, e.g., if one
prefers to consider a hash function’s security degradation in a more fine-grained manner by distinguishing,
say, arbitrary and structured collisions.

The resulting security notion of breakdown resilience (for a specified set of primitives and corresponding
security assumptions) then demands that keys established in sessions prior to the point of breakdown
remain secure. That is, such keys should still be indistinguishable from random for the adversary, even
when capable of breaking the given primitives.2 It turns out that “half-open” sessions need a special
treatment in this regard, in order to also appropriately capture active attacks on past sessions within the
model. Later (in Section 6), we furthermore consider a strong breakdown resilience variant (for specifically
designed protocols such as hybrid constructions), which demands security even for ongoing and future
sessions.

We formalize breakdowns via an additional Break oracle provided to the adversary beyond the classical
oracles given in a Bellare–Rogaway-style key exchange model. When invoked, the Break oracle fixes the
point in time of the breakdown and grants the adversary with a response and/or further oracle accesses, en-
abling it to break the set of primitives and hardness assumptions specified as a parameter of the model. As
we will see, this mechanism is extremely versatile. Along with our model, we provide possible descriptions
for the behavior of Break for a number of cryptographic primitives and assumptions commonly employed in
key exchange protocols, including encryption and signature schemes, hash functions, key derivation func-
tions, hardness of the discrete logarithm problem, and more. Most importantly, however, our Break oracle
can easily be extended to capture further primitives or different types of security-assumption breakdowns
by simply specifying the information provided to the adversary in case of a breakdown of that primitive
or assumption.

1For any protocol in practice, it will be a specific instance (e.g., MD5 or SHA-1) of a class of primitives (e.g., hash functions)
that is weakened and whose security property breaks down. Our model accordingly allows to distinguish breakdowns of, e.g.,
the primitive (instance) MD5 and the primitive (instance) SHA-1.

2Naturally, we consider any breakdown of a cryptographic component devastating for the employing key exchange protocol’s
future security (as the component could be omitted otherwise), thus we demand security only for previously completed sessions.
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Breakdown resilience of NewHope. We then exercise our model in Section 4 on an authenti-
cated variant of NewHope-Nist, a post-quantum key encapsulation mechanism proposed by Alkim et
al. [AAB+18] and submitted to the NIST Post Quantum Cryptography standardization effort. We first
define Auth-NewHope as a natural, authenticated version of the IND-CPA secure NewHope-Nist KEM
from [AAB+18] by employing authentication via (classical) signatures and MACs following the SIGMA
(SIGn-and-MAc) approach proposed by Krawczyk [Kra03], which has been adopted in major Internet
security protocols like IPsec and TLS.

Using our new formalism, we confirm the intuition that, in particular, a signature breakdown does not
compromise the security of prior completed sessions. For this, we provide a security proof in our model,
establishing breakdown resilience for both signature and MAC unforgeability. As the Auth-NewHope
protocol employs a generic SIGMA-style [Kra03] authentication step following the basic NewHope-Nist
key encapsulation, our results can furthermore be seen as a validation of the breakdown resilience (for
signatures and MACs) achieved by applying SIGMA-style authentication to an unauthenticated key es-
tablishment protocol as a compiler.

Breakdown resilience of TLS 1.3. As the second example, we assess in Section 5 the breakdown
resilience of the key exchange (the so-called handshake) of TLS 1.3, the latest version of the Transport
Layer Security protocol recently standardized as RFC 8446 [Res18]. To this end, we consider two major
handshake modes, the full (elliptic-curve) ephemeral-Diffie–Hellman ((EC)DHE) handshake as well as the
resumption-style (PSK) handshake based on pre-shared keys.

For the (EC)DHE handshake, we prove breakdown resilience for collision resistance of the hash function
used to compute transcript hashes (for key derivation, signatures, etc.) as well as unforgeability of both
the employed signature and MAC scheme. In our analysis, we restrict ourselves to the security of the main
application data key established in a mutually authenticated handshake, omitting more advanced features
of TLS 1.3 in order to focus our attention on the achieved breakdown resilience properties.

For the PSK(-only) handshake, we determine that—perhaps surprisingly at first glance—no breakdown
resilience at all is provided. This is despite the PSK mode following a similar structure as the full handshake
and hence possibly raising hope for similar resistance to a hash function breakdown (signatures are not
used in the PSK mode and MACs do not contribute to its security). However, for reasons rooted in
technical details of the key derivation schedule which we will discuss, hash collision attacks can lead to
a complete break of the PSK mode’s key exchange security. Along with this negative result, we discuss
both mitigations and practical concerns, as well as why including ephemeral Diffie–Hellman shares (in the
combined PSK-(EC)DHE handshake mode) is favorable for not only providing forward secrecy but also
recovering breakdown resilience (for the employed hash function and MAC scheme).

Strong breakdown resilience of hybrid constructions. We finally introduce an even stronger vari-
ant of breakdown resilience that demands security of session keys under component breakdowns even in
ongoing and future sessions. This specifically enables us to argue about the security of hybrid key ex-
change designs which we illustrate through analyzing generic hybrid constructions under one-out-of-two
component breakdowns.

1.3 Related Work and Delineation

Our work extends, and is inspired by, conceptual ideas of prior work on the security of both key exchange
specifically and cryptographic protocols more broadly. Yet, our notion of breakdown resilience is novel
and unmet by any (combination of) previously defined security goals, as we discuss in the following.
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Forward secrecy. While similar in spirit, breakdown resilience should not be confused with the con-
cept of forward secrecy [Gün90, DVOW92, CK01]. Forward secrecy as a security property of session keys
derived in a key exchange protocol demands that even if an involved party’s long-term secret is compro-
mised, any key derived previously remains secure. While this property is closely related to our scenario,
breakdown resilience takes a conceptually distinct approach to forward secrecy (and also stronger secu-
rity models allowing ephemeral key reveal [CK01, LLM07]): its focus is on the breakdown of complete
primitives or hardness assumptions rather than on the exposure of specific protocol values like long-term
keys. Furthermore, breakdown resilience also covers breaks of unkeyed cryptographic building blocks (e.g.,
breaking collision resistance of hash functions) and more generally cryptographic hardness assumptions
such as the discrete logarithm problem.

To make the distinction even more explicit, consider a KEM-based key exchange protocol [BCGP08]
like the scheme based on the Kyber KEM [BDK+18]. In such schemes a static KEM instance usually serves
authentication purposes and an ephemeral KEM instance, based on the same hardness assumption, is used
to establish the key and to provide forward secrecy. A breakdown of the underlying KEM assumption,
however, would also reveal the secret keys of all past sessions. This demonstrates that not all effects of
future compromises of keyed primitives can be captured through the notion of forward secrecy, let alone
breakdowns of unkeyed primitives or assumptions.

Post-compromise security. With their notion of post-compromise security, Cohn-Gordon, Cremers,
and Garratt [CCG16] establish security guarantees for communication after participants have been com-
promisedto various degrees.(Strong) breakdown resilience differs from this notion in that it considers not
the compromise of single parties but the global breakdown of cryptographic building blocks on a protocol
level. Strong breakdown resilience may be seen as a generalization of the concept of post-compromise
security while our standard notion is concerned with the security of sessions that were completed before a
breakdown occurred.

Bitcoin security in the presence of broken primitives. Giechaskiel, Cremers, and Rasmussen [GCR16]
were the first to systematically explore how broken or weakened hash functions and/or signatures affect
the security of Bitcoin. While their study focused on Bitcoin, we present a general framework that can be
applied to analyze a whole class of cryptographic protocols, namely authenticated key exchange protocols,
and may very well be transferable to other kinds of protocols.

Downgrade resilience. A breakdown of a primitive or hardness assumption willingly employed by both
parties conducting a key exchange is conceptually different from a downgrade of a connection to an insecure
cipher suite during the negotiation phase. In the breakdown resilience setting we are concerned with the
security of past sessions after a breakdown has occurred, while downgrade resilience, formally treated by
Bhargavan et al. [BBF+16] and Dowling and Stebila [DS15], assures that weak cipher suites will never be
successfully negotiated in case matching stronger suites are preferred by both participants.

Security analyses of NewHope and TLS 1.3. Prior work on the security of NewHope focused on
the security as an unauthenticated key exchange protocol [ADPS16b]. We augment NewHope to include
authentication and study its security not only as an AKE protocol but also with respect to breakdown
resilience.

TLS 1.3 has received substantial attention from the research community on its way to standardization;
we specifically point to analyses of the handshake protocol in both computational or symbolic models
as well as through formal verification [DFGS15, DFGS16, CHSvdM16, FGSW16, LXZ+16, Kra16, FG17,
BBK17, CHH+17] and also refer to [PvdM16] for a review of the standardization process. In this work we
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do not aim at providing a full key exchange security analysis of the TLS 1.3 handshake modes specified,
but focus on the novel property of breakdown resilience in two main modes, (EC)DHE and PSK, which
has not been studied for TLS 1.3 so far.

Hybrid key exchange. The model for hybrid authenticated key exchange proposed by Bindel et
al. [BBF+19] is a Bellare–Rogaway-style model adjusted to two-stage adversaries with different levels
of quantumness. Their constructions focus on hybrid key encapsulation mechanisms (KEMs), where the
breakdowns are caused exclusively by these quantum adversaries. Our model for (strong) breakdown
resilience offers a more general, alternative approach. It is able to explicitly capture the breakdown of
multiple arbitrary primitives or even hardness assumptions, irrespective of the cause, thus in particular
forgoing the two-stage adversary setting.

2 The Bellare–Rogaway Modelfor Authenticated Key Exchange
We begin by recapping key exchange security in the style of the model by Bellare and Rogaway [BR94] which
forms the basis for our model of breakdown resilience. This model provides strong security guarantees
for authenticated key exchange in the presence of an active adversary. As formalized in the following,
the adversary interacts with protocol instances via oracle queries with the goal to distinguish the real
session key established in a ‘test’ session of its choice from a randomly chosen one (via a Test oracle).
The adversary is considered to have full control over the network (modeled via a Send oracle delivering
messages to key exchange sessions). It is furthermore able to corrupt some of the parties’ long-term secrets
(via a Corrupt oracle) and to reveal some of the established session keys in honest sessions (via a Reveal
oracle).

In this work we focus on the case of mutually authenticated key exchange protocols with pre-specified
peer identities, but note that the model can be extended to capture unilaterally authenticated or anony-
mous key exchange as well as post-specified peers. We furthermore distinguish between protocols providing
and not providing forward secrecy.

Notation and overview. The participants in a key exchange protocol KE are given by elements U
from the set of users U , each of whom holds a long-term public key pkU with corresponding secret key skU .
Each participant can act as initiator or responder of a protocol execution and may run multiple instances,
so-called sessions, of the key exchange protocol in parallel. To uniquely refer to the k-th session owned by
user U ∈ U with intended communication partner V ∈ U on an administrative level, we use the notation
πkU,V . Each such session is associated with the following set of variables:

• role ∈ {initiator, responder} is the session owner’s role in this session.

• stexec ∈ {running, accepted, rejected} denotes the current state of execution (default upon creation:
running).

• sid ∈ {0, 1}∗ ∪ {⊥} indicates the session identifier (default: ⊥).

• stkey ∈ {fresh, revealed} indicates the state of the session key K (default: fresh).

• K ∈ {0, 1}∗ ∪ {⊥} indicates the established session key (default: ⊥).

• tested ∈ {true, false} indicates whether the session key K has been tested or not (default: false).

To be able to refer to a specific entry for a session πkU,V , we use the notation πkU,V .entry. For example,
πkU,V .role specifies the session owner U ’s role in session πkU,V . For simplicity, we sometimes simply write π
and π′ to refer to sessions in a general context where the specific indices do not matter.

6



Partnering of sessions. The partnering of sessions is defined via the session identifiers. More precisely,
we call the session πkU,V owned by U partnered with the session πk′V ′,U ′ owned by V ′ (and vice versa), if the
sessions share the same session identifier, i.e., πkU,V .sid = πk

′
V ′,U ′ .sid 6= ⊥. We require that any execution

between honest instances is partnered.

2.1 Adversary Model

We model the adversary as a probabilistic polynomial time (PPT) Turing machine denoted by A. The
adversary is active and in full control over the network. This implies in particular that—additional to the
interception of messages—the adversary can schedule when (and if) message delivery occurs. Furthermore,
the adversary may alter and inject messages. We assume the adversary learns if a participant in the protocol
has terminated and/or accepted.

Adversarial queries. In order to break key secrecy, the goal of the adversary is to distinguish real from
random session keys. Not all interactions of the adversary with the protocol are admissible at any point.
In particular, there are conditions under which the adversary trivially loses the game, e.g., when both
revealing and testing session keys of partnered sessions as mentioned before. To keep track if one of these
cases has occurred, we leverage a flag lost initialized to false.

The adversary interacts with the protocol via the following oracle queries:

NewSession(U, V, role): Establishes a new session πkU,V for U (with k being the next counter value for
sessions of U with intended partner V ), stores the given role value in πkU,V .role ← role, and returns
the identifier πkU,V .

Send(πkU,V ,m): Causes the message m to be sent to the session πkU,V . If there exists no session πkU,V , the
query outputs ⊥. Else the response of the session owner U upon receipt of message m is returned, and
the state of execution stexec is updated. If stexec changes to accepted with an intended communication
partner V that was previously corrupted, then set stkey ← revealed.

Reveal(πkU,V ): Returns the session key K of session πkU,V . If there exists no session πkU,V or if stexec 6=
accepted, then return ⊥. Otherwise, set stkey to revealed and return K to the adversary.

Corrupt(U): Returns the long-term secret key skU of U to the adversary. No further queries may be
issued to sessions owned by U . In case of no forward secrecy, stkey is set to revealed in all sessions πkV,W
where V = U or W = U .

Test(πkU,V ): Tests the session key of session πkU,V . The oracle uses a test bit btest chosen uniformly
at random at the outset and then fixed during the game execution. For simplicity, we restrict the
adversary to ask a single Test query only. If there exists no session πkU,V or if πkU,V .stexec 6= accepted,
the query returns ⊥. Otherwise, πkU,V .tested is set to true. If btest = 0, a key K $←− D is sampled at
random from the session key distribution D. If btest = 1, K in contrast is set to the actual session
key πkU,V .K. Return K.

2.2 Bellare–Rogaway AKE Security Games

We adopt the approach of Brzuska et al. [BFWW11, Brz13] to separate the overall BR security properties
into the notions of BR-Match security and BR key secrecy. The conditions of BR-Match security guarantee
that the session identifiers sid ensure an appropriate identification of partnered sessions, that at most two
sessions are partnered, and that partnered sessions hold the same key. BR key secrecy then ensures that a
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protocol establishes session keys that are indistinguishable from random strings and (implicitly) mutually
authenticated. This, of course, excludes some trivial attacks like distinguishing revealed session keys from
random keys.

Definition 2.1 (BR-Match Security). Let λ be the security parameter, KE a key exchange protocol,
and A a PPT adversary interacting with KE via the queries defined in Section 2.1 in the following
game GBR-Match

KE,A (λ):

Setup. The challenger generates long-term public/private-key pairs with certificates for each participant
U ∈ U .

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
Send, Reveal, Corrupt, and Test.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GBR-Match
KE,A (λ) = 1, if at least one of the following conditions

holds:

1. There exist two distinct sessions π and π′ with π.sid = π′.sid 6= ⊥, and π.stexec, π
′.stexec 6= rejected,

but π.K 6= π′.K. (Different session keys in partnered sessions.)

2. There exist two sessions π := πkU,V and π′ := πk
′
V ′,U ′ such that π.sid = π′.sid 6= ⊥ , π.role = initiator,

and π′.role = responder, but U 6= U ′ or V 6= V ′. (Different intended partner.)

3. There exist at least three sessions π, π′, and π′′ such that π, π′, π′′ are pairwise distinct, but π.sid =
π′.sid′ = π′′.sid 6= ⊥. (More than two sessions share the same session identifier.)

We say KE is BR-Match-secure if for all PPT adversaries A the advantage function

AdvBR-Match
KE,A := Pr

[
GBR-Match

KE,A (λ) = 1
]

is negligible in the security parameter λ.

Definition 2.2 (BR Key Secrecy). Let λ be the security parameter, KE a key exchange protocol with key
distribution D, and A a PPT adversary interacting with KE via the queries defined in Section 2.1 in the
following game GBR,D

KE,A(λ):

Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U , chooses
the test bit btest

$←− {0, 1} at random, and sets lost← false.

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
Send, Reveal, Corrupt, and Test.

Guess. At some point, A stops and outputs a guess bguess.

Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two (not necessarily distinct)
sessions π, π′ such that π.sid = π′.sid, π.stkey = revealed, and π′.tested = true. (Adversary has tested
and revealed the key in a single session or in two partnered sessions.)

We say that A wins the game, denoted by GBR,D
KE,A(λ) = 1, if bguess = btest and lost = false. Note that the

winning conditions are independent of the forward secrecy property of KE, as forward secrecy is already
taken into account in the Corrupt query.
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We say that KE provides BR key secrecy with/without forward secrecy if for all PPT adversaries A the
advantage function

AdvBR,D
KE,A(λ) := Pr

[
GBR,D

KE,A(λ) = 1
]
− 1

2
is negligible in the security parameter λ.

Definition 2.3 (BR Security). We say a key exchange protocol KE is BR-secure (with/without forward
secrecy) if KE provides BR-Match security and BR key secrecy (with/without forward secrecy), according
to Definitions 2.1 and 2.2.

3 Modeling Breakdown Resilience
For integrating breakdown resilience into the generic (Bellare–Rogaway-style) security model for authenti-
cated key exchange, we are interested in the security of completed sessions in the case that one or multiple
cryptographic primitives or hardness assumptions underlying the key exchange protocol’s security break.
Note that for classical key exchange designs one cannot expect any security guarantees to remain for on-
going and future sessions, as they may crucially rely on the broken primitive’s security. In Section 6, we
will discuss the specific class of hybrid designs which achieve a strong variant of breakdown resilience we
define there, capturing security also of ongoing and future sessions.

Figure 1 illustrates how different scenarios are treated in our model. For now, we are interested in the
question of whether the expected security level is still achieved in past sessions (Scenarios 1 to 3 in Figure 1)
and thus exclude sessions that are still active at the time of breakdown or start after it (Scenarios 4 and 5).
It is however not only the status of the test session which is crucial for the security guarantees, but also
that of a potential (unfinished) communication partner, which we refer to as the associated session. A
breakdown of a primitive in the middle of the communication may enable the adversary to interfere with
the correct partnering of sessions, leading to trivial attacks on the session key in question, which we need
to capture in our model. Consider, for example, a test session that has accepted and has output its last
message, say, to authenticate itself, waiting to be delivered to its intended partner session. Such final-
message authentication is indeed very common in key exchange protocols. An adversary with breakdown
capabilities can now modify this last message, e.g., by forging a new signature, to cause the intended
partner to accept with a different session identifier. Yet, the intended partner may still derive the same
key as our test session as the relevant key material is already established. The adversary could hence safely
learn the session key through a Reveal query on the now unpartnered session, trivially distinguishing the
tested key from random. This situation is depicted in Scenario 3 of Figure 1.

Hence, we need to exclude sessions from being tested that accepted prior to the breakdown but have a
“semi-completed” partner session that, at the time, already holds all the relevant cryptographic material
for the final key derivation (Scenario 3). We use a notion of contributive identifiers (cid) to identify such
almost-partnered sessions. Identical contributive identifiers indicate that sessions may eventually derive
the same key, despite not being partnered yet.

An alternative to using contributive identifiers would be to demand that only sessions that fully com-
pleted before breakdown with an honest partner would be considered valid test sessions (as in Scenario 1).
This, however, would limit the adversary to purely passive attacks in the pre-breakdown phase. In con-
trast, our approach with contributive identifiers is less restrictive, as we still allow the adversary to test
completed sessions without an honest partner (Scenario 2), e.g., where the adversary communicated with
that party.

To capture resilience against breakdowns, we augment our model with a Break query that allows
the adversary to break the security of cryptographic primitives or hardness assumptions contained in a
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breakdown

1

π∗ π∗a
cid

3T

2

π∗ π
∗
a

3T

3

π∗ π∗a
cid

7T

4

π∗(π∗a)
cid

7T

5

π∗(π∗a)
cid

7T

Figure 1: Illustration of (non-)permissible Test queries wrt. a breakdown. The dotted purple line indicates
the point in time of a breakdown with respect to the five scenarios of (completed, running, or future)
test sessions. T denotes a test query on session π∗, π∗a denotes a (potential, if gray) associated session
(semi-)partnered with π∗ holding the same contributive identifier (cid). A checkmark 3 (resp. a cross 7)
indicates whether the test query is admissible or not.

dedicated, specified set FBDR. More precisely, this set has the form FBDR = {(f1, sec-prop1), (f2, sec-prop2),
. . . }, i.e., FBDR contains tuples (f, sec-prop), determining all primitives/hardness assumptions f for which
some security property sec-prop may break. As a result of the Break query, the adversary may—depending
on the broken security property of the primitive or assumption—be given certain key material or access to
additional oracles in the model. To capture that we expect only sessions to remain secure that completed
before the breakdown occurred, we introduce a flag breakdown which is set when Break is called and
checked within the (accordingly modified) Send query. These changes enable us to formalize a model
for breakdown resilience in a generic way. As we will see, our notion of a Break query is versatile and
can capture a wide variety of breakdowns. Primitives and assumptions for which we provide a concrete
specification of a breakdown include, e.g., the unforgeability of signatures, CCA security of encryption
schemes, collision resistance of hash functions, or the discrete logarithm problem. Formal definitions for
a number of these security properties can be found in Appendix A. As it turns out, breakdown resilience
(with/without forward secrecy) provides strictly stronger security than the notion of BR security given in
the previous section.

3.1 Extensions to the Security Model

In the following, we specify the formal extensions made to the basic Bellare–Rogaway-style security model
from Section 2 to capture breakdown resilience.

Breakdown flag. We introduce a global flag breakdown (initialized to false) in the security game, indi-
cating whether the adversary has issued a Break query.

Contributive identifiers. We augment the model with the concept of contributive (session) identifiers.3
Intuitively, contributive identifiers relate two sessions which exchanged the messages establishing the key
material (e.g., values gx and gy in a Diffie–Hellman-style protocol), but are not yet partnered (e.g., because
the authenticating signatures have not been sent yet). In the breakdown setting, contributive identifiers
enable us to specify that we do not expect security of sessions that, at time of breakdown, had a “semi-
partnered” session that shares the same key material. The reason is that the adversary could eventually

3We here use the formalization by Dowling et al. [DFGS15] from their analysis of TLS 1.3 candidate handshakes in
the multi-stage key exchange setting. Contributive identifiers are furthermore related to the concept of “origin-sessions”
for partnering based on matching conversation introduced by Cremers and Feltz [CF12] and the notion of (peer-)exchange
variables used by Bhargavan et al. [BFK+14].
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make this “semi-partnered” party accept after the breakdown for the same session key but a different
session identifier, e.g., by forging the final protocol signature after the breakdown; in this case achieving
key indistinguishability would be impossible. We thus demand that the tested session accepted prior to
the breakdown and does not share a contributive identifier with another session that was still running at
the time of breakdown.

Formally, we add the following variables associated with each session πkU,V :

• cid ∈ {0, 1}∗ ∪ {⊥} indicates the contributive identifier (default: ⊥).

• stbd
exec ∈ {running, accepted, rejected,⊥} denotes the state of execution at the time of breakdown,i.e.,

when the Break query was issued the first time (default prior to breakdown: ⊥).

To avoid trivial choices and to relate the contributive identifiers (cid) to session identifiers (sid) we
add two requirements for Match security: First, as in [DFGS15], same session identifiers must imply same
contributive identifiers, capturing the intuition that partnered session should in particular be contributively
partnered. Second, since we restrict the Test query based on common contributive identifiers, we demand
that at most two sessions share the same cid to prevent that Test queries are excluded by trivial choices
of colliding contributive identifiers.

Break query. We add a Break query to the adversarial queries described in Section 2.1 which allows
the adversary to schedule the timing of breakdowns. The query sets breakdown to true, records the
current execution state of sessions, and provides the adversary with the capability to break the security of
any (f, sec-prop) ∈ FBDR, where FBDR is a fixed parameter of the security game.

Which capability the adversary is given when breaking the security sec-prop of a primitive or assump-
tion f depends on the latter’s type and may, e.g., be exposing all key material used within f to the
adversary or granting it access to additional oracles. We discuss options for the common primitives below
in Section 3.2 and specify the corresponding behavior of Break in Table 1. As we will see, additional prim-
itives and assumptions can easily be added to capture further key exchange designs as the Break query
itself is generic.

Break(): Causes for all (f, sec-prop) ∈ FBDR the breakdown of the security property sec-prop of the
cryptographic primitive or hardness assumption f .
If breakdown = false, for all sessions π record the current state of execution as π.stbd

exec ← π.stexec. Set
breakdown← true. Depending on the entries in the set FBDR, provide the adversary with the responses
and/or oracle accesses specified in Table 1. The Break oracle may be queried repeatedly, which enables
the adversary to obtain an updated response in order to, e.g., receive further key material used in an
encryption scheme since the last call of Break.

Modified Send query. Once the breakdown flag is set to true, ongoing sessions and sessions that are
initiated after the breakdown must be considered revealed as we expect their keys to be affected by the
breakdown. To enforce this, we replace the Send query from Section 2.1 by the following slightly modified
version that sets the session key state to revealed if breakdown = true; the change is underlined in the
following description.

SendBDR(πkU,V ,m): Causes the message m to be sent to the session πkU,V . If there exists no session
πkU,V , the query outputs ⊥. Else the response of the session owner U upon receipt of message m is
returned, and the state of execution stexec is updated. If stexec changes to accepted with an intended
communication partner V that was previously corrupted or if breakdown = true, then set stkey ←
revealed.
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3.2 Breakdown of Primitives and Assumptions

We next specify the behavior of the Break query and capabilities the adversary is provided with for a
number of common cryptographic primitives and hardness assumptions. Table 1 covers a wide range
of standard primitives and assumptions underlying the security of most key exchange protocols (and in
particular the NewHope [ADPS16b] and TLS 1.3 [Res18] protocols we analyze in Sections 4 and 5); due
to space restrictions, we defer for further examples to [BFG17, Table 1].

For keyed primitives (both public-key and secret-key ones), the basic idea for the Break oracle is to
hand to the adversary all secret keys which have been created in protocol executions so far. Since the
adversary in our model can call the Break oracle multiple times it may also access subsequently generated
keys. In order for Break to provide the necessary information, we make the key generation algorithm of a
primitive explicit and have all honest parties invoke it when generating key material for this primitive. For
example, any keys used for an encryption scheme E = (EKG,Enc,Dec) in honest sessions will be generated
via the key generation algorithm EKG, with the challenger in the security game storing the output. This
approach enables the challenger to return an exhaustive list of all secret keys of a primitive up to the point
of breakdown when a Break query is asked.

In key exchange protocols it is common that keys for keyed primitives are not derived via an explicit
key generation algorithm but, e.g., sampled at random or generated through a key derivation function.
We implicitly treat such key derivations as a trivial (identity function) key generation algorithm in our
model, hence recording also such keys for exposure through a Break query.

For unkeyed primitives with a secret input, such as key derivation functions, we model a break of the
output behavior by returning all outputs of evaluations so far. This means for example that the function is
no longer unpredictable or pseudorandom. To capture this formally, we again assume that the challenger
keeps a list of all function outputs generated by honest sessions, in order to provide the according list to
the adversary in case of a Break query.

For public primitives like a hash function H and security properties like collision resistance we have
to capture the increased capabilities of the adversary A after the breakdown differently. Here, regardless
of whether H is modeled as a random oracle RO or considered in the standard model, the adversary A
must be able to generate collisions after the break. To this end, we allow A to program H globally on
previously unseen input values after the breakdown occurred. In particular, after the break A answers all
queries by honest sessions to the hash function H itself (but consistently with previous replies). If, on the
other hand, we aim at modeling breakdown of the one-wayness of a random oracle, we instead hand the
adversary all input-output pairs which honest parties have evaluated.

Finally, we can also treat the breakdown of interesting cryptographic assumptions for key exchange via
the Break oracle. We illustrate this here by the discrete logarithm problem (DLP) and the factoring prob-
lem, which we treat similarly to public-key primitives. For the example of DLP, we mandate that honest
sessions invoke a given algorithm GroupExp for group exponentiations, which then allows the challenger
in the security game to provide the adversary with all secret exponents employed in honest sessions on
a Break query. Note that for related cryptographic assumptions, the breakdown of one assumption can
imply the breakdown of the other. For example, we can restrict our attention to DLP for Diffie–Hellman-
style protocols, as (resilience against) a breakdown of DLP in particular implies (resilience against) the
breakdown of other commonly used assumption like DDH and CDH.

We stress that Table 1 only gives (conservative) recommendations on how the Break oracle can be
implemented for the most common primitives and hardness assumptions in the area of key exchange.
Depending on the security properties required from the primitives in a specific key-exchange setting, one
may wish to specify different responses for the Break query. Again, this is easily possible in our model as
the Break query itself is generic.
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Primitive or
Cryptographic

Hardness Assumption
(f)

Algorithms Security Assumption
(sec-prop)

Break Response

Asymmetric or Symmetric
Encryption Scheme E

E = (EKG,Enc,Dec) IND-CCA2
(indistinguishability under adap-
tive chosen ciphertext attack)

return all previous out-
puts (pk, sk) or sk for
which (pk, sk) ← EKG or
sk← EKG

Signature Scheme S S = (SKG, Sig, SVf) EUF-CMA
(existential unforgeability under
chosen message attack)

return all previous pairs
(pk, sk)
for which (pk, sk)← SKG

MAC SchemeM M = (MKG,MAC,MVf) EUF-CMA
(existential unforgeability under
chosen message attack)

return all previous values
sk for which sk← MKG

Hash Function Family H H = (HKG,Hash) STD-Coll-Res
(standard-model collision resis-
tance)

programmable access to
Hash:
After breakdown, A sets
output of Hash queries on
previously unseen values

H = (HKG,RO) RO-Coll-Res
(random-oracle collision resis-
tance)

programmable access to
RO:
After breakdown, A sets
output of RO queries on
previously unseen values

H = (HKG,Hash) Sec-Pre-Res
(second preimage resistance)

programmable access to
Hash:
After breakdown, A can
set output of Hash query
on previously unseen
value x′ to y, where
y = H(x) for some
previously seen value x

H = (HKG,RO) RO-Rand
(random-oracle randomness)

return all previous s for
which s← RO(·)

H = (HKG,RO) RO-One-Way
(random-oracle one-wayness)

return all previous pairs
(x, s) for which s ←
RO(x)

Key Derivation Function
KDF

KDF KDF-sec
(output pseudorandomness)

return all previous values
k for which k ← KDF

KDF = RO RO-Rand
(random-oracle randomness)

return all previous k for
which k ← RO(·)

KDF = RO RO-One-Way
(random-oracle one-wayness)

return all previous pairs
(k, x) for which
k ← RO(x)

Pseudorandom Function
Family P

P = (PKG,PRF) PRF-sec
(output pseudorandomness)

return all previous values
k for which k ← PKG

P = (PKG,RO) RO-Rand
(random-oracle randomness)

return all previous s for
which s← RO(·)

P = (PKG,RO) RO-One-Way
(random-oracle one-wayness)

return all previous pairs
(x, s) s.t. s← RO(x)

Discrete Log Assumption GroupExp(h, x) = hx in
multiplicative cyclic
group G = 〈g〉, h ∈ G

Discrete Logarithm
Problem

return all previous pairs
(x, hx) for which hx ←
GroupExp(h, x)

Factoring Assumption GenModulus(1n) = (N,
p, q) s.t. N = p · q where
p, q are n-bit primes

Prime Factorization return all previous
tuples (N, p, q) for
which (N, p, q) ←
GenModulus(·)

Authenticated Key
Exchange KE

two-party protocol KE,
outputs session identi-
fier sid and key K, and
has transcript transcript

BR security return all established
keys K

Table 1: Potential Break oracle specifications.
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3.3 Modeling Rationale

Let us pause to briefly provide some further insight into the rationale behind our model for breakdown
resilience in general and the Break oracle specifically.

BDR vs. Forward Secrecy. Breakdown resilience aims at a broader setting than forward secrecy,
leading to a generic Break oracle. While both settings permit the exposure of long-term secrets after
the tested session has accepted, breakdown resilience also needs to capture cryptographic weaknesses in
primitives with ephemeral keys only or in unkeyed primitives.

To make this distinction even more explicit at this point, consider a KEM-based key exchange proto-
col [BCGP08] like the scheme based on the Kyber KEM [BDK+18]. In such designs a static KEM instance
usually serves authentication purposes and an ephemeral KEM instance, based on the same hardness as-
sumption, is used to establish the key and to provide forward secrecy. A breakdown of the underlying
KEM assumption, however, would also reveal the secret keys of all past sessions. This demonstrates that
not all effects of future compromises of keyed primitives can be captured through the notion of forward
secrecy, let alone breakdowns of unkeyed primitives or assumptions.

Power of Break Capabilities. In Table 1, we give possible specifications for how to model the break
capabilities of an adversary. The strong design choices there follow common cryptographic tradition to
consider even weak attacks as successful and to then prove security against the strongest possible attacks.
While less powerful definitions of break capabilities are possible, these weaker notions may give rise to a
false sense of security as a breakdown may have more dire consequences than actually accounted for in the
model.

Furthermore, we believe that defining breakdowns as a direct counterpart to the security notions often
yields rather weak security notions. As an example, imagine the break of the commonly assumed existential
unforgeability of signatures (EUF-CMA security). If one were to model EUF-CMA breaks as the weakest
form of breaking the assumption, the adversary would only be provided with a forged signature on some
message m. A KE protocol with some structure in its messages would then easily achieve breakdown
resilience with respect to such break (even in the strong BDR model), but any actual vulnerability of the
signature scheme enabling forgeries on specific messages would not be covered by such weak security result.

Nevertheless, we deliberately choose to only give suggestions for the Break oracle specifications. While
this allows to define different ways of how a certain primitive breaks down, such distinct breaks might
indeed be meaningful for different settings. The only assumption made in the security model is hence that
any break is devastating for the protocol (as of the Send query definition), except in the strong BDR model
discussed in Section 6.

3.4 Breakdown-Resilient AKE Security Games

We are now ready to define the security notion of breakdown resilience (BDR) for an authenticated key
exchange protocol. Extending the Bellare–Rogaway-like model from Section 2, we similarly divide the
security properties into BDR-Match security and BDR key secrecy. Both security notions differ from the
original Bellare–Rogaway-like notions by including the set of primitive breakdowns FBDR under considera-
tion and the novel Break query as well as replacing the original Send oracle by the modified SendBDR version.
The BDR-Match definition furthermore reflects that contributive identifiers must coincide in matching ses-
sions but be distinct otherwise, while BDR key secrecy leverages the introduced contributive identifiers to
exclude test sessions with semi-completed partners at the time of breakdown.
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Definition 3.1 (BDR-Match Security). Let λ be the security parameter, KE a key exchange protocol, and
A a PPT adversary interacting with KE via the queries NewSession, SendBDR, Reveal, Corrupt, and Break
in the following game:

Setup. The challenger generates long-term public/private-key pairs with certificates for each participant
U ∈ U .

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
SendBDR, Reveal, Corrupt, Test, and Break.

Stop. At some point, the adversary stops with no output.

Let FBDR be a set of cryptographic primitives and hardness assumptions the adversary can break in the
model. We say that A wins the above game, denoted by GBDR-Match(FBDR)

KE,A (λ) = 1, if at least one of the
following conditions holds:

1. There exist two distinct sessions π and π′ with π.sid = π′.sid 6= ⊥, and π.stexec, π
′.stexec 6= rejected,

but π.K 6= π′.K. (Different session keys in partnered sessions.)

2. There exist two distinct sessions π and π′ such that π.sid = π′.sid 6= ⊥, but π.cid 6= π′.cid or π.cid =
π′.cid = ⊥. (Different or unset contributive identifiers in partnered sessions.)

3. There exist two sessions π := πkU,V and π′ := πk
′
V ′,U ′ such that π.sid = π′.sid 6= ⊥ , π.role = initiator,

and π′.role = responder, but U 6= U ′ or V 6= V ′. (Different intended partner in partnered sessions.)

4. There exist at least three sessions π, π′, and π′′ such that π, π′, π′′ are pairwise distinct, but π.sid =
π′.sid′ = π′′.sid 6= ⊥ or π.cid = π′.cid′ = π′′.cid 6= ⊥. (More than two sessions share the same session
or contributive identifier.)

We say KE is BDR-Match-secure for FBDR if for all PPT adversaries A the advantage function

AdvBDR-Match(FBDR)
KE,A := Pr

[
G

BDR-Match(FBDR)
KE,A (λ) = 1

]
is negligible in the security parameter λ.

Definition 3.2 (BDR Key Secrecy). Let λ be the security parameter, KE a key exchange protocol with key
distribution D, and A a PPT adversary interacting with KE via the queries NewSession, SendBDR, Reveal,
Corrupt, Break, and Test in the following game:

Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U , chooses
the test bit btest

$←− {0, 1} at random and sets lost← false.

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
SendBDR, Reveal, Corrupt, Test, and Break.

Guess. At some point, A stops and outputs a guess bguess.

Finalize. The challenger sets the lost flag to lost← true if at least one of the following conditions hold:

1. There exist two (not necessarily distinct) sessions π, π′ such that π.sid = π′.sid, π.stkey = revealed,
and π′.tested = true. (Adversary has tested and revealed the key in a single session or in two
partnered sessions.)
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2. There exist two distinct sessions π, π′ such that π.tested = true, π.cid = π′.cid, and π′.stbd
exec =

running. (Adversary has tested a session whose contributive partner session was running at the
time of breakdown.)

Let FBDR be a set of cryptographic primitives and hardness assumptions the adversary can break in the
model. The adversary A wins the game, denoted by GBDR(FBDR),D

KE,A (λ) = 1, if bguess = btest and lost = false.
We say that KE provides BDR key secrecy for FBDR with/without forward secrecy if for all PPT

adversaries A the advantage function

AdvBDR(FBDR),D
KE,A (λ) := Pr

[
G

BDR(FBDR),D
KE,A (λ) = 1

]
− 1

2

is negligible in the security parameter λ.

Definition 3.3 (Breakdown Resilience). We say a key exchange protocol KE is breakdown resilient
for FBDR (with/without forward secrecy) if KE provides BDR-Match security and BDR key secrecy for FBDR
(with/without forward secrecy), according to Definitions 3.1 and 3.2.

3.5 Fundamental Properties

Since the model for breakdown resilience is a proper extension of the Bellare–Rogaway model for authen-
ticated key exchange given in Section 2, breakdown resilience implies BR security.

Proposition 3.4. If a key exchange protocol KE achieves breakdown resilience for some FBDR (incl.
FBDR = ∅) with/without forward secrecy according to Definition 3.3, then KE is also BR-secure with/without
forward secrecyaccording to Definition 2.3.

Proof. If the Break query is not asked by the adversary, the flag breakdown and the modification to the
original Send query are essentially not touched and may thus be omitted. Likewise, the Finalize condition 2
in Definition 3.2 becomes void as stbd

exec = ⊥ for all sessions. But then the models and in particular the
Match security definition (modulo contributive identifiers) and the key secrecy definition for breakdown
resilience and original BR security coincide.

As mentioned earlier, it is often convenient to consider breakdown resilience for a stronger crypto-
graphic hardness assumption than the one employed in a (non–breakdown-resilient) security proof, with
DLP vs. DDH and CDH being a specific example. We hence make this relation more precise via the fol-
lowing proposition, which may prove useful when considering the breakdown of a cryptographic hardness
assumption X whose breakdown implies the ability to break some other assumption Y . In our setting this
means that one can provide the reply of the Break oracle for Y by the answer for X. We say that solving
X implies solving Y .

Proposition 3.5. Let Π be some protocol and let X and Y be some cryptographic hardness assumptions
with X ∈ FBDR, but Y 6∈ FBDR. Assume that solving X implies solving Y . Then, if Π is breakdown
resilient for FBDR, then Π is also breakdown resilient for F ′BDR = FBDR ∪ {Y }.

Proof. We can directly simulate the Break query for F ′BDR via a Break query for FBDR, since the Break
response for X allows to provide the response for Y .
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4 NewHope
As a first application of our new security model, we analyze the breakdown resilience of an authenticated
variant of the NewHope scheme. NewHope is a post-quantum secure key exchange protocol originally
introduced in 2016 by Alkim et al [ADPS16b]. It has gained widespread attention, not least because of its
experimental deployment in Google Chrome Canary [Bra16]. The same year, a simpler encryption-based
version NewHope-Simple was introduced [ADPS16a]. Contrary to the previous reconciliation-based
design this variant is based on encryption of the shared key and constitutes the basis for the candidate
key encapsulation schemes [AAB+18] that were submitted to the NIST Post-Quantum Cryptography
standardization process [NIS17] and have made it into the second round of the process. The post-quantum
security of all NewHope schemes is based on the ring learning with errors problem (RLWE), which states
that as+ e for secret s, public a, and small error e is indistinguishable from random.

In our analysis, we consider an authenticated version of the passively secure KEM provided in the
NIST candidate submission NewHope-Nist [AAB+18]. For illustrative purposes, the description of
Auth-NewHope in Figure 2 has been divided according to the two phases of the unauthenticated
NewHope-Nist key encapsulation and the ensuing SIGMA-style authentication. One can, of course,
condense the entire protocol in a three-move key exchange by having Alice send rA in the first step and
Bob attach B, rB, σB, τb to its last message in the NewHope step. This does not affect our security proof
of breakdown resilience. For details on the key encapsulation mechanism and its IND-CPA security, we
refer the interested reader to the original specification in [AAB+18, Sec.1.2].

4.1 Cryptographic Assumptions

Auth-NewHope relies on the following cryptographic primitives and hardness assumptions: IND-CPAsecurity
of the key encapsulation mechanism KEM, pseudorandomness of the key derivation function KDF, and ex-
istential unforgeability of the signature scheme S and MAC scheme M. The definition for the standard
cryptographic assumptions, such as the unforgeability of signatures and KDF security can be found in
Appendix A. Before we can define the decisional Ring-LWE problem formally, we first need to fix some
commonly used notation.

Notation. Let R = Z[X]/Xn + 1 for n = 2m,m ≥ 0 be the ring of integers of the 2n-th cyclotomic
number field. For q an integer, define Rq to be the ring R/qR ∼= Zq[X]/(Xn + 1). By x $←− χ we denote
the sampling of x from a probability distribution χ. Let U(S) denote the uniform distribution over some
set S.

With this, we can state the decisional version of the Ring-LWE problem upon which the security of
the NewHope schemes is based:

Definition 4.1 (DRLWE Problem). Let n, q,R,Rq be defined as above. Let χ be some probability distri-
bution over Rq. The decisional Ring-LWE problem DRLWE states that given (a, b) Rq ×Rq, it is hard to
decide if b = as + e for s, e $←− χ small ring elements or if b is a uniform ring element b $←− U(Rq). More
precisely, the distinguishing advantage for b = as+ e and b′ $←− Rq is given by

AdvDRLWE
q,n,χ,A :=

∣∣Pr[A(a, b) = 1]− Pr[A(a, b′) = 1]
∣∣ .

4.2 Breakdown Resilience of Auth-NewHope

In the following, we show that Auth-NewHope achieves breakdown resilience for FBDR = {(S,EUF-CMA),
(M,EUF-CMA)} with forward secrecy by establishing the corresponding BDR-Match security and BDR
key secrecy. Note that FBDR neither contains the IND-CPA security of KEM nor the key derivation
function KDF, as a break of any of these makes key secrecy impossible to achieve.
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Alice Bob
(pk, sk) $←− KEM.KG(1λ)

pk

c,K ← KEM.Encaps(pk)

c

K ← KEM.Decaps(sk, c)

Kapp ← KDF(K, "KE")

Kmac ← KDF(K, "MAC")
t← (pk, c)

rA
$←− {0, 1}λ rA

rB
$←− {0, 1}λ

σB ← Sig(skB, "0"||t||rA||rB)
τB ← MAC(Kmac, "0"||B)

B, rB, σB, τB

abort if SVf(pkB, "0"||t||rA||rB, σB) = 0
or if MVf(Kmac, "0"||B, τB) = 0

cid = (pk, c, rA, rB, B)

σA ← Sig(skA, "1"||t||rA||rB)
τA ← MAC(Kmac, "1"||A)A, σA, τA

abort if SVf(pkA, "1"||t||rA||rB, σA) = 0
or if MVf(Kmac, "1"||A, τA) = 0

K = Kapp, sid = (pk, c, rA, rB, A,B)

Figure 2: The Auth-NewHope protocol with the IND-CPA-secure KEM KEM from NewHope-Nist
above the double line and SIGMA-style authentication.

Theorem 4.2 (BDR-Match security of Auth-NewHope). Let FBDR = {(S,EUF-CMA), (M,EUF-CMA)}.
Then Auth-NewHope is BDR-Match-secure for FBDR. For any efficient adversary A we have

AdvBDR-Match(FBDR)
A-NH,A ≤ n2

s ·min
{

coll-pk, coll-c, 2−|nonce|
}
,

where ns is the maximum number of sessions, coll-pk is the probability that the same public key is generated
twice, coll-c is the probability that the same ciphertext is encapsulated twice, and |nonce| is the bit-length
of the nonces rA and rB.

Proof. In order to achieve BDR-Match Security, we need to show that the four conditions are satisfied
(cf. Definition 3.1). Recall that the session identifiers are defined as sid = (pk, c, rA, rB, A,B), containing
public information only, and that the contributive identifiers are set as cid = (pk, c, rA, rB, B).
Ad (1). Since the session identifier already determines all inputs to the key derivation function KDF,
partnered sessions necessarily also agree on the session key.
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Ad (2). Since cid contains all entries in sid except for A’s identity, it trivially holds that same session
identifiers imply identical contributive identifiers.
Ad (3). Both identifiers A and B are comprised in the session identifier. Thus, agreement on the session
identifier implies agreement on the intended partner’s identity.
Ad (4). In order for three sessions sharing the same session or contributive identifier, with respect to two
honest sessions, a third honest session must have, depending on its role, a collision in either the public key pk
and rA or the ciphertext c and rB. This will only happen with probability at most min

{
coll-pk, coll-c, 2−|nonce|

}
.

There are at most n2
s many combinations of the initial two sessions, where ns denotes the maximum number

of protocol executions, arriving at the final bound.

Theorem 4.3 (BDR key secrecy of Auth-NewHope).
Let FBDR = {(S,EUF-CMA), (M,EUF-CMA)}. Then Auth-NewHope achieves breakdown-resilient key
secrecy for FBDR with forward secrecy. More precisely, for any efficient, adversary A there exist efficient
adversaries B1, . . . , B4 such that

AdvBDR(FBDR),D
A-NH,A ≤ n2

s · 2−|nonce| + ns ·
(
nu · AdvEUF-CMA

S,B1 + ns ·
(
AdvIND-CPA

KEM,B2 + AdvKDF-sec
KDF,B3 + AdvEUF-CMA

M,B4

))
,

where ns is the maximum number of sessions, nu is the maximum number of users, and |nonce| is the
bit-length of the nonces.

Proof. For the proof, we proceed in a sequence of games, bounding the difference in the adversary’s
advantage introduced in each step, until we reach a game where the adversary cannot win anymore.

Game 0. The original BDR key secrecy game GBDR(FBDR),D
A-NH,A .

Game 1. We abort the game if there are two sessions of honest parties which generate the same nonce
rA resp. rB. The probability of this happening is at most ns · 2−|nonce|, where ns denotes the maximum
number of sessions, since nonces in any n2

s possible pair of sessions are both chosen at random.
We thus have

AdvG0
A-NH,A ≤ AdvG1

A-NH,A + n2
s · 2−|nonce|.

Game 2. We proceed by guessing the tested session, thus reducing our reduction’s advantage by a factor
of at most 1

ns
:

AdvG1
A-NH,A ≤ ns · AdvG2

A-NH,A.

In the following, this allows us to know the tested session, denoted by π∗, in advance. Observe that
π∗ must have accepted (and received all incoming messages) prior to the first Break query issued by A in
order for the latter to win, as otherwise its session key would be considered revealed.

Game 3. Next, we abort the game if the tested session π∗, run by some party P (where P may be
Alice or Bob), obtains a valid signature σQ on ("b"||t||rA||rB) which has not been signed by an honest
party Q at this point. Recall that this message must have been received prior to any Break query, in
particular before a breakdown of S, as otherwise π∗ would be considered revealed and could not be tested.
Furthermore, long-term secrets of the involved parties may not be corrupted before the test session has
accepted. Forward secrecy is achieved since a subsequent Corrupt query on the owner of the test session
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π∗ (or its intended partner) does not contradict the fact that π∗ receives an honestly generated signature
according to this game hop.

We now show that the probability of an abort happening for this reason can be bounded by the
success probability of the following reduction B1 against the unforgeability of the signature scheme S.
The reduction B1 receives a public key pk∗ as challenge and guesses the party Q under whose name the
forgery obtained in π∗ is issued. It creates all parameters for the key exchange as specified, except for
setting pkQ = pk∗. Any signature creation of Q is performed through a query to the signature oracle, all
other steps can be carried out by B1 itself. If at some point the tested session π∗ accepts a signature for a
previously unsigned message, then B1 outputs this message-signature pair as a forgery. In this case, since
the nonces are unique and the valid signature has not been created by an honest party before, party Q
cannot have signed ("b"||t||rA||rB) earlier, only ("b’"||t||rA||rB) for b′ = 1− b (if at all). With probability
1
nu

, where nu is the total number of users, our reduction predicts the party Q correctly, such that we have

AdvG2
A-NH,A ≤ AdvG3

A-NH,A + nu · AdvEUF-CMA
S,B1 .

Game 4. In the next step, we guess the honest session π∗a of party Q which has sent the valid signature
σQ received by π∗ in Game 3 and abort if we guessed incorrectly. This session is unique because the nonces
are unique and there must be such a session which creates the signature according to the previous game.
Still, the session may not necessarily be partnered with the test session, but must (at least) have the same
contributive identifier, such that we call this session associated.

Changing the game like this reduces the adversary’s advantage by a factor of at most 1
ns
, with ns again

being the maximum number of sessions. Hence, we have

AdvG3
A-NH,A ≤ ns · AdvG4

A-NH,A.

Game 5. As the next step, we replace the value K in the test session (and its associated session π∗a) by a
uniformly random value K̃ of equal length.. If the adversary A can distinguish Game 5 from Game 4, then
there exists an adversary B2 that can break the IND-CPA security of the key encapsulation mechanism
KEM as follows.

Algorithm B2 obtains its challenge public key, ciphertext and key pk, c∗,K∗, where either (c∗,K∗) $←−
KEM.Encaps(pk) or K∗ is a random element from the key space. B2 simulates the environment for A by
creating all long-term keys of participants as specified and initializing A with the corresponding public
keys of participants. This ensures in particular, that B2 can answer all NewSession and Corrupt queries of
the adversary. Furthermore, B2 can execute all Send requests by A for sessions π 6= π∗, π∗a . For π∗ and π∗a ,
B2 uses its challenge pk and c∗ for the first two message flows. The session key Kapp and the MAC key
Kmac are computed as the KDF keyed with K∗ and the respective label. B2 can also answer all Reveal for
sessions that are not the Test session or its associated session. For the π∗ and π∗a , A will not query Reveal
since this would cause it to trivially lose the game.

Once A queries Test on π∗, B2 computes the challenge key for A as K ← KDF(K∗, "KE"),i.e., when
computing the keys Kapp and Kmac in the two sessions, the given value K∗ is used instead as input to the
key derivation function KDF. At some point, A terminates and outputs a guess bit bguess. Upon this, B2
also terminates and outputs the same bguess.

If K∗ is genuine, then the simulation above is as in Game 4. If K∗ is random, B2 simulates Game 5.
Hence, if the efficient adversary A can distinguish the two games with non-negligible advantage, then B2
can distinguish real from random keys in key encapsulation mechanisms efficiently with non-negligible
advantage. It follows that

AdvG4
A-NH,A ≤ AdvG5

A-NH,A + AdvIND-CPA
KEM,B2 .
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Since (KEM, IND-CPA) is not part of FBDR, this bound especially holds in the BDR scenario..

Game 6. Next, we replace the session key K = Kapp and the MAC key Kmac by uniformly random
values K̃app and K̃mac in π∗ and π∗a . Distinguishing Game 6 and Game 5 by A would immediately
imply the existence of an efficient adversary B3 that breaks the pseudorandomness of KDF with non-
negligible advantage. For this, B3 simply replaces KDF executions keyed with w̃ by oracle calls in the
pseudorandomness game, simulating one of the two games depending on the oracle response. Thus, we
have

AdvG5
A-NH,A ≤ AdvG6

A-NH,A + AdvKDF-sec
KDF,B3 .

As (KDF, ·) 6∈ FBDR, this bound again particularly holds in the BDR scenario.

There are now four possibilities for the status of the associated session π∗a . First, at the point of the
breakdown query, the associated session had not accepted yet, i.e., if π∗a owned by Q is a Bob instance and
waited for the final authentication message. But then π∗a ’s state was running and its contributive identifier
was, and is, identical to the one in P ’s session π∗, since the signature is over the entries in cid and Q knows
resp. sent its identifier. This however means that the adversary is not allowed to test the session it has
actually tested, by definition of a successful attack.

If the associated session π∗a had already finished upon the breakdown query, then it either is partnered
with the test session (and thus cannot be revealed), or rejected (in which case it does not hold a session
key), or it has accepted but is not partnered with the test session. The latter case would mean that the
adversary would be allowed to safely reveal the session key of the associated but unpartnered session and
could break key secrecy. Yet, this would lead to a contradiction of the unforgeability of the MAC, as we
discuss next.

Game 7. As the next change, we abort the game if the associated session π∗a of party Q accepts before the
breakdown query with a session identifier π∗a .sid 6= ⊥ which does not equal π∗.sid. This can only happen if
the adversary is able to make π∗a obtain a valid signature σR and MAC τR for some identity R 6= P since all
entries except for the peer identity of π∗a .sid are already fixed at this point. We assume that the associated
session has already accepted and that no Break query has occurred yet. In particular, while the adversary
may be able to sign under a corrupt party’s identifier R for which the adversary may know the signing
key due to a Corrupt query, the MAC scheme, on the other hand, must still be secure. Furthermore, the
MAC tag depends on the key Kmac shared between the honest parties P and Q and includes the sender’s
identity.

Similarly to Game 3, the probability of an abort happening for this reason can be bounded by the
success probability of an adversary B4 against the unforgeability of the MAC scheme M. That is, since
we have already replaced the key Kmac by an independent random value, we can use an external MAC
oracle for an unknown key in a simulation instead, and use oracle queries to create the MACs for "b"||P
and "b’"||Q for b′ = 1− b as required in the test session and its associated session. It follows that a valid
MAC τR for "b"||R created by the adversary for identity R 6= P in the associated session constitutes a
successful forgery for a fresh message. We have

AdvG6
A-NH,A ≤ AdvG7

A-NH,A + AdvEUF-CMA
M,B4 .

To complete the proof we note that the adversary expects the challenge value K to be either a uniformly
random string (btest = 0) or to be the output of KDF(w, ”KE”) (btest = 1). At this point, both cases btest = 0
and btest = 1 are indistinguishable for A since both keys are of equal length and are drawn independently
and uniformly at random. Furthermore, the session key in the associated session (which coincides with the
now random key K in case of btest = 1 and is independent of K for btest = 0) cannot be revealed, because
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that session is either partnered or held the same contributive identifier upon breakdown. Thus A cannot
learn any information about the bit btest. The only strategy for A is to guess and thus we have the final
bound:

AdvG7
A-NH,A ≤ 0.

Proof sketch. For the proof, we proceed in a sequence of games, bounding the difference in the adversary’s
advantage introduced in each step, until we reach a game where the adversary cannot win anymore.

Game 1. We first exclude collisions in the nonces rA, rB by aborting if two honest sessions generate the
same nonce. We thus have AdvBDR(FBDR),D

A-NH,A ≤ AdvG1
A-NH,A + n2

s · 2−|nonce|.

Game 2. We proceed by guessing the tested session, reducing our advantage by a factor of at most 1
ns
,

i.e., AdvG1
A-NH,A ≤ ns · AdvG2

A-NH,A. This allows us to know the tested session, denoted by π∗, in advance.

Game 3. Next, we abort the game if the tested session π∗, run by some party P , obtains a valid sig-
nature σQ on ("b"||t||rA||rB) which has not been signed by an honest party Q at this point. Note that
this message must have been received prior to any Break query, in particular before a breakdown of S as
otherwise P ’s session would be considered revealed and could not be tested. This step is bound by a re-
duction B1 to the unforgeability of signatures. With probability 1

nu
, where nu is the total number of users,

our reduction predicts the party Q correctly, such that we have AdvG2
A-NH,A ≤ AdvG3

A-NH,A+nu ·AdvEUF-CMA
S,B1 .

Game 4. We now guess the honest session π∗a of party Q which has sent the valid signature σQ received by
π∗ in Game 3 and abort if we guessed incorrectly; such a session must exist uniquely due to Games 1 and 3.
Still, the session may not necessarily be partnered with the test session, but must (at least) have the same
contributive identifier, such that we call this session associated. Hence, we have AdvG3

A-NH,A ≤ ns·AdvG4
A-NH,A,

where ns denotes the maximal number of sessions.

Game 5. Next, we replace the valueK in π∗ (and its associated session π∗a) by a uniformly random value K̃
of equal length. We bound the distinguishing advantage by the advantage of a reduction B2 against the
IND-CPA security of the NewHope KEM: AdvG4

A-NH,A ≤ AdvG5
A-NH,A+AdvIND-CPA

KEM,B2 . Since (KEM, IND-CPA)
is not part of FBDR, this bound especially holds in the BDR scenario.

Game 6. We now replace the session key K = Kapp and the MAC key Kmac by uniformly random values
in π∗ and π∗a . Distinguishing Game 6 and Game 5 can be reduced to an efficient adversary B3 breaking
the pseudorandomness of KDF. Thus, we have AdvG5

A-NH,A ≤ AdvG6
A-NH,A + AdvKDF-sec

KDF,B3 . As (KDF, ·) 6∈ FBDR,
this bound again particularly holds in the BDR scenario.

As the last step we need to ensure that the adversary cannot make the associated session accept under
a different session identifier before the breakdown (enabling a Reveal query to it), which we do by showing
through the next game hop that this would imply a MAC forgery. If the associated session would accept
later, it being contributively partnered with the test session at the point of breakdown prohibits the test
query.

Game 7. As the final change, we abort if the associated session π∗a accepts before the breakdown with a
session identifier π∗a .sid 6= ⊥ which does not equal π∗.sid. This can only happen if the adversary is able to
make π∗a obtain a valid signature σR and MAC τR for some identity R 6= P ; the latter constitutes a valid
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MAC forgery usable in a reduction B4 to the MAC schemes EUF-CMA security. We have AdvG6
A-NH,A ≤

AdvG7
A-NH,A + AdvEUF-CMA

M,B5 .

To complete the proof we note that the adversary expects the challenge key to be either a uniformly
random string or to be the output of KDF(K, ”KE”). Here, both cases are indistinguishable since both keys
are drawn independently and uniformly at random and so the adversary cannot do better than guessing:
AdvG7

A-NH,A ≤ 0.

Remark. It may be surprising at first that the unforgeability of the signature and MAC scheme enter
into the security bound of Theorem 4.3 although the signature scheme S as well as the MAC schemeM
are afflicted by the breakdown. However, both the valid signature obtained by π∗ in Game 3 as well as the
MAC tag in Game 7 must necessarily have been created before a breakdown had occurred. Thus, both
unforgeability assumptions still hold at the respective points in time.

5 TLS 1.3
We now turn towards the second protocol for our exemplary breakdown resilience analysis, the Transport
Layer Security (TLS) protocol in its latest version 1.3 [Res18]. Although not designed with breakdown
resilience as a security goal in mind, the TLS 1.3 key exchange (or “handshake”) achieves resilience against
the breakdown of some of its cryptographic components, as we will see.

TLS 1.3 specifies four different handshake modes: a full Diffie–Hellman-based handshake (referred
to as (EC)DHE mode), a resumption-style pre-shared key mode (PSK), a PSK mode combined with a
Diffie–Hellman exchange (PSK-(EC)DHE), and a low-latency, zero round-trip (0-RTT) mode based on the
PSK modes. Providing a full key exchange security analysis of these modes is beyond the scope of this
work; for this we refer to prior analyses [DFGS15, DFGS16, CHSvdM16, FGSW16, LXZ+16, Kra16, FG17,
BBK17, CHH+17] and also to [PvdM16] for a review of the standardization process. In our analysis, we
focus on the full/(EC)DHE and PSK(-only) handshake modes, which suffice to demonstrate some essential
breakdown-resilience properties of TLS 1.3.

Interestingly, despite both handshake modes following the same overall protocol structure, the (EC)DHE
and PSK modes differ in the provided breakdown resilience. More precisely, the (EC)DHE mode offers
resilience against breakdown of the authentication signature and MAC schemes’ unforgeability as well as
collision resistance of the hash function used to compute hashed transcript values, which is consistent with
the high-level expectations from the protocol design. The PSK-only handshake in contrast does not pro-
vide the same resilience against a hash function breakdown, the reason essentially being that transcripts
are hashed before being used in the key derivation. As we will discuss, our analysis hence exhibits how
seemingly minor technical design choices (even from a cryptographic point of view) can have a noticeable
impact on the breakdown resilience of a key exchange protocol.

5.1 The TLS 1.3 Handshake Protocol

As we analyze the breakdown resilience of the TLS 1.3 (EC)DHE and PSK handshake modes, we accord-
ingly limit the presentation of the TLS 1.3 handshake in the following to these modes. In order to focus
attention on the breakdown resilience properties, we furthermore restrict ourselves to the security of the
main application data key established in a mutually authenticated TLS 1.3 handshake, also omitting more
advanced aspects like 0-RTT and 0.5-RTT key establishment and post-handshake messages. We note that
our security model for breakdown resilience can in principle be extended to the setting of multi-stage
key exchange protocols [FG14] in order to capture breakdown resilience for the multiple keys derived in
TLS 1.3 with varying authentication properties (see also [DFGS15, DFGS16]).
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Client Server

ClientHello: rc $←− {0, 1}256

[+ ClientKeyShare: X ← gx]†
[+ ClientPreSharedKey: psk_id1, . . . ]�

ServerHello: rs $←− {0, 1}256

[+ ServerKeyShare: Y ← gy]†
[+ ServerPreSharedKey: psk_id]�

H1 ← Hash(CH||SH) (incl. extensions)
[PSK← 0]†

ES← HKDF.Extract(0,PSK)
XES← HKDF.Expand(ES, "derived")

[DHE← Y x]† [DHE← Xy]†[DHE← 0]�
HS← HKDF.Extract(XES,DHE)

HTSC/HTSS ← HKDF.Expand(HS, label1/label2||H1)
tkchs/tk

s
hs ← HKDF.Expand(HTSC/HTSS, label3)

{EncryptedExtensions}
{CertificateRequest}

{ServerCertificate}: pkS
H2 ← Hash(CH|| . . . ||SCRT)

{ServerCertificateVerify}: Sign(skS , H2)
H3 ← Hash(CH|| . . . ||SCV)

SFK← HKDF.Expand(HTSS, "finished")
{ServerFinished}: HMAC(SFK, H3)

cid = (ClientHello, ServerHello)
check Verify(pkS , H2, SCV) = 1
check SF = HMAC(SFK, H3)
{ClientCertificate}: pkC

H4 ← Hash(CH|| . . . ||CCRT)
{ClientCertificateVerify}: Sign(skC , H4)

CFK← HKDF.Expand(HTSC, "finished")
H5 ← Hash(CH|| . . . ||CCV)

{ClientFinished}: HMAC(CFK, H5)
check Verify(pkC , H4, CCV) = 1
check CF = HMAC(CFK, H5)

XHS← HKDF.Expand(HS, "derived")
MS← HKDF.Extract(XHS, 0)
H6 ← Hash(CH|| . . . ||SF)

TSS/TSC ← HKDF.Expand(MS, label4/label5||H6)
tkapp = (tkcapp/tksapp)← HKDF.Expand(TSS/TSC, label3)

K = tkapp, sid = (ClientHello, . . . , ClientCertificateVerify)

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
+ MSG message sent as extension within previous message
{MSG} message MSG AEAD-encrypted with tkchs/tk

s
hs

[. . . ]† message/computation only when including DHE
[. . . ]� message/computation only when including PSK
a/b alternative usage of a or b in analogous computation

Figure 3: The TLS 1.3 [Res18] handshake protocol (in full/(EC)DHE, PSK, and PSK-(EC)DHE mode).
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5.1.1 Full/(EC)DHE mode

We begin with explaining the full handshake mode based on (elliptic-curve) ephemeral Diffie–Hellman
((EC)DHE) key exchange. Figure 3 shows the TLS 1.3 handshake protocol flow; messages and compu-
tations marked with [. . . ]� are only included in the PSK-based handshake mode and can be ignored for
now.

The protocol begins with client and server exchanging random nonces rc and rs and ephemeral Diffie–
Hellman shares gx and gy within the ClientHello resp. ServerHello and accompanying KeyShare exten-
sion messages.4 Both sides then derive an intermediate handshake traffic key tkhs, consisting of client- and
server-side sending keys tkchs and tkshs. This key is derived from the shared Diffie–Hellman value DHE = gxy

via an intermediate handshake secret HS, using the HKDF key derivation function [Kra10] in an extract-
then-expand paradigm.5

The remaining handshake is encrypted under tkhs. For authentication, first the server and then the
client send a certificate on their public key (within the Certificate messages), a signature over the
communication transcript up to this point under the corresponding secret key (in CertificateVerify),
and a Finished message containing a MAC over the transcript so far. Finally, both sides derive a master
secret MS via HKDF.Extract and then expand from it the main application traffic key tkapp (again with
server- and client-side component tkcapp and tksapp) as the session key K.

5.1.2 PSK mode

In the pre-shared key (PSK) handshake mode, client and server agree on an (identifier for a) previously
established shared secret key within the PreSharedKey messages. This pre-shared secret PSK enters the key
derivation in an HKDF extract-then-expand step prior to deriving the handshake secret HS. Optionally,
both sides can also send Diffie–Hellman shares (within KeyShare messages) to be included in the key
derivation; this variant constitutes the PSK-(EC)DHE mode.

Both in PSK-only and PSK-(EC)DHE mode, authentication relies on the pre-shared key only through
the Finished messages, i.e., no certificates and signatures are exchanged and, accordingly, the messages
CertificateRequest, Certificate, and CertificateVerify (from both sides) are omitted.

5.2 Breakdown Resilience of the TLS 1.3 (EC)DHE Handshake

The TLS 1.3 (EC)DHE handshake security relies on the following cryptographic primitives and hardness
assumptions: hardness of Diffie–Hellman-type assumptions in the employed group G, collision resistance of
the hash function Hash for hashing the transcripts, pseudorandomness of the key derivation function HKDF,
and unforgeability of the signature scheme S and of the MAC scheme HMAC.

We cannot hope for breakdown resilience for the Diffie–Hellman assumptions on G (as they might
allow an adversary to recover the secrecy source gxy of earlier handshakes) or pseudorandomness of HKDF
(as non-pseudorandom output may enable an adversary to distinguish the session key from a random
string). As we will show next, the TLS 1.3 (EC)DHE handshake however does achieve resilience against
breakdown of the hash function, signature scheme, and MAC, ensuring security of completed sessions
even in case these core primitives break. More precisely, we consider resilience against breakdown of the

4We also use abbreviated names for the TLS 1.3 messages exchange, e.g., CH for ClientHello, CKS for ClientKeyShare,
etc.

5We adopt the following common notation for the two HKDF functions, both based on HMAC [BCK96]:
HKDF.Extract(XTS,SKM) on input an extractor salt XTS and source key material SKM outputs a pseudorandom key PRK.
HKDF.Expand(PRK,CTXinfo) on input a pseudorandom key PRK and context information CTXinfo outputs some key ma-
terial KM (we omit the third output-length parameter in Expand and assume it to be fixed to L = λ for our security
parameter λ).
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collision resistance of the hash function Hash (which we model as a standard-model hash function) as well
as existential unforgeability of the signature scheme S and MAC scheme HMAC, i.e., breakdown resilience
for FBDR = {(Hash,STD-Coll-Res), (S,EUF-CMA), (HMAC,EUF-CMA)}.6

In the following, we establish breakdown resilience of the TLS 1.3 (EC)DHE handshake for FBDR (with
forward secrecy) through the corresponding BDR-Match security and BDR key secrecy.

Theorem 5.1 (BDR-Match security of TLS-(EC)DHE). The TLS 1.3 (EC)DHE handshake TLS-(EC)DHE
is BDR-Match-secure for FBDR = {(Hash,STD-Coll-Res), (S,EUF-CMA), (HMAC,EUF-CMA)}. For any
efficient adversary A we have

AdvBDR-Match(FBDR)
TLS-(EC)DHE,A ≤ n2

s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the Diffie–Hellman element group order, and |nonce| =
256 is the bit-length of the nonces rc and rs.

Proof. We need to show that the four conditions for BDR-Match security (cf. Definition 3.1) are satisfied.
Ad (1). Sessions accepting with the same session identifier also derive the same session key, as the session
identifier fixes all components entering the key derivation.
Ad (2). Partnered sessions agree on the contributive identifier as they contain a subset of the session
identifier entries.
Ad (3). Partnered sessions agree on the intended partner as the session identifier contains both participant’s
identities within the Certificate messages.
Ad (4). More than two sessions sharing the same session or contributive identifier requires that a third
session picks the same nonce and group element as one of the two sessions already partnered. The proba-
bility of such a collision can be upper-bounded by n2

s · 1/q · 2−|nonce|, where ns is the maximum number of
sessions, q is the Diffie–Hellman element group order, and |nonce| = 256 is the bit-length of the nonces rc
and rs.

Note that the session identifiers do not rely on any cryptographic primitive and hence the BDR-Match
security bound is independent of potential Break queries issued.

Theorem 5.2 (BDR key secrecy of TLS-(EC)DHE). The TLS 1.3 (EC)DHE handshake TLS-(EC)DHE
achieves breakdown-resilient key secrecy for FBDR = {(Hash,STD-Coll-Res), (S,EUF-CMA), (HMAC,EUF-CMA)}
with forward secrecy. More precisely, for any efficient adversary A there exist efficient adversaries B1,
. . . , B11 such that:

AdvBDR(FBDR),D
TLS-(EC)DHE,A ≤ n

2
s · 2−|nonce| + AdvCOLL

Hash,B1 + ns ·
(
nu · AdvEUF-CMA

S,B2 + ns ·
(
AdvDDH

G,B3+

+ Advdual-PRF-sec,G
HKDF.Extract,B4

+ AdvPRF-sec
HKDF.Expand,B5 + AdvPRF-sec

HKDF.Expand,B6 + AdvPRF-sec
HKDF.Extract,B7+

+ AdvPRF-sec
HKDF.Expand,B8 + AdvPRF-sec

HKDF.Expand,B9 + AdvPRF-sec
HKDF.Expand,B10 + AdvEUF-CMA

HMAC,B11

))
,

where ns is the maximum number of sessions, nu is the maximum number of users, and |nonce| = 256 is
the bit-length of the nonces rc and rs.

Proof. We proceed via the following sequence of games.

Game 0. The original BDR key secrecy game GBDR(FBDR),D
TLS-(EC)DHE,A.

6Note that the HMAC-based key derivation function HKDF in TLS 1.3 internally involves the same hash function for which
we consider collision resistance breakdown. Still, we deem it reasonable to distinguish between collisions in the hash function
and randomness of the HKDF output, as one property might break without the other one breaking as well. More generally,
one may also instantiate HKDF based on a different hash function than the one used for computing transcript hashes.
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Game 1. First, we exclude that two honest sessions generate the same random nonce rc or rs, aborting
the game in such cases. The probability of this happening can be upper bounded by n2

s · 2−|nonce| where
|nonce| = 256 is the bit-length of the nonces rc and rs, i.e.,

AdvG0
TLS-(EC)DHE,A ≤ AdvG1

TLS-(EC)DHE,A + n2
s · 2−|nonce|.

Game 2. As the next step, we exclude hash collisions (in honest sessions) prior to the breakdown of the
hash function Hash. More precisely, we abort the game if in any two honest sessions’ computation two
distinct inputs to Hash yield the same output while breakdown = false, i.e., before A issued a Break query.
Such a hash collision can be directly reduced to the collision resistance of Hash via a reduction B1 that
simulates the game faithfully and aborts when the collision occurs, outputting the two input values. Hence
we can bound the introduced advantage difference as

AdvG1
TLS-(EC)DHE,A ≤ AdvG2

TLS-(EC)DHE,A + AdvCOLL
Hash,B1 .

Through this change, we are ensured that no hash collisions occur before the breakdown (hence, in partic-
ular, not before the test session accepts). After the breakdown, hash collisions may occur; we will see in
the later game changes why those cannot affect the test session’s security anymore.

Game 3. We let the challenger guess the tested session π∗ and abort the game if that guess was incorrect.
This can reduce the adversary’s advantage by a factor of at most 1

ns
, thus

AdvG2
TLS-(EC)DHE,A ≤ ns · AdvG3

TLS-(EC)DHE,A.

Game 4. Next, we abort the game if the tested session receives within the CertificateVerify message
a valid signature under the public key of some user V that no honest session of V issued. We can upper-
bound the probability of such an abort by the advantage of a reduction B2 against the unforgeability of the
signature scheme S. Here, we use that neither can the signature scheme be broken nor can the long-term
secrets of the involved parties be corrupted before the test session has accepted. Note that forward secrecy
is not affected by this game hop as a later Corrupt query on the test session’s owner or partner identity
does not infringe with the test session receiving an honestly generated signature at this point.

The reduction B2 simulates the game, guessing V and picking all but the user V ’s long-term keys itself.
For any signature to compute for V , algorithm B2 queries its signing oracle. When the test session receives
the forged signature, B2 outputs it as its own forgery. It thereby provides a sound simulation for A and
wins in case the above abort occurs and it correctly guessed the forgery’s source identity V (among the at
most nu users). Hence we can bound

AdvG3
TLS-(EC)DHE,A ≤ AdvG4

TLS-(EC)DHE,A + nu · AdvEUF-CMA
S,B2 .

Game 5. From now on, we are ensured that the signature obtained by the tested session π∗ was honestly
issued by some session π∗a , which we call associated. Note that π∗a is not necessarily partnered with π∗, but
holds the same contributive identifier and is unique due to Game 1. We let the challenger guess π∗a (and
abort on incorrect guess), reducing the advantage of A by a factor at most 1

ns
:

AdvG4
TLS-(EC)DHE,A ≤ ns · AdvG5

TLS-(EC)DHE,A.
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Game 6. The signature obtained in the test session in particular covers the (hashed) Diffie–Hellman shares
sent by π∗ and π∗a , which the adversary hence cannot have tampered with. In particular, the adversary
cannot have sent the test session Diffie–Hellman shares under a signature over a colliding hash value with
some other honest session, as we excluded hash collisions prior to a breakdown in Game 2 and the test
session must have accepted before any Break query is issued (as it otherwise is considered revealed).

As the next step, we can therefore replace the derived DHE value in π∗ and π∗a with a random group
element D̃HE $←− G. The difference in A’s advantage introduced by this change can be bounded by the
advantage of an algorithm B3 in breaking the DDH assumption [Bon98].7 For this, B3 simulates the game
truthfully, but encodes the DDH challenge values ga, gb in the Diffie–Hellman shares sent by π∗ and π∗a ,
and uses as value DHE in the sessions π∗ and π∗a the challenge value h being either gab or gc for random c.
Depending on the value h, B3 perfectly simulates either Game 3 or Game 4, hence establishing the bound

AdvG5
TLS-(EC)DHE,A ≤ AdvG6

TLS-(EC)DHE,A + AdvDDH
G,B3 .

Game 7. At this point, D̃HE in π∗ and π∗a is a uniformly random group element independent of all
other values. This allows us to replace the handshake secret HS in both sessions with a uniformly ran-
dom value H̃S $←− {0, 1}λ. The advantage difference introduced for A by this step can be bounded by a
reduction B4 to the (dual) PRF security [Bel06, BL15] of the HKDF.Extract function when keyed with a
random group element from G in the source key material input. For this, B4 relays the computation of
HS← HKDF.Extract(. . . , D̃HE) to its PRF oracle, hence simulating either Game 4 or Game 5. Thus,

AdvG6
TLS-(EC)DHE,A ≤ AdvG7

TLS-(EC)DHE,A + Advdual-PRF-sec,G
HKDF.Extract,B4

.

Games 8–13. We now replace the values HTSC, HTSS, and XHS (jointly) expanded from HS, CFK ex-
panded from HTSC, MS extracted from XHS, TSS and TSC (jointly) expanded from MS, tkcapp expanded
from TSC and tksapp expanded from TSS in a sequence of six games with random values independently
sampled from {0, 1}λ, in π∗ and (for matching computations) π∗a . More specifically, we replace invocations
of the HKDF.Expand resp. HKDF.Extract functions in π∗ and π∗a using the respective source key by invo-
cations of random functions. Each of these steps can be bounded in advantage difference via a reduction
to the PRF security of HKDF.Expand resp. HKDF.Extract, similar to the step in Game 7.

As the PRF keys are random values chosen independently of any other value, the derived keys are
independent, uniformly random values as well. This independence in particular is upheld due to the
distinct PRF keys even if the adversary gains the capability to create collisions under Hash through a
Break query (at some pointer after the test session accepted) and lets honest sessions compute keys under
a transcript hash colliding with that of the test session, which is not excluded by Game 2.

Naming the reductions B5, . . . , B10 we hence obtain the following bound:

AdvG7
TLS-(EC)DHE,A ≤AdvG13

TLS-(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B5

+ AdvPRF-sec
HKDF.Expand,B6

+ AdvPRF-sec
HKDF.Extract,B7 + AdvPRF-sec

HKDF.Expand,B8

+ AdvPRF-sec
HKDF.Expand,B9 + AdvPRF-sec

HKDF.Expand,B10 .

7Focusing on the main application traffic key tkapp only, which we consider derived after exchanging signatures in both
directions, the DDH assumption suffices in this proof step. This is in contrast to analyses covering also the handshake
traffic key (e.g., [KW16, DFGS16]) which employ the stronger pseudorandom-function oracle-Diffie–Hellman (PRF-ODH)
assumption [JKSS12, BFGJ17] or the Gap-Diffie–Hellman assumption (in the random oracle model).
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Note that the handshake traffic keys tkchs/tkshs are not affected by the replacements and that, in
particular, our replacements do not infringe with any honest session’s capability to send and receive
encrypted handshake messages under those keys.

At this point, the session key K = (tkcapp, tksapp) in the tested session π∗ (and potentially π∗a) is an
independent random value. It remains to argue that the adversary cannot learn that value through a
Reveal query on π∗a .

As for the proof of Auth-NewHope (cf. Theorem 4.3), there are four possibilities for the status of the
associated session π∗a . First, π∗a may still be running at the time of breakdown. However, as it holds the
same contribute identifier as the test session (covered by the obtained signature in Game 4), this makes
the adversary lose the game due to the according Finalize condition. Second, π∗a may have rejected at the
time of breakdown; in this case it does not hold a session key at all. Third, π∗a may have accepted prior
to breakdown and is partnered with π∗, hence by definition of a successful attack may not be revealed.
Finally, π∗a may have accepted prior to breakdown without being partnered with π∗, i.e., π∗.sid 6= π∗a .sid,
and hence may be revealed. We will however exclude this case by showing that it implies a successful
MAC forgery in the exchanged ClientFinished message through the following game hop.

Note that we are only interested in the case that π∗a holds the same session key as π∗. We can therefore
focus on those cases where π∗a and π∗ agree on the messages up to ServerFinished, as otherwise the hash
value H6 entering the session key derivation (when computing TSS/TSC), yielding a uniformly random
key independent of that in π∗. In particular, the key derivation from the hashed transcript is not affected
by a breakdown of the hash function, since π∗a accepted prior to the breakdown.

Game 14. Let Game 14 now be as before except that the challenger aborts if π∗a accepts with π∗a .sid 6=
π∗.sid. We show that when this happens, the adversary made the server side of π∗ or π∗a accept with a
forged MAC value in the ClientFinished message.

First of all observe that π∗ and π∗a agree on the client finished key CFK, as it is derived from DHE
using the hash of ClientHello and ServerHello, all agreed upon under the shared contributive identifier
by the obtained signature in Game 4. At this point, CFK was replaced in both sessions by an independent
random key C̃FK, which enables the following reduction B11 to the EUF-CMA unforgeability of the MAC
scheme HMAC. Note that both π∗ and π∗a accept prior to a breakdown, hence particularly the EUF-CMA
breakdown of HMAC via a Break query does not affect the argument here, as both sessions using the then
exposed MAC key C̃FK terminated prior to the breakdown.

In the reduction, B11 uses its MAC oracle to compute the ClientFinished message computed with
key C̃FK over H5 =Hash(CH|| . . . ||CCV) exchanged between π∗ and π∗a . Recall that ClientFinished covers
the (hashed) full session identifier sid, both π∗ and π∗a accept prior to the potential breakdown of the
hash function Hash, and we excluded collisions under Hash before breakdown in Game 2. The associated
session π∗a accepting with a different session identifier π∗a .sid 6= π∗.sid than π∗ hence implies the server-side
session obtained a MAC value within ClientFinished on a different message, hence constituting a valid
existential MAC forgery.

Having B11 output the obtained ClientFinished MAC we can hence bound the advantage difference
introduced by Game 14 as

AdvG13
TLS-(EC)DHE,A ≤ AdvG14

TLS-(EC)DHE,A + AdvEUF-CMA
HMAC,B11 .

Finally, in Game 14, the session key K = (tkcapp, tksapp) in the tested session π∗ is an independent
random value and the Test query thus independent of the test bit btest. Furthermore, in case the associated
session π∗a derives the same key, the adversary is not allowed to reveal π∗a . The adversary A hence cannot
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determine btest better than guessing and so

AdvG14
TLS-(EC)DHE,A ≤ 0,

which, together with the bounds above, completes the proof.

5.3 Breakdown Resilience of the TLS 1.3 PSK Handshake

We now turn to the preshared-key-based TLS 1.3 handshake, focusing on the PSK-only mode. Its security
only relies on the collision resistance of the hash function Hash and pseudorandomness of the key derivation
function HKDF. As for the (EC)DHE handshake, we cannot hope for resilience against breakdown of the
pseudorandomness of HKDF, as this may enable an adversary to distinguish real session keys from uniformly
random strings. In contrast to the (EC)DHE mode, the PSK-only handshake mode in general however
also does not achieve resilience against breakdown of collision resistance of the hash function Hash.

The lack of breakdown resilience for Hash is due to the deterministic key derivation from PSK using
hashed transcripts as context values within the expansion function HKDF.Expand, where—unlike in the
(EC)DHE case with its per-session DH values—potentially the same pre-shared key PSK is used across
multiple sessions. Consider an adversary A that, after running an honest protocol for the test session, can
find (suitable) collisions in Hash (modeled through the Break oracle). It can then run another session with
an honest client, picking the server nonce in a way that the transcript of this session collides with that of
the test session. To be precise, the adversary would target a collision in H1 = Hash(CH||SH) which ensures
that the deterministically derived keys and MACs are the same in the test session and the colliding client’s
session.8 The adversary may then reveal the colliding client’s session which derives the same session key
as the test session, allowing it to distinguish the Test query’s output.

As a consequence, the TLS 1.3 PSK-only handshake is not breakdown resilient wrt. any of its core
cryptographic components. We hence omit a (non-breakdown-resilient) security analysis and instead refer
to established computational results for this mode (e.g., [DFGS15, DFGS16, BBK17]). We note that
resilience against collision resistance breakdown of the hash function Hash could be achieved by using the
non-hashed session transcript in the key derivation. However, a hashed transcript may be beneficial in
terms of state and computation overhead.9 One could furthermore argue that the attack window for a Hash
breakdown may be relatively small in practice, as pre-shared keys are specified to be limited in lifetime
(cf. [Res18]). Finally, when using pre-shared keys derived from the resumption master secret established in
a prior full handshake, TLS 1.3 suggests that such PSKs (issued via so-called tickets) should be used only
once [Res18, Sections 4.6.1 and 8.1], which, beyond privacy benefits, prevents the collision attack above.

TLS 1.3 PSK-(EC)DHE. As a final remark on TLS 1.3, we note that including Diffie–Hellman shares
in the PSK-(EC)DHE handshake recovers breakdown resilience for hash collision resistance (and also
achieves resilience against breakdown of the MAC scheme). Without going into further technical details,
the added DHE value ensures that different sessions derive distinct session keys even under colliding
hashed transcripts, following a similar argument as for the full (EC)DHE handshake (cf. Theorem 5.2 ).
We therefore, and since it would require a security model supporting long-term pre-shared keys, omit a
full analysis of the PSK-(EC)DHE here, but remark that the inclusion of Diffie–Hellman shares in the
PSK-(EC)DHE handshake of TLS 1.3 hence not only achieves forward secrecy (against PSK compromise)
but also breakdown resilience (for the hash and MAC function employed).

8In terms of our model, the Break oracle would on input a prefix b and hash value h provide the adversary with a random
preimage d such that Hash(a||b||c||d||e) = h, where a, c, e are fixed strings (in this case matching the CH and SH message
structure).

9This aspect is reminiscent of the comment by Dowling et al. [DFGS15] on upstream hashing in the signatures sent in the
TLS 1.3 (EC)DHE handshake.
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Figure 4: Illustration of permissible Test queries for strong breakdown resilience. Scenarios 1 and 2 are as
in Figure 1; Scenarios 3, 4, and 5 are now permissible.

6 Strong Breakdown Resilience and Hybrid Protocols
For hybrid constructions that specifically aim to withstand cryptographic breakdowns of individual com-
ponents, we demand an even stronger version of resilience: In such protocols, not only past sessions, but
also ongoing and future sessions should remain secure in case a subset of the protocol’s components FBDR
breaks down. We term the resulting notion strong breakdown resilience. Note that in contrast to the reg-
ular notion of breakdown resilience from Section 3, FBDR for strong breakdown resilience will necessarily
be restricted to those cryptographic components for which the (hybrid) protocol ensures some redundancy
in order to maintain ongoing security.

6.1 Adjusting the Model

In order to extend the basic model from Section 3 to encompass security for future and ongoing sessions, a
couple of minor changes are necessary. Figure 4 depicts the admissible Test scenarios for strong breakdown
resilience.

Send query. The previously introduced modified SendBDR made sure that ongoing and future sessions at
the time of breakdown were set to revealed and could thus not be tested by the adversary. This is no longer
true for strong breakdown resilience, so we employ the original, unmodified Send query (cf. Section 2).

Contributive identifiers and state of execution at breakdown. Similarly, contributive identifiers
(cid) that were needed to identify cases that are not testable (cf. Figure 1) become superfluous and any
mention of them in the security definitions of BDR-Match security and BDR key secrecy (Definitions 3.1
and 3.2) are omitted. Finally, we no longer need to record the execution state at breakdown stbd

exec.

Break Oracle. To model the Break oracle for hybrid protocols we introduce a (KE,BR) entry for breaking
BR key secrecy (cf. Table 1). When calling the Break oracle, all the session keys of accepted sessions are
disclosed to the adversary and the oracle proceeds as specified before in the model.

6.2 Hybrid Key Exchange Security

We can now leverage our strong breakdown resilience model to investigate the security of hybrid key
exchange protocols. These usually combine two (or more) key agreement components such that the overall
protocol remains secure (for past and future sessions) if at least one of the component schemes remains
secure. The idea of combining two cryptographic schemes of the same type for robustness is not new and
has been studied extensively in the literature, often referred to as combiners (e.g., [EG85, ZHSI04, DK05,
HKN+05]).
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Recently, hybrid key exchanges, combining classically secure and quantum-resistant schemes, have
gained a lot of interest. Such hybrids offer a way to transition to post-quantum solutions with security
against (future) quantum adversaries, while still maintaining the security guarantees that are offered today
by well-established classical key agreement. The latter guarantee is mandated by the uncertainty about
which post-quantum hardness assumptions to rely on and how to select appropriately strong parameter.
In 2018, Giacon et al. [GHP18] initiated the study of KEM combiners and with it, implicitly, hybrid
(unauthenticated) key exchange. Later this year, Bindel et. al. [BBF+18] extended this line of work
by proposing a model for hybrid authenticated key exchange with respect to different levels of quantum
adversaries, focusing however exclusively on combiners of classical and post-quantum KEMs.

Alice BobKE1,KE2

k1 k2 transcript
K← HMAC(k1, sid)⊕ HMAC(k2, sid)

Figure 5: Hybrid protocol Π from authenticated key exchange protocols KE1 and KE2.

Going beyond KEM-based combiners, we in the following illustrate how our notion of strong breakdown
resilience can capture the combiner-type security of an arbitrary hybrid key exchange construction. To this
end, consider the simple and generic protocol Π depicted in Figure 5 which combines two arbitrary, indepen-
dently secure authenticated key exchange protocols KE1 and KE2 (yielding shared secret keys k1, resp. k2).
The run of the two protocol is followed by some joint post-processing via HMAC(k1, sid)⊕HMAC(k2, sid).
Note that each key is applied to the full session identifier sid = (sid1, sid2) of both executions.10

For technical reasons, rooted in the security model with a single Test query, we also need that the
session identifiers sid1, sid2 in each of the key exchange protocols are derived efficiently from the transcript.
We call such session identifiers public. Our choice for sid also straightforwardly ensures Match security via
the security of both underlying protocols:

1. Identical session identifiers sid = sid′ 6= ⊥ imply identical identifiers sid1 = sid′1 and sid2 = sid′2. This,
in turn, means via the Match security of KE1 and KE2 identical keys k1 = k′1 and k2 = k′2, and thus
that also the combined session keys match.

2. Any mismatch concerning the intended partner (for identical session identifiers sid = sid′) or more than
two colliding session identifiers sid = sid′ = sid′′ immediately yield contradictions for the underlying
protocols.

We stress that we need Match security of both protocols in order to argue security for the combined
protocol. Fortunately, Match security of a protocol usually relies on statistical properties like collision-
intractability of nonces, such that breaks of cryptographic assumptions are irrelevant. We may therefore
indeed assume that both protocol have this property simultaneously.

We can then formally show—through Theorem 6.1 below—that Π achieves strong breakdown resilience,
assuming HMAC is a secure pseudorandom function, and under security breakdowns of either KE1 or KE2:
independent of whether an adversary at some point obtains breaking capabilities for (either) key exchange
protocol KE1 or KE2, its success (probability) in breaking protocol Π is upper bounded by the maximum
of both advantages of regular adversaries in breaking KE1 and KE2 separately (plus the security advantage

10Instead of using the exclusive-or one could also rely on the dual pseudorandomness of HMAC and instead compute the
key as HMAC(HMAC(k1, sid),HMAC(k2, sid)) or HMAC(HMAC(k1, k2), sid), resembling TLS key derivation more closely. We
use the simpler version here which does not require an additional assumption of HMAC beyond pseudorandomness.
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against the pseudorandomness of HMAC). This is so, intuitively, as secrecy of either key implies that the
HMAC computation yields a pseudorandom value.

Theorem 6.1 (Strong BDR Key Secrecy of generic hybrid KE). Let KE1 and KE2 be BR-secure key
exchange protocols with public session identifiers. Let HMAC be a pseudorandom function.

Then the protocol Π = [KE1,KE2,HMAC] given in Figure 5 achieves strong breakdown-resilient key
secrecy for FBDR ∈ {{(KE1,BR)}, {(KE2,BR)}}. More precisely, for any efficient adversary A, there exist
efficient adversaries B1, B2 such that

AdvsBDR({KEβ ,BR}),D
Π,A ≤ ns ·

(
AdvBR

KE3−β ,B1 + AdvPRF-sec
HMAC,B2

)
,

where ns is the maximum number of sessions.

Proof. Assume for simplicity below that KE1 is secure and KE2 is susceptible to a breakdown. The other
case follows by symmetry.

Game 0. The original sBDR key secrecy game GsBDR(FBDR),D
Π,A .

Game 1. We start by guessing the first accepting session which will hold the same session identifier sid1
(of the KE1 part) as the test session. Denote this first session as π∗a . Note that this could be the test session
itself. The guessing strategy reduces A’s advantage by a factor of at most 1

ns
, i.e., AdvG0

Π,A ≤ ns · AdvG1
Π,A.

Game 2. Next replace all derived key parts k1 in (subsequently accepting) sessions with the same identifier
sid1 as π∗a consistently by the same random key k̃1. Note that since session identifiers of KE1 are public,
such sessions are easy to determine given the transcripts.

Any difference in the advantages of A between Games 1 and 2 can be bounded by an adversary B1
against the BR key secrecy of KE1. The reduction would simulate all KE2 steps internally, such that it
knows all key parts k2 of any session. In particular, it can also answer A’s breakdown queries by supplying
all session key parts for KE2. Adversary B1 calls its Test oracle (for KE1) about session π∗a to get either k1
or a random key k̃1. It subsequently uses this value to compute the session keys of the combiner according
to the protocol in all sessions with the same identifier sid1. For all other sessions, also preceding ones, it
calls its Reveal oracle to get the k1 key part and uses the returned value to compute the session keys of
the combined protocol. In addition, for A’s query Test (to the combiner), algorithm B1 chooses a random
bit and returns either the computed session key or a random key.

For the analysis note that, by assumption, π∗a is the first completed session with sid1. Hence, no Reveal
query of B1 can violate freshness of the Test session of B1. It follows that the simulation is sound and
perfectly mimics the difference between the two games, depending on whether B1’s test bit is 0 or 1. Hence,
the advantage of A is upper-bounded by the advantage of B1 against KE1: AdvG1

Π,A ≤ AdvG2
Π,A + AdvBR

KE1,B1 .

Game 3. Next, replace HMAC(k̃1, sid) in all sessions with the session identifier part sid1 as π∗a by an
independent random value h̃sid (but consistently for all identical full identifiers sid).

The advantage of an adversary distinguishing this game from the previous one is bounded by the
advantage of an adversary B2 breaking the PRF security of HMAC. The reduction is straightforward,
simulating all steps of the key exchange game and calling an external random or pseudorandom function
oracle. Thus, AdvG2

Π,A ≤ AdvG3
Π,A + AdvPRF-sec

HMAC,B2 .
At this point, the session key of A’s tested session is always distributed uniformly, independently of

the secret test bit btest. This is so since the key is either random or it is derived as the exclusive-or with
a random string. The only difference between the two cases is that, if the test oracle returns the actual
key (btest = 1), then any partnered session with the same value sid holds the same key. In contrast, if
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the returned key is random (btest = 0), then such session partners would most likely hold a different key.
However, since the adversary A cannot Reveal the key of a session with the same overall session identifier
as the test session without losing the game, the two cases are identical concerning A’s advantage, i.e.,
AdvG3

Π,A ≤ 0.

7 Conclusion
We presented the first extension to a variant of the widely used Bellare–Rogaway model [BR94] for au-
thenticated key exchange which allows to assess the impact of a break of cryptographic building blocks on
already completed sessions. The resulting security notion is termed breakdown resilience. We showed that
both an authenticated version of NewHope as well as the TLS 1.3 (EC)DHE handshake mode achieve
breakdown resilience for varying broken primitives. The case of the TLS 1.3 PSK(-only) mode illustrates
that seemingly minor design choices can significantly impact the breakdown resilience of protocols. We
furthermore showed how a modified version of the breakdown resilience model can be used to argue about
the security of hybrid key exchange constructions.

We are confident that the presented ideas can also be integrated into other relevant models for authenti-
cated key exchange, such as the CK model [CK01], its extension eCK [LLM07], the ACCE model [JKSS12],
as well as the multi-stage setting [FG14]. Moreover, the notion may even be transferred to different classes
of cryptographic protocols.
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A Security Assumptions
Definition A.1 ((Public Key) IND-CCA2 Security). Let λ be the security parameter. Furthermore let
E = (KG,Enc,Dec) be a public key encryption scheme and let A be a PPT algorithm. We define the
following IND-CCA2 security game GIND-CCA2

Enc,A (λ):

Setup. Generate a key pair (pk, sk) $←− KG(1λ) and give pk to the adversary A.

Query Phase 1. In the next phase A can adaptively query polynomially many messages m to the
encryption oracle and polynomially many ciphertexts to the decryption oracle.

Challenge Phase. The adversary A submits two distinct messages m0,m1 to the challenger. The
challenger chooses a bit b $←− {0, 1} uniformly at random, and returns the challenge ciphertext c∗ =
Enc(pk,mb) to the adversary.

Query Phase 2. The adversary may make further (polynomially many) calls to the encryption and
decryption oracle with the sole limitation that A may not query the challenge ciphertext c∗ to the
decryption oracle.

Output. At some point, A outputs a bit b′. Output 1 iff b = b′.
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We define the advantage function as

AdvIND-CCA2
E,A (λ) := Pr

[
GIND-CCA2

Enc,A (λ) = 1
]
− 1

2 .

We say that a public key encryption scheme E is IND-CCA2 secure, if for any PPT adversary A the
advantage function is negligible (as a function in λ).

Definition A.2 (KEM IND-CPA Security). Let λ be the security parameter. Furthermore let KEM =
(KG,Encaps,Decaps) be a key encapsulation mechanism and let A be a PPT algorithm. We define the
following IND-CPA security game GIND-CPA

KEM,A (λ):

Setup and Challenge Generate a key pair (pk, sk) $←− KG(1λ). The challenger computes c∗, k∗0 $←−
Encaps(pk) and chooses k∗1 at random from the key space. The challenger flips a bit b $←− {0, 1}
uniformly at random, and gives pk, c∗ and k∗b to the adversary.

Output. At some point, A outputs a bit b′. Output 1 iff b = b′.

We define the advantage function as

AdvIND-CPA
KEM,A (λ) := Pr

[
GIND-CPA

KEM,A (λ) = 1
]
− 1

2 .

We say that a key encapsulation mechanism KEM is IND-CPA secure, if for any PPT adversary A the
advantage function is negligible (as a function in λ).

Definition A.3 (EUF-CMA Security). Let λ be the security parameter. Furthermore let S = (SKG, Sig, SVf)
be a signature scheme and let A be a PPT algorithm. We define the following EUF-CMA security game
GEUF-CMA
S,A (λ):

Setup. Generate a key pair (pk, sk) $←− SKG(1λ) and give pk to the adversary A.

Query Phase. In the next phase A can adaptively query messages m1,m2, . . . ,mq ∈ {0, 1}∗ with q ∈
N arbitrary, which the signing oracle answers with σ1 ← Sig(sk,m1), σ2 ← Sig(sk,m2), . . . , σq ←
Sig(sk,mq).

Output. At some point, A outputs a messagem∗ and a potential signature σ∗. Output 1 iff SVf(pk,m∗, σ∗) =
1 and m∗ 6= mi for all i = 1, 2, . . . , q.

We define the advantage function as

AdvEUF-CMA
S,A (λ) := Pr

[
GEUF-CMA
S,A (λ) = 1

]
.

We say that a signature scheme S is EUF-CMA secure, if for any PPT adversary A the advantage function
is negligible (as a function in λ).

The unforgeability of a message authentication schemeM = (MKG,MAC,MVf) is defined analogously.

Definition A.4 (Collision Resistance). Let λ be the security parameter. Furthermore let H = (HKG,Hash)
be a hash function and let A be a PPT algorithm. We define the following Coll-Res security game
GColl-Res
H,A (λ):

Setup. Generate a key s $←− HKG(1λ) and give s to the adversary A.
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Output. At some point, A outputs x, x′. Output 1 iff x 6= x′ and Hashs(x) = Hashs(x′).

We define the advantage function as

AdvColl-Res
H,A (λ) := Pr

[
GColl-Res
H,A (λ) = 1

]
.

We say that a hash function H is collision resistant, if for any PPT adversary A the advantage function
is negligible (as a function in λ).

Definition A.5 (PRF Security). Let λ be the security parameter. Furthermore let F : K ×X → Y be a
PRF and let A be a PPT algorithm. We define the following PRF-sec security game GPRF-sec

F,A (λ):

Setup. Sample a bit b $←− {0, 1}, a key k $←− K, and some f $←− Fun[X → Y ], where Fun[X → Y ] denotes
the set of all functions from X to Y .

Query Phase The adversary A may now query polynomially many labels xi ∈ X to the challenger and,
depending on the bit b, receives either the value F (k, xi) for b = 0 or f(xi) for b = 1.

Output. At some point, A outputs its guess b′. Output 1 iff b = b′.

We define the advantage function as

AdvPRF-sec
F,A (λ) := Pr

[
GPRF-sec
F,A (λ) = 1

]
.

We say that F is PRF-secure, if for any PPT adversary A the advantage function is negligible (as a
function in λ).

Definition A.6 (KDF Security). Let λ be the security parameter. Let kdf : Σ×N×Salt×Context→ {0, 1}l
be a key derivation function with inputs source keying material σ from Σ, l ∈ N the output length and
optional parameters s ∈ Salt and c ∈ Context. Furthermore, let A be a PPT algorithm. We define the
following KDF-sec security game GKDF-sec

kdf,A (λ):

Setup. Sample (secret) keying material σ with auxiliary information a from source Σ, as well as a salt
value s $←− Salt from all possible salt values. Give s and a to the adversary A.

Query Phase 1. The adversary A may now query polynomially many pairs (li, ci) ∈ N × Context to
the challenger and receives the values kdf(σ, li, s, ci).

Challenge Phase. The adversary A submits (l∗, c∗) to the challenger. The challenger chooses a bit
b $←− {0, 1} uniformly at random, and depending on the bit b returns the challenge yb where y0 =
kdf(σ, l∗, s, c∗) for b = 0 and y1

$←− {0, 1}l∗ for b = 1 to the adversary.

Query Phase 2. The adversary may make (polynomially many) further calls to the kdf oracle as in
Query Phase 1, with the sole limitation that A may not query the challenge pair (l∗, c∗).

Output. At some point, A outputs its guess b′. Output 1 iff b = b′.

We define the advantage function as

AdvKDF-sec
kdf,A (λ) := Pr

[
GKDF-sec

kdf,A (λ) = 1
]
.

We say that kdf is KDF-secure, if for any PPT adversary A the advantage function is negligible (as a
function in λ).
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