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Abstract. Masking is a common technique to protect software imple-
mentations of symmetric cryptographic algorithms against Differential
Power Analysis (DPA) attacks. The development of a properly masked
version of a block cipher is an incremental and time-consuming process
since each iteration of the development cycle involves a costly leakage
assessment. To achieve a high level of DPA resistance, the architecture-
specific leakage properties of the target processor need to be taken into
account. However, for most embedded processors, a detailed description
of these leakage properties is lacking and often not even the HDL model
of the micro-architecture is openly available. Recent research has shown
that power simulators for leakage assessment can significantly speed up
the development process. Unfortunately, few such simulators exist and
even fewer take target-specific leakages into account. To fill this gap, we
present MAPS, a micro-architectural power simulator for the M3 series
of ARM Cortex processors, one of today’s most widely-used embedded
platforms. MAPS is fast, easy to use, and able to model the Cortex-M3
pipeline leakages, in particular the leakage introduced by the pipeline
registers. The leakages are inferred from an analysis of the HDL source
code, and therefore MAPS does not need a complicated and expensive
profiling phase. Taking first-order masked Assembler implementations
of the lightweight cipher Simon as example, we study how the pipeline
leakages manifest and discuss some guidelines on how to avoid them.

Keywords: Leakage assessment, architecture-specific leakage, pipeline
leakage, power simulator, Cortex-M3

1 Introduction

Side-channel attacks [14] pose a serious threat to the security of cryptographic
primitives, in particular when they are executed on mobile or embedded devices
that are physically accessible for an attacker. A typical example of such devices
are wireless sensor nodes, which are often deployed in unattended areas and do
not come with any measures or techniques to minimize the leakage of sensitive
information through power or electromagnetic (EM) side channels. One of the
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most sophisticated forms of side-channel attack is Differential Power Analysis
(DPA), first described in the open cryptographic literature almost 20 years ago
by Kocher et al. [13]. A standard DPA attack involves two steps, namely (i) an
acquisition step, in which the attacker measures the power consumption of the
target device while it executes a cryptographic algorithm, and (ii) an analysis
step, in which she uses advanced statistical techniques to recover the sensitive
(i.e. key-dependent) data processed during the execution of the algorithm from
the acquired power consumption traces. There exists a large body of literature
demonstrating successful DPA attacks against (unprotected) implementations
of both secret-key and public-key cryptographic primitives, see e.g. [15] and the
references therein. In the case of block ciphers, it was shown that a few dozens
of power traces can be sufficient to reveal the full secret key [7].

In light of the real-world threat posed by DPA, it is necessary to protect an
implementation of a block cipher through the integration of countermeasures.
One of the most well-known and widely used DPA countermeasure is masking
[8, 11], which can be realized in both hardware and software. Masking aims to
conceal every key-dependent variable with a random value, called “mask,” in or-
der to break the link between the intermediate values that are computed on the
device and the (unmasked) intermediate values of the algorithm. This principle
is related to the idea of secret sharing since every sensitive variable is split into
n ≥ 2 “shares,” so that any combination of up to d = n−1 shares is statistically
independent of any secret value. These n shares must be processed separately
during the execution of the algorithm and then re-combined in the end to yield
the correct result. The main attraction of masking is that its security can be for-
mally proven in the framework of Isai, Sahai, and Wagner [12]. Despite the strong
theoretical security guarantees, it turned out that masking is extremely challeng-
ing to implement in practice without introducing any unintended leakage. For
example, it was shown in [16] that a masked hardware implementation of a block
cipher can be broken by exploiting glitches at the output of logic gates. On the
other hand, software implementations of masking can still be vulnerable to DPA
attacks due to unintended violations of the Independent Leakage Assumption
(ILA), which can result from certain micro-architectural effects or features [19].
Therefore, it is important to check whether a masked implementation of a cipher
meets the theoretical security promises also in practice (i.e. does not show any
DPA-exploitable leakage), which can be achieved by e.g. performing a leakage
detection test [6] or mounting a full DPA attack.

Developing a masked software implementation of a block cipher is a tedious
and highly iterative task. The developer tries to eliminate existing leakage and
then performs a leakage assessment, and thereafter the same cycle starts again
until no leakage can be detected anymore [4]. In order to decrease develop-
ment time, one can use a power simulator, such as ELMO [17], to obtain power
consumption traces that can be used for leakage assessment. However, to get
realistic power traces, the simulator needs to take into account certain micro-
architectural effects, such as inter-instruction dependencies in the power con-
sumption (and, therefore, leakage) of a processor. For example, due to pipelining
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effects, the power consumption of a given instruction does not only depend on
the operands/results and from/to which registers they are read/written, but also
on the preceding instructions that are in the pipeline at the same time. ELMO
takes such effects into account by using measured power characteristics and by
grouping instructions together. In the case of ARM Cortex M0 and M4 micro-
controllers, which are currently supported by ELMO, up to three instructions
need to be considered since the pipeline consists of three stages.

While ELMO is a useful tool, it has a few shortcomings. In particular, getting
realistic instruction-level power models is a tedious task and requires a lot of mea-
surements. Furthermore, in order to model differential data-dependent effects of
neighboring instructions, ELMO uses power models for groups of instructions,
whereby the size of the groups is determined by the number of instructions that
can be in the pipeline at the same time (i.e. the number of pipeline stages).
This approach achieves promising results, as demonstrated through a number
of experiments by the authors of [17], but is only viable for processors with
few (e.g. up to three) pipeline stages. However, there exist embedded processors
with five, seven or even ten pipeline stages, which makes it extremely costly to
develop power models for groups of instructions. Our simulator, MAPS (Micro-
Architectural Power Simulator), uses a different approach and takes the inter-
instruction dependency of the power consumption into account by developing
a more refined micro-architectural model of the target processor. In particular,
MAPS models all pipeline registers and validates these models through simu-
lations with the HDL description of the target micro-architecture. Therefore,
MAPS has two major advantages over ELMO, namely (i) the power model does
not require measurements, especially no measurements of inter-instruction de-
pendencies, and (ii) MAPS is suitable for embedded processors with deep(er)
pipelines of more than three stages.

Our contributions. Our first contribution is MAPS itself. To the best of our
knowledge, it is the first open-source power simulator for leakage assessment tar-
geting the Cortex-M3 architecture, a processor widely used in embedded prod-
ucts [18]. In addition to being fast and easy to use, it models the architecture
specific leakages based on a structural analysis. As a second contribution, we an-
alyze for the first time in the open literature the impact of the pipeline registers
on the leakage of masked software.

2 State of the art

Over the years, many simulators have been developed; the interested reader can
find a detailed survey in [24, Section 5.3]. We focus here on the most recent
simulators that perform high-level simulation by opposition to analog or HDL
simulators. Those low-level simulators, while being generally more accurate be-
cause they rely on source files (netlists, parasitic components, back-annotated
delays) that are usually not publicly available, are extremely slow.
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Gagnerot described in his thesis [10], published in 2013, a power simulator
developed for leakage assessment of cryptographic implementations. It generates
power traces by tracing all writes to the registers and buses of a complete system.
The details of the system are not known since the project was conducted in
collaboration with a private company. All we know is that it contained a 16-bit
RISC processor, some UART interfaces, a DES and an RSA co-processor. Its
input is a compiled binary object. The simulator and its souce code are not
publicly available and, therefore, it is not known how detailed the modeling of
the architecture is, i.e. whether it includes the pipeline registers or not.

SILK stands for Simple Leakage Simulator and was proposed in 2014 by
Veshchikov [23]. It is not tied to a specific architecture and simulates the power
traces at a high level of abstraction. However, its power model is very flexible
and can be adapted to emulate many situations. It accepts a C source files as
input. The source code is publicly available 1.

Reparaz [20] presented a simulator in 2016. The input is a C high-level de-
scription. The values of the intermediate variables are traced after the implemen-
tation has been compiled with a modified version of a LLVM compiler. Therefore
it is not tied to a specific architecture. Yet, it is fast and provide debugging ca-
pabilities allowing to pinpoint easily the source of the leakages.

ELMO (Emulator for Power Leakage for Cortex M0) has been introduced
by McCann et al. [17] in 2016. It is dedicated to the Cortex-M0 processor and
takes a compiled binary object as input. It is based on an existing ARM v6-M
emulator that has been ”back-annotated” with leakage information. The leak-
age information has been extracted using elaborated statistical processing that
was applied to extensive measurements performed on a hardware setup. Hence,
ELMO belongs to the category of profiled simulators. Because of the limitations
of the underlying simulator, it does not support the Thumb-2 instruction set.
The leakages reported by ELMO can be very accurate since the hardware mea-
surements include leakage effects such as glitches or coupling. However, adding
a new target to ELMO is very challenging as it requires a fully debugged hard-
ware setup and the statistical processing itself depends on the characteristics of
the target architecture and instruction set such as the pipeline depth. ELMO is
publicly available 2.

3 Cortex-M3 architecture specific leakages

3.1 Cortex-M3 overview

The Cortex-M3 is a 32-bit RISC processor designed by ARM that implements the
version v7-M [1] of the ARM instruction set. It is a very popular and successful
platform for embedded products because of its efficient and compact instruction
set.

1 https://github.com/nikita-veshchikov/silk
2 https://github.com/bristol-sca/ELMO
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The Cortex-M3 has a Harvard architecture with 16-bit and 32-bit instructions
and a 32-bit data path. It does not include a data cache and a prefetch buffer
replaces a more complex instruction cache. Like other 32-bit ARM processors,
the Cortex-M3 contains 16 registers, split in 13 general-purpose registers (r0-
r12), a stack pointer (r13), a link register (r14), and a program counter (r15).

Arithmetic and logic instructions operate only on registers. A barrel shifter
located between the register file and the Arithmetic and Logic Unit (ALU) allows
to combine a shift or a rotation of the second operand with an ALU instruction
in the same cycle. All ALU operations execute in one clock cycle except mul

(multiply), div (divide) and operations targeting the program counter.
The pipeline is made of three stages. In the first stage, the instruction is

fetched from the instruction memory. Then, the instruction is decoded in the
second stage. Finally, the instruction is executed in the third stage. Conditional
branches are speculated (i.e. one of the alternative instruction is speculatively
executed and canceled if the other alternative was actually chosen).

Store to memory instructions like str are buffered and thus executed in one
cycle, while load from memory instructions ldr introduce one wait-state. The
typical clock-per-instruction (CPI) figure for embedded software is close to 1.

3.2 Cortex-M3 HDL analysis

The Cortex-M3 processor is described in a set of source files written in Ver-
ilog. Those source files are available to academia through the DesignStart Pro
Academic program. The package contains the HDL description of the processor
and a minimal system. The minimal system connects the core to the memories
with AMBA (Advanced Microcontroller Bus Architecture) buses. It also adds
a set of peripherals like communication and debugging interfaces that allow to
extensively trace what happens during the execution of a program. By default,
the Verilog simulation of the minimal system loads and executes a C program
cross-compiled for ARM v7-M architecture.

Since we have access to the HDL code, all registers related with the data
path can be isolated and then traced. At the logic level, any information leakage
could be related to the values held by the registers. The dependencies between
the succeeding instructions and the sensitive data will also be captured since
those registers also define the pipeline stages.

All registers in the core can be found by looking for signals defined with the
Verilog keyword reg and assigned in a Verilog always @(posedge <clock>) block.
Out of those registers, only the ones related to a manipulation of the data are
interesting from a leakage-detection point of view. We can further discriminate
by selecting the registers with a width of 32 bits. Moreover, the ALU exclusively
operates on register operands, so only the 32-bit registers linked with the two
output ports of the register file have to be analyzed.

With those criteria, the 16 registers r0-r15 of the register file, two registers
ra and rb located between the register file and the ALU, and three registers
inside the ALU are retained. Nonetheless, the three registers inside the ALU
are only used during multi-cycle ALU instructions such as mula or div. Since
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Fig. 1. Simplified structure of the Cortex-M3 pipeline

those instructions are rarely found in the coding of symmetric primitives, we
decided to not trace those registers. The program counter r15 is also not traced
by default in order to limit the length of the power traces. The first requirement
of a secure implementation is that it must be constant flow anyway.

The registers ra and rb are the pipeline registers isolating the decoding
stage from the execution stage. Their existence and location could have been
inferred from the fact that an ALU instruction may be executed while the next
instruction may access the registers. However, the analysis of the HDL code
confirms their exact location and also specifies what value are assigned to them
for each instruction. A simplified version of the Cortex-M3 pipeline is depicted
in Fig. 1.

3.3 Cortex-M3 pipeline leakages

The registers ra and rb are specific to the Cortex-M3 pipeline architecture.
They are a possible source of leakage since they combine the operand values of
consecutive instructions. Indeed, the power consumption associated with writing
those registers is related to the Hamming distance between the current operand
value and the previous value.

Both the first operand and the second operand of the ALU instructions may
be affected. Since ra is connected between the register file and the barrel shifter,
even an instruction with a shifted or rotated second operand will be affected.
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Listing 1. Code fragment with 2nd operand leakage

; r2 and r3 conta in the two shares
; r4 and r5 conta in random and unre l a t ed va l u e s
; r6 and r7 i n i t i a l i z e d to 0
and r 6 , r 4 , r 2 , l s l 4
orr r 7 , r 5 , r 3 , ro r 5
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Fig. 2. 2nd operand leakage, hardware measurements

Register Transfer Notation 1. Equivalent to Listing 1

1: rb← r4

2: ra← r2

3: r6← rb ∧ (ra� 4)
4: rb← r5

5: ra← r3 . Power(ra) = HW (r2⊕ r3)
6: r6← rb ∨ (ra ≫ 5)

Listing 1 illustrates such a leakage. In this fragment, r2 and r3 are the
two shares; the secret is (r2 ⊕ r3). Registers r4 and r5 contain random values
unrelated with any other register values. From an algorithmic view, there should
be no leakage. However, the measurements on an actual chip show that there is a
leakage, as observed on Fig. 2. The measurements were performed on an Atmel
Cortex-M3 SAM3X8E chip with a Langer EM probe connected to a Lecroy
WR8254M oscilloscope sampling at 500 MSamples/s.

The leakage can be explained by explicitly writing the registers transfers
involving ra and rb. Listing 1 is equivalent to the Register Transfer Notation 1.
As expected, (r2⊕ r3) is leaking.
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Listing 2. Code fragment with str instruction leakage

; r2 and r3 conta in the two shares
str r 2 , [ r 0 , 0 ]
str r 3 , [ r 0 , 4 ]

Register Transfer Notation 2. Equivalent to Listing 2

1: rb← r0

2: ra← r2

3: rb← r0

4: ra← r3 . Power(ra) = HW (r2⊕ r3)

Basically, every instruction using a value read from a register is affected,
not only the ALU instructions. For example, all memory store instructions will
leak if scheduled one right after another, as in the Listing 2 and its equivalent
Register Transfer Notation 2.

The leakage of the str instructions extends to the push instructions and
to the store-multiple stm instructions since they are actually a shorthand for a
sequence of str instructions.

3.4 Coding for Cortex-M3 pipeline leakage

The Cortex-M3 pipeline leakages can be circumvented in a few different ways,
listed below in ascending order of their implementation cost:

1. simply swap the operands of commutative instructions.
2. schedule instructions so that the two shares are not processed by succeeding

instructions. This might prove difficult because of the limited number of
registers.

3. use more complicated versions of some instructions, so that the pipeline
registers are written with unrelated values. For example “mov r0, 0” may be
replaced with “eor r0, rx, rx” where rx may be any register. In the short
version, the registers ra and rb are not written since the immediate value 0
is directly transferred from the instruction decoder to the register r0. In the
long version, ra and rb are written with the value of rx before r0 is cleared.
The cost is two bytes of program memory at maximum, depending on which
registerrx is used.

4. in any case, the registers ra and rb may be set to a value unrelated to the
data by the instruction “orr r0, r0, r0” if r0 is unrelated to the sensitive
data. For example, r0 may be the address of an input buffer. The cost is one
clock cycle and two or four bytes of program memory.

Note that inserting a nop instruction will not solve the leakage because the
nop instruction does not propagate past the instruction decoder and hence does
not modify the registers ra and rb.
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4 Our simulator: MAPS

In this section we give an overview of the main properties (i.e. features and
limitations) of MAPS and briefly describe its operation.

4.1 Features

MAPS has been created to aid and simplify the development masked implemen-
tations of lightweight cryptographic primitives for the Internet of Things (IoT).
The design goals are explained below.

Easy to use. Implementation and testing of a masked algorithm requires a
good understanding of cryptographic engineering. Moreover, this highly iterative
process requires a lot of time and scrutiny. Our simulator is easy to use for
implementers and provides a convenient way for automated leakage assessment
of cryptographic implementations. Hence, it considerably improves the whole
development and testing process.

Only one set of source files. In the absence of a leakage simulator for Cortex-
M3, one would resort to imulated leakages, which are typically generated using
a modified or totally different implementation of the assessed algorithm. Having
two different sources files, one for the simulation and one for hardware measure-
ments, may lead to errors due to inconsistencies and adaptations required by
either the simulator or the hardware. Therefore MAPS supports C and assem-
bly implementations.

Fast simulation-debug cycle. Implementing a secure masked version of a
cryptographic primitive is not an easy task as one has to work in assembly to
have full control over the instructions that will be executed. The allocation of the
registers and the selection of the operands may require several tries. Large simu-
lation times do not allow the designer to try several “what-if” scenarios. Ideally,
the complete cycle “write-compile-test” should take less than a few minutes.

Easy debugging. In this context, debug has two meaning. The first one re-
lates to the debugging of the functionality at the first stage of the implementation
process. Our simulator can interact with GDB through a GDB server. The sec-
ond usage refers to identifying which instructions cause an information leakage.
MAPS generates an index file linking the program counter and the power trace
sample index which allows fast identification of the instruction that leaks.

Target-specific leakages. Our simulator reports the algorithmic leakages and
as many as possible target specific leakages. The power waveforms are computed
from the trace of all registers related to the data being processed, including the
pipeline registers.
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Fig. 3. MAPS flow

Open-source. MAPS is open-source software3. It may be used and modified
without restrictions. Moreover, anyone can contribute to the further development
of MAPS by adding support for other instructions or new features.

4.2 Simulation flow

A high-level view of the operation of MAPS is described in Fig. 3. First, a
simulator executable, labeled sim masked func.exe in Fig. 3, has to be produced.
The executable is tasked with loading and simulating the function to be tested.
It glues together the Cortex-M3 simulation engine, the interface functions, and
the test functions, all written in C++11.

The Cortex-M3 simulation engine is a C++ object with the usual methods
such as load(), step(), run(), and so on. It is also responsible for tracing the
register writes: each time a register is written, the Hamming distance between
the previous value and the new value is stored as a new sample in the power
trace. The power trace is a std::vector that can be manipulated after the
end of the simulation. The Cortex-M3 simulation engine as well as some useful
functions such as a default main() function handling the common command-line
options are grouped into a library libsim.a.

The file masked func wrapper.cpp contains the test functions and the inter-
face functions. The interface functions wrap the call to the simulator engine so
that the function to be tested appears like a host-domain function. It abstracts
the process of passing parameters from the host to the simulated function. Pa-

3 We plan to make the full source code of MAPS available under the GNU General
Public License (GPL).
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rameters are simply copied into the simulated target memory as required by the
ARM Application Binary Interface (ABI) [2].

The test functions implement a standard fixed-vs-random Welch t-test leak-
age assessment as described in [6]. The leakage assessment method is independent
of the simulation engine and can be easily replaced. The test functions and the
interface functions are not stored in the library libsim.a since different functions
to test will have different interfaces.

The function to be tested is written in C in the file masked func.c. It may
use inline assembly and macros. It is cross-compiled for the ARM v7-M and
converted into a binary format. When the simulator executable is run, it loads
the result of the cross-compilation and applies the fixed and random inputs as
instructed by the test functions. The Welch t-test is computed over the collected
power traces and stored in a Numpy (.npy) file that can be easily visualized using
Python. A trace index file is also generated. This file maps the t-test sample index
to the simulated program counter so that the address of an instruction causing
a leakage can be easily reported.

4.3 Validation

In order to ensure that the Cortex-M3 processor was correctly modeled, both its
functionality and leakage generation features were tested in a specific test envi-
ronment. All supported instructions are collected in a C file and cross-compiled
for the Cortex-M3. Then, they are simulated in MAPS and in the ARM Verilog-
based minimal system testbench. For each simulation, a trace of the registers is
created and the two traces are then compared. The trace generated by our sim-
ulator exactly matches the one produced by the ARM system testbench, which
guarantees that our simulator behaves like the actual processor.

4.4 Limitations

In this subsection, we summarize briefly the limitations of our tool:

– only the Cortex-M3 target is supported.
– not all assembly instructions of the Cortex-M3 described in [1] are supported.

The instructions that are not supported are: conditional instructions, table
branch instructions, saturation instructions, multiply instructions, packing
instructions, hint instructions. The unsupported instructions are unlikely to
be found in an implementation of a lightweight cryptographic primitive.

– the simulator traces only the registers. Glitches or the power consumption of
the ALU are not taken into account. For example, a ”cmp r2, r3” instruction
leaks (r2− r3) on the actual hardware but does not leak on the simulator.

– only the processor is simulated. No peripheral or interface is modeled. Data
can only be transferred between the host and the targets using the ABI and
the target memory.

– the simulator traces only the registers of the Cortex-M3 core. Other registers
that may be located outside of the core, such as in a memory interface, are
not taken into account.

– the simulator is not cycle-accurate.
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4.5 Performance

The speed performance of MAPS is summarized in Table 1. All test cases corre-
spond to a fixed-vs-random Welch t-test as in [6] for one million measurements
(i.e. two million executions of the simulated function). All tests are performed
on a Intel i7-6700 processor running at 3.4 GHz. For comparison, we recall that
the acquisition speed of the setup used for the DPA contest V4 implementing
AES is approximately 0.9 traces/s [24].

Table 1. MAPS performance for three masked lightweight block ciphers (generation
of one million traces)

Algorithm Instructions Simulation time [s] Traces/s

Simon-64/128 1194 113 17700
Rectangle-64/128 2279 220 9091
Speck-64/128 6055 488 4098

We considered for our evaluation first-order protected implementations of
three lightweight block ciphers (i.e. Simon, Speck, and Rectangle), which are
briefly described next.

Simon-64/128 [5] is a lightweight block cipher with an And-Rotation-Xor
structure. The tested implementation is a 2-share masked implementation pro-
tected with the Trichina AND-gate [22].

Speck-64/128 [5] is also a lightweight block cipher but with an Addition-
Rotation-Xor structure. The tested implementation is protected by a 2-share
boolean masking. The modular addition is protected by a KSA scheme [9].

Rectangle-64/128 [25] is a bit-slice lightweight block cipher based on a sub-
stitution-permutation network. The tested implementation is protected by a 2-
share boolean masking using the Trichina AND-gate [22] and the OR-gate from
Baek et al. [3] with an additional random variable to mirror the AND-gate.

5 Case study

In this section, we showcase how our simulator can be used to code a secure ver-
sion of Simon-64/128 on a Cortex-M3 processor. In the following, all figures are
the result of a leakage assessment using a Welch t-test on the power waveforms
generated by our simulator in a fixed-vs-random setting. For each experiment,
10,000 traces with fixed inputs and 10,000 traces with random inputs are col-
lected.

First, Fig. 4 (a) shows a naive coding of Simon-64/128 masked using Trichina
AND-gates [22]. A naive implementation minimizes the number of execution
cycles and maps the intermediate steps of the computations to the next free
register. Any Hamming distance effect due to the reuse of some registers is not
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(a) naive implementation, without pipeline leakages
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(b) naive implementation, with pipeline leakages

Fig. 4. Simon-64/128, naive coding, simulated (a) without and (b) with pipeline leak-
ages

taken into account and the simulator is not configured to trace the pipeline
registers ra and rb. Unsurprisingly, the naive implementation leaks.

Figure 4 (b) shows the result of the leakage assessment test for the same naive
implementation, this time with the tracing of the registers ra and rb enabled in
the simulator. Many more leakage points can be observed.

Next, the naive implementation is corrected to take into account the reuse
of the registers. The corresponding leakages are depicted in Fig. 5 (a). The
simulator is configured to not trace the registers ra and rb. As expected, the
leakages seem to be fixed.

However, as demonstrated on Fig. 5 (b), the corrected implementation do
leak through the pipeline registers when the tracing of ra and rb is enabled.
Actually most of the leakage comes from the pipeline registers.

Table 2. Number of instructions for each masked implementations of Simon-64/128

Version Number of instructions Increase factor

(1) naive 1106 1.00
(2) corrected for register reuse 1194 1.08
(3) corrected for pipeline registers 1285 1.16

Table 2 lists the number of instructions executed by the three implementa-
tions. The implementation (1) is the naive implementation and implementation
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(a) corrected implementation, without pipeline leakages
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(b) corrected implementation, with pipeline leakages

Fig. 5. Simon-64/128, corrected coding, simulated (a) without and (b) with pipeline
leakages

(2) is the naive implementation corrected for the register reuse leakage effects.
The implementation (3) corrects the implementation (2) for pipeline leakage us-
ing the methods given in Section 3.4. Please note that the number of instructions
differs from the number of cycles. For example, replacing one stm instruction by
several str instructions does not add any cycle.

Finally, Fig. 6 shows the result of the t-test for a further improved imple-
mentation of Simon-64/128 where we tried to fix all pipeline leakages. The t-test
was performed with measured traces (acquired with the same hardware setup as
Fig. 2) in a fixed-vs-random setting. As can be seen in Fig. 6, the implementa-
tion is still not completely free of leakage, but the t value exceeds the threshold
of 4.5 only slightly compared to the naive implementation in Fig. 2. Perform-
ing the t-test with this implementation on simulated traces did not show any
leakage anymore, i.e. the t value was always well below the threshold of 4.5.
Consequently, an implementer can use MAPS in the early stages of the leakage
elimination process until the t-test on simulated traces is free of leakage. The
final step is then the “fine-tuning” of the implementation until also the t-test
on measured traces does not show any leakage anymore. However, thanks to
MAPS, an implementer needs to measure traces only at the very end of the im-
plementation phase, but not in the early stages, which significantly reduces the
development time. With our set-up, the measurement of traces took 8 hours for
8,000 encryptions with a fixed input and 8,000 encryptions with random inputs.
Each encryption was repeated 8 times and then averaged to reduce the noise. On
the other hand, obtaining simulated power traces with MAPS for 8,000 encryp-
tions with a fixed input and 8,000 encryptions with random inputs took only 1.2
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Fig. 6. Simon-64/128, pipeline leakages corrected, measurements on hardware setup

seconds, which is more than 24,000 times faster than the 8 hours we needed to
obtain the measured power traces.

6 Conclusion and future work

In this paper, we presented the design of MAPS, a simulator for fast leakage
assessment of cryptographic software on ARM Cortex-M3 processors, which are
widely used for IoT applications. We demonstrated that our simulator can sig-
nificantly speed up the implementation of masked primitives by identifying the
architecture-specific leakages very early in the development cycle. We analyzed
the Cortex-M3 specific leakages caused by the pipeline registers and showed that
they are significant. In this way, we contribute to a better understanding of which
micro-architectural properties and features of a processor actually introduce the
leakage an attacker can exploit in a DPA. We also provided guidelines on how
to take the pipeline leakages into consideration when developing a masked im-
plementation of a cipher.

Our method to analyze the architecture specific leakages can be easily applied
to other targets without requiring complex profiling procedures, provided the
HDL code of the processor is available. A possible candidate is Cortex-M0 since
it is also part of the DesignStart Pro Academic program. The simulation speed
may be also improved by optimizing the t-test implementation following the
proposal of Reparaz et al. [21].
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