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Abstract

Lattice trapdoors are an important primitive used in a wide range of cryptographic protocols, such as identity-
based encryption (IBE), attribute-based encryption, functional encryption, and program obfuscation. In this paper, we
present software implementations of the Gentry-Peikert-Vaikuntanathan (GPV) digital signature, IBE and ciphertext-
policy attribute-based encryption (CP-ABE) schemes based on an efficient Gaussian sampling algorithm for trapdoor
lattices, and demonstrate that these three important cryptographic protocols are practical. One important aspect of
our implementation is that it supports prime moduli, which are required in many cryptographic schemes. Also, our
implementation uses bases larger than two for the gadget matrix whereas most previous implementations use the
binary base. We show that the use of higher bases significantly decreases execution times and storage requirements.
We adapt IBE and CP-ABE schemes originally based on learning with errors (LWE) hardness assumptions to a
more efficient Ring LWE (RLWE) construction. To the best of our knowledge, ours are the first implementations
employing the Gaussian sampling for non-binary bases of the gadget matrix. The experimental results demonstrate
that our lattice-based signature, IBE and CP-ABE implementations are not only practical, but also compare favorably
with the recent implementation works representing the state-of-the-art in the literature.

Keywords: lattice-based cryptography · RLWE · identity-based encryption · attribute-based encryption · GPV digital
signature

I. INTRODUCTION

Lattice-based cryptography [41], [42], [44], a recent but increasingly important family of cryptographic systems,
becomes a center of attraction in academia as lattice-based cryptographic schemes are generally believed to be
“post-quantum” in the sense that they are secure against quantum computing attacks [43]. Also, lattice-base
cryptography supports homomorphic encryption [11], [20], [24] and is used in the construction of many advanced
cryptographic schemes such as identity-based encryption (IBE) [8], attribute-based encryption (ABE) [17], [47],
predicate encryption (PE) [25], and software obfuscation [12].

Many lattice-based cryptographic schemes rely on the hardness assumptions of learning with errors (LWE) [45]
or the more efficient ring learning with errors (RLWE) problems [34], [35]. Another related concept is strong lattice
trapdoors, which involve sampling from an n-dimensional lattice L with a Gaussian-like distribution [23], hence
the name Gaussian sampling. Lattice trapdoors are needed to implement advanced cryptographic algorithms, such
as IBE, ABE [17], PE, and conjunction obfuscation [16].

Quite a few theoretical works outline actual construction techniques and explain in detail as to how these trapdoors
are efficiently and securely constructed [21], [23], [36] whereas there are only very few attempts to report on actual
implementations. In [6], the authors implement two classes of trapdoors that work in matrix and ring settings,
respectively, and conclude that the ring-based Gaussian sampler is more efficient than the matrix version from
both execution and storage requirement points of view. The Gaussian samplers in [6] are used to implement the
GPV signature scheme [23], which yields timings almost comparable to conventional (non-post-quantum) signature



schemes. Nevertheless, the Gaussian sampler in [6] works only with a power of two modulus, which severely limits
its applicability to more involved cryptographic schemes that usually require prime (or arbitrary) moduli.

The work in [21] presents an efficient Gaussian sampling method for arbitrary moduli, which is efficiently
implemented in [28]. A signature scheme with an arbitrarily chosen prime modulus, implemented in [28], proves to
be faster and requires less memory than the signature scheme in [6]. While these works provide invaluable insights,
more research into the subject is urgently needed to assess the practicality of the Gaussian sampling methods for
more involved cryptographic schemes. This work is the first attempt in this direction to show that cryptographic
schemes, such as IBE and ABE, can be efficiently implemented using Gaussian sampling for lattice trapdoors.

Identity based encryption (IBE) [8] is a public key cryptography (PKC) scheme, in which an arbitrary string
that uniquely identifies a party/individual can be used as her public key. IBE can be utilized to help eliminate or
simplify unduly complicated public key infrastructures for managing certificates. To the best of our knowledge,
[19] is the only work that reports on IBE implementations based on lattice trapdoors.

Attribute-Based Encryption (ABE), which is usually considered as a generalization of IBE [7], [27], [47], is also
a PKC scheme, which enables the decryption of a ciphertext by a user only if a certain access policy defined over a
set of attributes is satisfied by the user (or more precisely by her attributes). Besides helping to build complex access
control systems, ABE is proposed for implementing other interesting applications such as audit log encryption and
targeted/broadcast encryption [27].

ABE has two main flavors of constructions: Ciphertext-Policy ABE (CP-ABE) and Key-Policy ABE (KP-ABE).
CP-ABE has been more widely studied and implemented in the literature [7], [18], [49], [50], [52]. In CP-ABE,
the ciphertext is encrypted under an access policy, and a user private key for decryption is generated for the set
of attributes held by the user. In KP-ABE [27], [39], [47], on the other hand, the message is encrypted using the
attribute values as public keys, and a secret key is generated for a particular access policy defined over the set of
attributes.

Two classes of cryptographic primitives are generally used in the construction of ABE schemes: bilinear pairings
and lattices. The majority of ABE schemes are based on bilinear pairings [8], such as [26], [27], [31], [32], [49].
Software implementations of pairing-based ABE constructions are reported in [7], [48], [50]. To the best of our
knowledge, this work is the first that implements a lattice-based CP-ABE scheme using a Gaussian sampler.
Our Contribution After [16], [28], this paper is the third that reports on the implementation of the efficient
Gaussian sampling method for lattice trapdoors proposed in [21], which works with arbitrary moduli. In [28] a
so-called G-lattice (gadget lattice or matrix) is constructed by the primitive vector gT = {20, 21, 22, . . . , 2k − 1},
where k = dlog2 qe and q is the modulus. Our implementation utilizes generalized G-lattice with the vectors
gT = {b0, b1, b2, . . . , bk − 1} and works with any base b ≥ 2. We demonstrate that using relatively larger bases for
the G-lattice improves the execution times and storage requirements significantly. Similar to this work, [16] also
uses the trapdoor construction with generalized G-lattice with prime moduli and large bases, but for a different
application (cryptographic program obfuscation).

Two closely related previous works [6] and [28] report only on the performance of GPV digital signature
algorithm. In this work, we not only demonstrate that our new implementation of Gaussian sampling for lattice
trapdoors significantly improves both execution times and storage requirements of GPV signature, but we also
implement lattice-based IBE and CP-ABE schemes. For the latter categories of cryptographic algorithms, we
adapt the IBE and CP-ABE schemes based on LWE hardness assumptions to the RLWE setting for efficient
implementation. We show that our IBE construction is IND-CPA secure whereas the CP-ABE construction is
secure against selective chosen plaintext attack (sCPA).

To the best of our knowledge, ours is the second IBE implementation based on lattice trapdoors (and the first
using Gaussian sampling for lattice trapdoors) in the literature whereas the CP-ABE implementation is the first.
We demonstrate that both schemes are not only practical, but also compare favorably with similar implementations
in the literature.

We also provide analytical and experimental results that show the effect of using generalized G-lattice on the
correctness and security constraints as well as on the overall performance of the three cryptographic schemes,
namely GPV signature, IBE and CP-ABE.

The rest of the paper is organized as follows: We provide the necessary background information in Section II.
The Gaussian sampling algorithm for lattice trapdoors is explained in Section III. We explain the GPV signature,
the RLWE-based IBE and CP-ABE schemes and give proofs for their correctness and security constraints in
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Sections IV-A, IV-B and IV-C, respectively. Section V provides the implementation details and results such as
execution times and storage requirements, including a comparison with similar works in the literature. Section VI
concludes the paper.

II. PRELIMINARIES

In this section, we provide mathematical background and the security assumptions used in the paper.

A. Mathematical Notations And Definitions

Let R = Z[x]/ 〈xn + 1〉 be a cyclotomic polynomial ring where the ring elements are polynomials of at most
degree n−1 with integer coefficients and n is a power of 2. And let also Rq = R/qR be a ring where the arithmetic
operations on polynomial coefficients are performed modulo q and coefficients are represented as integers in the
interval

(⌊
− q

2

⌋
,
⌊ q

2

⌋]
. Also, R1×m

q , Rmq , and Rm×mq stand for a row vector, column vector and matrix of ring
elements in Rq, respectively, for an integer m > 1.

Throughout the paper, boldface letters always denote matrices and vectors (e.g., a = (a0, a1, . . . , an−1)). While
a polynomial in Rq can be represented as a vector in Znq (= (Z/qZ)n), an integer coefficient of a polynomial can
be represented as a vector of digits in base b.

We also denote the infinity norm of a polynomial or a vector as || · ||∞ (only the norm and || · || for simplicity).
A polynomial or a vector is short if its norm is small.

B. Efficient Arithmetic in Rq
For arithmetic in cyclotomic polynomial rings, we rely on the number theoretic transform (NTT) [15], which is a

special form of discrete Fourier transform defined over finite fields or rings. As reduction with xn + 1 is very easy
(since xn = −1), it can be incorporated into NTT operations; resulting in a technique, which is known as negative
wrapped convolution [14]. The method utilizes a primitive 2n-th root of unity ζ that exists if q ≡ 1 (mod 2n).

When a ring element a ∈ Rq (in polynomial representation) is transformed into ã using NTT, the latter is said
to be in the evaluation representation, whereby the multiplication is extremely efficient as it is performed element-
wise. The transformation operations themselves (NTT and inverse NTT) are usually the computational bottlenecks.
Therefore, provided that the cryptographic computations permit, it is better to keep operands in the evaluation
representation as long as possible; an approach adopted in this paper to accelerate cryptographic computations.

C. Lattices

A full rank lattice Λ, which is a discrete additive subgroup of the n-dimensional real space Rn, is the integer span
Λ = L(B) = {Bz =

∑n
i=1 zibi|z ∈ Zn} of a basis B = (b1, . . . , bn) ⊆ Rn. The minimum distance λ1(Λ) of a

lattice Λ is the length (usually the Euclidean `2 norm) of its shortest nonzero vector; namely λ1(Λ) = min06=x∈Λ||x||.
Informally speaking, we can define two hard computational problems on lattices

Definition 2.1: Shortest Vector Problem (SVP) Given a lattice basis B for Λ, find the shortest nonzero vector
in Λ.

Definition 2.2: Shortest Independent Vectors Problem (SIVP) Given a lattice basis B ∈ Zn×n, find n linearly
independent lattice vectors S = (s1, . . . , sn), where si ∈ Λ, which minimizes the maximum of the infinity norms
of si for i = 1, . . . n.

One can also consider their approximation variants; for example, SVPγ , where the goal is to find a short vector
whose norm is at most γλ1(Λ) for a given factor γ.
q-ary lattices is an important category of lattices which finds wide use in lattice-based cryptography. Given a

uniformly randomly chosen matrix of A ∈ Zn×m for some integers n,m, q we can define two q-ary lattices,

Λq(A) ={y ∈ Zm : y = AT s (mod q) for some s ∈ Zn}
Λ⊥q (A) ={y ∈ Zm : Ay = 0 (mod q)}.

Finding short vectors in q-ary lattices is shown to be as hard as the approximate variant of certain lattice problems
(e.g. SIVP) [1], [23], [37]. One such problem is the shortest integer solution (SIS) problem introduced and analyzed
by Ajtai [2].
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TABLE I
SECURITY ESTIMATES (FOR CLASSICAL/QUANTUM COMPUTERS) VIA HTTPS://BITBUCKET.ORG/MALB/LWE-ESTIMATOR/OVERVIEW
WITH σ = 4.578 AND UNIFORM DISTRIBUTION FOR SECRET KEYS (λ IS THE SECURITY PARAMETER AND δ IS THE ROOT HERMITE

FACTOR)

n k λ δ
classical quantum

512 24 84.1 79.1 1.006546
1024 27 149.3 138.3 1.003941
1024 31 126.2 117.4 1.004571
1024 32 121.6 113.1 1.004727
1024 33 117.2 109.2 1.004886
1024 34 113.1 105.4 1.005045
1024 35 109.0 101.7 1.005204
1024 36 105.5 98.5 1.005630
1024 37 102.5 95.9 1.005514
1024 38 99.1 92.7 1.005678
1024 39 96.1 90.1 1.005837

Definition 2.3: Shortest Integer Solution (SIS) Given n, m, q, A ∈ Zn×mq and a norm bound 1 ≤ ν < q, find
v ∈ Λ⊥q (A) with 0 < ||v||2 ≤ ν.
DΛ,c,σ is used to denote the n-th dimensional Gaussian distribution over a lattice Λ ∈ Rn, where c ∈ Rn is

the center and σ ∈ R is the distribution parameter. Gaussian lattice sampling denoted as x ← DΛ,c,σ assigns the
probability ρ(x)/

∑
z∈Λ ρc,σ(z) for x ∈ Λ, where ρ = exp(−π||x − c||/σ2). When omitted, the distribution (or

smoothing) parameter and the center are taken to be 1.0 and 0, respectively. At a more basic level, e ← DZn,c,σ

denotes the sampling of n independent integers with c ∈ Rn and σ ∈ R.

D. Ring Learning with Errors

Ring learning with errors (RLWE) problem, whose hardness can be based on the worst-case hardness of ideal
lattice problems (due to quantum reduction from worst-case approximate SVP on ideal lattices to the search version
of RLWE [34]), can be defined in the context of cyclotomic polynomial rings Rq = Zq/ 〈xn + 1〉 where q is prime
and n is a power of two.

Let s be a random (and unknown) polynomial inRq. We consider a number of pairs of the form (ai, ais+ei) ∈ R2
q ,

where ai stands for uniformly randomly chosen polynomials in Rq and ei ← DR,σ with a relatively small σ ∈ R.
Now, we can give RLWE hardness assumptions that we use to prove the security of cryptographic algorithms
presented in this paper.

Definition 2.4: Search RLWE assumption is that it is hard to find s given a list of pairs (ai, ais + ei) for
i = 0, . . . , t.

Definition 2.5: Decision RLWE assumption is that it is hard to distinguish between polynomials (ais+ ei) and
(bi) for i = 0, . . . , t, where bi’s are uniformly randomly chosen polynomials in Rq.

Informally speaking, in both definitions, t stands for the number of samples a polynomial-time adversary or
distinguisher can obtain. The hardness of the RLWE assumptions depends on the choice of ring dimension n, the
size of q and a bound ∆ for the coefficients of ei, which is determined by the distribution parameter σ of DR,σ.

For the RLWE hardness assumptions to hold, the values of n and q must be selected properly. While obtaining
accurate security estimates for given values of n and q is difficult and requires involved computations and arguments,
several pioneering works provide reliable guidelines for this purpose [3]–[5], [22], [29], [33].

In this work, adopting the approach in the white paper [13] to obtain security estimates for a specific choice of
parameters, we use the LWE estimator accessible via https://bitbucket.org/malb/lwe-estimator/overview based on
the works [3]–[5]. Using the version with commit number cc5f6e8 we list the security estimates for parameter sets
used in this paper in Table I. The security estimator provides estimates for both classical and quantum computers
considering three different attack types, namely i) the unique shortest vector attack (uSVP), ii) the decoding attack,
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and iii) the dual attack. In Table I, we list the most conservative security estimates for given combinations of ring
dimension and modulus size. Naturally, one should take the minimum of the estimates in the table for a specific
choice of parameters if post-quantum security is targeted. Readers are referred to [3]–[5], [13], [33] for more
information about the attacks.

The smoothing (distribution) parameter σ can be estimated as σ ≈
√

ln(2nm/ε)/π, where nm is the maximum
ring dimension and ε is the bound on the statistical error introduced by each randomized-rounding operation [36].
For nm ≤ 214 and ε ≥ 2−80, the value of σ ≈ 4.578.

The concept of trapdoors is well-known in cryptographic context, whereby trapdoor is an extra piece of informa-
tion that enables to efficiently compute a solution to a hard problem. In this paper, we rely on the lattice trapdoors
introduced in [36]. Let A ∈ R1×m

q be uniformly randomly selected vector of ring elements. Informally speaking,
for an arbitrarily chosen β ∈ Rq, it is computationally hard to find a short vector of ring elements ω ∈ Rm that
satisfies Aω = β. Furthermore, the vectors in the solution must be spherically distributed with a Gaussian function
and a distribution parameter σs; namely we should have ω ← DΛ,σs

.
Finding such short vectors is usually referred as preimage (Gaussian) sampling operation for an arbitrary syndrome

β. The hardness assumption can be based on the hardness of the SIVPγ problem, namely SIVPγ . On the other hand,
a trapdoor TA for A can be used to compute such short vectors efficiently as will be shown in our construction
in Section III.

E. IBE and CP-ABE Basics

In identity-based encryption (IBE) schemes, an arbitrary string (ID) that uniquely identifies an individual is used
as a public key to encrypt a plaintext while the corresponding private key must be generated by a trusted third
party, usually referred as the private key generator (PKG). A hash function is used to transform an identity to an
element of the underlying mathematical object, such as a ring element.

IBE schemes consist of four algorithms: Setup, Encryption, Key Generation, and Decryption. During the setup,
PKG takes security parameter λ and generates a master public and secret key pair: (MPK,MSK) ← SETUP(λ).
In key generation, PKG uses MSK to generate the private key that corresponds to a user identity (IBE): ωID ←
KEYGEN(ID,MSK,MPK)

Sender uses MPK and ID to encrypt a message µ and obtains the cipher text C ← ENCRYPT(µ,MPK,ID).
Then, receiver calls DECRYPT(C,ωID) function to obtain the plaintext message µ. Decryption succeeds if the
receiver possesses the correct private key.

In CP-ABE, an access policy defines the rules as to who can decrypt a ciphertext. Therefore, an access policy
over a subset of universal set of attributes X = {x1, x2, . . . , x`} serves as a public key during encryption. A private
key corresponding to a set of attributes held by a user is generated by PKG1.

CP-ABE schemes consist of same four algorithms as IBE. During the setup, PKG takes λ and X as input and
generates a master public and secret key pair: (MPK,MSK)← SETUP(λ,X ). In key generation, PKG uses MSK to
generate the private key that corresponds to a subset of attributes held by a user: ωY ← KEYGEN(Y,MSK,MPK),
where Y ⊆ X represents the set of attributes held by the user.

Sender uses MPK and an access policyW to encrypt a message µ and obtains the ciphertext C← ENCRYPT(µ,MPK,W).
An access policy is usually represented as a Boolean expression over a subset of attributes Z , namely W = F (Z),
where Z ⊆ X . When the set of user attributes Y satisfies an access policy, we write Y ` W . Then, receiver calls
DECRYPT(C,ωY) for decryption, which succeeds if the receiver possesses the correct private key, which happens
only when his attributes satisfy the access policy used in encryption.

One important property of ABE schemes is that they are collision resistant in the sense that the users cannot
combine their private keys to decrypt a ciphertext, if their individual attributes do not satisfy the access policy in
the ciphertext.

III. GAUSSIAN SAMPLING ALGORITHMS FOR RINGS

For lattice trapdoor sampling we utilize the ring version of the trapdoor construction examined and implemented
in [6] (depicted in Algorithm 1). In the algorithm, m̄ = blogb(q) + 1c is the length of modulus q in base b, which

1In key-policy ABE (KP-ABE) schemes, the private key corresponds to an access policy. However, KP-ABE is beyond the scope of our
paper and the reader is referred to [17] for further information.
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can be any integer. In our construction we use only power of two bases for efficiency. The trapdoor consists of
two short vectors sampled using a Gaussian distribution with the distribution parameter σ, TA = (ρ,υ). While the
trapdoor TA is secret, the public key A is pseudo-random and enjoys the RLWE hardness assumptions.

The work in [6] provides a very efficient preimage sampling algorithm for a power of two modulus. In the
work, it is showed that the trapdoor can be efficiently used in digital signature algorithms. However, for many
other cryptographic schemes, such as IBE and ABE, a prime modulus is more common. Therefore, the preimage
sampling algorithm for G-lattices with arbitrary modulus is proposed in [21], which is also used and implemented
in this work.

Algorithm 1 Trapdoor generation for RLWE-based schemes [6]
function TRAPGEN(λ)

Determine σ, q and n for the security level λ
m̄← blogb(q) + 1c
a←U Rq
ρ← [ρ1, . . . , ρm̄] where ρi ← DR,σ for i = 1, . . . , m̄
υ ← [υ1, . . . , υm̄] where υi ← DR,σ for i = 1, . . . , m̄
A← [a, 1, g1 − (aρ1 + υ1), . . . , gm̄ − (aρm̄ + υm̄)]
return (A,TA = (ρ,υ))

end function

Using the primitive vector gT = (b0, b1, . . . , bm̄−1), introduced in [36], we can generate a G-lattice, for which
preimage sampling can be efficiently computed. If preimage sampling is efficiently computable for G-lattice, we
can show that it is also efficiently computable for the lattice A given the trapdoor TA. Namely, for an arbitrary
syndrome β ∈ Rq, it is easy to see that y = (xTρ,xTυ, x1, x2, . . . , xm̄) is a short solution to Ay = β, where x
is a short solution to gTx = β.

However, the framework in [23] requires that the preimage sampling algorithm produce a spherically dis-
tributed solution for a given syndrome β ∈ Rq. It is shown in [6], [36] that solutions in the form of y =
(xTρ,xTυ, x1, x2, . . . , xm̄) are not spherically distributed, but ellipsoidal, and therefore leak information about the
trapdoor. Therefore, a perturbation method is proposed in [36]. Algorithm 2 gives a high-level description of our
secure preimage sampling algorithm. The algorithm relies on the preimage sampling on G-lattices, but it perturbs
the preimage z sampled via the primitive vector g. To this end, perturbation generation function PERTURB is
first called to produce a perturbation vector p, which ensures spherical Gaussian distribution for the solution y.
To summarize, we have Ay = β, where y ← DΛq(A),σs

, p ∈ Rm, and z ∈ Rm̄, where m = m̄ + 2. For the
implementation details of PERTURB and SAMPLEG functions with basis b ≥ 2, see [16].

Algorithm 2 Gaussian preimage sampling [36]
function GAUSSSAMP(A, (ρ,υ) , β, σ, σs)

p← PERTURB(n, q, σs, 2σ, (ρ,υ))
z← SAMPLEG(σ, β −Ap, q)
y← [p1 + υz, p2 + ρz, p3 + z1, . . . , pm + zm̄]
return y

end function

The parameter σs in PERTURB operation is referred as the spectral norm, which may be interpreted as a
distribution parameter for Gaussian samples y. The spectral norm in our implementation increases with base b. For
the spectral norm parameter σs in the same algorithm, we use [6], [36]:

σs > s1 (X)α,

where X is a subgaussian random matrix with parameter σ and α = (b+ 1)σ.
Lemma 2.9 of [36] states that

s1 (X) ≤ C0 · σ ·
(√

nm̄+
√

2n+ t
)
,
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where C0 is a constant and t is at most 4.7. We can now rewrite σs as

σs > C0 · (b+ 1) · σ2 ·
(√

nm̄+
√

2n+ 4.7
)
, (1)

where C0 can be found empirically. In our experiments we used C0 = 1.3.
In summary, using a larger base has an adverse affect on the performance of our lattice trapdoors by increasing

the norm of the solution to Ay = β. On the other hand, it can also improve the cryptographic schemes based on
lattice trapdoors by enabling the use of much shorter trapdoors. Therefore, using higher bases not only improves
the execution times of cryptographic algorithms in the subsequent sections, but also their storage requirements. In
summary, its advantage generally outweighs its drawbacks; but the choice of the largest usable base depends on the
cryptographic scheme for which the lattice trapdoor is used. In particular, the correctness and security constraints of
the underlying cryptographic algorithms determine the largest base that can be used, as explained in Section IV-A.

IV. CRYPTOGRAPHIC SCHEMES

In this section, we explain the ring constructions of three cryptographic applications: GVP signature, IBE and
CP-ABE.

A. GPV Signature

The concept of GPV signature is first proposed in [23] and its ring-LWE version is described and implemented
in [6]. Later, a more efficient implementation of GPV signature is presented in [28].

The GPV signature scheme consists of three functions: Key Generation, Sign and Verify. In key generation,
user calls the trapdoor generation function (Algorithm 1) and obtains a public and secret key pair (pk, sk) ←
TRAPGEN(λ), where pk = A and sk = TA.

The secret key is used to sign the hash h of a message µ, where h ← Hsign(µ) and Hsign : {0, 1}∗ → Rq.
Then, the signature generation operation simply calls the Gaussian sampling function and obtains a short vector x ∈
R(m̄+2), where Ax = h: x← GAUSSSAMP(A,TA, h, σ, s). The verification operation checks if Ax = Hsign(µ)
and |x| < ν, where ν is the norm bound for the signature.

Using higher base values increases the norm of the signature as can be observed in Eq 1. Apparently, the signature
norm must be substantially smaller than the modulus q used in GPV signatures due to the security constraint imposed
by SIS problem (see Definition 2.3). To this end, Micciancio et al. [38] provide the following formula

ν = 4
√
n log q log δ (2)

to find the Euclidean norm ν of the signature given the root Hermite factor δ, which determines the security
level. Using δ in the first row of Table I, we can conclude that the largest base is 8 for parameter n = 512
and q ≈ 224 to maintain the same security level provided by δ = 1.006546. Eq 1 can be used to compute the
infinity norm of a signature. For instance, the infinity norm of a signature for b = 8, n = 512 and q = 224 is
σs ≈ 15.06; a 15-bit number. An upper bound for the Euclidean norm of the signature then can be computed using
ν =

√
n ·m · σs ≈ 2188264. Substituting ν in Eq. 2 results in δ = 1.006275, which is smaller than the value in

the first row of Table I. Any larger base results in a larger δ, which means a lower security level.
The second row in Table I represents a higher security level for GPV signatures with n = 1024 and q ≈ 227.

If we want to maintain the security level by δ = 1.003941, the largest base is b = 64 resulting in δ = 1.00372.
However, even for b = 512, we have δ = 1.00484, which provides substantially higher security level than GPV
signature scheme with n = 512 and q ≈ 224.

We also applied the security analysis provided in [46] and found out that the security levels for our choice of
parameters are exactly the same as those obtained with the analysis in [38]. Consequently, in our implementation we
use b = 8 and b = 512 for (n, k) = (512, 24) and (n, k) = (1024, 27), respectively. Note that the same parameter
sets are also used in both [6] and [28] and therefore we can provide a fair comparison.

B. Identity-Based Encryption Scheme

The four functions of our RLWE-based IBE scheme, whose original LWE-based construction is first proposed
in [23], are explained in detail in this section.
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1) Setup: IBE Setup operation is simply the generation of a trapdoor given a security parameter λ. We use the
TRAPGEN function in Algorithm 1 and master public and secret keys are set as follows

(MPK, MSK) = (A,TA)← TRAPGEN(λ). (3)

The private key generator (PKG) executes the TRAPGEN function, publishes the master public key MPK and keeps
the master secret key MSK private as the latter is used to generate private keys of users.

2) Key Generation: In IBE scheme, the public key of a user can be chosen as any string that uniquely identifies
the user such as e-mail address, telephone number etc. As we work in ring Rq, a hash function is used to transform
the bit string ID to a ring element: HIBE : {0, 1}∗ → Rq. Assuming ID ∈ {0, 1}∗ is the public key of a user, PKG
executes the IBE key generation operation described in Algorithm 3 to generate the corresponding user private key
ωID. Note that AωID = βID, where ωID ∈ R(m̄+2)

q is a short ring vector.

Algorithm 3 IBE Key Generation Algorithm
function IBEKEYGEN(A,TA,ID, σ, σs)

βID ← HIBE(ID)
ωID ← GAUSSSAMP(A,TA, βID, σ, σs)
return ωID

end function

3) Encryption: A message µ = (µ0, µ1, . . . , µn−1) is represented as a polynomial in R2, µ = µ0 + µ1x+ . . .+
µn−1x

n−1, where µi ∈ {0, 1}. Then it is encrypted under the recipient’s public key as described in Algorithm 4.

Algorithm 4 IBE Encryption Algorithm
function IBEENC(A,ID, µ, σ)

βID ← HIBE(ID)
s←U Rq
e0 ← DRm,σ

C0 ← AT s+ e0

e1 ← DR,σ
c1 ← βIDs+ e1 + µd q2e
return (C0, c1)

end function

From Algorithm 4, one can easily observe that IBE encryption is an RLWE adaptation of the dual Regev
encryption system introduced in [23].

4) Decryption: The ciphertext message (C0, c1) encrypted under the public key ID can be decrypted using the
corresponding private key ωID as described in Algorithm 5.

Algorithm 5 IBE Decryption Algorithm
function IBEDEC((C0, c1),ωID, q)

t = c1 − ωTID ·C0

for i = 0 to n− 1 do
if | ti |< q

4 then µ̄i = 0
else µ̄i = 1
end if

end for
return µ̄

end function
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5) Correctness: The correctness of the decryption algorithm can be easily verified as follows

c1 − ωTID ·C0 = βIDs+ e1 + µdq
2
e − (AωID)T s− ωTIDe0

= βIDs+ e1 + µdq
2
e − βIDs− ωTIDe0

= e1 + µdq
2
e − ωTIDe0.

Provided that the norm of ωTIDe0 is sufficiently small, the decryption process succeeds (i.e., µ = µ̄). This is only
possible if the private key ωID is a small norm ring vector.

In fact, we can estimate an upper bound for the norm of the polynomial ωTIDe0 ∈ Rq if we know the upper bound
for the private key ωID, which is obtained via Gaussian preimage sampling function GAUSSSAMP in Algorithm 2.
Therefore, ωID follows a zero-centered Gaussian distribution with a standard deviation. Consequently, it is possible
to provide an upper bound for the polynomial coefficients in the ring vector ωID. As the noise e0 used in the
encryption operation is also Gaussian, we can also find an upper bound for its norm. Suppose that ∆ω and ∆e are
upper bounds for ωID and e0, respectively. Then a practical upper bound for ωIDe0 (ignoring the factor e1 as it is
comparably negligible) can be estimated as ∆ = ∆e∆ω

√
nm utilizing the central limit theorem.

The error function erf
(

∆
σ
√

2

)
approximates the probability that a random sample from a zero-centered Gaussian

distribution with distribution parameter σ lies between −∆ and ∆. Then, 1 − erf
(

∆
σ
√

2

)
is the probability that

the sample exceeds the upper bound ∆. For ∆ = 8σ, this probability is approximately 2−49.51. Therefore, we can
use ∆e = 8σ and ∆ω = 8σs as upper bounds for the norms of ωID and e0, respectively., Consequently, we can
obtain the correctness constraint as

q > 256σσs
√
nm. (4)

The size of the modulus and the ring dimension are determined by both security and correctness constraints. Using
Eq. 4 for n = 1024 we find out that the smallest bit size for q is 32 for base b = 2, while it is 39 bits for b = 1024.
As can be observed in Table I, the lowest security level is more than 90 bits considering also a quantum computer
attack. The correctness constraints are confirmed by the experimental results in Section V.

6) Security: We can easily prove that the IBE scheme is IND-CPA-secure using the RLWE assumptions given
in Section II-D, namely Search RLWE and Decision RLWE. Recall that the ciphertext has two components in the
IBE scheme: C0 = AT s+ e0 ∈ Rmq and c1 = βIDs+ e1 + µd q2e ∈ Rq. Computing the secret s ∈ Rq from C0 or
c1 is equivalent to solving the Search RLWE problem (See Definition 2.4). Also, finding ωID is believed to be as
hard as SIVPγ .

Now, we can consider the classic IND-CPA scenario: a polynomial time adversary A is given a public key
βID and access to an encryption oracle. A can query the encryption oracle many times (the number of queries is
bounded by a polynomial function) and receives ciphertext pairs (C0, c1). Given two arbitrary messages µ0 and µ1,
A is challenged to output the correct κ ∈ {0, 1} given C∗0 = AT s+ e0 and c∗1 = βIDs+ e1 + µκd q2e, where κ is
chosen uniformly randomly by the challenger. As the pair (C∗0, c

∗
1) is pseudorandom, the decision RLWE hardness

assumption (See Definition 2.5) implies that A cannot succeed in this scenario with a non-negligible advantage
(not significantly better than a random selection for κ).

C. Ciphertext-Policy Attribute-Based Encryption Scheme

In this section we provide the details for our RLWE-based CP-ABE scheme, whose original LWE-based con-
struction is first proposed in [51]. The scheme supports access policies that can be expressed as conjunctions over
a subset of positive and negative attributes. A positive attribute in an access policy requires that user have that
attribute to decrypt a ciphertext encrypted under that policy. Negative attributes, on the other hand, are used to
exclude a certain set of users from decrypting the ciphertext generated under that access policy. We use symbols
+ and − in superscript to denote positive and negative attributes, respectively.

The essential idea in CP-ABE is that PKG generates a secret key for each user in the system based on user’s
attributes. For this, PKG first generates a public key A and a corresponding trapdoor TA in the setup function.
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Algorithm 6 CP-ABE Setup Algorithm
function CPEABESETUP(`, λ)

(A,TA)← TRAPGEN(λ)
β ←U Rq
for i = 1 to ` do

(B+
i ,B

−
i )←U R

1×m
q

end for
MPK ← {A, {B+

i ,B
−
i }i∈[`], β}

MSK ← TA

return (MPK, MSK)
end function

1) Setup: PKG uses Algorithm 6 to generate master public and master secret keys: MPK and MSK. After generating
the public vector A ∈ R1×m

q , the corresponding trapdoor TA and uniformly generated public challenge β, PKG
generates a uniformly distributed pair of vectors (B+

i ,B
−
i ) for each attribute in the universal set of attributes

X = {x1, x2, . . . , x`}, where B+
i ,B

−
i ∈ R1×m

q for i = 1, . . . , `. Alternatively, we can employ a hash function
HCP−ABE : X → R2×m

q for each attribute: (B+
i ,B

−
i )← HCP−ABE(xi) for i = 1, . . . , `.

2) Key Generation: PKG generates the private key of a user holding an attribute set Y ⊆ X as depicted in
Algorithm 7. Private key components ωi ∈ Rm for i = 1, . . . , `, corresponding to attributes in X are sampled
directly from a discrete Gaussian distribution. Then, depending on the attribute subset held by the user, a new
challenge η is calculated. PKG is the only party in the system that can generate a short solution to AωA = η as
it knows the trapdoor. It is easy to see that

(A, B̃1, . . . , B̃`)ω
T
Y =β, (5)

where B̃i = B+
i if i ∈ Y , otherwise B̃i = B−i

Algorithm 7 CP-ABE Key Generation Algorithm
function CPEABEKEYGEN(MSK, MPK, `,Y, σ, σs)

ω = 0
for i = 1 to ` do
ωi ← DRm

q ,σs

if i ∈ Y then η ← η + B+
i ωi

else η ← η + B−i ωi
end if

end for
η ← β − η
ωA ← GAUSSSAMP(A,TA, η, σ, σs)
ωY ← (ωA,ω1,ω2, . . . ,ω`)
return ωY

end function

3) Encryption: A sender determines an access policy W = (W+ ∪ W−), which can contain negative as well
as positive attributes. The encryption algorithm depicted in Algorithm 8 takes the message µ ∈ R2, the public
key MPK, and the access policy W and outputs the ciphertext C. The access policy is also output as a part of the
ciphertext. Note that the length of the ciphertext depends on the access policy.

4) Decryption: The receiver uses Algorithm 9 to decrypt the ciphertext

C = (W,CA,0, {C0,i}i∈W , {C+
0,i,C

−
0,i}i∈X\W , c1).

The decryption algorithm takes also the attribute set of the receiver Y and if Y ` W , decryption returns the original
message µ, otherwise ⊥. Y ` W if Y ∩W+ =W+ and Y ∩W− = ∅.
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Algorithm 8 CP-ABE Encryption Algorithm
function CPEABEENC(µ, MPK, W, σ)

s←U Rq
e1 ← DR,σ

c1 ← sβ + e1 + µd q2e
e0,A ← DRm,σ

C0,A ← AT s+ e0,A

for i = 1 to ` do
if i ∈ W+ then

e0,i ← DRm,σ

C0,i ← (B+)T s+ e0,i

else if i ∈ W− then
e0,i ← DRm,σ

C0,i ← (B−)T s+ e0,i

else
e+

0,i, e
−
0,i ← DRm,σ

C+
0,i ← (B+)T s+ e+

0,i

C−0,i ← (B−)T s+ e−0,i
end if

end for
C← (W,CA,0, {C0,i}i∈W , {C+

0,i,C
−
0,i}i∈X\W , c1)

return C
end function

Algorithm 9 CP-ABE Decryption Algorithm
function CPEABEDEC(C, MPK, Y)

a← (CA)TωA
for i = 1 to ` do

if i ∈W then a← a+ (C0,i)
Tωi

else
if i ∈ Y then a← a+ (C+

0,i)
Tωi

else a← a+ (C−0,i)
Tωi

end if
end if

end for
t← c1 − a
for i = 0 to n do

if | ti |< q
4 then µi ← 0

else µi ← 1
end if

end for
return µ

end function
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TABLE II
MODULUS BIT SIZES k = dlog2 qe FOR DIFFERENT THE NUMBER OF ATTRIBUTES AND BASES

base k
b ` = (6 / 8 / 16 / 20 / 32)
2 34 / 34 / 35 / 35 / 35
4 34 / 34 / 35 / 35 / 35
8 34 / 35 / 35 / 35 / 36

16 35 / 35 / 36 / 36 / 36
32 36 / 36 / 37 / 37 / 37
64 37 / 37 / 37 / 38 / 38

128 38 / 38 / 38 / 38 / 39
256 38 / 39 / 39 / 39 / 40
512 39 / 40 / 40 / 40 / 41

1024 40 / 40 / 41 / 41 / 42

5) Correctness: If Y ∩W+ =W+ and Y ∩W− = ∅ then we have the following equations

a =ωA(AT s) + ωAe0,A + ω1(B̃T
1 s) + ω1e0,1+

. . .+ ω`(B̃
T
` s) + ω`e0,`

=((AωA)T s) + ωAe0,A + ((B̃1ω1)T s) + ω1e0,1+

. . .+ ((B̃`ω`)
T s) + ω`e0,`

=βs+ ωAe0,A + ω1e0,1 + . . .+ ω`e0,`,

where B̃i ∈ {B+
i ,B

−
i } Consequently, we have

c1 − a = e1 + µdq
2
e − ωAe0,A − ω1e0,1 − . . .− ω`e0,`. (6)

In Eq. 6, all private key components, ωi for i = 0, . . . , ` (except for ωA) are directly sampled from the same
distribution as ωA. Therefore, an upper bound for each ωi can be taken as the same upper bound for ωA.

On the other hand, the private key ωA is generated using the Gaussian sampler in Algorithm 2. We can formulate
an upper bound for all noise factors combined in Eq. 6 (ignoring e1) as follows ∆ = ∆e∆ω

√
nm(`+ 1), If ∆ < q

4 ,
then the decryption is possible. Therefore, the correctness constraint can be written as

q > 256σσs
√
nm(`+ 1)) (7)

Eq. 7 suggests that the correctness constraint is affected by the number of attributes and therefore we have to
increase the modulus size with the number attributes resulting in a lower security level. Table II lists the required
modulus sizes for different values of the base and the number of attributes.

6) Security: We can prove that the CP-ABE scheme is secure against selective chosen plaintext attack (sCPA)
by adapting the security game in [51] to our RLWE construction. Before the security proof, we recall that the pair
(ai, ais+ ei) is pseudorandom (i.e., indistinguishable from a uniformly random pair based on the hardness of the
decision RLWE problem) for an arbitrary s ∈ Rq, uniformly random ai ←U Rq and ei ← DR,σ and i = 1, . . . , t.

We can sketch a simple security game, in which an RLWE solver B has an oracle O. In the game, either pseu-
dorandom or uniformly random ring elements (or vectors) are selected and B is challenged to tell the distribution.
Suppose there exists a polynomial adversary A that breaks sCPA security of the CP-ABE scheme with an advantage
ε. Then, we can show that B solves RLWE problem, which is the decision RLWE problem in this context.

For this, B is challenged with an access policy W∗ = W+ ∪ W− in the security game. B on the other hand
should be able to simulate the view of A for other access policies except for W∗. The security game proceeds as
in the following steps.
• Commitment Phase: Adversary A commits to an access policy W∗ =W+ ∪W− and sends it to B.
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• Setup Phase: B and O interacts as described here. The key point here is that O uses either pseudorandom or
uniformly random distributions to respond to the queries of B.

– B obtains (A,VA) ∈ R1×m
q ×Rmq and (u, vu) ∈ Rq ×Rq from O.

– For each i ∈ X ` \W∗, B obtains (B+
i ,V

+
i ), (B−i ,V

−
i ) ∈ R1×m

q ×Rmq from O.
– For each i ∈ W+, B obtains (B+

i ,V
+
i ) ∈ R1×m

q ×Rmq from O; but computes (B−i ,T
−
Bi

)← TRAPGEN(λ).
– For each i ∈ W−, B obtains (B−i ,V

−
i ) ∈ R1×m

q ×Rmq from O; but computes (B+
i ,T

+
Bi

)← TRAPGEN(λ).
– B publishes MPK = {A, {B+

i ,B
−
i }i∈[`], u}; keeps ({T−Bi

,V+
i }i∈W+ , {T+

Bi
,V−i }i∈W− ,

{V+
i ,V

−
i }i∈X `\W∗) secret.

• Key Generation Queries: In this phase, B simulates the view of A by responding A’s key generation queries
for an access policy W 6=W∗. For W 6=W∗, we have W ∩W+ 6=W+ or W ∩W= 6= ∅. This implies that
B knows at least one TB+

i
or TB−

i
. Then it can compute ωY for any attribute subset Y ` W . A can make

more than one query.
• Challenge: A picks two random messages (µ0, µ1) ∈ R2 and sends them to B, which selects one of them

at random and computes c1 = vu + µκd q2e with κ ∈ {0, 1}. It also sets C0,A = VA; C0,i = V+
i for each

i ∈ W+; C0,i = V−i for each i ∈ W−. Then for each i ∈ X ` \ W∗, it sets C+
0,i = V+

i and C−0,i = V−i . B
returns C∗ = (W∗,C0,A, {C0,i}i∈W∗ , {C+

0,i,C
−
0,i}i∈X\W∗ , c1) to A.

At the end of the security game, adversary A outputs κ. If O is a pseudorandom oracle, C∗ is a valid ciphertext
and therefore A outputs the correct κ with an ε advantage. Otherwise, the ciphertext is uniformly random; therefore,
A can only make a random guess and only succeed with a probability 1/2 (with no advantage). This means that
B can distinguish whether O is a pseudorandom or uniformly random oracle, which breaks the decision RLWE
hardness assumption (see Definition 2.5). Therefore, our assumption that A can break sCPA contradicts with the
hardness assumption of the decision RLWE.

V. IMPLEMENTATION DETAILS AND RESULTS

In our implementations, we utilized the PALISADE library2 [10], [16], [28], which is a modular open-source
lattice-based cryptography library. The library uses native data types, but does not employ any platform-specific
optimizations, such as assembly-level routines.

Our implementation keeps Rq elements in the evaluation representation since the arithmetic over such repre-
sentation is performed component-wise and therefore very fast. We always sample (using both uniformly random
and integer Gaussian distribution) in polynomial representation and then convert the sample immediately to the
evaluation representation. Therefore, any sampling operation in the algorithm requires one sampling followed by a
NTT operation. Thereafter, the operands in cryptographic algorithms are usually kept in the evaluation representation
until the decryption operation.

Integer Gaussian sampling is the primitive operation that is called repeatedly in many algorithms described in
this paper. Thus, the selection and efficient implementation of the Gaussian sampling operation is of paramount
importance for the overall performance of cryptographic operations; essentially signature generation in the GPV
signature scheme, SETUP, KEY GENERATION and ENCRYPTION in both the IBE and the CP-ABE schemes.

An integer Gaussian generator returns a sample statistically close to DZ,c,σ. When the center c does not change
and distribution parameter is relatively small, implementation of the inversion sampling method developed in [40] is
a very good candidate as it is based on fast table lookups; i.e., the expensive floating-point exponentiation operation
is never executed. On the other hand, when the center changes, the pre-computation technique employed in the
inversion sampling cannot be used. For this we use the generic sampling method proposed by Karney [30], which
proves to be a more efficient method when the distribution parameter is large and the center varies, as is the case
for the trapdoor preimage sampling with large bases.

We implemented all the algorithms in standard C++ 11 with no architectural support such as optimized assembly
language routines. We tested and evaluated them on a computer featuring an Intel(R) Core(TM) i7-7700HQ CPU
with a 2.80 GHz clock frequency running Ubuntu 16.04 TLS operating system. We give the implementation results
and comparisons for GPV signatures, IBE and CP-ABE in the subsequent sections. We use the single-thread mode
to report execution times, which are calculated as the average of one hundred runs with randomly chosen inputs.

2https://git.njit.edu/palisade/PALISADE
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TABLE III
STORAGE REQUIREMENTS OF GPV SIGNATURE SCHEME FOR DIFFERENT BASES

Base Public key & Signature Private key
n = 512, dlog2 qe = 24

2 39 KB 72 KB
8 15 KB 24 KB

n = 1024, dlog2 qe = 27

2 116 KB 216 KB
64 28 KB 40 KB

512 20 KB 24 KB

We included storage requirements and execution timings for different bases. In all our implementations we used
σ = 4.57825 as the distribution parameter for integer Gaussian sampling operations.

In the GPV signature scheme, the largest base that can be used is determined by the security constraint expressed
in Eq (2). A large base increases the signature norm for a given set of (n, q), which decreases the security level.
In IBE and CP-ABE schemes, using a higher base increases the norm of secret keys, which is the determining
factor in the correctness constraints in Eqs (4) and (7). We use the highest base values for our implementation of
the three schemes that achieve at least the minimum security level in Table I.

The number of attributes affects the performance of the encryption and decryption operations of CP-ABE. We
use 32 as the maximum number of attributes in our CP-ABE experiments as no other work with a higher number
of attributes has been reported in the literature.

A. Implementation Results for GPV Signature Scheme

In this section, we provide the execution times and storage requirements of the GPV signature scheme and show
how using higher bases improves them.

Table III lists the storage requirements in bytes for public/private keys and the signature lengths for different
bases and two security levels. In [6] and [28], where GPV signature implementations in software are reported, the
storage requirements are the same as ours for base 2. Our implementation shortens public key and signature lengths
by a factor of 2.6 and private key length by a factor of 3.0 for the case of (512, 24). The factors of improvements
for the case of (1024, 27) are 5.8 and 9.0 for public key/signature and private key, respectively.

In Table IV, we give the execution times of the key generation, signature generation and verification operations in
comparison with those in [6] and [28]. In the case of (512, 24), using the base 8 improves key generation, signature
generation and verification operations by the factors of 2.98, 1.9, and 2.0, respectively. In the case of (1024, 27),
the improvements are 6.52, 2.6, and 2.86, respectively, for the same operations. In all operations for both scenarios,
the execution times of our implementation outperform those in [6] and [28].

Furthermore, the signature generation operation can be partitioned into two phases: offline and online, where the
offline phase does not depend on the message. Table IV provides both execution times for signature generation (first
operand in the sum is the offline timing). Using the two-phase signature generation approach, our implementation
performs one signature generation operation in as low as 3.61 ms whereas the best timings for GPV signature
generation reported in the literature are 27 ms in both [28] and [6].

B. Implementation Results for IBE

In this section, we report storage requirements and timing results for our IBE implementation and compare them
with those in [19], which is a lattice-based IBE scheme. We note that the comparison is not fair as the hardness
assumptions and therefore trapdoor constructions are different. Our construction uses only classical standard RLWE
assumptions whereas the construction in [19] relies on a non-standard NTRU assumption as well as standard RLWE
assumptions. Therefore, there is a need for deeper analysis into the hardness assumptions of this non-standard NTRU
problem.
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TABLE IV
EXECUTION TIMES (IN MS) OF SINGLE-THREADED IMPLEMENTATION OF GPV SIGNATURE SCHEME FOR DIFFERENT BASES AND

COMPARISON

Base Key Gen. Sign Verification
this work n = 512, dlog2 qe = 24 @2.8 GHz

2 5.93 11.76 + 9.84 = 21.60 0.38
8 1.99 7.75 + 3.61 = 11.36 0.19

[6] n = 512, dlog2 qe = 24 @2.3 MHz
2 4,562 27 3.00

[28] n = 512, dlog2 qe = 24 @3.4 MHz
2 9.5 27 0.33

this work n = 1024, dlog2 qe = 27 @2.8 GHz
2 13.36 26.33 + 23.23 = 49.56 0.80

64 2.67 15.46 + 4.93 = 20.39 0.33
512 2.05 15.36 + 3.71 = 19.07 0.28

[6] n = 1024, dlog2 qe = 27 @2.3 GHz
2 28,074 74 10.00

[28] n = 1024, dlog2 qe = 27 @3.4 GHz
2 17.2 62.5 0.68

TABLE V
STORAGE REQUIREMENTS OF IBE SCHEME FOR DIFFERENT BASES

base Public key Private key Ciphertext
this work n = 1024, dlog2 qe = 32, 32, 38, 39

2 32 Kbits 1,088 Kbits 1,120 Kbits
4 33 Kbits 576 Kbits 608 Kbits

512 38 Kbits 266 Kbits 304 Kbits
1024 39 Kbits 234 Kbits 273 Kbits

[19] N = 1024, dlog2 qe = 27

NA 30 Kbits 27 Kbits 30 Kbits

Furthermore, our trapdoor construction is versatile in the sense that it can be used in other more advanced
cryptographic applications such as ABE as shown in the next section (see also the key-policy attribute-based
encryption in [9] that can be implemented using our trapdoor construction). On the other hand, there is no ABE
scheme based on the construction in [19]. We provide the comparison, all the same, to give an idea as to how
our construction compares with the state-of-the-art in the literature. We do not include a comparison with schemes
based on classical hardness assumptions such as those in bilinear pairings, which are not post-quantum. Such a
comparison is available in [19] showing that the lattice-based IBE is comparable to pairing-based IBE schemes
from the execution time perspective, while it does not fare well in terms of storage requirements.

First, we provide storage requirements of our IBE scheme and of the one in [19] in Table V. We use 32-bit
moduli for both bases 2 and 4 whereas we use 38 and 39-bit moduli for bases 512 and 1024, respectively. In our
IBE, the public key is just a single polynomial in Rq as in the case of [19]. Therefore, apart from a small difference
in public key sizes in Table V due to the slight difference in modulus sizes, we can claim that the public key sizes
are almost the same.

Nevertheless, our scheme requires much larger storage space for user private keys and ciphertext due to the larger
trapdoor size, which is proportional to the modulus size that is determined by the correctness constraint of the IBE
scheme used in our implementation. The trapdoor in [19], on the other hand, is very simple but proves to be useful
only in simple schemes, such as digital signatures and IBE. The figures in Table V, however, clearly show that
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TABLE VI
EXECUTION TIMES OF IBE SCHEME FOR DIFFERENT BASES AND COMPARISON IN MILLISECONDS

base Key Gen. Encryption Decryption
this work n = 1024, dlog2 qe = 32, 32, 38, 39 @2.8 MHz

2 24.59+26.44=51.03 7.68 0.89
4 18.24+13.95=32.19 4.37 0.58

512 16.03+5.31=21.34 2.70 0.57
1024 15.61+4.44=20.05 2.45 0.54

[19] N = 1024, dlog2 qe = 27 @2.5 MHz
NA 32.7 1.87 1.27

we can compress the private key and ciphertext sizes by the factors of 1088/234 ≈ 4.65 and 1120/273 ≈ 4.10,
respectively, using a larger base.

We also compare our implementation with the work [19] for execution times. The time measurements in [19] are
taken at a computer featuring Intel(R) Core(TM) i5-3210 CPU with a 2.50 GHz clock frequency. The implementation
in [19] uses C++ as the programming language and utilizes two specialized libraries for fast arithmetic in the
underlying rings and fields: NTL and GMP3. NTL uses GMP for basic arithmetic operations whereby the latter
employs highly optimized codes (e.g., assembly routines for time-critical operations). Our implementation, on the
other hand, is written only in C++, uses no external library, and exploits no assembly language routines. All
execution times are enumerated in Table VI.

The positive effects of using larger bases in our implementation for all three operations, namely key generation,
encryption and decryption, can be observed in the execution times in Table VI. Using b = 1024 as opposed to b = 2
results in speedups of 51.03/20.05 ≈ 2.55, 7.68/2.45 ≈ 3.13, and 0.89/0.54 ≈ 1.65 in key generation, encryption,
and decryption operations, respectively. The key generation operation can be performed in as low as 4.44 ms if the
two-phase preimage sampling is employed. In comparison with the timing results of [19], our encryption operation
is slightly slower, whereas our key generation and decryption operations outperform those in [19].

C. Implementation Results for CP-ABE and Comparison

To show the versatility of our trapdoor construction, we also implemented the RLWE-based CP-ABE scheme
described in Section IV-C and report the implementation results in this section. We provide storage requirements
for private key and ciphertext sizes and execution times for key generation, encryption and decryption operations.
As the subject is relatively new, there is no lattice-based CP-ABE implementation in the literature that could
be used for a fair comparison. Therefore, we use a CP-ABE implementation based on bilinear pairings in [50],
which represents the state-of-the-art in the literature. Note that the comparison is, by no means, fair since the
implementation in [50] is based on different security assumptions, not post-quantum and employs highly optimized
code for the underlying processor hardware. Nevertheless, a comparison between the two is useful to evaluate the
progress in lattice-based cryptography and assess the further effort required to close the gap in major performance
indicators such as execution times.

As the authors of [50] report no storage requirement analysis, we only provide ours for user private key and
ciphertext and include no comparison. The number of all attributes is the determining factor in sizes of both private
key and ciphertext, whereas the latter is also affected by the number attributes in the access policy.

The formula for user private key size (in number of bits) can be given as `·m·n·dlog2 qe, where m = dlogb qe+2, q
is the modulus, b is the base, n is the ring dimension, and ` is the number of attributes. The expression for ciphertext
size is formulated as, (2`−|W|+1) ·m ·n · dlog2 qe, where |W| is the number of the attributes in the access policy.
The maximum and minimum ciphertext sizes are reached for |W| = 1 and |W| = `, respectively. The storage
requirements for various numbers of attributes are given in Table VII, which clearly emphasize the advantages of
using a larger base.

3See the links http://shoup.net/ntl/ and https://gmplib.org/
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TABLE VII
STORAGE REQUIREMENTS OF CP-ABE SCHEME FOR DIFFERENT BASES n = 1024 (IN MB)

Ciphertext
(`, b) Private key Minimum Maximum

(6, 64) 1.00 / 0.21 1.16 / 0.24 1.99 / 0.41
(8, 64) 1.33 / 0.27 1.49 / 0.31 2.66 / 0.55

(16, 128) 2.73 / 0.47 2.91 / 0.50 5.47 / 0.94
(20, 128) 3.42 / 0.59 3.59 / 0.62 6.84 / 1.17
(32, 128) 5.47 / 0.94 5.64 / 0.97 10.94 / 1.88

TABLE VIII
EXECUTION TIMES OF CP-ABE SCHEME FOR DIFFERENT BASES AND COMPARISON IN MILLISECONDS

(`, b) Key Generation Encryption Decryption
this work @ 2.8 MHz

(6,64) 147.94 / 131.74 112.78 / 30.87 8.78 / 2.68
(8,64) 175.53 / 131.88 140.90 / 37.83 11.19 / 3.26

(16,128) 301.11 / 228.29 289.81 / 61.08 23.29 / 5.23
(20,128) 359.10 / 246.52 346.46 / 76.71 28.59 / 6.41
(32,128) 539.14 / 301.03 560.34 / 118.22 45.54 / 9.92

[50] adjusted for 2.8 MHz
(6, -) 0.23 0.85 1.64
(20, -) 0.60 2.55 4.56

In Table VIII, we summarize the execution times of our implementation of CP-ABE scheme along with the
timings of [50]. The timings in [50] are originally given in terms of numbers of clock cycles for each iteration,
which are translated here to milliseconds using 2.8 GHz as the clock frequency to match that of our computing
platform. While our key generation operation is very slow compared to that in [50], it is in practical range for even
relatively high numbers of attributes. Considering that it is performed infrequently (once per user), a slightly slow
key generation operation can be tolerated.

Our encryption operation is also slow compared to the bilinear-pairing-based implementation in [50]. But again
the execution times indicate that the scheme is practical. On the other hand, our decryption timings are almost as
fast as those in [50]. In a typical scenario, in which a CP-ABE scheme is employed, encryption operations are not
performed as frequently as the decryption operation. Usually, data is encrypted once under an access policy, and
decrypted multiple times by users who hold a subset of attributes that satisfies the access policy.

Finally, from throughput perspective we can even claim that our lattice-based CP-ABE has certain advantages
as one ciphertext encrypts four times more plaintext bits than does the pairing-based construction in [50] (1024
versus 256 as reported in [50]). As a result our decryption operation expends 2.6 µs and 6.3 µs per bit for 6 and
20 attribute cases, respectively, whereas the scheme in [50] does 6.4 µs and 17.8 µs for the same operations.

In summary, we can claim that our lattice-based CP-ABE implementation is practical as far as the execution times
are concerned, with the additional benefit that its security assumptions are believed to hold even in the post-quantum
world.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that Gaussian sampling for lattice trapdoors is a powerful cryptographic primitive
that can be efficiently used in a diverse set of cryptographic algorithms. Our Gaussian sampling method works
with arbitrary moduli, which is a requirement in majority of the cryptographic algorithms. In addition, the lattice
trapdoor in our implementation can be made significantly shorter, which improves not only the storage requirements
but also the execution times.
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We implemented three lattice-based cryptography schemes, namely GPV signature, IBE and CP-ABE, and
reported their execution times and storage requirements. We provided analyses of security and correctness constraints
for all three schemes. In addition, we included security proofs for IBE and CP-ABE schemes. The implementation
results confirm our claims that the three schemes can be used in practice.

Our GPV signature implementation outperforms the previous implementations of the GPV signature scheme
in the literature in every aspect. Our IBE scheme performs better than another lattice-based IBE scheme in the
literature in terms of key generation and decryption operations while our encryption is slightly slower. We also
compared our lattice-based CP-ABE scheme with a pairing-based implementation of CP-ABE. Although our key
generation and encryption operations are slower, our decryption operation yields a performance comparable to the
pairing-based implementation. It should be noted that the decryption operation is expectedly executed more often
than the other two operations in a CP-ABE scheme. A fast decryption operation is particularly useful when multiple
users share the same access policy, such as in the case of broadcast encryption.

Finally, our implementation results are promising for the practicality of more complicated cryptographic schemes,
such as KP-ABE, PE, functional encryption, and software obfuscation.
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