
Boolean Searchable Symmetric

Encryption with Worst-Case

Sub-Linear Complexity

Seny Kamara?

Brown University
Tarik Moataz??

Brown University

Abstract. Recent work on searchable symmetric encryption (SSE) has
focused on increasing its expressiveness. A notable example is the OXT
construction (Cash et al., CRYPTO ’13) which is the first SSE scheme to
support conjunctive keyword queries with sub-linear search complexity.
While OXT efficiently supports disjunctive and boolean queries that
can be expressed in searchable normal form, it can only handle arbitrary
disjunctive and boolean queries in linear time. This motivates the problem
of designing expressive SSE schemes with worst-case sub-linear search;
that is, schemes that remain highly efficient for any keyword query.
In this work, we address this problem and propose non-interactive highly
efficient SSE schemes that handle arbitrary disjunctive and boolean
queries with worst-case sub-linear search and optimal communication
complexity. Our main construction, called IEX, makes black-box use of
an underlying single keyword SSE scheme which we can instantiate in
various ways. Our first instantiation, IEX-2Lev, makes use of the recent
2Lev construction (Cash et al., NDSS ’14) and is optimized for search
at the expense of storage overhead. Our second instantiation, IEX-ZMF,
relies on a new single keyword SSE scheme we introduce called ZMF and
is optimized for storage overhead at the expense of efficiency (while still
achieving asymptotically sub-linear search). Our ZMF construction is
the first adaptively-secure highly compact SSE scheme and may be of
independent interest. At a very high level, it can be viewed as an encrypted
version of a new Bloom filter variant we refer to as a Matryoshka filter. In
addition, we show how to extend IEX to be dynamic and forward-secure.
To evaluate the practicality of our schemes, we designed and implemented
a new encrypted search framework called Clusion. Our experimental
results demonstrate the practicality of IEX and of its instantiations
with respect to either search (for IEX-2Lev) and storage overhead (for
IEX-ZMF).

?seny@brown.edu. Work done in part at Microsoft Research.
??tarik_moataz@brown.edu. Work done in part at IMT Atlantique and Colorado

State.

1

1 Introduction

A structured encryption (STE) scheme encrypts a data structure in such a way
that it can be privately queried. An STE scheme is secure if it reveals nothing
about the structure and query beyond a well-specified and “reasonable” leakage
profile [15,13]. STE schemes come in two forms: response-revealing and response-
hiding. The former reveals the query response in plaintext whereas the latter does
not. An important special case of STE is searchable symmetric encryption (SSE)
which encrypts search structures such as inverted indexes [15,13,24,23,11,10] or
search trees [19,23]. Another example is graph encryption which encrypts various
kinds of graphs [13,27]. STE has received a lot of attention from Academia and
Industry due to: (1) its potential applications to cloud storage and database
security; and (2) the fact that, among a host of different encrypted search solutions
(e.g., property-preserving encryption, fully-homomorphic encryption, oblivious
RAM, functional encryption) it seems to provide the best tradeoffs between
security and efficiency.

In recent years, much of the work on STE has focused on supporting more
complex structures and queries. A notable example in the setting of SSE is the
work of Cash et al. which proposed the first SSE scheme to support conjunctive
queries in sub-linear time [11]. Their scheme, OXT, is also shown to support
disjunctive and even boolean queries. Faber et al. later showed how to extend
OXT to achieve even more complex queries including range, substring, wildcard
and phrase queries. Another example is the BlindSeer project from Pappas et
al. [30] and Fisch et al. [17] which present a solution that supports boolean and
range queries as well as stemming in sub-linear time.

Naive solutions. Any boolean query φ(w1, . . . , wq), where w1, . . . , wq are
keywords and φ is a boolean formula, can be handled using a single-keyword SSE
scheme in a naive way. In the case of response-revealing schemes it suffices to
search for each keyword and have the server take the intersection and unions of
the result sets appropriately. The issue with this approach, of course, is that the
server learns more information than necessary: namely, it learns the result sets
DB(w1), . . . , DB(wq) whereas it should only learn the set DB(φ(w1, . . . , wq)).
For response-hiding schemes, one can search for each keyword and compute the
intersections and unions at the client. The problem with this approach is that the
parties communicate more information than necessary: namely, the server sends
elements within the intersections of the result sets multiple times. With this in
mind, any boolean SSE solution should improve on one of the naive approaches
depending on whether it is response-hiding or response-revealing.

Worst-case sub-linear search complexity. While OXT achieves sub-linear
search complexity for conjunctive queries, its extension to disjunctive and arbi-
trary boolean queries does not. More precisely, OXT remains sub-linear only for
queries in searchable normal form (SNF) which have the form w1∧φ(w2, . . . , wq),
where w1 through wq are keywords and φ is an arbitrary boolean formula. For
non-SNF queries, OXT requires linear time in the number of documents. This
motivates the following natural question: can we design SSE schemes that sup-
port arbitrary disjunctive and arbitrary boolean queries with sub-linear search

2

complexity? In other words, can we design solutions for these queries that are
efficient even in the worst-case?

1.1 Our Contributions and Techniques
In this work, we address this problem and propose efficient disjunctive and
boolean SSE schemes with worst-case sub-linear search complexity and optimal
communication overhead. Our schemes are non-interactive and, as far as we
know, the first to achieve optimal communication complexity. To do this we make
several contributions which we summarize below

Worst-case disjunctive search. Our first solution, which we call IEX, is
a worst-case sub-linear disjunctive SSE scheme. While it leaks more than the
naive response-hiding solution, we stress that it achieves optimal communication
complexity which, for response-hiding schemes, is the main tradeoff we seek.
In addition, it leaks less than OXT (when used for disjunctive queries) while
achieving worst-case efficiency.

The underlying idea behind IEX’s design is best expressed in set-theoretic
terms where we view the result of a disjunctive query w1 ∨ · · · ∨ wq as the union
of the results of each individual term. More precisely, if we denote by DB(w) the
set of document identifiers that contain the query w, then DB(w1 ∨ · · · ∨ wq) =
DB(w1)∪ · · · ∪DB(wq). Using the naive response-hiding approach, one could use
a single-keyword response-hiding scheme to query each keyword and compute the
union at the client but, as discussed above, this would incur poor communication
complexity. Our approach is different and, intuitively speaking, makes use of the
inclusion-exclusion principle as follows. Consider a three-term query w1∨w2∨w3.
Instead of searching for DB(w1), DB(w2), DB(w3) and computing the union, we
compute DB(w1) and remove from it

DB(w1) ∩ DB(w2) and DB(w1) ∩ DB(w3).

We then compute DB(w2) and remove from it DB(w2) ∩ DB(w3). Finally, we
take the union of the remaining sets and add DB(w3). It follows by the inclusion-
exclusion principle that this results in exactly DB(w1) ∪DB(w2) ∪DB(w3). If we
could somehow support the intersection and removal operations at the server, then
we could achieve optimal communication complexity. Note that this high-level
approach is “purely disjunctive” in the sense that it does not rely on transforming
the query into another form as done in OXT. The avoidance of SNF in particular
is what enables us to achieve worst-case efficiency.

We stress that the intuition provided thus far is only a very high-level
conceptual explanation of our approach and cannot be translated directly to work
on encrypted data. The challenge is that no SSE scheme we are aware of directly
supports the kind of set operations needed to implement this idea. Therefore, a
major part of our contribution is in designing and analyzing such a scheme.

Boolean search. While IEX is naturally disjunctive, we show that it also
supports boolean queries. Similarly to the disjunctive case, we explain our high-
level approach in set-theoretic terms. First, recall that any boolean query can
be written in conjunctive normal form (CNF) so it has the form ∆1 ∧ · · · ∧∆`,

3

where each ∆i = wi,1 ∨ · · · ∨ wi,q is a disjunction. Given a response-hiding
disjunctive-search scheme like IEX, a naive approach for CNF queries is to
execute disjunctive searches for each disjunction ∆1, . . . ,∆` and have the client
perform the intersection of the results. This approach is problematic, however,
because it requires more communication than necessary. To avoid this we take
the following alternative approach. We note that the result DB(∆1∧· · ·∧∆`) is a
subset of DB(∆1) and that it can be computed by progressively keeping only the
identifiers in DB(∆1) that are also included in DB(∆2) through DB(∆`). Again,
we stress that this description is only a high-level conceptual explanation of our
approach and requires more work to instantiate over encrypted data.

The IEX structure. As mentioned above, a major challenge in this work is
the design of an encrypted structure that supports the set-theoretic operations
needed to implement the strategies discussed above. To achieve this, IEX makes
use of a more complex structure than the traditional encrypted inverted index.
In particular, IEX combines several instantiations of two kinds of structures:
dictionaries and multi-maps. A dictionary (i.e., a key-value store) maps labels
to values whereas a multi-map (i.e., an inverted index) maps labels to tuples
of values. More precisely, the IEX design consists of an encrypted global multi-
map that maps every keyword w to its document identifiers DB(w) and an
encrypted dictionary that maps every keyword to a local multi-map for w. The
local multi-map of a keyword w maps all the keywords v that co-occur with w
to the identifiers of the documents that contain both v and w. At a high-level,
with the encrypted global multi-map we can recover DB(w1). With the encrypted
dictionary, we can recover the encrypted local multi-map for keywords w2 through
w`. And, finally, by querying the (encrypted) local multi-map of a keyword w
with a keyword v, we can recover the identifiers of the documents that contain
both w and v. With these basic operations, we can then execute a full disjunctive
query as discussed above.

Instantiations. IEX is an abstract construction that makes black-box use
of encrypted multi-maps and dictionaries which, in turn, can be instantiated
with several concrete constructions, e.g., [15,13,23,10]. 1 While its asymptotic
complexity is not affected by how the building blocks are instantiated, its concrete
efficiency is so we consider this choice carefully—especially how the local multi-
maps are instantiated. We consider two instantiations. The first, IEX-2Lev, uses
the 2Lev construction of Cash et al. [10] to encrypt the multi-maps (local and
global). This particular instantiation is very efficient with respect to search
time but produces large encrypted structures (e.g., 9.8GB for datasets of 34M
keyword/id pairs).

To address this we propose a second instantiation called IEX-ZMF which
trades off efficiency for compactness. In fact, we show that IEX-ZMF is an order
of magnitude more compact than IEX-2Lev (e.g., producing 0.9GB EDBs for
datasets with 34M keyword/id pairs). This compactness is achieved by encrypting

1 Other constructions such as [24,11,28,32] could also be used but these are either
dynamic or conjunctive which is not needed for the IEX.

4

IEX’s local multi-maps with a new construction called ZMF which may be of
independent interest and that we detail below.2

The ZMF scheme. ZMF is a multi-map encryption scheme that is inspired
by and has similarities to the classic Z-IDX construction of Goh [19]. Its core
design as well as its security are very different, however. While Z-IDX produces
a collection of non-adaptively-secure fixed -size encrypted Bloom filters, ZMF
produces a collection of adaptively-secure variable-sized encrypted Bloom filters.
In addition, the hash functions used for each filter can all be derived from a
fixed set of hash functions (even though the filters store a different number of
elements). This last property is non-standard but is crucial for our approach to
be practical as it allows us to generate constant-size tokens that can be used
with every filter in the collection. We refer to such collections of Bloom filters
as matryoshka filters and, as far as we know, they have not been considered in
the past. As we detail in Section 7, encrypting matryoshka filters with adaptive
security is quite challenging. For this, we rely on the random oracle model and
on a non-standard use of online ciphers [4] which are streaming block ciphers
in the sense that every ciphertext block depends only on the previous plaintext
blocks. Note that like Z-IDX, ZMF has linear search time but we use it in our
IEX construction only to encrypt the local multi-maps which guarantees that
IEX-ZMF is still sub-linear.

Dynamism and forward-security. We extend IEX to be dynamic resulting
in a new scheme DIEX. An important security property for dynamic SSE schemes
is forward security which guarantees that updates to an encrypted structure
cannot be correlated with previous queries. Forward security was introduced
by Stefanov, Papamanthou and Shi [32] and recent work of Zhang, Katz and
Papamanthou [34] has shown that it mitigates certain injection attacks on SSE
schemes. One advantage of our DIEX construction is that it naturally inherits
the forward-security of its underlying encrypted multi-maps and dictionaries.
That is, if the underlying structures are forward-secure then so is DIEX.

Reduced leakage. As we mentioned above, IEX leaks more than the naive
response-hiding solution while achieving optimal communication complexity. We
stress, however, that it leaks less than the naive response-revealing solution
and than OXT. As an example, consider that if OXT is used to search for two
conjunctions w = w1 ∧ w2 and w′ = w3 ∧ w2 which share a common term, the
server can recover the results for w′′ = w1 ∧ w2 ∧ w3. In the case of disjunctions,
OXT’s leakage is equivalent to the naive response-revealing solution.

Experiments. To evaluate the efficiency of IEX and its instantiations we
designed and built a new encrypted search framework called Clusion [22]. It
is written in Java and leverages the Apache Lucene search library [1]. It also
includes a Hadoop-based distributed parser and indexer we implemented to handle
massive datasets. Our experiments show that IEX—specifically our IEX-2Lev
instantiation—is very efficient and even achieves faster search times than those

2 Multi-map encryption schemes are equivalent to SSE schemes so ZMF is an adaptively-
secure compact SSE scheme with linear-time search.

5

reported for a C++ implementation of OXT [11] on a comparable system. For
example, for conjunctive, disjunctive and boolean queries with selectivity on the
order of thousands, IEX-2Lev takes 12, 14.8 and 23.7ms, respectively. For the
same conjunctive query, OXT is reported to take 200ms on a comparable system.
Clearly, a C/C++ implementation of IEX would perform even better.

We also implemented IEX-ZMF to evaluate its efficiency and compactness.
In our experiments, it produced EDBs of size 198MB and 0.9GB from datasets
with 1.5M and 34M keyword/id pairs, respectively. This is highly compact in
comparison to IEX-2Lev which produced 1.6GB, 9.8GB EDBs for 1.5M and 34M
keyword/id pairs, respectively. We also evaluated the efficiency of IEX-ZMF and,
as expected, its performance for setup, search and token size are worse than
IEX-2Lev. For example, for a dataset with 34M keyword/id pairs, EDB setup
takes 7.58 hours to process compared to 31 minutes for IEX-2Lev.

On a boolean query of the form (w ∨ x) ∧ (y ∨ z), where the disjunctions had
selectivity 2K and 10K, respectively, IEX-ZMF took 1610ms whereas IEX-2Lev
took only 23.7ms. As expected due to its high degree of compactness, IEX-ZMF
is slower than IEX-2Lev (this is the exact tradeoff we seek).

2 Related Work

SSE was first considered by Song, Wagner and Perrig [31]. Curtmola, Garay,
Kamara and Ostrovsky [15] introduced the notion of adaptive-security for SSE
and presented the first constructions that achieved optimal search time with
a space-efficient index. STE was introduced by Chase and Kamara [13] who
proposed constructions for two-dimensional arrays, graphs and web graphs.

In [19], Goh introduced the Z-IDX construction which has linear search com-
plexity and produces highly compact indexes due to its use of Bloom filters. Here,
we extract a general transformation implicitly used in the Z-IDX construction
and use it in part to construct our ZMF scheme. Kamara, Papamanthou and
Roeder gave the first optimal-time dynamic SSE scheme [24]. Cash et al. [11]
proposed OXT; the first optimal-time conjunctive keyword search scheme. Faber
et al. [16] extend OXT to handle range, substring, wildcard and phrase queries.
Pappas et al. [30] and Fisch et al. [17] present solutions based on garbled circuits
and Bloom filters that can support boolean formulas, ranges and stemming. In
[30], the authors show how to build the first worst-case sub-linear time boolean
encrypted search solution. Like Goh’s Z-IDX construction and our ZMF scheme,
the solution makes use of Bloom filters. In addition, it is the first adaptively-secure
construction based on Bloom filters. For a disjunctive query w, the scheme has
search complexity O(log(n) ·C ·DB(w)), where n is the number of documents and
C is the cost of a 2-party secure function evaluation of a function that takes as
input a Bloom filter of size O(#W) (i.e., the number of unique keywords in DB)
and a q-term disjunctive query. We note that unlike IEX and OXT, it does not
achieve optimal communication complexity. Also, while its search is sub-linear it
involves multiple rounds of interactions.

Ishai, Kushilevitz, Lu and Ostrovsky propose a two-server SSE scheme that
hides the access pattern and supports various complex queries including ranges,

6

stemming and substring [21]. Cash et al. [10] design several I/O-efficient SSE
schemes including the 2Lev construction which we use in one of our IEX instan-
tiations. Kurosawa and Ohtaki [26] designed the first UC secure SSE scheme.
Kurosawa [25] designed a linear-time construction that handles arbitrary boolean
queries while not disclosing the structure of the boolean query itself. Forward
Secrecy was first considered by Stefanov, Papamanthou and Shi [32]. In [9], Bost
introduced an efficient forward secure construction. In [12], Cash and Tessaro give
lower bounds on the locality of SSE by showing tradeoffs between locality, space
overhead and read efficiency. Recently, Asharov, Naor, Segev and Shahaf gave SSE
constructions with optimal locality, optimal space overhead and nearly-optimal
read efficiency [3]. Encrypted search can also be achieved with other primitives
like property-preserving encryption [5,6], functional encryption [7,8,29], oblivious
RAM [20], full-homomorphic encryption [18] and multi-party computation [33].

Online ciphers were introduced by Bellare, Boldyreva, Knudsen and Nam-
prempre [4], where they propose several schemes including the HCB1 construction
which we make use of in our ZMF implementation. More efficient constructions
were later proposed by Andreeva et al. [2].

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and
the set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n},
and 2[n] is the corresponding power set. We write x← χ to represent an element

x being sampled from a distribution χ, and x
$← X to represent an element x

being sampled uniformly at random from a set X. The output x of an algorithm
A is denoted by x ← A. Given a sequence v of n elements, we refer to its ith
element as vi or v[i]. If S is a set then #S refers to its cardinality. If s is a string
then |s| refers to its bit length and si to its ith bit. s|n denotes the string s
padded with n− |s| 0’s and s|n represents the first n bits of s. Given strings s
and r, we refer to their concatenation as either 〈s, r〉 or s‖r. For an n-bit string s

and for all nonnegative d, we denote by s‖d the string 〈s|d1 , · · · , s
|d
n 〉. In this work,

padding takes precedence over truncation; that is, s
‖d
|p = (s‖d)|p.

Data types. An abstract data type is a collection of objects together with a
set of operations defined on those objects. Examples include sets, dictionaries
(also known as key-value stores or associative arrays) and graphs. The operations
associated with an abstract data type fall into one of two categories: query
operations, which return information about the objects; and update operations,
which modify the objects. If the abstract data type supports only query operations
it is static, otherwise it is dynamic.

Data structures. A data structure for a given data type is a representation
in some computational model 3 of an object of the given type. Typically, the
representation is optimized to support the type’s query operation as efficiently
as possible. For data types that support multiple queries, the representation is
often optimized to efficiently support as many queries as possible. As a concrete

3 In this work, the underlying model will always be the word RAM.

7

example, the dictionary type can be represented using various data structures
depending on which queries one wants to support efficiently. Hash tables support
Get and Put in expected O(1) time whereas balanced binary search trees support
both operations in worst-case log(n) time. For ease of understanding and to
match colloquial usage, we will sometimes blur the distinction between data
types and structures. So, for example, when referring to a dictionary structure or
a multi-map structure what we are referring to is an unspecified instantiation of
the dictionary or multi-map data type.

Basic structures. We make use of several basic data types including arrays,
dictionaries and multi-maps which we recall here. An array A of capacity n stores
n items at locations 1 through n and supports read and write operations. We
write v = A[i] to denote reading the item at location i and A[i] = v the operation
of storing an item at location i. A dictionary DX of capacity n is a collection of
n label/value pairs {(`i, vi)}i≤n and supports Get and Put operations. We write
vi = DX[`i] to denote getting the value associated with label `i and DX[`i] = vi to
denote the operation of associating the value vi in DX with label `i. A multi-map
MM with capacity n is a collection of n label/tuple pairs {(`i, Vi)i}i≤n that
supports Get and Put operations. Similarly to dictionaries, we write Vi = MM[`i]
to denote getting the tuple associated with label `i and MM[`i] = Vi to denote
operation of associating the tuple Vi to label `i. We sometimes write MM−1[v]
to refer to the set of labels in MM associated with tuples that include the value
v. Multi-maps are the abstract data type instantiated by an inverted index. In
the encrypted search literature multi-maps are sometimes referred to as indexes,
databases or tuple-sets (T-sets) [11,10].

Document collections. A document collection is a set of documents D =
(D1, . . . , Dn), each document consisting of a set of keywords from some universe
W. We assume the universe of keywords is totally ordered (e.g., using lexicographic
order) and denote by W[i] the ith keyword in W. We assume every document
has an identifier that is independent of its contents and denote it id(Di). We
assume the existence of an efficient indexing algorithm that takes as input a data
collection D and outputs a multi-map that maps every keyword w in W to the
identifiers of the documents that contain w. In previous work, this multi-map is
referred to as an inverted index or as a database. For consistency, we refer to
any multi-map derived in this way from a document collection as a database
and denote it DB. Given a keyword w, we denote by coDB(w) ⊆ W the set of
keywords in W that co-occur with w; that is, the keywords that are contained in
documents that contain w. When DB is clear from the context we omit DB and
write only co(w).

3.1 Cryptographic Primitives
Basic cryptographic primitives. A private-key encryption scheme is a set
of three polynomial-time algorithms SKE = (Gen,Enc,Dec) such that Gen is a
probabilistic algorithm that takes a security parameter k and returns a secret key
K; Enc is a probabilistic algorithm takes a key K and a message m and returns a
ciphertext c; Dec is a deterministic algorithm that takes a key K and a ciphertext

8

c and returns m if K was the key under which c was produced. Informally, a
private-key encryption scheme is secure against chosen-plaintext attacks (CPA) if
the ciphertexts it outputs do not reveal any partial information about the plaintext
even to an adversary that can adaptively query an encryption oracle. We say a
scheme is random-ciphertext-secure against chosen-plaintext attacks (RCPA) if
the ciphertexts it outputs are computationally indistinguishable from random
even to an adversary that can adaptively query an encryption oracle.4 In addition
to encryption schemes, we also make use of pseudo-random functions (PRF)
and permutations (PRP), which are polynomial-time computable functions that
cannot be distinguished from random functions by any probabilistic polynomial-
time adversary.

Online ciphers. An online cipher (OC) is a block cipher that can encrypt data
streams. In particular, with an OC the encryption of the ith block in a stream
depends only on the 1st through ith message blocks. OCs were introduced by
Bellare, Boldyreva, Knudsen and Namprempre [4]. More formally, we say that a
cipher OC : {0, 1}k ×{0, 1}n×B → {0, 1}n×B , where B > 1 is the block length, is
B-online if there exists a function X : {0, 1}k × {0, 1}n×B → {0, 1}B such that
for any m ∈ {0, 1}n×B ,

OCK(m) = OC1
K(m)‖ . . . ‖OCnK(m),

where OCiK(m) = X(K,m1, . . . ,mi) for all i ∈ [n] and where mi is the ith
block of m. OCs cannot be pseudo-random permutations (see [4] for a simple
distinguisher) but can satisfy the weaker requirement of being computationally
indistinguishable from a random online permutation. An online permutation is
simply a permutation on a domain {0, 1}n×B whose ith block depends only on the
first i blocks of its input. We denote by OPermn,B the set of all online permutations
over {0, 1}n×B . Security for an online cipher OC : {0, 1}k×{0, 1}n×B → {0, 1}n×B
then holds if for all ppt adversaries A,∣∣∣Pr

[
AOCK(·) = 1 : K

$← {0, 1}k
]
− Pr

[
Af(·) = 1 : f

$← OPermn,B

]∣∣∣ ≤ negl(k).

4 Definitions

Structured encryption schemes encrypt data structures in such a way that
they can be privately queried. There are several natural forms of structured
encryption. The original definition of [13] considered schemes that encrypt both
a structure and a set of associated data items (e.g., documents, emails, user
profiles etc.). In [14], the authors also describe structure-only schemes which only
encrypt structures. Another distinction can be made between interactive and
non-interactive schemes. Interactive schemes produce encrypted structures that
are queried through an interactive two-party protocol, whereas non-interactive
schemes produce structures that can be queried by sending a single message,

4 RCPA-secure encryption can be instantiated practically using either the standard
PRF-based private-key encryption scheme or, e.g., AES in counter mode.

9

i.e, the token. One can also distinguish between response-hiding and response-
revealing schemes: the former reveal the response to queries whereas the latter
do not.

STE schemes are used as follows. During a setup phase, the client constructs
an encrypted data structure EDS under a key K. The client then sends EDS to
the server. During the query phase, the client constructs and sends a token tk
generated from its query q and the key K. The server then uses the token tk to
query EDS. If the scheme is response-revealing, it recovers a response r. On the
other hand, if the scheme is response-hiding it recovers a message that it returns
to the client who in turn decrypts it with a resolving algorithm.

Definition 1 (Structured encryption). A single-round response-hiding struc-
tured encryption scheme ΣT = (Setup,Token,Query,Resolve) for data type T
consists of four polynomial-time algorithms that work as follows:

– (K,EDS)← Setup(1k,DS): is a probabilistic algorithm that takes as input a
security parameter 1k and a structure DS of type T and outputs a secret key
K and an encrypted structure EDS.

– tk← Token(K, q): is a (possibly) probabilistic algorithm that takes as input a
secret key K and a query q and returns a token tk.

– c← Query(EDS, tk): is a (possibly) probabilistic algorithm that takes as input
an encrypted structure EDS and a token tk and outputs a message c.

– r ← Resolve(K, c): is a deterministic algorithm that takes as input a secret
key K and a message c and outputs a response r.

We say that a structured encryption scheme Σ is correct if for all k ∈ N, for
all poly(k)-size structures DS of type T , for all (K,EDS) output by Setup(1k,DS)
and all sequences of m = poly(k) queries q1, . . . , qm, for all tokens tki output by
Token(K, qi), for all messages c output by Query(EDS, tki), Resolve(K, c) returns
the correct response with all but negligible probability. The syntax of a response-
revealing STE scheme can be recovered by omitting the Resolve algorithm and
having Query output the response.

Security. The standard notion of security for STE guarantees that an encrypted
structure reveals no information about its underlying structure beyond the setup
leakage LS, and that the query algorithm reveals no information about the
structure and the queries beyond the query leakage LQ. If this holds for non-
adaptively chosen operations then this is referred to as non-adaptive security. If,
on the other hand, the operations are chosen adaptively, this leads to the stronger
notion of adaptive security [15]. This notion of security was first formalized by
Curtmola et al. in the context of searchable encryption [15] and later generalized
to structured encryption in [13].

Definition 2 (Adaptive security [15,13]). Let ΣT = (Setup,Token,Query)
be a structured encryption scheme for type T and consider the following proba-
bilistic experiments where A is a stateful adversary, S is a stateful simulator, LS

and LQ are leakage profiles and z ∈ {0, 1}∗:

10

RealΣ,A(k): given z the adversary A outputs a structure DS of type T and
receives EDS from the challenger, where (K,EDS) ← Setup(1k,DS). The
adversary then adaptively chooses a polynomial number of queries q1, . . . , qm.
For all i ∈ [m], the adversary receives tki ← Token(K, qi). Finally, A outputs
a bit b that is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS of type T which
it sends to the challenger. Given z and leakage LS(DS) from the challenger,
the simulator S returns an encrypted data structure EDS to A. The adversary
then adaptively chooses a polynomial number of operations q1, . . . , qm. For
all i ∈ [m], the simulator receives query leakage LQ(DS, qi) and returns a
token tki to A. Finally, A outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LS,LQ)-secure if for all ppt adversaries A, there
exists a ppt simulator S such that for all z ∈ {0, 1}∗,

|Pr [RealΣ,A(k) = 1]− Pr [IdealΣ,A,S(k) = 1]| ≤ negl(k).

5 IEX: A Worst-Case Sub-Linear Disjunctive SSE Scheme

Our main construction, IEX, makes black-box use of a dictionary encryption
scheme ΣDX = (Setup,Token,Get), a multi-map encryption scheme ΣMM =
(Setup,Token,Get), a pseudo-random function F , and of a private-key encryption
scheme SKE = (Gen,Enc,Dec). The details of the scheme are provided in Fig. 1.
At a high-level, it works as follows.

Setup. The Setup algorithm takes as input a security parameter k and an
index DB. It makes use of two data structures: a dictionary DX and a global
multi-map MMg. MMg maps every keyword in w ∈W to an encryption of the
identifiers in DB(w). We refer to these encryptions as tags and they are computed
by evaluating SKE.Enc using as coins the evaluation of F on keyword w and the
identifier. The global multi-map MMg is then encrypted using ΣMM, resulting in
EMMg.

For each keyword w ∈W, the algorithm creates a local multi-map MMw, that
maps the keywords v ∈ co(w) to tags of identifiers in DB(v)∩DB(w). Intuitively,
the purpose of the local multi-map MMw is to quickly find out which documents
contain both w and v, for any v 6= w. The local multi-maps MMw are then
encrypted with ΣMM. This results in encrypted multi-maps EMMw which are
then stored in the dictionary DX such that DX[w] = EMMw. In other words, it
stores label/value pairs (w,MMw) in DX. Finally, DX is encrypted with ΣDX,
resulting in an encrypted dictionary EDX. The output of Setup includes the
encrypted structures

(
EDX,EMMg

)
as well as their keys.

There are several optimizations possible for Setup that we omit in our formal
description for ease of exposition. The first is that the encrypted local multi-maps
can be stored “by reference” in the encrypted dictionary EDX instead of “by
value”. More precisely, instead of storing the actual encrypted local multi-maps
EMMw in EDX one can just store a pointer to them. Another optimization is that,
depending on how ΣMM is designed, the keys for the local encrypted multi-maps
could all be generated from a single key using a PRF (with a counter). This

11

would reduce the size of K. This optimization can be easily applied to most
known encrypted multi-map schemes including the ones from [15,13,23,11,10].

Token. The Token algorithm takes as input a key and a vector of keywords w =
(w1, . . . , wq). For all i ∈ [q − 1] it creates a “sub-token” tki = (dtki, gtki, ltki+1,
. . . , ltkq) composed of a dictionary token dtki, a global token gtki for wi and,
for all keywords wi+1 through wq in the disjunction, a local token ltkj for wj ,
with i + 1 ≤ j ≤ q. Intuitively, the global token will allow the server to query
the encrypted global multi-map EMMg to recover tags of the ids in DB(wi).
The dictionary token for wi will then allow the server to query the encrypted
dictionary EDX to recover wi’s local multi-map EMMi. Finally, the local tokens
will allow the server to query wi’s encrypted local multi-map EMMi to recover
the tags of the ids of the documents that contain both wi and wi+1, wi and wi+2,
etc. As we will see next, this information will be enough for the server to find the
relevant documents. For the last keyword wq in the disjunction, the algorithm
only needs to create a global token.

Search. The Search algorithm takes as input EDB = (EDX,EMMg) and a token
tk = (tk1, . . . , tkq−1, gtkq). For each sub-token tki = (dtki, gtki, ltki+1, . . . , ltkq),
the server does the following. It first uses gtki to query the global multi-map EMMg

and recover a set of identifier tags Ti for DB(wi). It then uses dtki to query the
encrypted dictionary EDX to recover the local multi-map EMMi for wi and uses
ltki+1 to query EMMi to recover the tags T ′ for identifiers of the documents that
contain both wi and wi+1; that is, the tags for the set I ′ = DB(wi) ∩ DB(wi+1).
The server then removes T ′i from Ti. It then repeats this process for all local
tokens ltki+2 to ltkq. Once it finishes processing all local tokens in tki, it holds
the set of tags for the set

DB
(
wi
)
\
q−1⋃
j=i

(
DB
(
wi
)⋂

DB
(
wj+1

))
. (1)

Once it finishes processing all the sub-tokens, the server holds tags T1 through
Tq−1. For gtkq, the server just queries the global multi-map to recover Tq. Finally,
it outputs the set

T =

q⋃
i=1

Ti. (2)

5.1 Correctness and Efficiency
We now analyze the correctness and efficiency of our construction. The correctness
of IEX follows from Eqs. (1) and (2) and from the inclusion-exclusion princi-
ple. Given a disjunctive query w = (w1, . . . , wq), by Eq. (2), IEX.Search

(
EDB,

Token(K,w)
)

will output

T =

q⋃
i=1

Ti

12

Let F be a pseudo-random function, SKE = (Gen,Enc,Dec) be a private-key
encryption scheme, ΣDX = (Setup,Token,Get) be a dictionary encryption
scheme and ΣMM = (Setup,Token,Get) be a multi-map encryption scheme.
Consider the disjunctive SSE scheme IEX = (Setup,Token,Search) defined
as follows:

– Setup(1k,DB):

1. sample K1,K2
$← {0, 1}k;

2. initialize a dictionary DX and a multi-map MMg;
3. for all w ∈W,

(a) for all id ∈ DB(w), let tagid := EncK1

(
id;FK2

(
id‖w

))
;

(b) set MMg[w] :=
(
tagid

)
id∈DB(w)

;

(c) initialize a multi-map MMw of size #co(w);
(d) for all v ∈ co(w),

i. for all id ∈ DB(v) ∩ DB(w), let tagid :=
EncK1

(
id;FK2

(
id‖w

))
;

ii. set MMw[v] :=
(
tagid

)
id∈DB(v)∩DB(w)

;

(e) compute (Kw,EMMw)← ΣMM.Setup
(
1k,MMw

)
;

(f) set DX[w] := EMMw;
4. compute (Kg,EMMg)← ΣMM.Setup(1k,MMg);
5. compute (Kd,EDX)← ΣDX.Setup(1k,DX);
6. set K =

(
Kg,Kd, {Kw}w∈W

)
and EDB = (EMMg,EDX);

7. output (K,EDB).
– Token(K,w):

1. parse w as (w1, . . . , wq);
2. for all i ∈ [q − 1],

(a) compute gtki ← ΣMM.Token(Kg, wi);
(b) compute dtki ← ΣDX.Token(Kd, wi);
(c) for all i+ 1 ≤ j ≤ #w, compute ltkj ← ΣMM.Token(Kwi , wj);
(d) set tki =

(
dtki, gtki, ltki+1, . . . , ltk#w

)
;

3. compute gtkq ← ΣMM.Token(Kg, wq);
4. output tk = (tk1, . . . , tkq−1, gtkq).

– Search(EDB, tk):
1. parse EDB as (EMMg,EDX);
2. parse tk as (tk1, . . . , tkq−1, gtkq);
3. for all i ∈ [q − 1],

(a) parse tki as
(
dtki, gtki, ltki+1, . . . , ltkq

)
;

(b) compute Ti ← ΣMM.Get(EMMg, gtki);
(c) compute EMMi ← ΣDX.Get(EDX, dtki);
(d) for all i+ 1 ≤ j ≤ q,

i. compute T ′ ← ΣMM.Get(EMMi, ltkj);
ii. set Ti = Ti \ T ′;

4. compute Tq ← ΣMM.Get(EMMg, gtkq);
5. output

⋃
i∈[q] Ti;

Fig. 1. Our disjunctive SSE scheme IEX.

13

=

(q−1⋃
i=1

Ti

)⋃
Tq

=

q−1⋃
i=1

DB(wi) \
q−1⋃
j=i

(
DB(wi)

⋂
DB(wj+1)

)⋃DB(wq)

=

q−2⋃
i=1

DB(wi) \
q−1⋃
j=i

(
DB(wi)

⋂
DB(wj+1)

)
⋃(

DB(wq−1) \
(
DB(wq−1)

⋂
DB(wq)

))⋃
DB(wq)︸ ︷︷ ︸

U

(3)

where the first and third equalities hold by Eqs. (2) and (1), respectively. Note,
however, that U equals DB(wq−1)

⋃
DB(wq):

U = DB(wq−1)
⋂(

DB(wq−1)
⋃

DB(wq)
)⋃

DB(wq)

=
(
DB(wq−1)

⋂
DB(wq−1)

)⋃(
DB(wq−1)

⋂
DB(wq)

)⋃
DB(wq)

=
(
DB(wq−1)

⋂
DB(wq)

)⋃
DB(wq)

=
(
DB(wq−1)

⋃
DB(wq)

)⋂(
DB(wq)

⋃
DB(wq)

)
= DB(wq−1)

⋃
DB(wq)

Repeating the same argument for q − 2, q − 3 and so on and plugging into Eq.
(3), we get that T =

⋃q
i=1 DB(wi).

Efficiency. The search complexity of IEX isO(q2·M), whereM = maxi∈[q] #DB(wi)
and q is the number of terms in the disjunction. Tokens are of size O(q). We also
note that unlike BXT and OXT [11], IEX tokens are selectivity-independent in
the sense that they do not depend on the size of the result. The IEX storage
complexity is,

O

(
strg

(∑
w

#DB(w)

)
+
∑
w

strg

(∑
v∈co(w)

#DB(v) ∩ DB(w)

))
,

where strg is the storage complexity of the underlying encrypted multi-map
encryption scheme ΣMM.

A storage optimization. As we can see, the storage complexity of IEX can
be large, especially if the underlying encrypted multi-maps are. This is indeed
the case when they are instantiated with standard sub-linear constructions. We
observe, however, that we can tradeoff storage complexity (and setup time) for
the communication complexity of search as follows. When constructing a local
multi-map EMMw for a keyword w, we normally insert tags for the identifiers in

14

DB(w) ∩ DB(v) for all v ∈ co(w). This is not necessary for correctness, however,
so we can omit some of the co-occurring keywords from w’s local multi-map. The
tradeoff is that this will increase the communication complexity of IEX’s search
operation and, in particular, make it non-optimal.

To do this, we suggest using the following approach to decide whether to add
a keyword v ∈ co(w) or not. Let p < 1 be a filtering parameter and let

Tw,v
def
=

#DB(v) ∩ DB(w)

max(#DB(w),#DB(v))
.

If Tw,v > p, then add v to EMMw otherwise do not. With this filtering in place,
the storage complexity of IEX is now

O

(
strg

(∑
w

#DB(w)

)
+
∑
w

strg

(∑
v∈co(w)
Tw,v>p

#DB(v) ∩ DB(w)

))
.

In our experiments we set p = 0.2.

Remark. We note that when all the terms of the disjunctive query have
selectivity O(n), IEX has linear search complexity. This is, however, the best
one can do. On the other hand, the communication complexity of IEX remains
optimal independently of the selectivity of the terms. This similarly applies
to OXT but not to BlindSeer since it induces a logarithmic (multiplicative)
overhead.

5.2 Security
The setup leakage of IEX consists of the setup leakage of its underlying building
blocks. In particular, this includes the setup leakage of the encrypted global multi-
map and of the encrypted dictionary. Assuming the use of standard optimal-time
multi-map and dictionary encryption schemes [15,13,23,10], this reveals the size
of the database DB as well as the total size of the local multi-maps stored in the
dictionary. The query leakage of IEX for a query w includes, for each keyword
wi ∈W, the query leakage of the encrypted dictionary and of the encrypted global
multi-map. It also includes the query leakage of every queried local multi-map
as well as their setup leakage. Again if instantiated with standard constructions,
this will consist of the search and access patterns which, respectively, capture
whether or not the same query has been searched for and (in our case) the tags.
Finally, the query leakage also includes the number of documents containing
DB(wi)

⋂
DB(wj+1), for all j ≥ i and i ∈ [q − 1].

We now give a precise description of IEX’s leakage profile and show that it is
adaptively-secure with respect to it. Its setup leakage is

Liex
S (DB) =

(
Ldx
S (DX),Lmm

S (MMg)

)
,

where Ldx
S (DX) and Lmm

S (MMg) are the setup leakages of the underlying dictionary
and multi-map encryption schemes, respectively. Its query leakage is

Liex
Q (DB,w) =

((
Ldx
Q

(
DX, wi

)
,Lmm

S (MMi),

15

Lmm
Q

(
MMg, wi

)
, . . . ,Lmm

Q

(
MMi, wq

)
,TagPati(DB,w)

)
i∈[q−1]

,

Lmm
Q

(
MMg, wq

)
,TagPatq(DB,w)

)
,

where, for all i ∈ [q],

TagPati(DB,w) =

((
fi
(
id
))

id∈DB(wi)∩DB(wi+1)

, . . . ,

(
fi
(
id
))

id∈DB(wi)∩DB(wq)

)
,

and fi is a random function from {0, 1}|id|+log#W to {0, 1}k.

Theorem 1. If ΣDX is adaptively
(
Ldx
S ,Ldx

Q

)
-secure, ΣMM is adaptively

(
Lmm
S ,Lmm

Q

)
-

secure, SKE is RCPA-secure and F is pseudo-random, then IEX is (Liex
S ,Liex

Q)-
secure.

The proof of Theorem 1 is deferred to the full version of the paper.

6 Boolean Queries with IEX

While IEX is naturally disjunctive, it can also support boolean queries. The
boolean variant is similar to IEX in that it uses the same encrypted structures
(i.e., it has the same Setup algorithm) but different Token and Search algorithms.
We refer to the boolean variant of IEX as BIEX. We now provide an overview of
how BIEX works.

Overview of BIEX. Recall that any query can be written in conjunctive
normal form (CNF) so it has the form∆1∧· · ·∧∆`, where each∆i = wi,1∨· · ·∨wi,q
is a disjunction. Note that the result DB(∆1 ∧ · · · ∧ ∆`) is the intersection of
DB(∆1) through DB(∆`). But this intersection does not have to be computed
“directly” by executing a naive intersection operation. A better alternative (from
a leakage point of view) is to compute the intersection by starting with DB(w1),
keeping only the subset of identifiers of DB(w1) that are also in DB(w2), then
keeping only the subset of identifiers that are also in DB(w3) and so on. This
alternative approach requires only information about DB(w1) and the progressive
subsets. Moreover, it uses operations that are already supported by the IEX
structures.

How we do this exactly, is best explained through a concrete example. Suppose
we have a CNF query with ∆1 = w1∨w2 and ∆2 = w3. The first step would be to
perform a disjunctive query for ∆1, resulting in tags for the identifiers in DB(∆1).
In the second step, we want to filter out and keep the tags of identifiers in
DB(∆1)∩DB(w3). To find these tags, it suffices to query the local multi-maps of
w1 and w2 on w3. In the first case, EMMw1 will return tags for DB(w1)∩DB(w3)
and in the second case EMMw2 will return tags for DB(w2)∩DB(w3). Finally, we
take the union of both of these intersections and perform a final intersection with
DB(∆1). The final result equals DB(∆1) ∩ DB(w3). Fig. 2 describes this process
in more detail and for arbitrary boolean queries.

16

Correctness. To show correctness we need to show that, given a boolean query
in CNF form ∆1 ∧ · · · ∧ ∆` such that ∆i = wi,1 ∨ · · · ∨ wi,q (for simplicity we
assume the disjunctions all have q terms), BIEX.Search outputs⋂

i∈[`]

⋃
j∈[q]

DB(wi,j). (4)

Looking at the description of BIEX.Search in Fig. 2, one can see that every time
Step 4(d)i is invoked it outputs⋃

j∈[q]

DB(wi,t) ∩ DB(w1,j),

for all t ∈ [q] and i ∈ [`]. Note that this stems from the fact that ΣMM.Get(EMMj ,
ltkt,i,j) outputs DB(wi,t) ∩ DB(w1,j) for every j ∈ [q].

Also, based on the correctness of IEX we know that the search for the first
disjunction will output

⋃
j∈[q] DB(w1,j) (with no redundant identifiers). So we

have the final result of the query

I` =
⋃
j∈[q]

DB(w1,j)
⋂(⋃

j,l∈[q]

(
DB(w2,j) ∩ DB(w1,l)

))⋂
· · ·
(⋃
j,l∈[q]

(
DB(w`,j) ∩ DB(w1,l)

))
︸ ︷︷ ︸

`−1 terms

(5)
On the other hand, note that for all i ∈ [`] we have by Morgan’s laws that⋃
j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]

DB(wi,j) =
⋃
j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]

DB(w1,j)
⋂ ⋃

j∈[q]

DB(wi,j)

=
⋃
j∈[q]

DB(w1,j)
⋂(⋃

j,l∈[q]

(
DB(wi,j) ∩ DB(w1,l)

))

That is, we can recursively apply the above result on Eq. (5) for all l ∈ [`] to
obtain Eq. (4).

Efficiency. The storage complexity of BIEX is the same as IEX. Its search
complexity is

O

(
q2 ·

(
max
w∈∆1

#DB(w) + ` ·#DB(∆1)

))
.

The term q2 ·maxw∈∆1
#DB(w) is the time to search for the first disjunction and

the second term q2 · ` ·#DB(∆1) is the total number of local multi-map queries.
We can clearly see from the search complexity of BIEX that we can achieve

better efficiency if the selectivity of the first disjunction is as small as possible.
In practice, therefore, the first disjunction should be the one with the smallest
selectivity; similarly to how the first keyword is chosen in OXT. Note that if
the first disjunction in the CNF form of the boolean query matches the entire
database then the search complexity of BIEX will be linear while the optimal
complexity might be sub-linear (the communication complexity of BIEX will

17

remain optimal, however). It is not obvious to us how to improve this without
pre-computing every possible query as it seems almost inherent to the query
itself. With this in mind, it follows that BIEX has a sub-linear worst-case search
complexity when the first disjunction’s selectivity is sub-linear.

The communication complexity of BIEX is optimal since the final set I` does
not contain any redundant identifiers. Finally, note that it is non-interactive and
token size is independent of the query’s selectivity.

Security. The setup leakage of BIEX is the same as IEX’s. Its query leakage
includes the query leakage of IEX on the first disjunction and the query leakage
of the encrypted local multi-maps when queried on all the terms of disjunctions
∆2, . . . ,∆`. Finally, it also includes the number of documents that match the
terms of the first disjunction and the terms of remaining disjunctions.

We now give a precise description of the leakage profile of BIEX and show
that it is adaptively-secure with respect to it. The setup leakage is

Liexb
S (DB) = Liex

S (DB),

where Liex
S (DB) is the setup leakages of IEX. Given a CNF query ∆1 ∧ · · · ∧∆`,

the query leakage is

Liexb
Q

(
DB,

∧̀
i=1

∆i

)
=

(
Liex
Q

(
DB, ∆1

)
,

(
Lmm
Q

(
MMi, wl,1

)
, · · · ,Lmm

Q

(
MMi, wl,q

)
,

TagPati,l

(
DB,

∧̀
i=1

∆i

))
i∈[q]

l∈[2,··· ,`]

)
.

where,

TagPati,l

(
DB,

∧̀
i=1

∆i

)
=

((
fi(id)

)
DB(w1,i)∩DB(wl,1)

, . . . ,

(
fi(id)

)
DB(w1,i)∩DB(wl,q)

)

and fi is a random function from {0, 1}n+log#W to {0, 1}k.

Theorem 2. If ΣDX is adaptively
(
Ldx
S ,Ldx

Q

)
-semantically secure and ΣMM is

adaptively
(
Lmm
S ,Lmm

Q

)
-secure, then BIEX is adaptively (Liexb

S ,Liexb
Q)-secure.

The proof of Theorem 2 is similar (at a high-level) to the proof of Theorem 1.

7 ZMF: A Compact and Adaptively-Secure SSE Scheme

The main limitation of IEX is its storage complexity of

O

(
strgg

(
MMg

)
+
∑
w

strg`
(
MMw

))
,

18

Let IEX = (Setup,Token,Search) be the IEX scheme described in Figure
1 and let ΣDX = (Setup,Token,Get) and ΣMM = (Setup,Token,Get) be
its underlying dictionary and multi-map encryption schemes, respectively.
Consider the boolean SSE encryption scheme BIEX = (Setup,Token, Search)
defined as follows:

– Setup(1k,DB): output (K,EDB)← IEX.Setup(1k,DB).
– Token(K,w):

1. parse K as (Kg,Kd, {Kw}w∈W);

2. parse w as

(
∆1

∧
· · ·
∧
∆`

)
where for all i ∈ [`], ∆i =(

wi,1
∨
· · ·
∨
wi,d

)
;

3. compute tk1 ← IEX.TokenK(∆1);
4. for all 2 ≤ i ≤ ` and all j ∈ [q],

(a) for all 1 ≤ s ≤ q, compute ltks,i,j ← ΣMM.Token(Kw1,s , wi,j);
(b) set tki,j =

(
ltk1,i,j , . . . , ltkq,i,j

)
;

(c) set tki =
(
tki,1, . . . , tki,q

)
;

5. output tk = (tk1, . . . , tk`).
– Search(EDB, tk):

1. parse EDB as (EMMg,EDX);
2. parse tk as (tk1, . . . , tk`);
3. compute I1 ← IEX.Search(EDB, tk1);
4. for all 2 ≤ i ≤ `,

• instantiate an empty set Ii;
• parse tki =

(
tki,1, . . . , tki,q

)
;

• for j ∈ [q],
(a) get dtkj from tk1;
(b) compute EMMj ← ΣDX.Get(EDX, dtkj);
(c) parse tki,j =

(
ltk1,i,j , . . . , ltkq,i,j

)
;

(d) for s ∈ [q],
i. compute I ′ ← ΣMM.Get(EMMj , ltks,i,j);

ii. compute Ii = Ii
⋃(

Ii−1

⋂
I ′
)
;

5. output I`;

Fig. 2. The scheme BIEX.

19

where strgg and strg` are the storage complexity of the global and local EMMs,
respectively. If the latter are instantiated with standard sub-linear-time construc-
tions such as [15,24,11,10], we have

O

(∑
w

#DB(w) +
∑
w

∑
v∈co(w)

#DB(v) ∩ DB(w)

)
, (6)

which does not compare favorably to standard single-keyword search solutions
which require only O

(∑
w #DB(w)

)
, or to the OXT construction of [11] which

requires

O

(∑
w

#DB(w) + log

(
1

ε

)
·
∑
w

#DB(w)

)
when XSet is instantiated with a Bloom filter with a false positive rate of ε. In
particular, note that the second term in the asymptotic expression above hides a
constant of 1, which makes OXT reasonably compact.

Our approach. The main storage inefficiency in IEX comes from the local
EMMs which contribute the second term in Eq. (6). Ideally, we could improve
things if we could use more compact local EMMs. Unfortunately, all known
sub-linear constructions require O(

∑
w #DB(w)) storage. We observe, however,

that for local EMMs sub-linear search is not necessary since in practice the
number of label/tuple pairs they store is small in comparison to the total number
of documents n. So, for our purposes, a linear-time construction would work as
long as it was compact. In [19], Goh proposed a very compact construction called
Z-IDX based on Bloom filters. Specifically, it needs only

O

(
log

(
1

ε

)
·
∑
v∈V

#MM−1[v]

)
bits of storage, where V is the value space of the multi-map and ε is the false
positive rate. If we could encrypt the local EMMs of IEX with Z-IDX, the former’s
storage would be

O

(∑
w

#DB(w) + log

(
1

ε

)
·
∑
w

#co(w)

)
,

which is much more competitive with OXT (note that the second term here
also has a constant of 1). Unfortunately, this approach does not work because
Z-IDX is not adaptively secure. Nevertheless, we show how to construct a highly
compact scheme that is. In the following, we first recall how Z-IDX works.

Goh’s Z-IDX scheme. Like any SSE scheme, Z-IDX can be viewed as a STE
scheme and, in particular, as a multi-map encryption scheme. Conceptually,
we observe that Z-IDX can be abstracted into two parts: (1) a compiler that
transforms an underlying set encryption scheme into a multi-map encryption
scheme; and (2) a concrete set encryption scheme based on Bloom filters and
PRFs. We refer to the former as the Z-IDX transformation and describe it in

20

Let ΣSET = (Gen,Enc,Token,Test) be a multi-structure set encryp-
tion scheme and consider the multi-map encryption scheme ΣMM =
(Setup,Token,Get) defined as follows:

– Setup(1k,MM):
1. compute K ← Gen(1k);
2. let V be the range of MM;
3. for all v ∈ V,

(a) let Sv = MM−1(v);
(b) compute ESETv ← ΣSET.Enc(K,Sv);

4. output EMM = (ESETv)v∈V.
– Token(K, `): output tk← ΣSET.Token(K, `)
– Get(EMM, tk):

1. let I = ∅;
2. for all v ∈ V,

(a) if ΣSET.Test(ESETv, tk) outputs 1, set I = I ∪ {v};
3. output I.

Fig. 3. The Z-IDX transformation.

detail in Fig. 3. Given a set encryption scheme ΣSET, it produces a multi-map
encryption scheme ΣMM that works as follows. The ΣMM.Setup algorithm takes as
input a multi-map MM that maps labels to tuples of values from V. It creates #V
sets (Sv)v∈V such that Sv holds the labels in MM that map to v. It then encrypts
each set Sv with ΣSET resulting in an encrypted set ESETv. The encrypted
multi-map EMM is simply the collection of encrypted sets (ESETv)v∈V. A ΣMM

token for a label ` is a ΣSET token for ` and ΣMM.Get uses the token to test each
set in EMM = (ESETv)v∈V and outputs v if the test succeeds.

Note that for ΣMM to work, ΣSET must satisfy a stronger STE form than
what is described in Definition 1. In particular, it must be what we call multi-
structure in the sense that the tokens produced with a key K can be used to query
all the structures encrypted under K. We provide formal syntax and security
definitions of multi-structure STE schemes in the full version of the paper. The
main difference between standard and multi-structure STE schemes are that
in the latter the Setup algorithm is replaced with a key generation algorithm
Gen(1k) that takes as input a security parameter and outputs a secret key K;
and an encryption algorithm Enc(K,DS) that takes as input a secret key K and
a data structure DS and outputs an encrypted structure EDS.

Adaptive security. From our abstract perspective, the reason Z-IDX is not
adaptively-secure is because the Z-IDX transformation is (implicitly) applied to
a set encryption scheme that is not adaptively-secure. We show in Theorem 3
below, however, that if the transformation is applied to an adaptively-secure set
encryption scheme then the result is adaptively-secure as well. More precisely, we
show that if the set encryption scheme is adaptively (Lset

S ,Lset
Q)-secure then the

Z-IDX transformation yields a multi-map encryption scheme with the following

21

leakage profile:

Lmm
S (MM) =

((
Lset
S

(
MM−1[v]

))
v∈V ,#V

)
,

and

Lmm
Q (MM, q) = Lset

Q

((
MM−1[v]

)
v∈V , q

)
.

Theorem 3. If ΣSET is adaptively (Lset
S ,Lset

Q)-secure then the scheme ΣMM that
results from applying the Z-IDX transformation to it is adaptively (Lmm

S ,Lmm
Q)-

secure.

Due to space constraints, the proof of Theorem 3 will appear in the full
version of the paper.

7.1 An Adaptively-Secure and Multi-Structure Set Encryp-
tion Scheme

In this Section, we construct an adaptively-secure, highly-compact and multi-
structure set encryption scheme. Then, by applying the Z-IDX transformation to
it we get an adaptively-secure and highly-compact multi-map encryption scheme
which we then use in IEX.

Adaptive security. The main difficulty in designing adaptively-secure en-
crypted structures is supporting equivocation during simulation. Roughly speak-
ing, the issue is that during the Ideal(k) experiment the simulator first needs
to simulate an encrypted structure for the adversary and later needs to be able
to simulate tokens that work correctly with the simulated structure produced
in the first step. The challenge in supporting equivocation is that at the time
the encrypted structure is simulated, the simulator has no information about the
adversary’s queries so it is not clear how to simulate the structure in a way that
will work correctly at query time. So to handle equivocation, the construction
needs to be carefully designed and, typically, needs expensive cryptographic
primitives. Fortunately, as first shown by Chase and Kamara [13], in the setting
of symmetric STE, equivocation can be achieved very efficiently based only on
XOR and PRF operations.

Our base scheme. One possible way to design an encrypted Bloom filter is
as follows. Let U be a universe of elements. Given a set S ⊆ U, insert the value
FK(a), for all a ∈ S, in a standard Bloom filter, where F is a pseudo-random
function. The token for an element a ∈ U is tk = FK(a) and the Bloom filter can
be queried by doing a standard Bloom filter test on tk.

The main problems with this construction are that: (1) it reveals information
about the size of S; and (2) it is not adaptively-secure. To achieve adaptive
security, we can encrypt the Bloom filter by XORing each of its bits with a
pad generated from another pseudo-random function G. This encryption step
both hides the size of S and allows for equivocation. Now the token tk for an
element a ∈ U includes FK1

(a) and the pads for locations H1(FK1
(a)) through

Hλ(FK1
(a)), where (H1, . . . ,Hλ) are the hash functions used for the Bloom filter.

22

For this to work, however, the pads have to be designed carefully. More
precisely, correctness requires that the pads only depend on the locations that
they mask otherwise two (or more) elements a1 and a2 that collide under one
of the hash functions will produce different masks for the same location. To get
such location-dependent pads we compute them as GK2

(`), where ` is the `th bit
of the filter. Now, a token for element a is set to

tk =

(
FK1

(a), GK2

(
H1

(
FK1

(a)
))
, . . . , GK2

(
Hλ

(
FK1

(a)
)))

.

The base construction described so far is compact and adaptively-secure but not
multi-structure.

Reusability. Recall that a multi-structure STE scheme can produce multiple
encrypted structures (EDS1, . . . ,EDSn) under a single key K in such a way that
a single (constant-size) token tk can be used to query all the structures generated
under key K. So to make our base scheme multi-structure, the pads have to be
filter-dependent in addition to being location-dependent so that different pads
are used for different filters even if they mask the same location. We do this
by setting the pads to be the output of a random oracle applied to the pair
(GK2

(`), id) where id is the identifier of the filter. The purpose of the random
oracle here is twofold. First, it enables the extraction of n (random) pads from
pairs (GK2(`), id1) through (GK2(`), idn) without relying on n secret keys. This,
in turn, means the tokens can be of size independent of n. Second, it allows the
simulator to equivocate on the pads while, again, keeping the tokens independent
of n.

While the base scheme is now compact, adaptively-secure and multi-structure,
it produces very large tokens. The problem is that if two sets S1 and S2 have
different sizes, then the parameters of their Bloom filters (i.e., the array sizes,
number of hash functions and hash function ranges) have to be different. The
consequence is that in our encrypted set scheme, we will need different sets of
hash functions for each filter which, in turn, means the tokens will have to include
multiple pads for every filter.

Matryoshka filters. We solve this problem as follows. Instead of encrypting a
set of standard Bloom filters as in our base construction, we encrypt a new filter-
based structure we refer to as matryoshka filters (MF).5 MFs are essentially a set
of nested Bloom filters of varying sizes whose hash functions are all derived from a
fixed set of hash functions. More precisely, consider a sequence of sets S1, . . . , Sn ⊆
U not necessarily of the same size. We assume for simplicity that the sets have size
a multiple of 2. For some false negative rate 2−λ, choose λ independent and ideal
random hash functions (H1, . . . ,Hλ) from U to [(λ/ ln 2) ·maxi #Si]. We refer to
these functions as the maximal hash functions and to their associated filter as the
maximal filter. For every set Si, construct a Bloom filter of size [d(λ/ ln 2) ·#Sie]
with hash functions (Hi

1, . . . ,H
i
h) where, for all j ∈ [λ], Hi

j(a) = Hj(a)‖pi with

5 The term matryoshka here refers to Russian nested dolls which are called matryoshka
dolls.

23

pi = dlog
(
(λ/ ln 2) · #Si

)
e. We refer to these hash functions as the derived

functions and to their associated filters as the derived filters. Note that if the
maximal hash functions are ideal random functions then so are the derived
functions so the standard Bloom filter analysis holds.

Encrypting matryoshka filters. As mentioned above, our final solution
consists of adapting our base scheme to encrypt matryoshka filters instead of
standard Bloom filters. In other words, we XOR each bit of each matryoshka
filter with location- and filter-dependent pads. The main difference with the base
scheme is that here the pads also need to be nested; that is, given a pad for the
maximal filter we need to be able to construct the pads for the derived filters.
To support this, we make use of the properties of online ciphers; namely, that
given an n-bit string s and a B-online cipher OC, the following equality holds:

OCK

(
s
‖B
|p×B

)
= OCK

(
s‖B
)
|p×B

, (7)

where p < n. This can be derived as follows. From the correctness property of
online ciphers, we have

OCK

(
s
‖B
|p×B

)
= OC1

K

(
s
‖B
|p×B

)
‖ · · · ‖OCpK

(
s
‖B
|p×B

)
= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|p×B

)
,

and

OCK

(
s‖B
)

= OC1
K

(
s‖B
)
‖ · · · ‖OCnK

(
s‖B
)

= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|n×B

)
,

for some function X. It follows then that

OCK

(
s‖B
)
|p×B

= X

(
K, s

‖B
|B

)
‖ · · · ‖X

(
K, s

‖B
|p×B

)
= OCK

(
s
‖B
|p×B

)
.

Now, to encrypt the `th bit of a matryoshka filter, we use a pad constructed as

R

(
OCK

(
`
‖B
|p×B

)
, id(S)

)
,

where R is a random oracle and id(S) is the identifier of the filter. Note that the
pad is both filter- and location-dependent. In addition, if the server is provided
the value OCK

(
`‖B
)

for the maximal filter, it follows by Eq. (7) that it can derive
the above pad as

R

(
OCK

(
`‖B
)
|p×B , id(S)

)
.

24

The detailed description of our set encryption scheme is given in Fig. 4. In the
Theorem below we show that it is adaptively-secure with the following leakage
profile:

Lest
S (S) = #S and Lset

Q

(
S1, . . . , Sn, q

)
=

(
b1, . . . , bn,SP(q)

)
,

where SP is the search pattern; that is, if and when two queries are the same.
More formally, if t queries have been made, SP(q) outputs a t-bit string with a 1
at location i if q is equal to the ith query.

Theorem 4. If OC is secure, then the multi-structure set encryption scheme
described in Fig. 4 is adaptively (Lset

S ,Lset
Q)-secure in the random oracle model.

The proof of Theorem 4 is in the full version of the paper.

7.2 The ZMF Multi-Map Encryption Scheme
By applying the Z-IDX transformation to our multi-structure set encryption
scheme from Fig. 4, we get a new adaptively-secure multi-map encryption scheme
we call ZMF. We state its security formally in the following Corollary of Theorems
3 and 4. Its leakage profile is,

Lzmf
S (MM) =

((
#MM−1[v]

)
v∈V

,#V

)
and Lzmf

Q (MM, q) =

(
b1, . . . , b#V,SP(q)

)
where bi is 1 if q ∈ MM−1[vi] and 0 otherwise, and vi is the ith value in V.

Corollary 1. The ZMF multi-map encryption scheme which results from ap-
plying the Z-IDX transformation to the set encryption scheme of Fig. 4 is
(Lzmf

S ,Lzmf
Q)-adaptively secure.

8 DIEX: A Dynamic SSE Scheme

We describe our dynamic SSE construction DIEX. As far as we know, it is the
first adaptively-secure dynamic SSE scheme that is forward-secure and supports
Boolean search queries in sub-linear time. In particular, it supports the addition,
deletion and editing of files. In the full version of the paper, we recall the syntax
and security definitions for dynamic STE.

Overview. As a starting point, we describe a dynamic version of IEX that is
not forward-secure. For this, we make two changes to our static construction.
First, we replace the encrypted dictionary EDX and the global encrypted multi-
map EMMg with a dynamic encrypted dictionary EDX+ and a dynamic global
encrypted multi-map EMM+

g . The encrypted local multi-maps remain static.
Second, we require that these new structures be response-hiding. We provide a
high level description of our construction which is described in detail in Fig. 5.

The DIEX.Setup algorithm is the same as the IEX.Setup with the exception
that it uses a dynamic encrypted dictionary and a dynamic encrypted multi-
map and outputs state information st. The DIEX.Tokensr algorithm is similar

25

Let F be a pseudo-random function family, H : {0, 1}∗ → [σ] be a family
of hash functions modeled as random oracles where σ is a public upper
bound, and R : {0, 1}∗ → {0, 1} be a random oracle. Let OC : {0, 1}g(k) ×
{0, 1}γ×B → {0, 1}γ×B a B-online cipher with γ = log σ blocks. Let ε ∈
[0, 1] be a false positive rate that is hardcoded in each algorithm. Set
λ = log(1/ε) and set H1, . . . ,Hλ ← H. Consider the set encryption scheme
Σ = (Gen,Enc,Token,Test) defined as follows:

– Gen(1k):

1. sample K1
$← {0, 1}k and K2

$← {0, 1}g(k);
2. output K = (K1,K2);

– Enc(K,S):
1. let A be a binary array of size m = dλ ·#S/ ln 2e initialized to all

0’s;
2. for all items a ∈ S and all i ∈ [λ],

(a) compute T = FK1(a);
(b) compute ` = Hi

(
T
)
;

(c) compute s = OCK2

(
`
‖B
| logm×B

)
;

(d) set A
[
`| logm

]
= 1⊕ R

(
s, id(S)

)
;

3. for all i ∈ [m] such that A[i] = 0,

(a) compute s = OCK2

(
i
‖B
| logm×B

)
;

(b) set A
[
i
]

= 0⊕ R
(
s, id(S)

)
;

4. set ESET = A;
5. output ESET.

– Token(K, a):
1. compute T = FK1(a);
2. for all i ∈ [λ],

(a) compute ` = Hi(T);
(b) compute si = OCK2

(
`‖B
)
;

3. output tk =
(
T, s1, . . . , sλ

)
.

– Test(ESET, tk):
1. parse tk as (T, s1, . . . , sλ);
2. parse ESET as A;
3. set m = |A|;
4. for all i ∈ [λ],

(a) compute bi = A
[
Hi(T)| logm

]
⊕ R

((
si
)
| logm×B , id(ESET)

)
;

5. if, for all i ∈ [λ], bi = 1 output 1, otherwise output 0.

Fig. 4. An adaptively-secure multi-structure set encryption scheme.

26

to IEX.Token with the exception that it is stateful. Here, the state is just used
to generate tokens for the underlying dynamic dictionary and global multi-map
encrypted structures. The DIEX.Tokenup algorithm works as follows. It takes as
inputs the key K, the state st and an update u = (op, id,Wid) that consists of
an operation op ∈ {edit+, edit−}, the document identifier id being edited and a
set of keywords Wid to add or delete based on op. We have the following cases:

– if u = (edit+, id,Wid), the client will update the global multi-map EMMg with
pairs (w, tagid) for all w ∈ Wid. Here, tagid := EncK1

(
id;FK2

(
id‖w

))
as in

IEX. This is done by generating update tokens (utkwg)w∈Wid
for EMMg using

ΣMM.Token
up. For all w ∈ Wid, the client generates a new local multi-map

MMw that maps all v ∈Wid \ {w} to tagid. It encrypts all these local multi-
maps (MMw)w∈Wid

with ΣDX.Setup, resulting in (EMMw)w∈Wid
and creates

update tokens (utkwd)w∈Wid
for EDX. The algorithm outputs an update token

utk =

(
op,
(
utkwd

)
w∈Wid

,
(
utkwg

)
w∈Wid

)
,

and st = (std, stg), where the former is the state maintained by ΣDX and the
latter is the state maintained by ΣMM.

– if u = (edit−, id,Wid), the client only updates EMMg. Specifically, it removes
all pairs (w, tagid) for w ∈ Wid. This can be done by computing tags as
above and generating update tokens (utkwg)w∈Wid

using ΣMM.Token
up. The

algorithm outputs the update token

utk =

(
op, (utkwg)w∈Wid

)
,

and st = stg where stg is the state maintained by ΣMM.

The Update algorithm takes as input EDB and an update token utk and
outputs EDB′. If op = edit+, it uses the sub-tokens in utk to update EMMg and
EDX. If op = edit−, it only updates EMMg. The Search algorithm is the same
as IEX.Search. Recall that we do not update the local multi-maps already in
EDX. This is not necessary to for correctness because, during search, the server
will take the intersection of the tags returned from the global multi-map EMMg

and from the appropriate local multi-maps. However, because EMMg is properly
updated, the intersection operation will filter out the old/stale tags from the
local multi-map.

Forward security. We note that DIEX is forward secure if its underlying
structures are. Specifically, if ΣMM and ΣDX are forward secure then so is DIEX.
This is easy to see from the fact the DIEX tokens only consist of ΣDX and ΣMM

tokens so if the former can be simulated from the security parameter, then the
latter can. Due to space constraints, the definition of forward security is differed
to the full version of the paper. As a possible instantiation of a forward secure
multi-map and dictionary encryption scheme, one can use the Sophos scheme of
Bost [9].

27

Let Σ+
DX = (Setup,Tokensr,Get,Tokenup,Update) and Σ+

MM = (Setup,
Tokensr,Get,Tokenup,Update) be dynamic dictionary and multi-map en-
cryption schemes, respectively. Let IEX+ = (Setup+,Token+, Search+)
be the IEX scheme described in Fig. 1 with ΣMM and ΣDX replaced
with Σ+

MM and Σ+
DX, respectively, and let ΣMM = (Setup,Token,Query)

be the static multi-map encryption scheme used to encrypt the local
multi-maps. Consider the dynamic disjunctive SSE scheme DIEX =
(Setup,Tokensr, Search,Tokenup,Update) defined as follows:

– Setup(1k,DB): output (K, st,EDB)← IEX+.Setup(1k,DB);
– Tokensr(K,w): output tk← IEX+.Token(K, st,w);
– Tokenup(K, st, u)

1. parse u as (op, id,Wid) and st as (stg, std)
2. if op = edit+,

(a) for all w ∈Wid,
i. let tagid := EncK1

(
id;FK2

(
id‖w

))
;

ii. compute (utkwg , stg)← Σ+
MM.Token

up(K, stg, (op, w, tagid));
iii. initialize a multi-map MMw of size #Wid;
iv. for all v ∈Wid \ {w}, set MMw[v] = tagid;
v. compute (Kw,EMMw)← ΣMM.Setup

(
1k,MMw

)
;

vi. compute (utkwd , std)← Σ+
MM.Token

up(K, std, (op, w,EMMw));
(b) output utk =

(
op, (utkwd)w∈Wid , (utk

w
g)w∈Wid

)
;

3. if op = edit−,
(a) for all w ∈Wid

i. let tagid := EncK1

(
id;FK2

(
id‖w

))
;

ii. compute (utkwg , stg)← Σ+
MM.Token

up(K, stg, (op,Wid, tagid));
(b) output utk =

(
op, (utkwg)w∈Wid) and the updated state st =

(stg, std);
– Update(EDB, utk)

1. parse utk as
(
op, (utki)i∈[#tk]) and EDB = (EDX,EMMg);

2. if op = edit−, then for all i ∈ [#utk] compute EMMg ←
Σ+

MM.Update(EMMg, utki, op);
3. if op = edit+, then for all i ∈ [#utk/2], compute

EMMg ← Σ+
MM.Update(EMMg, utki, op) and EDX ←

Σ+
DX.Update(EDX, utki+#utk/2+1, op);

4. output EDB = (EDX,EMMg);
– Search(EDB, utk): output

⋃
i∈[q] Ti ← IEX+.Search(EDB, tk).

Fig. 5. The scheme DIEX.

28

Efficiency. The efficiency of DIEX depends on the underlying multi-map and
dictionary encryption schemes. Using optimal constructions, the search complexity
of DIEX is the same as IEX; that is, O(q2 ·M), where M = maxi∈[q] #DB(wi)
and q is the number of terms in the disjunction.

Security. We show that DIEX is adaptively secure with respect to the following
well-defined leakage profile. The setup and query leakages are the same as IEX
so we only describe the update leakage. For an update u = (edit+, id,Wid),

LU

(
DB, u

)
=

(
Lmm
U

(
MMg, (op, w, id)

)
,Ldx

U

(
DX, (op, w, id)

)
,Lmm

S

(
MMw

))
w∈Wid

.

If u = (edit−, id,Wid): Ldiex
U

(
DB, u

)
=

(
Lmm
U

(
MMg, (op, w, id)

))
w∈Wid

.

Theorem 5. If ΣDX is adaptively
(
Ldx
S ,Ldx

Q ,Ldx
U

)
-semantically secure and ΣMM is

adaptively
(
Lmm
S ,Lmm

Q ,Lmm
U

)
-secure, then DIEX is adaptively (Ldiex

S ,Ldiex
Q ,Ldiex

U)-
secure.

We defer the proof to the final version of this work.

9 Empirical Evaluation

Due to space limitations, the empirical evaluation of our constructions is de-
ferred to the full version. Clusion [22], our new open source encrypted search
framework, is publicly available. We evaluate IEX-2Lev and IEX-ZMF which are
instantiations of IEX with 2Lev and ZMF, respectively. We also evaluate our
Boolean scheme BIEX. Our experiments report setup time, search time, storage
and token size for all our constructions.

References
1. Apache lucene. http://lucene.apache.org.

2. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser, and K. Yasuda.
Parallelizable and authenticated online ciphers. In ASIACRYPT, 2013.

3. G. Asharov, M. Naor, G. Segev, and I. Shahaf. Searchable symmetric encryption:
Optimal locality in linear space via two-dimensional balanced allocations. In STOC,
2016.

4. M. Bellare, A. Boldyreva, L. R. Knudsen, and C. Namprempre. On-line ciphers
and the hash-cbc constructions. IACR Cryptology ePrint Archive, 2007:197, 2007.

5. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In CRYPTO, 2007.

6. A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill. Order-preserving symmetric
encryption. In EUROCRYPT, 2009.

7. D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In EUROCRYPT, 2004.

8. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In TCC, 2011.

9. R. Bost. Sophos - forward secure searchable encryption. In ACM CCS, 2016.

29

http://lucene.apache.org

10. D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation. In NDSS, 2014.

11. D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-
scalable searchable symmetric encryption with support for boolean queries. In
CRYPTO, 2013.

12. D. Cash and S. Tessaro. The locality of searchable symmetric encryption. In
EUROCRYPT, 2014.

13. M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
ASIACRYPT, 2010.

14. M. Chase and S. Kamara. Structured encryption and controlled disclosure. Technical
Report 2011/010.pdf, IACR Cryptology ePrint Archive, 2010.

15. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric
encryption: Improved definitions and efficient constructions. In ACM CCS, 2006.

16. S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner. Rich
queries on encrypted data: Beyond exact matches. In ESORICS, 2015.

17. B. A. Fisch, B. Vo, F. Krell, A. Kumarasubramanian, V. Kolesnikov, T. Malkin,
and S. M. Bellovin. Malicious-client security in blind seer: A scalable private dbms.
In IEEE S&P, 2015.

18. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.
19. E.-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography

Archive, 2003. See http://eprint.iacr.org/2003/216.
20. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious

RAMs. Journal of the ACM, 43(3):431–473, 1996.
21. Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private large-scale databases

with distributed searchable symmetric encryption. In CT-RSA, 2016.
22. S. Kamara and T. Moataz. Clusion. https://github.com/orochi89/Clusion.
23. S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric

encryption. In FC, 2013.
24. S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric

encryption. In ACM CCS, 2012.
25. K. Kurosawa. Garbled searchable symmetric encryption. In FC, 2014.
26. K. Kurosawa and Y. Ohtaki. Uc-secure searchable symmetric encryption. In FC,

2012.
27. X. Meng, S. Kamara, K. Nissim, and G. Kollios. GRECS: graph encryption for

approximate shortest distance queries. In ACM CCS, 2015.
28. M. Naveed, M. Prabhakaran, and C. Gunter. Dynamic searchable encryption via

blind storage. In IEEE S&P, 2014.
29. A. O’Neill. Definitional issues in functional encryption, 2010. Cryptology ePrint

Archive, Report 2010/556.
30. V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.-G. Choi, W. George,

A. Keromytis, and S. Bellovin. Blind seer: A scalable private dbms. In IEEE S&P,
2014.

31. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted
data. In IEEE S&P, 2000.

32. E. Stefanov, C. Papamanthou, and E. Shi. Practical dynamic searchable encryption
with small leakage. In NDSS, 2014.

33. A. Yao. Protocols for secure computations. In FOCS, 1982.
34. Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The

power of file-injection attacks on searchable encryption. In USENIX, 2016.

30

http://eprint.iacr.org/2003/216
https://github.com/orochi89/Clusion

