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Abstract. The Learning Parity with Noise (LPN) problem has recently
found many cryptographic applications such as authentication protocols,
pseudorandom generators/functions and even cryptomania tasks includ-
ing public-key encryption (PKE) schemes and oblivious transfer (OT)
protocols. It however remains a long-standing open problem whether
LPN implies collision resistant hash (CRH) functions. In this paper, we
answer this question affirmatively by showing that CRH is implied by
(the two most common variants of) LPN. More specifically, for any con-
stant ε > 0, assume that

1. the low-noise LPN problem (i.e., at noise rate 1/
√
n) is 24

√
n/ logn-

hard given q = n3+ε samples,

2. or that the constant-noise LPN problem is 2n
0.5+ε

-hard,

then there exists CRH functions with constant (resp., poly-logarithmic)
shrinkage, which can be implemented using polynomial-size depth-3 cir-
cuits with NOT, (unbounded fan-in) AND and XOR gates. Our technical
route LPN→bSVP→CRH is reminiscent of the known reductions for the
large-modulus analogue, i.e., LWE→SIS→CRH, where the binary Short-
est Vector Problem (bSVP) was recently introduced by Applebaum et
al. (ITCS 2017) that enables CRH in a similar manner to Ajtai’s CRH
functions based on the Short Integer Solution (SIS) problem.

In addition to the feasibility established, we discuss also the practical
relevance of the CRH functions constructed (from the hardness of LPN).
Interestingly, the SHA-3 proposal Fast Syndrome Based (FSB) hash re-
sembles a concrete (but aggressive) instantiation of the LPN-based CRH
construction. Furthermore, we show how to implement the polynomi-
ally shrinking CRH functions more efficiently using idealized heuristics
such as a block cipher (keyed by a public random string) behaves like a
random permutation.
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1 Introduction

1.1 Learning Parity with Noise

Learning Parity with Noise. The computational version of the Learning
Parity with Noise (LPN) assumption with secret size n ∈ N and noise rate
0 < µ < 1/2 postulates that given any number of samples q = poly(n) it is com-
putationally infeasible for any probabilistic polynomial-time (PPT) algorithm to

recover the random secret x
$←− {0, 1}n given (A, A ·x+e), where A is a random

q×n Boolean matrix, e follows Bqµ = (Bµ)q, Bµ denotes the Bernoulli distribu-
tion with parameter µ (i.e., Pr[Bµ = 1] = µ and Pr[Bµ = 0] = 1− µ), ‘·’ and ‘+’
denote (matrix-vector) multiplication and addition over GF(2) respectively. The
decisional version of LPN simply assumes that (A, A · x + e) is pseudorandom.
The two versions are polynomially equivalent [16,45,6].

Hardness of LPN. The computational LPN problem can be seen as the
average-case analogue of the NP-complete problem “decoding random linear
codes” [10]. LPN has been also extensively studied in learning theory, and it was
shown in [33] that an efficient algorithm for LPN would allow to learn several im-
portant function classes such as 2-DNF formulas, juntas, and any function with a
sparse Fourier spectrum. When the noise rate µ is constant (i.e., independent of
secret size n), Blum, Kalai and Wasserman [17] showed how to solve LPN with
time/sample complexity 2O(n/ logn). Lyubashevsky [49] observed that one can
produce almost as many LPN samples as needed using only q = n1+ε LPN sam-
ples (of a lower noise rate), which implies a variant of the BKW attack [17] with
time complexity 2O(n/ log logn) and sample complexity n1+ε. If one is restricted
to q = O(n) samples, then the best attack has exponential complexity 2O(n)

[53]. Under low noise rate µ = 1/
√
n, the best attacks [19,13,48,9] solve LPN

with time complexity 2O(
√
n). The low-noise LPN is mostly believed a stronger

assumption than constant-noise LPN. In noise regime µ = 1/
√
n, LPN can be

used to build public-key encryption (PKE) schemes [2] and oblivious transfer
(OT) protocols. Quantum algorithms are not known to have any advantages
over classic ones in solving LPN, which makes LPN a promising candidate for
“post-quantum cryptography”. Furthermore, LPN enjoys simplicity and is more
suited for weak-power devices (e.g., RFID tags) than other quantum-secure can-
didates such as Learning with Errors (LWE) [60] as the many modular additions
and multiplications in LWE would be simplified to AND and XOR gates in LPN.

Cryptography in minicrypt5. LPN was used as a basis for building lightweight
authentication schemes (e.g. [40,44,45], just to name a few). Kiltz et al. [47] and
Dodis et al. [27] constructed randomized MACs from LPN, which implies a two-
round authentication scheme with security against active adversaries. Lyuba-
shevsky and Masny [50] gave a more efficient three-round authentication scheme

5 minicrypt refers to Impagliazzo’s [42] hypothetical world where one-way functions
exist but public-key cryptography does not, and cryptomania is the more optimistic
world where public-key cryptography and multiparty computation are possible.



from LPN and recently Cash, Kiltz, and Tessaro [20] reduced the round complex-
ity to 2 rounds. Applebaum et al. [4] used LPN to construct efficient symmetric
encryption schemes with certain key-dependent message (KDM) security. Jain
et al. [43] constructed an efficient perfectly binding string commitment scheme
from LPN. We refer to the survey [58] about cryptography from LPN.

Cryptography beyond minicrypt. Alekhnovich [2] constructed the first cryp-
tomania object from LPN, in particular, he showed that LPN with noise rate
1/
√
n implies CPA secure public-key encryption (PKE) schemes. Döttling et

al. [31] and Kiltz et al. [46] further showed that low-noise LPN alone already
suffices for PKE schemes with CCA (and KDM [30]) security. Once we obtain
a PKE, it is perhaps not so surprising to build an oblivious transfer (OT) pro-
tocol. That is, LPN-based PKE uses pseudorandom public keys (so that one
can efficiently fake random public keys that are computationally indistinguish-
able from real ones) and in this scenario Gertner et al. [36] showed how to
construct an OT protocol in a black-box manner. This observation was made
explicit in [24], where universally composable OT protocols were constructed
from low-noise LPN. All the above schemes are based on LPN of noise rate
1/
√
n. Recently, Yu and Zhang [67] showed that PKE and OT can be based

on constant-noise LPN with hardness 2n
1/2+ε

. To summarize, it remains open
whether LPN implies more advanced cryptograpic objects, such as fully homo-
morphic encryption (FHE) and collision resistant hash (CRH) functions [58]. As
for LPN-based FHE, Brakerski [18] reported some negative result that straight-
forward LPN-based encryptions are unlikely to achieve full homomorphism. We
tackle the case of LPN-based CRH.

1.2 Cryptographic Hash Functions

A cryptographic hash function {0, 1}∗ → {0, 1}n is a deterministic func-
tion that maps arbitrarily (or at least polynomially) long bit strings into di-
gests of a fixed length. The function was originally introduced in the seminal
work of Diffie and Hellman [26] to produce more efficient and compact digi-
tal signatures. As exemplified by MD5 and SHA-1/2/3, it is now one of the
most widely used cryptographic primitives in security applications and proto-
cols, such as SSL/TLS, PGP, SSH, S/MIME, IPsec and Bitcoin. Merkle [56]
formulated three main security properties (that still remain in use to date) of
a cryptographic hash function: preimage resistance, second preimage resistance
and collision resistance, of which collision resistance seems the most essential
and suffices for many aforementioned applications 6. Similar to the mode of
operations for data encryption, the design of cryptographic hash functions pro-
ceeds in two steps: one first designs a compression function that operates on

6 Unlikely collision resistance whose definition is unique and unambiguous, there are
several variants of (second) preimage resistance for which people strive to find a com-
promise that facilitates security proofs yet captures the needs of most applications.
Some variants of (second) preimage resistance are implied by collision resistance in
the conventional or provisional sense [62].



fixed-length inputs and outputs, and then applies a domain extender to accept
messages of arbitrary length. This dates back to the independent work of Merkle
[57] and Damg̊ard [23], who proposed a domain extender, and showed that if the
underlying compression function is collision resistant then so is the hash func-
tion based on the Merkle-Damg̊ard construction. We refer to [3] for a survey
about various domain extenders for cryptographic hash functions. For the rest
of this paper we will focus on such length-regular compression functions, termed
collision resistant hash (CRH) functions.

Collision Resistant Hashing. Theoretical constructions of CRH functions
can be based on the hardness of factoring and discrete logarithm (via the con-
struction of claw-free permutations [22]), which are however far from practi-
cal. Ajtai [1] introduced an elegant and (conceptually) simple construction:
fA : {0, 1}m → Znp that for a random A ∈ Zn×mp and some (at least poly-
nomially) large p and on input z ∈ {0, 1}m it computes

fA(z) = A · z mod p , (1)

which is collision resistant via a security reduction from the Short Integer So-
lution (SIS) problem, and is thus at least as hard as lattice problems such as
GapSVP and SIVP. Lyubashevsky et al. [51] gave a ring-based variant of Aj-
tai’s construction, called SWIFFT, which admits FFT and precomputation tech-
niques for improved efficiency and at the same time it preserves an asymptotic
security proof from ideal lattices. Despite a big gap between the claimed security
level and the actual security bounds proved, SWIFFT [51] and its modified ver-
sion (as a SHA-3 candidate) SWIFFTX [7] are among the very few hash function
designs combining the best of two worlds (i.e., practical efficiency and rigorous
security proof).

The Expand-then-Compress Approach. Recently, Applebaum et al. [5]
constructed a function hM : {0, 1}k → {0, 1}n keyed by a random n×αn binary
matrix M as:

hM(y) = M · Expand(y) , (2)

where Expand is an injective function that expands a k-bit string into an αn-
bit one of weight no greater than δαn/2 for some small δ < 1. Note that hM
can be viewed as a binary version of Ajtai’s fA (see (1)), where matrix A over
Zp is simplified to a binary matrix M, and binary vector z is further flattened
to a sparse binary vector Expand(y). As suggested in [5] (and already used in
the FSB hash [8]), Expand : {0, 1}k → {0, 1}αn can be implemented efficiently
and in parallel as follows: assume that δ is a negative power of 2 and L|k (i.e.,
L = log(2/δ), k/L ∈ N) and let α = k2L/Ln, then Expand parses the k-bit input
into L-bit blocks as

y = y1 · · · yL‖yL+1 · · · y2L‖ · · · ‖yL(k/L−1)+1 · · · yk

and produces as output

Expand(y) = DeMul(y1 · · · yL)‖ · · · ‖DeMul(yL( kL−1)+1 · · · yk) ,



where DeMul : {0, 1}L → {0, 1}2L is a demultiplexer function that on input
z ∈ {0, 1}L outputs a 2L-bit string which is 1 in exactly the z-th location (and
0 elsewhere). This yields an output of length αn = k2L/L and Hamming weight
k/L = δαn/2. Thanks to the simplification to the binary field, hM can be imple-
mented rather efficiently both in the asymptotic sense and in practice. For any
specified M, hM can be directly translated to a polynomial-size circuit of NOT,
(unbounded fan-in) XOR and AND gates in depth 3 (or even depth 2 if the input
includes not only the individual bits of y but also their respective complements).
The original FSB hash proposal [8] and its improved version the RFSB hash [14]
can be seen as concrete instantiations of the Expand-then-Compress hash (al-
though they appeared earlier than [5]). The FSB and RFSB hash functions were
shown to be only 8 times slower or even faster than SHA-256 respectively (see
the evaluations in [11,14]).

The security of EtC and Binary SVP. An early version of FSB [34] for
some concrete parameter settings was broken by Saarinen [63], who showed that
using too many blocks (large k/L compared with n) may cause linearization at-
tacks and suggested adjusted parameter choices. Another attack by Fouque and
Leurent [35] targets at a quasi-cyclic version of FSB, where a quasi-cyclic (instead
of random) matrix and a wrong parameter choice (violating the assumption) were
used in [34], and is thus irrelevant to the EtC methodology. The official version
of FSB [8] fixed these problems and remains unbroken to date (except for attacks
on its scale-downed version [12]). In order to study the asymptotic security of the
EtC hash, Applebaum et al. [5] introduced the binary Shortest Vector Problem
(binary SVP or bSVP in short). Informally, the (α, δ)-bSVP assumption asserts

that given a random matrix distribution7 M
$←− {0, 1}n×αn, it is computationally

infeasible to find a non-zero x ∈ {0, 1}αn of low Hamming weight |x| ≤ δαn such
that Mx = 0 mod 2. From a code-theoretic perspective, M specifies the n×αn
parity check matrix of a random binary linear code of rate 1−1/α, where the rows
of M are linearly independent (except with negligible probability), and therefore
the bSVP postulates that finding a short codeword (of weight at most δαn) is
hard. Meaningful regimes (i.e., upper and lower bounds) for δ were discussed in
[5]: for δ < H−1(1/α) such short codes do not exist (except with exponentially
small probability), and for δ ≥ 1/2α the b-SVP assumption is falsified by an
efficient attack, where H−1(·) denotes the inverse of the binary entropy func-
tion, i.e., H(v) = v log 1/v + (1 − v) log 1/(1 − v) for 0 < v ≤ 1/2. Therefore,
b-SVP could only live in the range of δ ∈ (H−1(1/α), 1/2α), and the authors
of [5] further show that one-way functions and collision resistant hash functions
exist if the bSVP is hard for δ > H−1(1/α) and δ > 2H−1(1/α) respectively.
To see that collision resistant hash functions are possible for δ > 2H−1(1/α),
consider hM as defined in (2). Note that hM can be made shrinking since k ≈
log
(
αn

δαn/2

)
≈ αn ·H(δ/2) > n (Lemma 4). The rationale is that any efficient al-

gorithm that comes up with a collision hM(y) = hM(y′) for y 6= y′ immediately

7 For our convenience, the matrix M in our consideration has dimension n× αn in-
stead of αn× n in [5]. Thus, we adjust parameters accordingly when citing [5].



implies a solution to bSVP, i.e., M · x = 0, where x = Expand(y) + Expand(y′)
has weight no greater than δαn. We mention that in the worst case, it is NP-
hard to compute (or even to approximate by a constant factor) the distance
of linear code [66,32]. However, as an average-case hardness assumption, bSVP
is relatively new and deserves further investigation. A shortcut and promising
direction is to see whether bSVP is reducible from the learning parity with noise
(LPN) problem since they are both related to random binary linear codes, and
the average-case hardness of the latter is well understood. However, the authors
of [5] only showed a weak connection between bSVP and LPN. That is, they
show that at least one of the following is true:

1. There exists a > 1 for which (α, δ)-bSVP holds for α = n1/(a−1) and δ =
8/(α log(α)), which implies CRH functions of constant shrinkage factor and
logarithmic degree.

2. One can achieve an arbitrary polynomial speedup over the BKW algorithm
[17], i.e., for every constant c > 0 and there exists an algorithm that solves
the n-dimensional constant-noise LPN with time and sample complexity
poly(n) · 2

cn
logn for infinitely many n’s.

Otherwise stated, assume that the BKW algorithm cannot be further improved
in the asymptotic sense, then bSVP (for certain parameters) and CRH are im-
plied. It remains open whether under much relaxed hardness assumptions about
LPN there exist efficient CRH functions, which we will tackle in this paper.

1.3 Our Work

Our contribution. We summarize the contributions as follows. Assume that

– the LPN problem at noise rate 1/
√
n is at least 24

√
n/ logn-hard given q =

n3+ε samples,
– or that the LPN problem at any constant noise rate 0 < µ < 1/2 is at least

2n
1/2+ε

-hard,

for any constant ε > 0, then there exists a CRH function with constant (or
poly-logarithmic for the latter assumption) shrinkage, which can be constructed
following the Expand-then-Compress approach and can be implemented by a
polynomial-size depth-3 circuit with NOT, (unbounded fan-in) AND and XOR
gates8. We remark that the 2Ω(

√
n/ logn)-hardness assumption for LPN of noise

rate 1/
√
n is quite reasonable as the current best attacks need complexity 2Ω(

√
n)

[13,48,9], and the 2n
0.501

-hardness assumption about constant-noise LPN offers
even more generous security margins as the best attack goes even beyond com-
plexity 2n

0.999

[17]. We establish the results by showing that the hardness of LPN
implies that of bSVP (for certain parameter settings), which in turn implies EtC-
based CRH functions. Informally, assume for contradiction that a useful bSVP
solver succeeds in finding a sparse vector x with respect to n × αn matrix M,

8 The circuit falls into the class AC0(MOD2). See Section 2 for a formal definition.



then this leads to a distinguishing attack against αn LPN samples (MT,MTs+e)
by computing

xT(MTs + e) = xTe

which is a biased bit (and thus distinguishable from uniform) due to the sparse-
ness of x. This already constitutes a contradiction to the decisional LPN, and
one can repeat the above on sufficiently many independent samples (with a
majority voting) to gain a constant advantage, and further transform it into a
key-recovery attack using the same number of samples [6]. Difficulties arise when
transforming bSVP into CRH under the EtC framework, which are solved via a
tradeoff between efficiency and security.

Practical constructions. We establish the feasibility that collision resistant
hash functions can be based on the hardness of LPN, which was a longstanding
open problem [58]. The construction follows a parallel and conceptually sim-
ple approach and resembles a binary version of Ajtai’s SIS-based construction,
of which the FSB hash and its variants fall into concrete (but over optimistic)
instantiations.9 Our second CRH construction from constant-noise LPN is not
practical, so we provide a more efficient and polynomially shrinking CRH con-
struction by additionally relying on the idealized heuristic that a block cipher
on a public random key behaves like a random permutation. In contrast, most
previous blockcipher-based compression functions (e.g. [57,59,15]) reside in the
(much stronger) Ideal Cipher Model that a block cipher on every key behaves
like an independent random permutation. Moreover, existing permutation-based
solutions either only offer a constant shrinkage factor (typically 1/2) [65,54], or
require permutations with a large domain (e.g., [29] needs a large permutation

over {0, 1}n2

to obtain a CRH function with shrinkage factor 1/n).

2 Preliminaries

Notations and definitions. Column vectors are represented by bold lower-
case letters (e.g., s), row vectors are denoted as their transpose (e.g., sT), and
matrices are denoted by bold capital letters (e.g., A). |s| refers to the Hamming
weight of binary string s. We use Bµ to denote the Bernoulli distribution with
parameter µ, i.e., Pr[Bµ = 1] = µ, Pr[Bµ = 0] = 1 − µ, while Bqµ denotes the
concatenation of q independent copies of Bµ. We use log(·) to denote the binary

logarithm. x
$←− X refers to drawing x from set X uniformly at random, and

x ← X means drawing x according to distribution X. We use Un to denote a
uniform distribution over {0, 1}n and independent of any other distribution in
consideration. a‖b denotes the concatenation of a and b. A function negl(·) is
negligible if for any constant Nc we have that negl(n) < n−Nc for all sufficiently
large n. AC0 refers to the class of polynomial-size, constant-depth circuit families

9 However, our results do not immediately constitute security proofs for the FSB-style
hash functions as there remains a substantial gap between the security proved and
security level claimed by the FSB instantiation.



with unbounded fan-in AND and OR gates, where NOT gates are allowed only
at input level. AC0(MOD2) refers to the class of polynomial-size, constant-depth
circuit families with unbounded fan-in AND, OR and XOR gates.

Definition 1 (Learning Parity with Noise). The decisional LPN problem
with secret length n and noise rate 0 < µ < 1/2, denoted by (n,µ)-DLPN, is hard
if for every q = poly(n) and every PPT algorithm D we have∣∣Pr[D(A, A·x+e) = 1]− Pr[D(A, Uq) = 1]

∣∣ = negl(n) , (3)

and the computational LPN problem with the same n and µ, denoted by (n,µ)-
LPN, is hard if for every q = poly(n) and every PPT algorithm A we have

Pr[ A(A, A·x+e) = x ] = negl(n) , (4)

where q × n matrix A
$←− {0, 1}q×n, x

$←− {0, 1}n and e← Bqµ.

Concrete hardness. For T = T (n), we say that the (n,µ)-DLPN (resp.,
(n,µ)-LPN) is T -hard if for every q≤T and every probabilistic adversary of run-
ning time T the distinguishing (resp., inverting) advantage in (3) (resp., (4)) is
upper bounded by 1/T . In certain scenario, we use (n,µ, q)-DLPN or (n,µ, q)-
LPN, where q � T is explicitly stated as a constraint on the number of samples.
Finally, note that the T -hardness also applies to other hardness assumptions
such as Definition 2 and Definition 3.

Definition 2 (binary SVP). For parameters α = α(n) and δ = δ(n), the (α,
δ)-bSVP assumption asserts that for every probabilistic polynomial time (PPT)
algorithm A it holds that

Pr
M

$←−{0,1}n×αn
[ x← A(M) ∈ {0, 1}αn : 0 < |x| ≤ δαn ∧Mx = 0 ] = negl(n) .

Unlike other primitives (such as one-way functions, pseudorandom generators
and functions) whose security parameter is typically the input/key length, the
security strength of collision resistant hash functions are more often represented
as a function of the output length n and it is upper bounded by 2n/2 due to
birthday attacks. In practice, a fixed output size (e.g. 128, 160) typically corre-
sponds to a single function (e.g., MD5, SHA1) instead of a collection of ones 10.
One can just stick to a hM for some pre-fixed random M.

Definition 3 (Collision Resistant Hash Functions). A collection of func-
tions

H =
{
hz : {0, 1}k(n) → {0, 1}n, z ∈ {0, 1}s(n)

}
is a collision-resistant hash (CRH) function if the following hold:

10 Recall that a non-uniform attacker can have polynomial-size non-uniform advice.
Thus, if every security parameter corresponds to only a single function h then the
attacker can include a pair of x and x′ with h(x) = h(x′) as part of the advice.



– (Shrinking). The shrinkage factor of H, defined as ratio n
k , is less than 1

for every n.
– (Efficient). There are efficient algorithms H and G: (1) on input z ∈ {0, 1}s

and y ∈ {0, 1}k, H outputs hz(y); and (2) given 1n as input G returns an
index z ∈ {0, 1}s.

– (Collision-resistant). For every probabilistic polynomial-time (PPT) ad-
versary A

Pr
z←G(1n)

[ (y, y′)← A(z) : y 6= y′ ∧ hz(y) = hz(y
′) ] = negl(n) .

The shrinkage is linear if n/k ≤ 1− ε, and it is poly-logarithmic (resp., polyno-
mial) if n/k ≤ 1/ logε n (resp., n/k ≤ 1/nε) for some positive constant ε > 0.

The indifferentiability framework [52,21] is widely adopted to analyze and
prove the security of the construction of one idealized primitive from another,
typically in settings where the underlying building blocks have no secrets.

Definition 4 (Indifferentiability [21]). A Turing machine C with oracle ac-
cess to an ideal primitive P is (q, σ, t, ε)-indifferentiable from an ideal primitive
R, if there exists a simulator S with oracle access to R such that for any distin-
guisher D that makes at most q queries, it holds that∣∣∣∣Pr[DCP ,P = 1]− Pr[DR,SR = 1]

∣∣∣∣ ≤ ε,
where S makes σ queries and runs in time t when interacting with D and R.

The implication is that CP can safely replace R in many security scenarios.
We refer to the discussions [61,25] on the (in)applicability of indifferentiability
results.

Lemma 1 (Chernoff bound). For any n ∈ N, let X1, . . ., Xn be independent
random variables taking values in [0,1] and denote their sum by X̄ =

∑n
i=1Xi.

Then, for any ε > 0 it holds that

Pr[
∣∣∣X̄ − E[X̄]

∣∣∣ > nε] < 2−ε
2·n .

Lemma 2 (Piling-up lemma). For 0 < µ < 1/2 and random variables E1,
E2, · · · , E` that are i.i.d. to Bµ we have

Pr
[⊕̀
i=1

Ei = 0
]

=
1

2
(1 + (1− 2µ)`) =

1

2
+ 2−cµ`−1 ,

where cµ = log 1
1−2µ .

Fact 1 For any 0 ≤ x ≤ 1 it holds that log(1 + x) ≥ x; and for any x ≥ 0 we
have log(1 + x) ≤ x/ ln 2.



3 Collision Resistant Hash Functions

3.1 The Expand-then-Compress Construction

We give a high-level overview about the EtC construction from [5] (see Con-
struction 1). Fix a random n × αn matrix M which specifies the function. On
input y, hM first stretches (by a factor of b) it into a long-but-sparse vector, i.e.,
Expand(y), and then multiply it with M, which compresses by a factor of 1/α.
Thus, the overall shrinkage factor is b/α.

Definition 5. A function Expand : {0, 1}k → {0, 1}` is (b, β)-expanding if the
following conditions are satisfied:

1. Expand is injective;
2. the expansion factor `/k ≤ b;
3. and for any x ∈ {0, 1}k the output has Hamming weight |Expand(x)| ≤ β`.

Construction 1 Let k = k(n) and ` = `(n) be integer valued functions, and let
Expand : {0, 1}k → {0, 1}` be an expanding function (Definition 5). A collection
of functions Hk,n = {hM : {0, 1}k → {0, 1}n,M ∈ {0, 1}n×`} is defined as

hM(x) = M · Expand(x)

where the key-sampler G(1n) samples an n× ` matrix M
$←− {0, 1}n×`.

A couple of proposals on efficient constructions of Expand(·) were given in
[5]. We use the one stated below and reproduce its constructive proof for com-
pleteness. The construction assumes WLOG11 β to be a negative power of 2.

Lemma 3 (The Expand function [5]). For any integer valued functions L =
O(log k), ` = poly(k) and β = 2−L, there exists an efficient (b = 1

β log(1/β) ,

β)-expanding function Expand : {0, 1}k → {0, 1}`(k) in AC0.

Proof. For L = log(1/β), Expand parses the k-bit input into L-bit blocks as

y = y1 · · · yL‖yL+1 · · · y2L‖ · · · ‖yL(k/L−1)+1 · · · yk

and produces as output

Expand(y) = DeMul(y1 · · · yL)‖ · · · ‖DeMul(yL( kL−1)+1 · · · yk)

where DeMul : {0, 1}L → {0, 1}2L is a demultiplexer function that on input
z ∈ {0, 1}L outputs a 2L-bit string which is 1 in exactly the z-th location (and
0 elsewhere). It is easy to see that the output is of length ` = k2L/L = k

β log(1/β)

and Hamming weight k/L = β`.

11 For arbitrary β we simply let β′ = 2−L ≤ β < 2−L+1 and use β′ in place of β, which
changes the resulting parameters by a factor of less than 2.



Note that the construction is almost optimal as the injection condition of Expand
implies k ≤ log

(
`
β`

)
, and the construction achieves k = β` log(1/β), which is very

close to the upper bound log
(
`
βn

)
≈ `H(β)− log `/2 = β`(log(1/β) +O(1)) (see

Lemma 4 and Fact 2).

Lemma 4 (Asymptotics for binomial coefficients (e.g. [37], p.492)). For
any 0 < µ = µ(n) < 1/2 we have(

n

µn

)
= 2nH(µ)− logn

2 +O(1)

where H(µ)
def
= µ log(1/µ) + (1−µ) log(1/(1−µ)) is the binary entropy function.

Fact 2 ([67]) For any 0 < µ ≤ 1/2, µ log(1/µ) < H(µ) < µ(log(1/µ) + 3/2).

Theorem 1 (The EtC CRH Construction [5]). Assume that (α, δ)-bSVP
is hard, then Construction 1 instantiated with a (b,β)-expanding function Expand
with b/α < 1 and 2β ≤ δ gives rise to a collision-resistant hash function H with
shrinkage factor b/α.

Proof. Any algorithm that finds out a collision hM(y) = hM(y′) for y 6= y′

immediately implies a solution to bSVP, i.e., M ·x = 0, where x = Expand(y) +
Expand(y′) 6= 0 since the distinctiveness of y and y′ are preserved when being
applied on any injective function, and

|x| ≤ |Expand(y)|+ |Expand(y′)| ≤ 2βαn ≤ δαn .

On choosing parameters. We explain the intuition on how to choose the
parameters for basing CRH functions on bSVP (which in turn relies on LPN).
We first substitute the parameters to make the shrinkage factor dependent only
on the parameters of bSVP, i.e.,

b

α
=

1

αβ log(1/β)
=

2

αδ log(2/δ)

where b = 1
β log(1/β) and 2β = δ (see Lemma 3 and Theorem 1). Then, our first

construction in Section 3.2 sets α = n2+ε and δ = 1
n2+ε logn such that the corre-

sponding (α,δ)-bSVP is implied by low-noise LPN, and our second construction

in Section 3.3 reduces constant-noise LPN to (α = 2
√
n

n , δ = n(1+ε)/2

2
√
n )-bSVP

constant-noise LPN.

3.2 Low-noise LPN Implies CRH functions

We start with an easy and straightforward construction from low-noise LPN.

Theorem 2. Assume that (n,µ = 1√
n
, q = n3+ε)-DLPN is 24

√
n/ logn-hard for

any ε > 0, then (α = n2+ε, δ = 1
n2+ε logn)-bSVP is 2

√
n/ logn-hard and 2

√
n/ logn-

hard CRH functions with constant shrinkage exist in AC0(MOD2).



Proof. Assume for contradiction there exists an algorithm A of time 2
√
n/ logn

such that the following holds for infinitely many n’s:

Pr
M

$←−{0,1}n×n3+ε

[ x← A(M) ∈ {0, 1}n
3+ε

: 0 < |x| ≤ n

log n
∧Mx = 0 ] ≥ 2−

√
n

logn ,

then A can be used to solve the (n,µ = 1√
n
, q = n3+ε)-DLPN problem. That

is, apply distinguisher D1 (as defined in Algorithm 1) on input (MT, z), where

MT $←− {0, 1}n3+ε×n, and either z = MTs + e or z
$←− {0, 1}n3+ε

, s
$←− {0, 1}n and

e ← Bn3+ε

µ . When z = MTs + e and A succeeds in finding such x, we have by
Lemma 2 and Fact 1

Pr[xTz = xTe = 0] =
1

2
+ 2

−cµn
logn −1 ≥ 1

2
+ 2
−

2√
n

ln 2(1− 2√
n

)

n
logn−1

≥ 1

2
+ 2−

3
√
n

logn .

Therefore, D1 achieves advantage

Pr[D1(MT,MTs + e) = 0]− Pr[D1(MT, Un3+ε) = 0]

≥ 2−
√
n

logn · 2−
3
√
n

logn ≥ 2−
4
√
n

logn ,

which is a contradiction to the assumption. We have by Theorem 1 and Lemma 3
that there exists a 2

√
n/ logn-hard CRH function H = {hM : {0, 1}k → {0, 1}n}

with 2β = δ = 1
n2+ε logn , b = 1

β log(1/β) , α = n2+ε and shrinkage factor

n

k
≤ b

α
=

1

αβ log(1/β)
=

2n2+ε log n

n2+ε
(
(2 + ε) log n+ log log n+ 1

) < 2

2 + ε
.

Algorithm 1 A distinguisher D1 for (n,µ = 1√
n
, q = n3+ε)-DLPN

Input: (MT, z), where MT ∈ {0, 1}n
3+ε×n and z ∈ {0, 1}n

3+ε

x← A(M);
if 0 < |x| ≤ n

logn
∧Mx = 0 then

v = xTz
else
v

$←− {0, 1}
end if
Output: v

3.3 Constant-noise LPN Implies CRH functions

The case of constant-noise LPN is slightly more complicated. The reduction from
LPN to bSVP (see Lemma 6) is mostly adapted from Theorem 2, but a direct
construction of CRH from bSVP seems hard, and we (see Theorem 3) establish
the feasibility via a tradeoff between efficiency and security.



Theorem 3. Assume that (n,µ)-DLPN is 2n
1/2+ε

-hard for any constants 0 <
µ < 1/2 and ε > 0, then CRH functions with poly-logarithmic shrinkage factors
exist in AC0(MOD2).

Proof. It follows from Lemma 6 that 2n
1/2+ε

-hard constant-noise DLPN implies

2
n1/2+ε

3 -hard (α = 2
√
n

n , δ = n(1+ε)/2

2
√
n )-bSVP, which in turns (by Theorem 1 and

Lemma 3) implies for α = 2
√
n

n and 2β = δ = n(1+ε)/2

2
√
n there exists 2

n1/2+ε

3 -hard

H = {hM : {0, 1}k → {0, 1}n,M ∈ {0, 1}n×2
√
n} with

n

k
≤ b

α
=

1

αβ log(1/β)
=

1

Ω(nε/2)
.

However, we have to use λ = 2
√
n (instead of n as hM is not computable in

poly(n)-time) as the main security parameter and represent other parameters
as functions of λ, e.g., n = log2 λ and k = Ω(n1+ε/2) = Ω(log2+ε λ). That is,

H = {hM : {0, 1}Ω(log2+ε λ) → {0, 1}log2 λ,M ∈ {0, 1}log2 λ×λ} is a λ
log2ε λ

3 -hard
CRH function, which (by Lemma 5) implies a domain/range-extended CRH

H′ = {h′M : {0, 1}Ω(λ logε λ) → {0, 1}λ,M ∈ {0, 1}log2 λ×λ}.

Lemma 5 (Parallel repetitions of CRH). Let k = k(λ), d = d(λ) and
T = T (λ) be integer valued functions. If Hk,λ = {hs : {0, 1}k → {0, 1}λ, s ∈
{0, 1}poly(λ)} is a T -hard CRH function, then H′dk,dλ = {h′s : {0, 1}dk → {0, 1}dλ,
s ∈ {0, 1}poly(λ)}, where

h′s(y1, · · · ,yd) =
(
hs(y1), · · · , hs(yd)

)
, y1, · · · ,yd ∈ {0, 1}k ,

is a (T/d)-hard CRH function.

In the proof of Lemma 6 below, we show a stronger reduction that any algo-
rithm that breaks the bSVP implies another algorithm that breaks the decisional

LPN problem with time complexity 2n
1/2+ε

and advantage nearly 1/2 (instead

of 2−n
1/2+ε

as needed by the statement).

Lemma 6. Assume that (n,µ)-DLPN is 2n
1/2+ε

-hard for any constants 0 < µ <

1/2 and ε > 0, then (α = 2
√
n

n , δ = n(1+ε)/2

2
√
n )-bSVP is 2

n1/2+ε

3 -hard.

Proof. Assume for contradiction there exists an algorithm A of time 2n
1/2+ε/3

s.t. the following holds for infinitely many n’s:

Pr
M

$←−{0,1}n×2
√
n

[ x← A(M) ∈ {0, 1}2
√
n

: 0 < |x| ≤ n1/2+ε/2 ∧Mx = 0 ] ≥ 2−
n1/2+ε

3 ,

then we show that it implies a distinguisher D2 (see Algorithm 2) that solves
(with constant advantage) the constant-noise DLPN problem (for any 0 < µ <

1/2) using sample complexity q < 2n
1/2+ε

and time complexity T < 2n
1/2+ε

. As



stated in Algorithm 2, if D2 is applied to (A, z = As+e), where A
$←− {0, 1}q×n

and e← Bqµ, then every i-th vote vi satisfies (for all large enough n’s)

Pr[vi = 0] = Pr[Ei] Pr[xTz = 0] +
Pr[¬Ei]

2

≥ 1

2
+ 2

−n
1
2
+ε

3 · 2−cµn
1+ε
2 −1 >

1

2
+ 2−0.4n

1
2
+ε

.

where Ei denotes the event thatA succeeds on Mi and cµ is a constant dependent
on µ (see Lemma 2). It follows by the Chernoff bound (Lemma 1) that

Pr[D2(A,As + e) = 0] ≥ 1− 2−n

and in contrast Pr[D2(A, Uq) = 0] = 1/2, which completes the proof.

Algorithm 2 A distinguisher D2 for constant-noise DLPN

Input: (A, z), where A ∈ {0, 1}q×n, z ∈ {0, 1}q, l = n20.8n
1
2
+ε

and q = l · 2
√
n

parse AT as a number of n× 2
√
n matrices M1, M2, · · · , Ml

parse z as 2
√
n-bit blocks z1, z2, · · · , zl accordingly

for i = 1 to l do
xi ← A(Mi);
if 0 < |xi| ≤ n1/2+ε/2 ∧Mixi = 0 then
vi = xT

i zi
else
vi

$←− {0, 1}
end if

end for
Output: the majority bit of v1, · · · , vl

3.4 More Efficient Heuristic-based CRH from Constant-Noise LPN

Notice that the CRH immediately implied by constant-noise LPN (see Lemma 6)
is inefficient as M is of dimension n×2

√
n and thus the resulting hash function has

computation time far beyond polynomial (in the security parameter n). This mo-
tivates us (see the proof of Theorem 3) to switch to another parameter λ = 2

√
n

such that hash function is computable in time polynomial in λ but at the same

time it dramatically downgrades the security from 2Ω(n1/2+ε) to λΩ(log2ε λ), and
deteriorates the shrinkage factor from polynomial to poly-logarithmic. Other-
wise said, Theorem 3 mainly establishes feasibility results about basing CRH on
constant-noise LPN. We discuss an alternative to void the loss, i.e., to preserve
security, polynomial shrinkage and efficiency at the same time. This relies on
idealized assumptions (i.e., a block cipher keyed with a random public string
behaves like a random permutation) in addition to constant-noise LPN.



The intuition. We recall that the CRH function hM(y) = M · Expand(y) for
an n × αn matrix M and that Expand parses y into k/L blocks and produces
same number of output blocks accordingly, where αn = k2L/L. We also parse
M into k/L equal-size submatrices M1, · · · , Mk/L, each of dimension n × 2L.

Let R : {0, 1}log(αn) → {0, 1}n be a random function that describes M, i.e., for
every j ∈ {0, 1}log(αn) the output R(j) corresponds to the j-th column of M.
We thus have

hM(y) =
[
M1 · · · Mk/L

]︸ ︷︷ ︸
M

·

 DeMul(y1)
...

DeMul(yk/L)


︸ ︷︷ ︸

Expand(y)

=

k/L⊕
i=1

R(i‖yi) (5)

where R(i‖yi) = Mi · DeMul(yi) simply follows the definition of R and DeMul.
Therefore, the task of constructing polynomially shrinking CRH functions from
constant-noise LPN is now reduced to instantiating a small-domain random func-
tion R : {0, 1}log(αn) → {0, 1}n (recall log(αn) � n). One may want to replace
R with a pseudorandom function (with key made public), but in general the
security cannot be argued in the standard model due to the distinction between
public-coin and secret-coin CRH functions [41].

In order to explore more efficient constructions, we use more aggressive yet
still reasonable (in respect of the current state-of-the-art attacks [17]) hardness
assumption about LPN to obtain Lemma 7 below.

Lemma 7. Assume that (n,µ)-DLPN is 2
5
4n

0.8

-hard under noise rate µ = 1/4,

then (α = 2n
0.8

n , δ = n0.8

2n0.8+2
)-bSVP is 2n

0.8

-hard. Further, assume in addi-

tion that R : {0, 1}n0.8 → {0, 1}n behaves like a random function, then hR :

{0, 1}n
1.6

9 → {0, 1}n defined as below is a 2n
0.8

-hard CRH function, where

hR(y) =

n0.8

9⊕
i=1

R(i‖yi) ,

and input y is parsed as n0.8-bit blocks y1, · · · , yn0.8/9.

Proof. The proof of the first statement is almost the same (up to choices of
parameters) as Theorem 2 and Lemma 6 and we thus omit the redundancy.
The statement about CRH follows from Theorem 1 and (5), where parameters
k for hR : {0, 1}k → {0, 1}n and L as in Lemma 3 satisfy the following (for all
n ≥ 128):

n

k
≤ 2

αδ log(2/δ)
=

8n0.2

n0.8 + 3− 0.8 log n
≤ 9

n0.6
,

n0.8 ≥
(
L = log(2/δ) = n0.8 + 3− 0.8 log n

)
≥ 0.9n0.8 ,

which completes the proof.



Random functions vs. permutations. The small-domain random function
(to be instantiated) is not commonly found in practice, but it is implied by a
large-domain random function for free, i.e., R(x) = F (0l‖x) is a random function
if F is a random one. Thus, we simply consider a length-preserving random
function, which can be in turn based on a random permutation (and instantiated
with block ciphers). For example, for random permutations π, π1, π2, we have
that π ⊕ π−1 [28] (or π1 ⊕ π2 [55]) is indifferentiable from a length-preserving
random function. This means that R on input x can be instantiated as

AESk(0l‖x)⊕ AES−1k (0l‖x) or AESk1(0l‖x)⊕ AESk2(0l‖x)

where l = n − log(αn) bits are padded to fit into a permutation, k, k1, and k2
are public random keys. Intuitively, the XOR of a permutation and its inverse
(or two independent permutations) is to destroy the permutation structure as its
inversibility could give the adversary additional advantages in collision finding.
The former instantiation relies on the assumption that a practical block cipher
like AES on a random key behaves like a random permutation. We state below
the indifferentiability of π ⊕ π−1 from a random function by Dodis et al. [28].

Lemma 8 (Lemma 4 from [28]). Let n be the security parameter, let q =
q(n) and let π be a random permutation over {0, 1}n. We have that π ⊕ π−1 is

(q, q, O(nq), O( q
2

2n ))-indifferentiable from an n-to-n-bit random function.

Security and efficiency. With Lemma 7 and Lemma 8 now we can have a
rough estimation about the (asymptotic) security of the blockcipher-based CRH.

Assume that the LPN problem for noise rate µ = 1/4 is 2
5
4n

0.8

-hard and a block
cipher (with a random key) is a perfect instantiation of a random permutation,

then any adversary whose running time (and also q) is bounded by, say 20.8n
0.8

,
succeeds in finding a collision for the CRH function with probability less than

2−0.8n
0.8

+O(1) · 21.6n
0.8−n .

Moreover, the CRH function compresses n1.6

9 bits into n bits with a shrinkage
fact 9

n0.6 and invokes the underlying block cipher 2n0.8/9 times.

Asymptotic vs. concrete. The above bounds are asymptotic, whose concrete
values are meaningful only for “all sufficiently large n”. For modern block cipher
instantiations, n = 128 seems not large enough as: 1) we are not sure if LPN on
secret size n = 128 and noise rate 1/4 can have 5

4n
0.8 ≈ 60 bits of security; 2)

for n = 128 the shrinkage factor 9
n0.6 ≈ 1/2 does not reach the large rate as can

be expected from “polynomial shrinkage”. Fortunately, there are a few crypto-
graphic permutation candidates of larger sizes (e.g., n = 400, 800, 1600), such as
the permutation family underlying SHA-3 [39] and the Simpira family [38], for
which our constructions can offer efficient and parallel domain extensions (by a
polynomial factor). Further, just like most provable security statements, our re-
sults provide only the lower bound of security that “the CRH is at least as hard
as the underlying LPN”, which could be quite loose. A similar situation is the



case of SWIFFT [51], where the authors of [51] showed that SWIFFT is at least
as hard as an ideal lattice problem, but SWIFFT turns out to be significantly
harder than its underlying instantiation of the lattice problem (which can be
broken in a moderate amount of time).

On related works. We offer a new construction of CRH functions from
fixed-key block ciphers/random permutations. Compared with the traditional
blockcipher-based compression functions, e.g. [57,59,15], our solution avoids the
key-setup costs and eliminates the need for related-key security on a large space
of keys. That is, (using AES-128 as an example) we only assume that “AES on
a single random key behaves like a random permutation”, instead of that “AES
on 2128 keys yields 2128 independent random permutations”, as imposed by the
Ideal Cipher Model. On the other hand, existing permutation-based solutions
either only offer a constant shrinkage factor (typically 1/2) [65,54], or require
permutations with a large domain (e.g., [29] needs a large permutation on n2-bit
strings to obtain a CRH function with shrinkage factor 1/n), and in contrast our
construction runs in parallel and compresses polynomially.

4 Concluding Remarks

We resolve the open problem whether CRH functions can be based on the hard-
ness of LPN and we show that under commonly believed hardness assumptions
about LPN efficient CRH functions exist in polynomial-size constant-depth cir-
cuits. We also discuss how to improve the efficiency using idealized heuristics.
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