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Abstract Authenticated encryption with Associated

Data (AEAD) plays a significant role in cryptography

because of its ability to provide integrity, confidential-

ity and authenticity at the same time. Due to the emer-

gence of security at the edge of computing fabric, such

as, sensors and smartphone devices, there is a growing

need of lightweight AEAD ciphers. Currently, a world-

wide contest, titled CAESAR, is being held to decide

on a set of AEAD ciphers, which are distinguished by

their security, run-time performance, energy-efficiency

and low area budget. For accurate evaluation of CAE-

SAR candidates, it is of utmost importance to have

independent and thorough optimization for each of the

ciphers both for their corresponding hardware and soft-

ware implementations.

In this paper, we have carried out an evaluation of

the optimized hardware implementation of AEAD ci-

phers selected in CAESAR third round. We specifically

focus on manual optimization of the micro-architecture,

evaluations for ASIC technology libraries and the effect

of CAESAR APIs on the performances. While these

has been studied for FPGA platforms and standalone

cipher implementation - to the best of our knowledge,

this is the first detailed ASIC benchmarking of CAE-

SAR candidates including manual optimization. In this
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regard, we benchmarked all prior reported designs, in-

cluding the code generated by high-level synthesis flows.

Detailed optimization studies are reported for NORX,

CLOC and Deoxys-I. Our pre-layout results using com-

mercial ASIC technology library and synthesis tools

show that optimized NORX is 40.81% faster and 18.02%

smaller, optimized CLOC is 38.30% more energy efficient

and 20.65% faster and optimized Deoxys-I is 35.16%

faster, with respect to the best known results. Similar or

better performance results are also achieved for FPGA

platforms.

Keywords ASIC Implementation · FPGA · Authen-

ticated Encryption · Logic Optimization · Technology

Mapping

1 Introduction

AEAD schemes protect both privacy and authenticity

of the message when it is transformed into ciphertext

where there may be additional information, such as a

packet header, that travels alongside the ciphertext and

must get authenticated with it. The need for AEAD

emerged from the observation that securely combining

a confidentiality mode with an authentication mode

could be error prone and difficult [3,23]. Number of

practical attacks introduced into production protocols

and applications by incorrect implementation, or lack,

of authentication (including SSL/TLS)[4].

An AEAD scheme typically consists of two routines.

The first one is encryption EK(AD,M) which takes as

input a shared key K, public associated data AD and

the message to be encrypted M and returns a tagged

ciphertext C. The second one is decryption/verification

DK(AD,C), which either returns an invalid symbol ⊥ if

the received ciphertext, associated data and the authen-

tication data do not match, or the decrypted message
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M , otherwise. There are three main approaches which

are adopted for AEAD: Encrypt then MAC (EtM), En-

crypt and MAC (E&M) and MAC then Encrypt (MtE)

as shown in Figure 1. In September 2016, the CAESAR

competition committee announced the selection of 15

AEAD schemes as candidates for round 3 of the CAE-

SAR competition [10]. This competition signifies the

current need for practical, secure and efficient AEAD

schemes.

In the survey presented in [1], the round two

candidates of the CAESAR competition were cate-

gorized into five families on the basis of their base

constructions: block cipher-based, stream cipher-based,

key-less permutations, hash-function-based and dedi-

cated schemes. AEAD ciphers based on block-cipher

allows block-level parallelism while using the underly-

ing block cipher, such as the Offset Code Book mode

(OCB) [29,28,24], the Synthetic Counter-in-Tweak mode

(SCT) [26] and the Offset Two-Round mode (OTR) [25].

An important aspect of the study of AEAD schemes

is the evaluation of their hardware performance, which

clearly needs more efforts. So far, nearly all candi-

dates have been supported with a basic hardware imple-

mentation [13]. However, the implementations are done

on various platforms, for different interfaces. Further-

more, several designs have unique advantages to offer in

some platforms, e.g., Field Programmable Gate Array

(FPGA). However, FPGA boards are mainly used for

verification of the design with the help of programmable

gates but it does not provide actual performance met-

rics of the design which can only be achieved by imple-

menting the design in Application-Specific Integrated

Circuits (ASIC). In addition, all the available hardware

implementations of the CAESAR competition candi-

dates on the ATHENa hardware evaluation website [13]

are fully sequential implementations, i.e. to start pro-

cessing a new block, all the previous blocks have to be

finished. These implementations do not take full advan-

tage of the specific characteristics of the schemes based

on the aforementioned modes.

Generally, circuit optimization consists of two

phases: logic synthesis and technology mapping. For

certain target technologies, such as FPGA, logically op-

timized circuits do not provide the optimal mapping

to the underlying technology, leaving behind a lot of

under-utilized hardware resources. This phenomenon is

obvious in the AES Sbox circuits proposed by Boyar [8,

9], which are logical optimizations of the circuit pro-

posed by Canright [12]. These circuits are much smaller

than the straight-forward ROM-based Sbox in terms of

gate count and circuit depth. These two features make

them the natural choice for low area ASIC implementa-

tions of AES. Interestingly, on the other hand, practical

results show that one can achieve a smaller area on

FPGA by using the ROM approach [27].

1.1 Contribution

In this paper, hardware evaluation of AEAD ciphers

selected in third round of CAESAR competition has

been carried out. For ASIC synthesis, we applied delay-

optimized and area-constrained synthesis techniques,

i.e., in the former case, all AEAD ciphers are kept

running until slack is zero in order to achieve maxi-

mum speed while in the latter case, all designed are

constrained to achieve minimum hardware area at par-

ticular frequency. In what follows, benchmarking for

both cases have been reported which includes critical

path delay (ns), area in Kilo-Gate Equivalent (KGE),

throughput (Gbps), throughput per area. Besides that,

all AEAD ciphers are compared in terms of throughput

per KGE and as well as throughput per energy.

Apart from providing the ASIC benchmarking, de-

tailed optimization studies are reported for NORX, CLOC

and Deoxys-I. Our pre-layout results using commercial

ASIC technology library and synthesis tools show that

optimized NORX is 40.81% faster and 18.02% smaller,

optimized CLOC is 38.30% more energy efficient and

20.65% faster and optimized Deoxys-I is 35.16% faster,

with respect to the best known results as depicted in

Table 1.

In addition, the effect of CAESAR APIs on perfor-

mance might be significant as the use of API favors

iterative implementations. The overhead of API was

analyzed and its effect on the overall performance of

the ciphers have been discussed in this paper. More-

over, qualitative analysis has been carried out about

the effect of technology-mapping and technology aware

optimization on the cipher performance. The reason be-

ing that some of the optimization fit more for FPGA

and other suitable for ASIC, while the current hard-

ware benchmarking in the CAESAR competition uses

only one circuit for all technologies.

1.2 Organization

The remaining of this paper is organized as follows. Sec-

tion 2 is about the related work and motivation which

includes introduction of AEAD ciphers, its FPGA

bench marking and purpose of this work. Detailed ex-

planation of AEAD ciphers selected in third round of

CAESAR competition and their hardware evaluation in

ASIC are presented in section 3. In section 4, Optimized

NORX, Deoxys, CLOC designs as a case study are reported

along with their simulation results. Section 5 provides
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Fig. 1: Approaches to Authenticated Encryption with Associated Data

Table 1: Synthesis results of the Deoxys-I-128, NORX and CLOC implementation using TSMC 65nm technology

Design
Area Max. Freq. Throughput Efficiency

(KGE) (MHz) (Mbps) (Mbps/KGE)

Optimized
Deoxys-I [22]

59.53 847 7,227 121.40

Deoxys GMU [13] 53.37 549 4,684 87.76

Optimized NORX 70.13 757.57 83,110 1185

NORX [13] 85.54 448.43 57,400 670

Optimized CLOC 67.09 746.26 2,850.75 29.50

CLOC GMU [13] 94.87 588.23 3,341.18 24.46

the optimization techniques with respect to technology

aware. Section 6 presents the influence of CAESAR API

on the performance of the design. At the end, the paper

has been summarized in the subsequent section.

2 Related work and motivation

AEAD Ciphers: Authenticated Encryption (AE) is a

concept that emerged in the cryptographic community

in early 2000s, due to the need for both data privacy

and authentication at the same time. In 2000, Charan-

jit S. Jutla [21] proposed two Encryption modes that

also provide message integrity. In 2009, six more modes

were standardized by NIST in the ISO/IEC 19772:2009

standard [18]. In 2013, The CAESAR Competition for

Authenticated Encryption: Security, Applicability, and

Robustness was announced in order to encourage the

design of AE algorithms. In round 1, 57 different pro-

posals have been submitted to the competition. Out

of these 57 submissions, only 28 submissions qualified

to the second round. FPGA implementations of all the

28 candidates have been developed and benchmarked

for comparison. In September 2016, 15 candidates have

been selected for the third round of the competition. To

the best of our knowledge, no studies have been publicly

published on the ASIC benchmarking of the candidates.

FPGA Benchmarking: The Cryptographic Engineering

Research Group (CERG) at George Mason University

(GMU), USA, runs and maintains the online platform

ATHENa [13] aimed at fair, comprehensive, and auto-

mated evaluation of hardware cryptographic cores tar-

geting FPGAs, Systems on Chip, and ASICs. One of



4 Sachin Kumar et al.

their on-going projects is the comparison of FPGA im-

plementations of the CAESAR competition candidates.

They have also provided high-speed round-based imple-

mentations of round 2 and 3 candidates. The most re-

cent benchmarking results are published in [16], where

the authors provided a summary of available implemen-

tations for round 3 candidates that are either designed

by the CERG research group or other members of the

cryptographic community. The benchmarking process

was performed only for FPGA and some of the designs

were implemented using High-Level Synthesis (HLS) as

opposed to manual Register-Transfer-Level (RTL) de-

sign [17]. Moreover, only the implementations that are

compliant with the CAESAR Hardware API [15] were

considered. The authors of [17] and [16] adopted a few

assumptions that motivated their benchmarking pro-

cess. These assumptions include:

– The rankings of different implementations will be

the same regardless of whether the benchmarking is

done using FPGA or ASIC.

– The rankings of different implementations will be

the same regardless of whether the benchmarking is

done using HLS or manual RTL.

– It is only fair to compare implementations with the

same hardware API.

Table 2 shows one example of the FPGA bench-

marking results targeted for Xilinx Virtex-6 FPGA, or-

dered descending according to the efficiency (through-

put/area).

Motivation: Since the assumptions mentioned earlier

are crucial to the benchmarking process, in this pa-

per we discuss their validity. The first challenge to

these assumptions was discussed in [22]. The authors

in [22] showed that manual algorithm-specific optimiza-

tion and the use of a customized API can lead to sig-

nificant gains for these algorithms. Additionally, they

showed, using preliminary experimentation, that the

rankings from FPGA benchmarking do not extend to

ASIC with no change. In fact, ASIC benchmarking

should be conducted in a separate process, in addi-

tion to FPGA benchmarking. These observations mo-

tivated the investigation of the benchmarking process

and challenging the previously well-established assump-

tions. The results of this investigation are discussed in

details in sections 4, 5 and 6. However, in the prepara-

tion of ASIC benchmarking, we adopted the currently

agreed API in order to be consistent with other bench-

marking efforts. Nevertheless, we show how the relax-

ation of API can lead to a very different benchmarking

results, which, however, remains consistent to general

IC design practices.

3 ASIC Implementation of AEAD ciphers

There are mostly fifteen AEAD ciphers without consid-

ering their variants in third round of CAESAR compe-

tition [10]. AEGIS is one of them which is constructed

by employing AES encryption round function except not

considering the last round of it. The variants AEGIS-128

and AEGIS-256 are required 5 AES round functions and 6

AES round functions respectively in order to process 16

bytes message block. It was claimed by designers that

AEGIS is faster than AES as its computational cost is

half of AES. Another authentication algorithm submit-

ted to CAESAR known as AEZ which is mainly devel-

oped with the help of AES primitives and enciphering

schemes. In this algorithm, the plaintext is appended

with a fixed authentication block. Its resulting strings is

enciphered with an arbitrary-input-length block cipher

which gets tweaked by the nonce and associated data

(AD). This process results in strong security and us-

ability properties such as nonce-reuse misuse resistance,

user selectable ciphertext expansion. While both SILC

and CLOC are designed by the same authors where SILC

stands for simple lightweight CFB and CLOC stands for

compact low-overhead CFB. Both block ciphers are de-

veloped for authenticated encryption with associated

data (AEAD). It is claimed by the submitters that CLOC

design is targeted mainly for being secure and optimiz-

ing its implementation costs. It can handle short-data

input efficiently and is suitable for use with embedded

processors. SILC is further development of CLOC which

aims at optimizing the hardware implementation cost

of it. It is mainly appropriate for constrained hardware

devices. CLOC is based on the AES block cipher for 16-

byte block length and TWINE block cipher [30] for 8-

byte block length whereas SILC is constructed with the

help of AES block cipher for 16-byte block length and

present [7] and LED [14] for 8-byte block length.

A lightweight authenticated encryption mode called

JAMBU is based on block cipher AES-128 where in

JAMBU is implemented with the help of bitwise exclusive

OR and concatenation operations in order to make it

lightweight. Another AEAD cipher, called COLM, which

is based on AES-128 with a key and state of size 128

bits. The aim of COLM is to achieve online misuse resis-

tance, to make it fully parallel as well as it should be

secure against block wise adaptive adversaries. Another

third round candidate, TIAOXIN, is nonce-based soft-

ware oriented authenticated encryption scheme which

uses 6 AES rounds call per 32-byte messages. In ad-

dition, these six AES rounds are computed in parallel

which leads to be two times faster than AES-128 and 3.5

to 6.5 times faster than AES-GCM. The authors men-

tioned that it has been analyzed for various attacks
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Table 2: FPGA Benchmarking Results of Round 3 Candidates of the CAESAR Competition

Algorithm Throughput (Mbps) Area (LUTs) Throughput/Area (Mbps/LUT)
MORUS 49,556 3,397 14.5
AEGIS 70,934 3,460 9.3
ACORN 11,304 508 9.1

TIAOXIN 52,796 7,112 7.4
Ketje 24,843 1,238 5.5
NORX 24,519 2,921 5.2
ASCON 5,085 1,270 3.2

AES-OTR 7,708 3,492 1.6
SILC 4,048 3,079 1.3
Keyak 12,600 6,223 1.2

JAMBU AES 2,008 1,841 1.1
Deoxys 2,882 3,175 0.91

JAMBU-SIMON 939 1,048 0.89
CLOC 2,979 3,143 0.74
OCB 3,109 4,254 0.73
AEZ 3,271 4,730 0.69
COLM 3,109 7,143 0.39

and provides full security nonce-respecting adversaries.

The AES-128 based AEAD cipher named as OCB- which

stands for ”offset codebook” - is a block-cipher mode

of operation for efficient authenticated encryption. This

cipher is designed to be provably secure and operations

performed are in parallel which allows both software

and hardware acceleration. Besides this, it has static

associated data (AD) feature which means when AD

remains unchanged during series of encryption, there is

no need to perform operation on AD each time. This

results in reducing computational cost when multiple

encryption are linked with the same associated data.

A new authenticated encryption design known

as Deoxys is based on a tweak-able block cipher

Deoxys-BC by employing AES round function as a build-

ing block. It has two authenticated encryption modes

i.e. Deoxys-I in which nonces are non-repeatable and

Deoxys-II in which nonces can be repeated. It has been

claimed by the designers that Deoxys provides sufficient

protection against linear crypt-analysis in single key

model and security against other attacks due to hav-

ing Deoxys tweakey schedule. Some AEAD ciphers such

as ASCON, Ketje and NORX are designed with the help

of sponge function and its sister construction-known as

duplex construction. In ASCON, there are five states with

the size of 64 bits with stronger keyed initialization and

keyed finalization function. The algorithm uses two per-

mutation pa and pb in which number of rounds a are for

the initialization and finalization permutation pa and b

number of rounds are used for the intermediate permu-

tation pb for processing the associated data and plain-

text. Moreover, ASCON round is developed with the help

of three operations: constant addition, an nonlinear S-

box layer and a linear transformation. In this algorithm,

a straightforward key-recovery is prevented by adding

extra key addition in the initialization and finalization.

NORX has an unique parallel architecture based on

monkey duplex construction [5] along with its two ver-

sions i.e. either NORX-32 or NORX-64. This authentica-

tion encryption scheme comes with an associated data

supporting arbitrary parallelism. In addition, the NORX

algorithm is developed with the help of ARX primi-

tives instead of modular addition. This cipher was op-

timized to be efficient in both software as well as hard-

ware with a single-instruction multiple-data (SIMD)-

friendly core and no secret-dependent memory lockups.

The underlying permutation f is designed by referenc-

ing ChaCha stream cipher where in the integer addi-

tion is replaced by a simple bit-wise XOR operation

i.e. (a ⊕ b) ⊕ (a ∧ b) � 1 which leads to improve its

hardware efficiency. Another Monkey Duplex construc-

tion based AEAD ciphers are Ketje and Keyak. Ketje

has two variants i.e. Ketje jr and Ketje sr, these are

differentiated in terms of permutation width and size

of each. Similarly Keyak is classified into Keyak lake

and Keyak river which are distinguished by permuta-

tion width. Ketje builds on round-reduced versions of

Keccak-f. The main advantage of Monkey Duplex based
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ciphers is that it can support different number of calls

which eventually helps to invoke the permutation with

a different number of rounds. This results in improving

the performance of the AEAD schemes by optimizing

the number of rounds aggressively.

One more lightweight cipher known as ACORN is basi-

cally a bit-based sequential authenticated cipher based

on linear feedback shift register (LFSR). In ACORN, the

difference is injected into the state for authentication

for better performance. This type of authentication en-

cryption cipher is designed with the help of bit-based

sequential stream cipher for the first time. High au-

thentication security is achieved by employing six con-

catenated linear feedback shift registers. In addition,

ACORN also allows parallel computation. In ACORN, 32

steps can be computed in parallel which benefits high-

speed hardware and software implementation. It was

claimed by the designer that ACORN-128 is more hard-

ware efficient than TRIVIUM [11] and AES-GCM. One

more selected third round candidate, MORUS is suitable

both for hardware and software efficient implementa-

tion. It has three versions; MORUS-640-128, MORUS-1280-

128 and MORUS-1280-256 where the first number denotes

the state size (in bits) while second number denotes the

key size in bits. In MORUS, state function is divided into

five vectors where size of each vector is either 128-bit

or 256-bit depends on the selected variants. There are

four operation used in MORUS, namely XOR, AND, ro-

tation in words and rotation in subwords. State update

function has five similar rounds. Every round modifies

two registers; one is modified by rotation in words while

other one is with the help of ANDs, XORs and rotation

in subwords. In addition, MORUS encryption can be seen

as stream cipher with a large state which is kept up-

dating continuously in a nonlinear way.

Some of above-mentioned AEAD ciphers (denoted

as cipher GMU) are described in VHDL language by

ATHENa-Automated Tool for Hardware EvaluatioN

while rest are done by the designer themselves. All the

above-mentioned AEAD ciphers are functionally ver-

ified by Mentor Graphics ModelSim with the help of

given test vectors. Each design is synthesized for min-

imum delay as well as for minimum hardware-area at

minimum clock frequency by Synopsys Design Compiler

version J-2014.09 using TSMC 65 nm technology stan-

dard cell library. In Table 3, lists the throughput(Gbps),

critical path delay (ns), area (KGE) and through-

put per area etc. parameters of all above-mentioned

AEAD ciphers by keeping the constraint for speed-

optimization. The calculation of throughput has been

done by message size
number of cycles × clock period in which num-

ber of cycles have been considered from the ATHENa

as to have accurate calculation of throughput.

Since there is always a trade-off between area and

delay, for area-optimization process, timing constraint

is usually kept unchanged in order to achieve more re-

alistic performance of the design. In what follows, the

minimum frequency has been selected from Table 3

which is 448.43 Mhz and then the constraint to achieve

minimum hardware area is applied to design compiler

tool with the selected frequency. Table 4 lists the hard-

ware area, throughput per area etc. of all the ciphers.

With this constraint, it can easily be noticed that syn-

thesis area has been reduced as compared with Table

3. In addition, the trend of hardware area performance

at the given frequency of all AEAD ciphers is shown

in Fig 3. Apart from listing synthesis results for speed

optimization as well as for area optimization in Table

3 and Table 4, a comparison between area and criti-

cal path delay has been carried out as shown in Fig-

ure 2 by which one can easily visualize optimal perfor-

mance of the ciphers for instances; ASCON GMU is smaller

and faster among all other AEAD ciphers while COLM

is consuming largest hardware area but its faster than

TIAOXIN GMU which is slowest one among all mentioned

ciphers.

Figure 4 shows the trend of throughput per KGE of

all the AEAD ciphers. Apart from that, power simula-

tion is also computed from design compiler for all the

ciphers as shown in Figure 5. Since the critical path

delays of all designs in comparison are different for all

the ciphers, to ensure that all designs will produce the

correct outputs at the same data rate, the clock rate

used for the power simulation is chosen based on the

slowest design for each. One can notice from Figure 5,

ACORN 8bit cipher is found to be most power-efficient

while OCB GMU design is the most power-hungry among

all the designs.

In addition, since faster design generally consumes

more dynamic power, to compare the energy consump-

tion of each design running at full speed, power-delay

product is computed for each design with the power

consumption measured at its maximum allowable clock

frequency. Since, each cipher is designed with different

size of input data, a comparison has been carried out

in terms of throughput per area and throughput per

energy as shown in Figure 6. From Figure 6, one can

easily find out cipher which has better throughput per

area as well as throughput per energy.

4 Cipher Optimization: Architectural

High-level synthesis (HLS) is an increasingly popular

approach in electronic design automation (EDA) that

raises the abstraction level for designing digital circuits.

With the increasing complexity of embedded systems,
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Table 3: Synthesis results of AEAD ciphers implementation using TSMC 65nm technology at minimum achievable

delay.

Algorithm
Message

Bits
Key
Size

Tag
Size

Throughput
(Gbps)

Area
(µm2)

KGE
Throughput

per Area
Frequency

(Mhz)
AEGIS GMU 128 32 128 8.65 166109.76 115.35 0.07 540.54
AEZ GMU 128 32 128 2.98 118654.92 82.40 0.04 581.40

ASCON GMU 64 32 128 12.88 23504.76 16.32 0.79 1408.45
CLOC GMU 128 128 128 6.84 140770.8 97.76 0.07 588.24
JAMBU AES 64 32 64 3.17 38878.92 27.00 0.12 495.05

NORX 768 32 256 57.40 123180.48 85.54 0.67 448.43
OCB GMU 128 128 128 4.92 144218.52 100.15 0.05 460.83
SILC GMU 128 32 128 6.40 67765.32 47.06 0.14 500.00

TIAOXIN GMU 256 32 128 115.32 140689.8 97.70 1.18 450.45
COLM 128 128 128 5.88 177094.8 122.98 0.05 505.05

Deoxys-I 128 32 128 2.43 76846.32 53.37 0.05 549.45
Deoxys-II 128 32 128 4.54 98896.68 68.68 0.07 531.91
Ketje jr 32 96 64 14.55 17247.96 11.98 1.21 909.09
Ketje sr 32 128 128 29.09 27694.08 19.23 1.51 909.09

Keyak lake 1344 128 128 84.85 140949.72 97.88 0.87 757.58
Keyak river 544 128 128 34.87 70715.52 49.11 0.71 769.23
ACORN 8bit 8 128 128 9.09 9469.8 6.58 1.38 1136.36
ACORN 32bit 32 128 128 34.04 16940.88 11.76 2.89 1063.83

MORUS 256 128 128 281.32 65523.96 45.50 6.18 1098.90
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Fig. 2: A comparative analysis of CAESAR third round candidates in terms of synthesis area (KGE) and delay(ns)

in ASIC.

these tools are particularly relevant in embedded sys-

tems design. HLS proved to be very easy to use for

creating a functional RTL design. While in many cases,

HLS does not perform well in resource utilization and in

many cases it provided a design with a slower maximum

clock frequency relative to manual RTL coding[31]. In
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Fig. 4: Analysis of AEAD ciphers in terms of through-

put per KGE based on ASIC results at particular fre-

quency (based on the slowest among the ciphers).

the paper [6], the various optimization points for area,

speed as well as for throughput are presented for AEGIS

which shows that there is large room for improvements

over automatically generated implementations to im-

prove the performance of AE ciphers selected in the

third round of CAESAR. Therefore, in this section,

manual optimization is carried out on NORX, CLOC and

Deoxys-I based on the provided hardware architecture

either from GMU or from designers itself.

4.1 CLOC

The automatic generated VHDL code for CLOC cipher

by high level synthesis tool is not fully optimized and

there remains scope of improvement for performance

of CLOC by removing the redundancy from VHDL code

generated from HLS. The undesired AES block is re-

moved from CLOC design with the help of pipeline tech-

nique. Both CLOC GMU and Optimized CLOC are imple-

mented in ASIC for minimum achievable delay along

with area-constraint. It can be observed from Table 5

that Optimized CLOC is 38.30% more energy efficient
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Fig. 6: Analysis of AEAD ciphers in terms of throughput per KGE with respect to throughput per energy based

on ASIC synthesis results.

and 20.60% gain in throughput per area when com-

pared with CLOC GMU design.

4.2 Deoxys

Deoxys is an interesting case study as it belongs to

a subset of the CAESAR competition candidates that
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Table 4: Synthesis area analysis using TSMC 65nm technology at the minimum frequency (448.43 Mhz).

Algorithm
Message

Bits
Key
Size

Tag
Size

Throughput
(Gbps)

Area
(µm2)

KGE
Throughput

per Area
AEGIS GMU 128 32 128 7.17 122228.64 84.88 0.08
AEZ GMU 128 32 128 2.30 106034.04 73.63 0.03

ASCON GMU 64 32 128 4.10 18739.08 13.01 0.32
CLOC GMU 128 128 128 5.22 118548 82.33 0.06
JAMBU AES 64 32 64 2.87 33141.24 23.01 0.12

NORX 768 32 256 57.40 121675.68 84.50 0.68
OCB GMU 128 128 128 4.78 138865.33 96.43 0.05
SILC GMU 128 32 128 5.74 55336.68 38.43 0.15

TIAOXIN GMU 256 32 128 114.80 137198.16 95.28 1.20
COLM 128 128 128 5.22 160903.44 111.74 0.05

Deoxys-I 128 32 128 1.98 65542.32 45.52 0.04
Deoxys-II 128 32 128 3.83 90419.04 62.79 0.06
Ketje jr 32 96 64 7.17 14439.6 10.03 0.72
Ketje sr 32 128 128 14.35 21954.24 15.25 0.94

Keyak lake 1344 128 128 50.22 147122.28 102.17 0.49
Keyak river 544 128 128 20.33 66272.4 46.02 0.44
ACORN 8bit 8 128 128 3.59 8494.92 5.90 0.61
ACORN 32bit 32 128 128 14.35 13914.72 9.66 1.49

MORUS 256 128 128 114.80 50965.55 35.39 3.24

Table 5: Performance analysis of CLOC GMU and Optimized CLOC implemented by using TSMC 65nm technology.

AEAD Ciphers
Delay
(ns)

Frequency
(Mhz)

Area
(µm2)

KGE
Energy

(pJ)
Throughput
(Mbits/s)

Throughput
per Area

Optimized
CLOC

1.34 746.26 96605.28 67.09 26.25 2850.75 29.50

CLOC GMU 1.70 588.23 136618.56 94.87 42.55 3341.18 24.46
Improvement 21.17% 26.86% 29.29% 29.29% 38.30% -14.67% 20.60%

are amenable to parallelisation, i.e. different message

blocks can be processed in parallel. This subset also

include candidates such as: AEGIS, COLM, MORUS and

OCB. Four of these five candidates are AES-based (ex-

cept MORUS), so it is believed that any significant im-

provement to the implementation of any of these al-

gorithms will also benefit the other three algorithms.

We have implemented the Deoxys-I-128 4-stream ar-

chitecture from [22] with full compliance to the CAE-

SAR Hardware API. While that architecture is origi-

nally targeted towards FPGA implementations, it was

found that it also enhances the ASIC results, leading

to 11.5% smaller area, 54.3% higher speed and 38.3%

higher efficiency. The significance of these results is that

it shows that parallelisation should be considered while

performing benchmarking of different candidates. Be-

sides, it shows that the FPGA and ASIC are not match-

ing, as the API compliance reduces the performance of

this architecture on FPGA as mentioned in [22], but

the ASIC design tools where able to optimize the API

control unit to keep up with the high speed data path.

4.3 NORX

In order to show the optimization potential for the au-

tomatically generated code of the ciphers, we have per-

formed hardware optimization for the NORX cipher as

well with manual changes.

On of the issues that we have observed with the au-

tomatically generated NORX hardware implementation is

the resources duplication, for example, when in theNORX

algorithm, the same operation is performed (called G

function ) on both columns and diagonals sequentially

(i.e. S ← diag(col(S))), the function G was duplicated

many times at the automatically generated code. The
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Table 6: Synthesis results of the Deoxys-I-128 implementation using TSMC 65nm technology

Impl. Area (KGE) Max. Freq.
(Mhz)

Throughput
(Mbps)

Efficiency
(Mbps/KGE)

Optimized Deoxys 59.53 847 7,227 121.40

Deoxys GMU 53.37 549 4,684 87.76

Improvement -11.5% 54.3% 54.3% 38.3%

optimization that we have entered to fix this issue is

pipelining. The optimization removes half of the G func-

tion instances by converting the implementation to be

sequential, a buffer was added to collect the intermedi-

ate results and route them to the existing resources. In

addition, a small finite state machine (FSM) was added

in order to sequence the flow. In order to account for

the additional delay due to the insertion of the pipe

stages, few counters that controls the main pipeline of

the NORX were modified.

Table 7 shows that with the optimized version of

NORX, the Throughput is 44.8% higher than the original

NORX while the area was reduced by 18%. Furthermore,

it can be seen that the throughput per area metric was

improved by 76.9% at the optimized NORX compared to

the standard NORX architecture.

The synthesis area of NORX is further reduced by

36.7% when performing the simulation at minimum fre-

quency (maximum time between both designs). The ef-

ficiency (throughput per area) of optimized NORX is im-

proved by 37.3%.

4.4 Comparison between ASIC based results and

FPGA based results

In addition, to have performance comparison in ASIC,

optimized NORX and CLOC have also been implemented

on FPGA platform (Virtex 6). In Table 9, the pre-

layout results based on FPGA of both ciphers are tab-

ulated along with its contenders. Optimized NORX is

39.13% faster and improved 30% throughput per area,

4% gain in throughput but requires 8% more area when

compared with its contender while, based on ASIC re-

sults, optimized NORX achieves 44.8% gain in through-

put, 18% reduction in area and throughput per area

metric improved by 76.9%. Similarly, based on FPGA

result, optimized CLOC is faster by 3.4%, reduction in

area by 5.4% but throughput per area is reduced by

26.42%. ASIC based results show that optimized CLOC

outperformed in terms of area, speed and through-

put per area. These results prove that synthesis results

based on FPGA are different from the results obtained

from ASIC technology library. In addition, the analysis

of throughput per area based on ASIC results as well as

on FPGA results has been carried out for third round

of CAESAR candidates in Figure 7.
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Fig. 7: Throughput per area comparison based on ASIC

results and FPGA results.

5 Cipher Optimizations: Technology-Aware

Another factor of hardware benchmarking is

technology-mapping and/or technology aware op-

timization. For example, optimizing architectures

and circuits for ASIC implementations uses different

techniques as opposed to other technologies such as

FPGA. The main reason is that FPGA does not use

logic gates as the building unit. It uses fixed size (e.g.

6-to-1) LUT-FF pairs. This issue has been extensively

studied in [22]. The results showed that the efficiency of

AES FPGA implementations can be almost doubled by

using FPGA-specific optimization techniques. Again,

this optimization had to be manually implemented

as the HLS synthesis tools and the FPGA RTL opti-

mization tools are not short enough to invoke them.

However, the current trend in cryptographic hardware

benchmarking, specially in the CAESAR competition

is to use a ”one size fits all” approach, where most of

the time only one circuit is developed per algorithm

and used for all technologies.
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Table 7: Synthesis results of Optimized-NORX and NORX [13] implemented using TSMC 65nm technology at minimum

delay.

AEAD Ciphers
Delay
(ns)

Frequency
(Mhz)

Throughput
(Gbps)

Area
(µm2)

KGE Throughput/Area

Optimized NORX 1.32 757.57 83.11 100988.64 70.13 1.185
NORX [13] 2.23 448.43 57.40 123180.48 85.54 0.67

Improvement 40.8% 68.9% 44.8% 18.0% 18.0% 76.9%

Table 8: Synthesis area of Optimized NORX and NORX at 448.43 Mhz based on ASIC results.

AEAD Ciphers
Throughput

(Gbps)
Area

(µm2)
KGE Throughput/Area

Optimized NORX 49.20 77057.28 53.51 0.92
NORX [13] 57.40 121675.68 84.50 0.67

Improvement 36.7% 36.7% 37.3%

Table 9: Synthesis results based on FPGA of NORX and CLOC

Design
Max. Freq. Area(slice) Throughput(Mbps) Throughput

/Area
(Mbps/slice)

NORX

Optimized NORX 320 2398 40,960 17.09

NORX [13] 230 2226 29,440 13.22

Improvement 39.13% -8% 39.13% 29.3%

CLOC

Optimized CLOC 182 595 695.24 1.17

CLOC GMU [13] 176 629 999.68 1.59

Improvement 3.4% 5.41% -30.45% -26.42%

One of the examples where FPGA Technology-

Aware design can be used to achieved huge efficiency

gains is the pipeline retiming. Pipelining has been

used by hardware designers/architects as a tool to

increase throughput/run-time performance for a long

time. However, a fully pipelined block cipher imple-

mentations can be costly, due to the large area require-

ments. A more realistic approach is to use multi-stream

implementations. These implementations start from a

sequential implementation that processes one block in

C cycles, and divides it into N pipeline stages. This

leads to computing x blocks in N · C cycles, where

x ∈ {1, 2, ..., N}. x depends on the number of indepen-

dent block streams the user can leverage. However, this

is a double-edged weapon, due to the following reasons:

1. The time required to process one block in a sequen-

tial implementation is ∼ C ·T , where T is the critical

path delay of the implementation. If the N pipeline

stages divide the critical path evenly into segments

of T
N delay, the time required to process N blocks

becomes T+t, where t is a small overhead, leading to

∼ Nx speed-up. Unfortunately, the critical path is

usually not evenly divided, leading to a sub-optimal

speed-up (< N).

2. Modern FPGA families consist of a basic building

block called LUT6, which is a 6-input single-output

look-up table. Additionally, each unit of this build-

ing block has an associated Flip-Flop, which the de-

signer/synthesis tool can choose to either use it or

not. In Figure 8, we show the optimal utilization of

a LUT6 unit in a pipelined architecture, where it

is used to implement a 6-input circuit followed by

storing the output. On the other hand, in Figure 9,

a poor selection of the location of pipeline stage is

in-place, leading to the utilization of 3 look-up ta-

bles, instead of 1 in the case of Figure 8. In other

words, the poor choice of where to place the pipeline

registers leads to a significant increase in area.

The effect of this technique, among others, has been

used to develop the most efficient FPGA implementa-

tions for both AES and LED block ciphers, as reported

in [22], achieving 1.9× and 2.57× efficiency gains over

the previous results, respectively.

While it is believed that such techniques are cur-

rently known to a wide variety of hardware design-
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ers, the reason of adapting this approach is the lack

of enough work-force to design circuits for the increas-

ing of ciphers being proposed. This is one of the reasons

that motivated the work in this paper, and we encour-

age more hardware designers and research groups to

join this process. It is also expected that in the next

round of the competition the number of candidates will

be smaller, which will allow more extensive studies on

the candidates. For example, besides the technology

aware benchmarking, lightweight implementations are

not yet available for most of the candidates, as well.

6 Influence of CAESAR API on the

Performance

6.1 What is API?

An Application Programming Interface (API) is a set

of subroutine definitions, protocols, interfaces and tools

for building application. In general terms, it is a set

of clearly defined methods of communication between

various components, while the components can be hard-

ware, software or firmware. A good API makes it easier

to develop a system or sub-system by providing all the

building blocks, which are then put together by the de-

veloper.

The CAESAR Hardware API [15] is intended to

meet the requirements of all algorithms submitted to

the CAESAR competition, as well as many earlier de-

veloped authenticated ciphers. The main purpose of the

API is to guaranteeing compatibility among implemen-

tations of the same algorithm developed by different

designers, and to guaranteeing a fair benchmarking of

authenticated ciphers in hardware.

6.2 Structure of the CAESAR Hardware API

The top-level block diagram of a high-speed, non-

pipelined implementation of any authenticated cipher

compliant with the CAESAR hardware API is shown

in Figure 10.

The top-level unit, called AEAD, is divided into four

lower-level units, called, PreProcessor, PostProcessor,

CMD FIFO, and Cipher-Core. The codes for the first

three units are provided as part of the Development

Package [10] of the CAESAR benchmarking project.

Due to the availability of this package as well as the

well-defined hardware API of the CipherCore the de-

velopers can focus on implementing the CipherCore it-

self while not concerned with the internal details of the

PreProcessor, PostProcessor, and CMD FIFO.

Fig. 10: Top-level block diagram of AEAD architecture

for CAESAR [13]

6.3 Discussion on the CAESAR Hardware API

While the benchmarking efforts conducted in this pa-

per or in [16] have used only implementation that are

compliant with the CAESAR Hardware API, there are

several clues that this may not be the optimal approach.

For example, in [22] the authors have shown that with

a custom interface and control unit, parallelism can in-

crease the efficiency of Deoxys-I-128 on FPGA by 75%.

Table 10 show the comparison between the implemen-

tations without the API support, while Table 11 shows
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the effect of API support on the 4-steam architecture

in [22]. It can be seen that the API support cuts the

performance and efficiency almost to by 50%, due to

the strict requirements on the control unit design. How-

ever, with the API support, the design becomes crippled

due to the strict requirements on how the input is han-

dled and how the software/hardware interface is imple-

mented. Additionally, the API favors a certain type of

implementations (basic iterative implementations). The

control unit becomes huge when more control require-

ments are added to the design due to architectural op-

timization, such as parallelized/pipelined architectures

or 8/32-bit data paths.

One example where the API adds a lot of redundant

cost to the implementation is processing the length of

the message. Many AEAD ciphers do not require any

knowledge about the message length in advance. They

only require knowledge of the last block. This is 1-bit

worth of information that can be very efficiently com-

municated as part of the input. However, the only way

the API allows this information to be communicated is

by sending the message length as part of the message

header, which enforces the need for a huge counter in-

side the control unit to detect when the last block is

reached.

In addition, [19,2] provided very small ASIC imple-

mentations for AES, including both the encryption and

decryption circuits. Both circuits have area of around

2000 GEs. While such implementations provide a proof-

of-concept that AES-based ciphers can have a very small

footprint, these circuits cannot be directly incorporated

in the CAESAR benchmarking process, as they handle

the bytes inside every data block in and ”exotic” or-

der, which is not allowed by the CAESAR Hardware

API. While we believe that indeed such ordering may

cause compatibility issues if the communicating devices

do not follow the same ordering, there are still a wide

variety of applications where the devices are developed

by the same manufacturer and configured by the same

user. One example of such applications is Wireless Sen-

sor Networks (WSNs) and RFID Tags/Readers. These

applications can benefit a lot from a small area cir-

cuit, yet such scenarios are not captured by the current

benchmarking process.

Moreover, the current benchmarking process [13] is

targeted only to a specific technology, namely FPGA.

In [16], the authors mentioned that one implementation

was not considered for benchmarking for using clock

gating, which is an ASIC design technique. Similarly,

many design techniques can be excluded. Hence, we be-

lieve that both ASIC and FPGA should be considered

for the competition.
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Fig. 11: Area vs. API overhead for ASCON, Deoxys-I

and TIAOXIN

Another implementation have been rejected for

sharing the same input port between both the secret

and public data, aiming at more compact hardware and

less number of pins. The implementation violates an

essential requirement of the CAESAR Hardware API.

However, the trade-off between pin-limited vs. logic-

limited IC design is an important issue in hardware de-

sign. There are many applications where the final chip

is not bounded by the amount of logic inside, but by

the large number of pins used. Such chips under-utilize

the area just to accommodate the pins required. Hence,

a fixed API may not be justified from the overall IC de-

sign viewpoint.

On the other hand, for the same architecture, such

as basic iterative implementations, the API cost is al-

most constant. Our ASIC results show that the area

overhead due to the API support is between 4 and 5

KGE. Consequently, the effect of the API on area is

more crucial for small designs, such as ASCON, while it is

negligible for designs with large area, such as TIAOXIN.

To illustrate this phenomenon, figure 11 shows a simple

comparison between the area of the implementations of

three ciphers, ASCON (small), Deoxys-I (medium) and

TIAOXIN (large) and the area overhead due to the API

on each of them. The impact of the Hardware API on

the area/performance on FPGA has been also discussed

in [20]. The authors showed that the GMU Hardware

API used in the SHA-3 competition hardware bench-

marking, can cause 25% overhead in terms of the area

compared to other interfaces they have provided. The

CAESAR Hardware API is an updated version of the

GMU Hardware API.

Having explained that, the API has a lot of advan-

tages, such as ensuring that the cost of key scheduling

is included in the benchmarking process and having a

limit for the number of pins used. However, based on

the results of the study in this paper, it is advisable to

have more flexibility in developing hardware implemen-
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Table 10: Deoxys-I-128 implementation on Virtex 6 with custom interface

Impl.
Number of Max. Freq. Throughput Efficiency

Slices (MHz) (Mbps) (Mbps/Slice)

[22] 861 454 3,874 4.5

[13] 946 285 2,432 2.57

Table 11: Deoxys-I-128 implementation on Virtex 6 with API Support

Impl.
Number of Max. Freq. Throughput Efficiency

Slices (MHz) (Mbps) (Mbps/Slice)

[22] 805 225 1,920 2.38

[13] 956 285 2,432 2.54

tations, in order to tweak the control unit to suit every

algorithm or architecture. Figure 12 shows the trend be-

tween area in KGE and delay (ns) of NORX, Optimized

NORX, CLOC GMU, optimized CLOC, Optimized Deoxys-I,

ASCON GMU (with or without API), TIAOXIN GMU (with

or without API)and Deoxys-I (with or without API)

based on ASIC results.

Summary

In this paper, a comprehensive study regarding the

hardware evaluation of AEAD ciphers has been car-

ried out with the help of ASIC standard technology

library. The benchmarking based on ASIC implemen-

tation results has been reported in terms of area (KGE),

frequency (Mhz), throughput(Mbps or Gbps), through-

put per area etc. This paper also shows that design

based on high level synthesis tool does not utilize all

optimization technique. Thus, manual optimization is

required. In order to support this, the ciphers NORX,

Deoxys-I and CLOC have been manually optimized.

The experimental result shows that optimized NORX,

Deoxys-I and CLOC outperformed in terms of area, de-

lay, throughput per area and energy efficiency when

compared with its respective contenders.

The comparison has been made between ASIC

based results and FPGA results. At the end, influence

of CAESAR APIs on the overall performance of cipher

has also been analyzed. For instance; Deoxys-I-128 ci-

pher, supporting CAESAR API cuts the performance

and efficiency almost to by 50% compared to custom

interface, due to the strict requirements on the control

unit design.
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