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Abstract

The introduction of summation polynomials for elliptic curves by
Semaev has opened up new avenues of investigation in index calcu-
lus type algorithms for the elliptic curve discrete logarithm problem,
and several recent papers have explored their use. Most papers use
Gröbner basis computations at some point. We question if Gröbner
bases are needed at all, and we propose a faster algorithm to solve the
ECDLP that does not involve Gröbner basis computations, and does
not involve a linear algebra step either. We further propose an even
faster algorithm that does not involve Gröbner basis computations, or
a linear algebra step, or summation polynomials. Our algorithms are
aimed at prime order fields, although they are valid for any finite field.
We give a complexity analysis of our algorithms and provide extensive
computational data.
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1 Introduction

Let E be an elliptic curve over a finite field Fq, where q is a prime power.
In practice, q is often a prime number or a large power of 2. Let P and Q
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be points on E. The elliptic curve discrete logarithm problem (ECDLP) is
finding an integer l (if it exists) such that Q = lP . l is called the discrete
logarithm of Q to base P .

The ECDLP is a hard problem that underlies many cryptographic schemes
and is thus an area of active research. The introduction of summation poly-
nomials by [Sem04] has led to algorithms that resemble the index calculus
algorithm of the DLP over finite fields. We outline how the algorithm works
in general first.

Let G be a cyclic group with given generator g. We wish to find the
discrete logarithm of a target element h to the base g. A sketch of the index
calculus algorithm for G is the following.

1. Factor Base step. Define a subset F ⊆ G, called the factor base.

2. Relation step. Collect linear relations involving factor base elements.

3. Linear Algebra step. Combine and solve relations using linear alge-
bra.

4. Solving step. Use the results to find the discrete logarithm of the
target element h.

When the group G is the multiplicative group of a finite field, typically
the first three steps do not depend on the target element. Steps 1-3 will
result in the logs of the factor base elements, and only in the final step will
the target element be used, when its log will be calculated. This is different
from normal index calculus algorithms for the ECDLP, where the relations
in Step 2 depend on the target element, although the choice of factor base in
Step 1 does not (see Section 1.2). In the algorithms under discussion in this
paper, the choice of factor base in Step 1 does depend on the target element.

It is a priori not clear how to choose the factor base, and a feature of the
algorithms under discussion in this paper is that the factor base is chosen
randomly. One advantage of this is that the size of the factor base is very
easy to change.

It is also not a priori clear how to find relations in Step 2. Summation
polynomials enable a decomposition over the factor base in certain cases for
elliptic curves, and we give their definition in Section 1.1. Section 1.2 shows
how this decomposition can be achieved for certain choices of factor base.

Most papers have focused on elliptic curves over an extension field Fqn ,
and use subfields in the algorithm. The case of elliptic curves over prime
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order fields seems to be much harder to tackle. In section 2, we give an brief
overview of the different approaches to the prime field case using summation
polynomials.

A recent article [APS17] has shown how to simplify these algorithms
to avoid the linear algebra step and reduce the number of Gröbner basis
computations. We summarize their algorithm (Algorithm 2.2) in Section 2.

In section 3 we develop the algorithm in [APS17] to a new algorithm (Al-
gorithm 3.1) which, unlike all other algorithms using summation polynomials,
does not involve a Gröbner basis computation. This leads to a significant
speedup over the other prime field algorithms.

In Section 4 we then further develop our Algorithm 3.1 to Algorithm
4.1 which does not use summation polynomials at all, as well as not using
Gröbner bases and not using a linear algebra step. This algorithm is fastest
among all the algorithms discussed here, both in practice and in complexity.

Section 5 contains a complexity analysis of the algorithm in [APS17],
as well as a complexity analysis of our two algorithms presented here. We
will see that Algorithm 4.1 is best, followed by Algorithm 3.1 and last comes
Algorithm 2.2. The algorithms have exponential complexity, which one would
expect with a randomly chosen factor base. Our analysis shows that all these
algorithms are worse than the well known generic square-root algorithms such
as Pollard-Rho. Nevertheless, we claim that Algorithm 4.1 is the best index
calculus algorithm for prime order fields at the present time. As far as we
are aware, there is so far no demonstrated advantage to using Gröbner bases
or summation polynomials over prime order fields.

Finally we present computational results for small primes in Section 6,
which happily agree with the complexity analysis.

1.1 Summation Polynomials

Definition 1.1: [Sem04] Let E be an elliptic curve over a field K. For
n ≥ 2, we define the summation polynomial Sn = Sn(X1, X2, . . . , Xn) of E
by the following property. Let x1, x2, . . . , xn ∈ K, then Sn(x1, x2, . . . , xn) = 0
if and only if ∃y1, y2, . . . , yn ∈ K such that (xi, yi) ∈ E(K) and (x1, y1) +
(x2, y2) + . . .+ (xn, yn) = O, where O is the identity element of E.

Semaev showed in [Sem04] how to compute the summation polynomials
for elliptic curves in Weierstrass form:

Theorem 1.2: Let E be an elliptic curve given by Y 2 = X3 +AX +B over
a field K with characteristic 6= 2, 3. Then the summation polynomials are
given by
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S2(X1, X2) = X1 −X2,
S3(X1, X2, X3) = (X1 − X2)

2X2
3 − 2((X1 + X2)(X1X2 + A) + 2B)X3 +

((X1X2 − A)2 − 4B(X1 +X2)),
Sn(X1, . . . , Xn) = ResX(Sn−k(X1 . . . , Xn−k−1, X), Sk+2(Xn−k . . . , Xn, X))

for n ≥ 4 and any 1 ≤ k ≤ n− 3.
Furthermore, the polynomials Sn, n ≥ 3, are symmetric, of degree 2n−2 in
each variable, of total degree (n− 1)2n−2, and absolutely irreducible.

For more detail and for other characteristics, see [Sem04].

1.2 Point Decomposition with Summation Polynomi-
als

The following is a more detailed version of the index calculus algorithm as
normally used for elliptic curves, see [Gau09] for example. We include it for
comparison with our algorithms developed in this paper.

Definition 1.3: (Index Calculus) Let G be a cyclic group of points on an
elliptic curve defined over Fq (here we use additive notation), let P be a
generator of G, and Q another element in G whose discrete logarithm we
wish to compute. The index calculus algorithm for G is the following.

1. Factor Base step. Define a subset F ⊆ G, called the factor base.

2. Relation step. Collect relations that decompose over the factor base:
Let R = aP + bQ (a, b random integers), and try to write R as a sum
of factor base elements, R = P1 + ... + Pm, with P1, ..., Pm ∈ F . Store
the relations in matrix and vector format.

3. Linear Algebra step. Perform linear algebra on the matrix-vector
equation to get an equation of the form αP + βQ = 0.

4. Solving step. If β is invertible modulo the group order r, then the
discrete logarithm of Q is −α/β mod r.

Let F = {P1, P2, . . . , Ps} be the factor base of points on E, where s =
|F| is the size of the factor base. Let r1, r2 be random integers and let
R = r1P + r2Q. In order to write R = P1 + ... + Pm, with P1, ..., Pm ∈
F , we use the (m + 1)th summation polynomial: writing R = (xR, yR),
we try to find a solution (x1, . . . , xm) of Sm+1(X1, . . . , Xm, xR) = 0 such
that ∃yi such that (xi, yi) ∈ F , 1 ≤ i ≤ m. Then ∃εi = ±1 such that
ε1(x1, y1) + . . .+ εm(xm, ym)±R = O.
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Once we have found at least s+ 1 independent relations of this form, we
can find logP (Q) by solving the matrix equation

ε1,1 . . . ε1,s
ε2,1 . . . ε2,s

. . .
εs+1,1 . . . εs+1,s



logP (P1)
logP (P2)
. . .

logP (Ps)

 =


r1,1
r2,1
. . .
rs+1,1

+


r1,2
r2,2
. . .
rs+1,2

 logP (Q)

where εi,j ∈ {0, 1,−1}, 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s.

Gaudry suggests in [Gau09] a way to solve Sn+1(X1, . . . , Xn, xR) = 0, if
E is defined over Fqn = Fq[t]/f(t), q a prime power, f irreducible of de-
gree n. He defines the factor base to be all points with x-coordinate in Fq,
F = {(x, y) ∈ E(Fqn) : x ∈ Fq}. Note that we only need to include one of
{(x, y), (x,−y)} in the factor base if we allow coefficients ±1 in the decom-
position of R. Now writing Sn+1(X1, . . . , Xn, xR) =

∑n−1
i=0 ϕi(X1, . . . , Xn)ti,

we instead solve ϕi(X1, . . . , Xn) = 0 over Fq, 0 ≤ i ≤ n − 1, obtaining a
polynomial systems of n equations in n unknowns (Weil descent). We then
solve this system with Gröbner basis techniques.

2 Factor base over prime fields

If the elliptic curve is defined over a prime field, i.e. Fp for p a prime number,
Semaev suggests in [Sem04] to define the factor base to be all points with
”small” x-coordinate (taking the finite field elements to lie in the interval
[0, ..., p−1] and treating them as integers in order to bound them). However,
we don’t know how to find these small points efficiently.

Petit-Kosters-Messeng showed in [PKM16] how to define the factor base
as points on the curve with x-coordinate a solution of the composition of
some small-degree rational maps. The decompositions are then found by
solving the polynomial system obtained from these rational maps and sum-
mation polynomials. Their approach seems to be the first working case for
curves defined over prime fields, but it is only feasible for small parameters.

Amadori-Pintore-Sala [APS17] showed a different way of defining the fac-
tor base that enabled them to significantly reduce the number of polynomial
systems that need to be solved, and also avoid the linear algebra step, leading
to a huge improvement in the running time. We will explain their approach
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now and give a complexity analysis in section 5.

Step 1. Let s be the desired size of the factor base (we will show later how to
select s). Compute random integers a1, ..., as, b1, ..., bs. Then the factor base
F is all points {a1P + b1Q, ..., asP + bsQ}.
Step 2. Find a relation of the form P1 + . . .+ Pm = O with Pi ∈ F .
Step 3. Substitute each Pi with the corresponding aiP + biQ and get the
relation

m∑
i=1

aiP +
m∑
i=1

biQ = O. (1)

Then Q = −
∑m

i=1(ai/bi)P provided
∑m

i=1 bi is invertible modulo the order
of E (if

∑m
i=1 bi is not invertible, start again). We have thus solved for the

discrete logarithm of Q without doing a linear algebra step.

Remark 2.1: Note that the factor base is chosen randomly, as opposed to
the methods mentioned in the first two paragraphs of this section. The al-
gorithm may fail, and if so then it is run again and the re-run will involve a
different choice of random factor base. This is in contrast to the other meth-
ods, where the factor base is clearly defined, and re-running the algorithm
does not result in a different factor base.

In step 2, Amadori et al propose the following system of polynomial
equations to find relations. Let V be the set of x-coordinates of all the
points in the factor base, i.e. V = {x|(x, y) ∈ F}. Let f(x) =

∏
v∈V (x− v).

Then they solve (via Gröbner basis techniques such as F4 or F5) the system

Sm(X1, . . . , Xm) = 0

f(X1) = 0 (2)

. . .

f(Xm) = 0

Hence, they only consider solutions to Sm(X1, . . . , Xm) = 0 of the form
(x1, ..., xm) ∈ V m, i.e. corresponding to points in the factor base.

Since f has degree s, which is the size of the factor base and could be
quite large, the resolution of the system could be slow. So they propose
instead using m different polynomials, by partitioning the factor base into m
different factor bases Fi of more or less equal size s

m
. V is partitioned into m
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sets Vi accordingly, giving m polynomials fi(x) =
∏

v∈Vi
(x − v). They then

solve the system

Sm(X1, . . . , Xm) = 0

f1(X1) = 0 (3)

. . .

fm(Xm) = 0

Now each of the fi only has degree s
m

approximately, and therefore the
Gröbner basis compution is less expensive. However, this also reduces the
probability of finding a solution in the factor base. We shall give more details
about this in section 5 on complexity analysis.
For completeness, we give the full algorithm from [APS17] with this approach:

Algorithm 2.2: [APS17]
Input: elliptic curve E over Fp, points P and Q on E, integers m, s,

summation polynomial Sm

Output: logP (Q)

1. Let s be the size of the factor base. Compute random integers a1, ..., as,
b1, ..., bs. The factor base F is all points {a1P + b1Q, ..., asP + bsQ}.
The corresponding set containing only the x-coordinates of the factor
base points is V = {x|(x, y) ∈ F}. Partition this set into m sets Vi of
approximately equal size. Let fi(x) =

∏
v∈Vi

(x− v), i = 1, . . . ,m.

2. Using a Gröbner basis algorithm like F4 or F5, solve the system

Sm(X1, . . . , Xm) = 0

f1(X1) = 0

. . .

fm(Xm) = 0

If there is no solution, go back to step 1.

3. If {x1, . . . , xm} is a solution to the above system, then each xi ∈ Vi and
there exist yi such that (x1, y1)+. . .+(xm, ym) = O where either (xi, yi)
or−(xi, yi) are in F . Substituting each±(xi, yi) with the corresponding
±(aiP + biQ), we get (as in (1)) a relation of the form

∑m
i=1±aiP +∑m

i=1±biQ = O and can solve for the discrete logarithm of Q, provided∑m
i=1±bi is invertible modulo the order of E.
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3 Avoiding Gröbner basis computations and

Linear Algebra step

While systems (2) and (3) are a way of algebraically describing that the so-
lutions to Sm lie in the factor base, it seems to us that there should be a
better way to solve this problem than feeding the polynomial system into a
Gröbner basis algorithm. This approach essentially treats the polynomial f
(or the fi) as input polynomials to find their common roots with Sm even
though we already know their complete factorisation.

We therefore propose the following alternative to Algorithm 2.2, which
does not use a Gröbner basis algorithm.

Algorithm 3.1:
Input: elliptic curve E over Fp, points P and Q on E, integers m, s,

summation polynomial Sm

Output: logP (Q)

1. Let s be the size of the factor base. Compute random integers a1, ..., as,
b1, ..., bs. The factor base F consists of all points {a1P + b1Q, ..., asP +
bsQ}. The corresponding set containing only the x-coordinates of the
factor base points is denoted V = {x|(x, y) ∈ F}.

2. Choose {x1, . . . , xm} a multiset of size m with each xi ∈ V and check
if Sm(x1, . . . , xm) = 0. If not, repeat with another multiset.
If Sm is non-zero for all multisets, go back to step 1.

3. If Sm(x1, . . . , xm) = 0 for some {x1, . . . , xm}, then there exist yi such
that (x1, y1) + . . . + (xm, ym) = O where either (xi, yi) or −(xi, yi) are
in F . Substituting each ±(xi, yi) with the corresponding ±(aiP +biQ),
we get (as in (1)) a relation of the form

∑m
i=1±aiP +

∑m
i=1±biQ = O

and can solve for the discrete logarithm of Q, provided
∑m

i=1±bi is
invertible modulo the order of E.

Remark 3.2: In step 2, we can alternatively choose a multiset of m points
{P1, . . . , Pm} from the factor base, and sum those points to see if they give
the point at infinity. This avoids using summation polynomials, and is in
fact faster in practice and in theory (see Sections 5 and 6). We omit the
details for this algorithm. We refine this idea in the next section, and obtain
an even faster algorithm.
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4 Avoiding Summation Polynomials and

Gröbner bases and Linear Algebra step

The following algorithm is a variation of our Algorithm 3.1. Here, we choose
a multiset of m−1 points from the factor base, and check if the sum of those
points lies in the factor base:

Algorithm 4.1:
Input: elliptic curve E over Fp, points P and Q on E, integers m, s
Output: logP (Q)

1. Let s be the size of the factor base. Compute random integers a1, ..., as,
b1, ..., bs. The factor base F is all points {a1P + b1Q, ..., asP + bsQ}.

2. Choose {P1, . . . , Pm−1} a multiset of size m − 1 with each Pi ∈ F .
Choose v ∈ Fm−1

2 , and let Pv = (−1)v1P1 + . . .+ (−1)vm−1Pm−1. Check
if Pv ∈ F .
If Pv /∈ F for all v ∈ Fm−1

2 , repeat with another multiset.
If there is no solution for all multisets, go back to step 1.

3. If Pv ∈ F for some v then let Pm = −Pv and we get the relation
(−1)v1P1 + . . .+ (−1)vm−1Pm−1 +Pm = O. Substituting each ±Pi with
the corresponding ±(aiP+biQ), we get (as in (1)) a relation of the form∑m

i=1±aiP +
∑m

i=1±biQ = O and can solve for the discrete logarithm
of Q, provided

∑m
i=1±bi is invertible modulo the order of E.

We will provide a complexity analysis of all of these approaches in sec-
tion 5.

Remark 4.2: The motivation for the three given algorithms was the ECDLP
over prime fields. However, none of the algorithms require the field to be of
prime order. They all work for any finite field.

Remark 4.3: Algorithms 2.2 and 3.1 use summation polynomials, and there-
fore the input value of m must be ≤ 8 because the largest summation polyno-
mial that has been computed so far is S8 as far as we are aware (see [FHJ+14]).
Algorithm 4.1 does not suffer from this problem, and larger values of m can
readily be used.
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5 Complexity Analysis

Table 1 summarises the complexity of operations in Fp obtained from [AMV96]
and of operations on an elliptic curve over Fp from [Sil09].

Operation Bit complexity
Addition O(log p)

Multiplication O(log2 p)
Inversion O(log2 p)

Point addition O(log2 p)
Point multiplication O(log3 p)

Searching a sequence of length s O(s)

Table 1: Bit complexity of basic operations in Fp and on an elliptic curve
over Fp

Lemma 5.1: The probability of obtaining a relation of length m in F is
≈ 2m−1sm

p·m!
, where s = |F|.

Proof: The number of ways of choosing m elements from a set of size s,
allowing repetitions, is

(
s+m−1

m

)
≈ sm

m!
for m � s. Relations can be of the

form P1 ± . . .± Pm = O with Pi ∈ F , so we get ≈ 2m−1sm

m!
possibilities. The

number of points on the curve is approximately p. �

Lemma 5.2: The probability of obtaining a relation of length m with each
point coming from a different partition of the factor base of size s

m
is 2m−1sm

p·mm .

Proof: There are s
m

ways of choosing each point in the relation giving 2m−1( s
m

)m

possibilities for relations of the form P1± . . .±Pm = O with each Pi coming
from the factor base partition Fi of size s

m
. �

Lemma 5.3: The complexity of computing a factor base of size s isO(s log3 p).

Proof: See Table 1. We have to do 2s point multiplications of O(log3 p) and
s point additions of O(log2 p). �

Remark 5.4: There may be faster ways of computing the points aP + bQ
at the expense of more memory.

We would like the probability of finding a relation in the factor base
to be close to 1, i.e. in the case of Lemma 5.2, we want 2m−1sm

mm ≈ p, so
we should choose the factor base size s accordingly. However, the authors
of [APS17] propose s = p1/m as was chosen in other papers, e.g. [Gau09].
With this choice we will have to run (steps 1 and 2 of) Algorithm 2.2 an
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expected number of mm

2m−1 times. So even though we only require the com-
putation of one Gröbner basis each time we choose a factor base, we will
in general have computed several factor bases before finding a relation, and
thus we require several Gröbner basis computations in the overall discrete log
algorithm (Algorithm 2.2). If one were to increase s in order to reduce the
number of Gröbner basis computations needed, then the polynomial degrees
are increasing accordingly, making each Gröbner basis computation slower.
It may therefore be better to keep s = p1/m, but it should be noted that this
choice requires several Gröbner basis computations and not only one as is
claimed in [APS17].

The following theorem gives the complexity of one Gröbner basis compu-
tation.

Theorem 5.5: The complexity of solving the system (3) is approximately
O(pω−ω/m) for s = p1/m and m � s, where ω ≈ 3 is the linear algebra
constant.

Proof: The complexity of a Gröbner basis computation can be approximated
with

(
N+Dreg−1

Dreg

)ω
, (see [Bar04]) where N is the number of variables of the

input polynomials, Dreg is the degree of regularity, and ω is the linear al-
gebra constant. If the number of polynomials is N + 1, then Dreg can be

calculated using the formula Dreg =
∑N+1

i=1
di−1
2

for N large (see Theorem
4.1.1 of [Bar04]) where di is the degree of the ith input polynomial.
Here N = m, Sm has total degree (m−1)·2m−2 (Theorem 1.2) and each fi has

degree ≈ s
m

. So we get Dreg =
(m−1)·2m−2−1+m( s

m
−1)

2
= (m−1) ·2m−3 + s−m−1

2
.

Thus, (
N +Dreg − 1

Dreg

)
=

(
N +Dreg − 1

N − 1

)
=

(
m+ (m− 1) · 2m−3 + s−m−1

2
− 1

m− 1

)
=

( s
2

+ (m− 1) · 2m−3 + m
2
− 3

2
)!

(m− 1)!( s
2

+ (m− 1) · 2m−3 − m
2
− 1

2
)!

=
( s
2

+ (m− 1) · 2m−3 + m
2
− 3

2
) . . . ( s

2
+ (m− 1) · 2m−3 − m

2
+ 1

2
)

(m− 1)!
.

There are m − 1 terms in the numerator, each dominated by s
2
. So we
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approximate
(
N+Dreg−1

Dreg

)
≈ ( s

2
)m−1

(m−1)! . Thus,(
N +Dreg − 1

Dreg

)ω

≈
( s
2
)ω·m−ω

(m− 1)!ω
=

pω−ω/m

(2m−1(m− 1)!)ω
. �

Remark 5.6: It may be possible that the degree of regularity of system (3)
is smaller than the one we calculate here using a rather generic formula that
holds for large N . We do not investigate this possibility in this paper.

Corollary 5.7: The complexity of Algorithm 2.2 is approximately

mm

2m−1 (O(pω−ω/m) +O(p1/m log3 p)) ≈ O(pω−ω/m)

for s = p1/m and m� s, where ω ≈ 3 is the linear algebra constant.

Remark 5.8: With ω = 3 and m = 3 the complexity of Algorithm 2.2 is
approximately O(p2). This roughly agrees with our experiments.

Theorem 5.9: The complexity of Algorithm 3.1 is approximatelyO(p log2 p).

Proof: As noted in the proof of Lemma 5.1, there are about sm

m!
ways of

choosing m elements from the set F of size s, allowing repetitions, for small
m. Evaluating Sm is approximately O(log2 p), giving a total of sm

m!
O(log2 p).

Now by Lemma 5.1, we need an expected number of p·m!
2m−1sm

trials, giving
p·m!

2m−1sm
( s

m

m!
O(log2 p) +O(s log3 p)) ≈ O(p log2 p) when sm−1

m!
≥ log p. �

Remark 5.10: Of course, once we have found a solution of Sm(x1, . . . , xm) =
0 in the factor base, we can stop, so in general, we need to do less than sm

m!

evaluations.

Remark 5.11: Replacing the evaluation of Sm by adding m points together
as in Remark 3.2, gives a complexity of (m− 1)O(p log2 p) ≈ O(p log2 p) for
small m.

Remark 5.12: It is reasonable to assume that m is small when using sum-
mation polynomials, since the largest summation polynomial that has been
computed so far is S8.

Theorem 5.13: The complexity of Algorithm 4.1 is approximately O(p) for
s not too small (i.e. s ≥ (m− 2) log2 p).

Proof: There are about 2m−1 sm−1

(m−1)! different ways of forming the sum ±P1±
. . .± Pm−1, with Pi ∈ F , allowing repetitions, for small m and s = |F|. Let
Pm = ±P1 ± . . . ± Pm−1. The complexity of each sum is (m − 2)O(log2 p).
For each combination, we check if Pm is in F , which is O(s). If the sum is
in F , we get a relation of the form ±P1 ± . . . ± Pm−1 − Pm = O. So we
still get a relation with probability 5.1, so the complexity of this algorithm is

p·m!
2m−1sm

(2m−1 sm−1

(m−1)!((m−2)O(log2 p)+O(s))+O(s log3 p)). If s ≥ (m−2) log2 p

then this is p·m
s
O(s) ≈ O(p) for small m. �
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6 Experimental Results

We ran experiments in Magma V2.21-6 [BCP97] with m = 3 and m = 4 to
time

– the Algorithm 2.2 first given in [APS17] (Type Gröbner),
– our Algorithm 3.1 (Type Eval Sm)
– our Algorithm 4.1 (Type Sum in F),

all with the same parameters. We have used a factor base size of s = dp1/me
in line with [APS17]. The results are summarised in Table 2 and 3, where

– TF(s) denotes the time in seconds it took to compute the factor bases
(step 1 of the algorithms)

– Tsolve(s) denotes the time in seconds it took to find a solution (step 2).
– We did not include the timings for step 3 as they are negligible.
– The column “trials” shows the number of times we had to compute a

factor base before finding a solution (i.e. how many times step 1 and 2 were
done.)

The experiments in Table 2 clearly show that for those field sizes our
algorithm 4.1 is the fastest, which agrees with the complexity analysis. So
our algorithms are faster than algorithm 2.2 first given in [APS17], and they
show that their algorithm is faster than the one in [PKM16].

As we remarked in section 5, the experiments also show that we need
to run several Gröbner basis computations in order to solve the discrete log
problem using the approach reported in [APS17] (Algorithm 2.2). This con-
tradicts their claim of only needing one Gröbner basis computation.

As expected by Lemma 5.1 and 5.2, when m = 4, more trials are needed
before a relation in the factor base is found, suggesting that the size of the
factor base is too small. In fact, the complexity of our algorithms 3.1 and
4.1 grows with m so it may be an advantage to keep to m = 3 and increase
the size of the factor base.

Table 4 shows experimental results for s = (m! · p · 21−m)1/m using our
algorithm 4.1, over prime fields of bigger size. (This choice of s gives a prob-
ability of obtaining a relation in the factor base of approximately 1 according
to Lemma 5.1.) The other algorithms could not finish in reasonable time with
p this size. They again show that m = 3 is faster than m = 4. For m = 2,
step 2 of the algorithm (Tsolve(s)) is faster than for m = 3, but building the
factor base (TF(s)) takes more time, so overall m = 2 is slower than m = 3.
So it seems that for algorithm 4.1, m = 3 is the best choice.
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Both versions of our algorithm require much less memory than the Gröbner
basis approach.

It is also worth noting that our algorithms are embarrassingly parallel,
while using a Gröbner basis to solve system (3) is much harder to parallelize.

Type p m s trials TF(s) Tsolve(s) Mem(MB)
Gröbner 55673 3 39 5.00 6.80E-3 0.31 33.62
Eval Sm 55673 3 39 1.88 2.38E-3 0.06 33.62

Sum in F 55673 3 39 1.86 2.53E-3 0.05 33.62
Gröbner 719267 3 90 7.98 0.03 16.94 67.24
Eval Sm 719267 3 90 2.03 9.32E-3 0.86 33.56

Sum in F 719267 3 90 1.95 7.79E-3 0.34 33.62
Gröbner 6443737 3 187 6.57 0.07 290.50 917.50
Eval Sm 6443737 3 187 2.00 0.02 7.30 33.62

Sum in F 6443737 3 187 2.05 0.02 1.97 33.62
Gröbner* 30056657 3 311 7.88 0.14 96384.00 4555.01
Eval Sm 30056657 3 311 2.33 0.04 42.62 33.56

Sum in F 30056657 3 311 2.16 0.05 14.08 33.62

Table 2: Average values on 100 experiments for each p (the one marked with
* was only run 8 times). Type Gröbner denotes Algorithm 2.2, Eval Sm

denotes Algorithm 3.1, Sum in F denotes Algorithm 4.1
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Type p m s trials TF(s) Tsolve(s) Mem(MB)
Gröbner 55673 4 16 33.89 0.02 0.50 33.62
Eval Sm 55673 4 16 3.35 2.84E-3 0.79 33.62

Sum in F 55673 4 16 2.76 1.93E-3 0.20 33.62
Gröbner 719267 4 30 35.47 0.06 19.19 33.62
Eval Sm 719267 4 30 3.42 4.86E-3 9.50 33.62

Sum in F 719267 4 30 3.23 3.67E-3 1.54 33.56
Gröbner 6443737 4 51 32.92 0.09 412.00 169.34
Eval Sm 6443737 4 51 3.17 8.19E-3 66.25 33.62

Sum in F 6443737 4 51 3.69 9.00E-3 9.03 33.62
Eval Sm 30056657 4 75 3.06 0.01 288.50 33.56
Sum in F 30056657 4 75 3.42 0.02 37.00 33.62

Table 3: Average values on 100 experiments for each p. Type Gröbner de-
notes Algorithm 2.2, Eval Sm denotes Algorithm 3.1, Sum in F denotes
Algorithm 4.1

Type p m s trials TF(s) Tsolve(s) Mem(MB)
Sum in F 55673 2 236 2.80 0.03 3.67E-3 33.56
Sum in F 55673 3 44 1.48 2.27E-3 0.04 33.62
Sum in F 55673 4 21 1.47 1.02E-3 0.17 33.62
Sum in F 719267 2 849 2.43 0.11 0.05 33.62
Sum in F 719267 3 103 1.62 6.34E-3 0.30 33.62
Sum in F 719267 4 39 1.52 2.76E-3 1.05 33.56
Sum in F 6443737 2 2539 2.45 0.62 0.51 33.62
Sum in F 6443737 3 214 1.56 0.02 1.68 33.62
Sum in F 6443737 4 67 1.65 3.93E-3 6.71 33.62
Sum in F 30056657 2 5483 2.59 5.73 7.40 33.56
Sum in F 30056657 3 356 1.54 0.04 11.58 33.62
Sum in F 30056657 4 98 1.39 7.87E-3 24.81 33.62
Sum in F 75426619 2 8685 2.77 14.94 20.72 33.56
Sum in F 75426619 3 484 1.46 0.05 25.59 33.56
Sum in F 75426619 4 123 1.84 0.01 90.12 33.56
Sum in F 161532773 3 624 1.73 0.09 66.25 33.62
Sum in F 4911016471 3 1946 1.69 0.91 1126.00 33.56
Sum in F 30951732491 3 3595 1.67 2.10 6848.00 33.62

Table 4: Average values on 100 experiments for each p using algorithm 4.1
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