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Abstract. Indistinguishability Obfuscation (iO) has enabled an incredi-
ble number of new and exciting applications. However, our understanding
of how to actually build secure iO remains in its infancy. While many
candidate constructions have been published, some have been broken,
and it is unclear which of the remaining candidates are secure.
This work deals with the following basic question: Can we hedge our bets
when it comes to iO candidates? In other words, if we have a collection
of iO candidates, and we only know that at least one of them is secure,
can we still make use of these candidates?
This topic was recently studied by Ananth, Jain, Naor, Sahai, and Yogev
[CRYPTO 2016], who showed how to construct a robust iO combiner:
Specifically, they showed that given the situation above, we can construct
a single iO scheme that is secure as long as (1) at least one candidate iO
scheme is a subexponentially secure iO, and (2) either the subexponential
DDH or LWE assumptions hold.
In this work, we make three contributions:

– (Better robust iO combiners.) First, we work to improve the as-
sumptions needed to obtain the same result as Ananth et al.: namely
we show how to replace the DDH/LWE assumption with the assump-
tion that subexponentially secure one-way functions exist.

– (Transforming Combiners from iO to FE and NIKE.) Sec-
ond, we consider a broader question: what if we start with several iO
candidates where only one works, but we don’t care about achiev-
ing iO itself, rather we want to achieve concrete applications of iO?
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In this case, we are able to work with the minimal assumption of
just polynomially secure one-way functions, and where the work-
ing iO candidate only achieves polynomial security. We call such
combiners transforming combiners. More generally, a transforming
combiner from primitive A to primitive B is one that takes as input
many candidates of primitive A, out of which we are guaranteed that
at least one is secure and outputs a secure candidate of primitive
B. We can correspondingly define robust transforming combiners.
We present transforming combiners from indistinguishability obfus-
cation to functional encryption and non-interactive multiparty key
exchance (NIKE).

– (Correctness Amplification for iO from polynomial security
and one-way functions.) Finally, along the way, we obtain a re-
sult of independent interest: Recently, Bitansky and Vaikuntanathan
[TCC 2016] showed how to amplify the correctness of an iO scheme,
but they needed subexponential security for the iO scheme and also
require subexponentially secure DDH or LWE. We show how to
achieve the same correctness amplification result, but requiring only
polynomial security from the iO scheme, and assuming only polyno-
mially secure one-way functions.

1 Introduction

Indistinguishability Obfuscation (iO), first defined by [4], has been a ma-
jor revelation to cryptography. The discovery of the punctured program-
ming technique by Sahai and Waters [47] has led to several interesting
applications of indistinguishability obfuscation. A very incomplete list
of such results includes functional encryption [25,48,2], the feasibility
of succinct randomized encodings [7,13,40], time lock puzzles [8], soft-
ware watermarking [16], instantiating random oracles [35] and hardness
of Nash equilibrium [10,27].

On the construction side, however, iO is still at a nascent stage. The first
candidate was proposed by Garg, Gentry, Halevi, Raykova, Sahai and
Waters [25] from multilinear maps [24,20,30]. Since then there have many
proposals of iO [3,49,30]. All these constructions are based on multilinear
maps. The constructions of multilinear maps have come under scrutiny
after several successful cryptanalytic attacks [36,15,17,18,19,14,45] were
mounted against them. In fact, there have also been direct attacks on
some of the iO candidates as well [18,45]. However, there are (fortu-
nately) still many candidates that have survived all known cryptanalytic
attacks. We refer the reader to Appendix A in [1] for a partial list of
these candidates1. In light of this, its imperative to revisit the applica-
tions of iO and hope to weaken the trust we place on any specific known
iO candidate to construct these applications.

In other words, can we hedge our bets when it comes to iO candidates?

1 Several recent candidates such as [43,44,26] have not been included in this list. There
are currently no attacks known on these candidates as well.



If we’re wrong about some candidates that seem promising right now,
but not others, then can we still give explicit constructions that achieve
the amazing applications of iO?
Robust iO Combiners. Recently, Ananth, Jain, Naor, Sahai and Yo-
gev [1] considered the closely related problem of constructing an iO
scheme starting from many iO candidates, such that the final iO scheme
is guaranteed to be secure as long as even one of the iO candidates
is secure. In fact, they only assume that the secure candidate satisfies
correctness, and in particular, the insecure candidates could also be in-
correct. This notion is termed as a robust iO combiners (also studied
by Fischlin et al. [23] in a relaxed setting where multiple underlying
iO candidates must be secure) and are useful in constructing universal
iO [33] 2. The work of [1] constructs robust iO combiners assuming the
existence of a sub-exponentially secure iO scheme and sub-exponentially
secure DDH/ LWE. As a consequence of this result, we can construct
the above applications by combining all known iO candidates as long as
one of the candidates is sub-exponentially secure.
While the work of [1] is a major advance, it leaves open two very natural
questions, that we study in this work. The first question is: do we really
need to assume DDH or LWE? In other words:

1. What assumption suffices to construct a robust iO combiner?
In particular, are (sub-exponentially secure) one-way functions
sufficient?

The second, broader, question is: if we care about constructing appli-
cations of iO, can we do better in terms of assumptions? In particular,
recent work [28] has shown that functional encryption – itself an appli-
cation of iO – can be directly used to construct several applications of
iO. Let us then define an transforming combiner as an object that takes
several iO candidates, with the promise that at least one of them is only
polynomially secure, and outputs an explicit secure functional encryp-
tion scheme. Then, let us consider the following question, which truly
addresses a minimal assumption:

2. Assuming only polynomially secure one-way functions, can
we construct a transforming combiner from iO to functional en-
cryption?

Note that since the existence of iO does not even imply that P 6=NP,
while functional encryption implies one-way functions, the above ques-
tion lays out a minimal assumption for constructing a transforming com-
biner from iO to FE.

1.1 Our Contribution.

We address questions 1 and 2 in this work. We show,

Theorem 1 (Transforming Combiners). Given many iO candidates
out of which at least one of them is correct and secure and additionally

2 A scheme Π is said to be a universal secure iO scheme if the following holds: if there
exists a secure iO scheme (whose explicit description is unknown) then Π is a secure
iO scheme.



assuming one-way functions, we can construct a compact functional en-
cryption scheme.

As a corollary, we can construct an explicit functional encryption scheme
assuming the existence of iO and one-way functions. In other words, we
show that it suffices that iO exists (rather than relying on a constructive
proof of it) to construct an explicit functional encryption scheme.

Corollary 1 (Informal). Assuming polynomially secure iO and one-
way functions exists, we can construct an explicit compact functional en-
cryption scheme. In particular, the construction of functional encryption
does not rely on an explicit description of the iO scheme.

Combining this result with the works of [2,11] who show how to construct
iO from sub-exponentially secure compact FE, we obtain the following
result.

Theorem 2 (Informal). There exists a robust iO combiner assuming
sub-exponentially secure one-way functions as long as one of the under-
lying iO candidates is sub-exponentially secure.

This improves upon the result of Ananth et al. [1] who achieve the same
result assuming sub-exponentially secure DDH or LWE.

Explicit NIKE from several iO candidates: Recent works of Garg
and Srinivasan [29], Li and Micciancio [42], show how to achieve col-
lusion resistant functional encryption from compact functional encryp-
tion and Garg, Pandey, Srinivasan and Zhandry [28] show how to build
multi-party non interactive key exchange (NIKE) from collusion resis-
tant functional encryption. When combined with these results, our work
shows how to obtain an explicit NIKE protocol when given any one-way
function, and many iO candidates with the guarantee that only one of
the candidates is secure.

New Correctness Amplification Theorem for iO. En route to
achieving this result, we demonstrate a new correctness amplification
theorem for iO. In particular, we show how to obtain almost-correct iO
starting from polynomially secure approximately-correct iO3 and one-
way functions. Prior to our work, [12] showed how to achieved a correct-
ness amplification theorem starting from sub-exponentially secure iO and
sub-exponentially secure DDH/ LWE.

Theorem 3 (Informal). There is a transformation from a polynomi-
ally secure approximately-correct iO to polynomially secure almost-correct
iO assuming one-way functions.

3 An iO scheme is ε-approximately correct if every obfuscated circuit agrees with the
original circuit on ε fraction of the inputs.



2 Technical Overview

The goal of our work is to construct a compact functional encryption
scheme starting many iO candidates out of which one of them is secure.
Let us start with the more ambitious goal of building a robust compact
FE combiner. If we have such a combiner, then we achieve our goal since
the ith compact FE candidate used in the combiner can be built from
the ith iO candidate using prior works [25].

To build a compact FE combiner, we view this problem via the lens of
secure multi-party computation: we view every compact FE candidate
as corresponding to a party in the MPC protocol; insecure candidates
correspond to adversaries. Ananth et al. [1] took the same viewpoint
when building an iO combiner and in particular, used non-interactive
MPC techniques that relied on DDH/ LWE to solve this problem. Our
goal is however to base our combiner only on one-way functions and to
achieve that, we start with an interactive MPC protocol.

A first attempt is the following: Let Π1, . . . , Πn be the n compact FE can-
didates. We start with an interactive MPC protocol for parties P1, . . . , Pn.

– To encrypt a message x, we secret share x into n additive shares.
Each of these shares are encrypted using candidates Π1, . . . , Πn.

– To generate a functional key for function f , we generate a functional
key for the following function gi using FE candidate Πi: this function
gi takes as input message m and executes the next message function
of Πi to obtain message m′. If m′ has to be sent to Πj then it
encrypts m′ under the public key of Πj and outputs the ciphertext.

The decryption algorithm proceeds as in the evaluation of the multi-
party secure computation protocol. Since one of the candidates is secure,
say ith candidate, the hope is that the ith ciphertext hides the ith share
of x and thus security of FE is guaranteed.

However, implementing the above high level idea faces the following ob-
stacles.

Statelessness: While a party participating in a MPC protocol is stateful,
the functional key is not. Hence, the next message function as part of
the functional key expects to receive the previous state as input. Its not
clear how to ensure without sharing state information with all the other
candidates.

Oblivious Transfer: Recall that our goal was to base the combiner only on
one-way functions. However, MPC requires oblivious transfer and from
Impagliazzo and Rudich’s result [37] we have strong evidence to believe
that oblivious transfer cannot be based on one-way functions. Given this,
it is unclear how to directly use MPC to achieve our goal.

Randomized Functions: The functional key in the above solution encrypts
a message with respect to another candidate. Since encryption is a prob-
abilistic process, we need to devise a mechanism to generate randomness
for encrypting the ciphertext.



Correctness Amplification: A recent elegant work of Bitansky and Vaikun-
tanathan [12] study correctness amplification techniques in the context of
indistinguishability obfuscation and functional encryption. Their correct-
ness amplification theorems assume DDH/ LWE to achieve this result.
Indeed, this work was also employed by Ananth et al. to construct an
iO combiner. We need a different mechanism to handle the correctness
issue if our goal is to base our construction on one-way functions.

Tackling Issues: We propose the following ideas to tackle the above
issues.

Use 2-ary FE instead of compact FE: The first idea is to replace compact
FE candidates with 2-ary FE4 candidates. We can build each of 2-ary
FE candidates starting from iO candidates. The advantage of using 2-ary
FE is two fold:

1. It helps in addressing the issue of statelessness. The functional keys,
of say ith candidate, are now associated with 2-ary functions, where
the first input of the function takes as input the previous state and
the other input takes as input the message from another candidate.
The output of this function is the updated state encrypted under
the public key of the ith candidate and encryption of message un-
der public key of jth candidate, where jth candidate is supposed to
receive this message. This way, the state corresponding to the ith

candidate is never revealed to any other candidate.

2. It also helps in addressing the issue of randomized functions. The first
input to the function could also contain a PRF key. This key will be
used to generate the randomness required to encrypt messages with
respect to public keys of other candidates.

Getting Rid of OT: To deal with this issue, we use the idea of pre-
processing OTs that is extensively used in the MPC literature [5,38,21,6]5.
We pre-compute polynomially many OTs [5] ahead of time. Once we
have pre-computed OTs, we can construct an information theoretically
secure MPC protocol that is secure upto n − 1 corruptions, where n is
the number of parties. Note that we can only achieve semi-honest secu-
rity in this setting, achieving malicious security would require that the
pre-processing phase outputs exponentially many bits [38].

Next, we consider whether to perform the OT pre-computation as part
of the key generation or the encryption algorithm. Depending on where
we perform the pre-computation phase, we are faced with the following
issues:

4 A 2-ary FE scheme is a functional encryption corresponding to 2-ary functions. A
functional key of 2-ary function f decrypts two ciphertexts CT1 (of message x) and
CT2 (of message y) to obtain f(x, y).

5 The key difference is that in prior works, the pre-processing phase is generally inde-
pendent of the inputs and in our case, it is input dependent. We require that this
pre-processing phase is compatible with any MPC functionality that will be defined
after the pre-processing phase.



1. Reusability: In a secure MPC protocol, the pre-computed OTs are
used only in one execution of the MPC protocol. So, if we perform the
OT pre-computation as part of the key generation algorithm, then
the pre-computed OTs need to be reused across different ciphertexts.
In this case, no security is guaranteed.

2. Compactness: In the current secure MPC with pre-processing solu-
tions, it turns out that the number of OTs to be pre-computed de-
pends on the size of the circuit implementing the MPC functionality.
So if we implement the OT pre-computation as part of the encryp-
tion algorithm, we need to make sure that the encryption complexity
is independent of the number of pre-processed OTs.

We perform the OT pre-computation as part of the encryption algorithm.
Hence, we have to deal with the compactness issue stated above. To re-
solve this, we “compress” the OTs using PRF keys. That is, to generate
OTs between two parties Pi and Pj , we use a PRF key Kij . The next
problem is under which public key do we encrypt Kij . Encrypting this
under either ith candidate or jth candidate could compromise the key
completely. The guarantee we want is that as long as one of the two can-
didates is honest, this key is not compromised. To solve this problem, we
employ a 1-out-2 combiner of 2-ary FE – given two candidates, 1-out-2
combiner is secure as long as one of them is secure. This can be achieved
by computing an “onion” of two FE candidates. We refer the reader to
the technical section for more details.

Correctness Amplification: [12] showed how to transform ε-approximately
correct iO into an almost correct iO scheme. They do this in two steps:
(i) the first step is the self reducibility step, where they transform ap-
proximately correct iO scheme into one, where the iO scheme is correct
on every input with probability close to ε, (ii) then they apply BPP
amplification techniques to get almost correct iO. Their self reducibility
step involves using a type of secure function evaluation scheme and they
show how to construct this based on DDH and LWE. We instead show
how to achieve the self reducibility step using a single key private key
functional encryption scheme. The main idea is as follows: to obfuscate
a circuit C, we generate a functional key of C and then obfuscate the FE
decryption algorithm with the functional key hardwired inside it. Addi-
tionally, we give out the master secret key in the clear along with this
obfuscated circuit. To evaluate on an input x, first encrypt this using
the master secret key and feed this ciphertext to the obfuscated circuit,
which evaluates the decryption algorithm to produce the output. This
approach leads to the following issues: (i) firstly, revealing the output of
the FE decryption could affect the correctness of iO: for instance, the
obfuscated circuit could output ⊥ for all inputs on which the FE de-
cryption outputs 1, (ii) since the evaluator has the master secret key, he
could feed in maliciously generated FE ciphertexts into the obfuscated
circuit.
We solve (i) by using by masking the output of the circuit. Here, the
mask is supplied as input to the obfuscated circuit. We solve (ii) by us-
ing NIZKs with pre-processing, a tool used by Ananth et al. to construct
witness encryption combiners. This primitive can be based on one-way



functions.

Our Solution in a Nutshell: Summarizing, we take the following
approach to build compact FE starting from many iO candidates out of
which at least one of them is correct and secure.

1. First check if the candidates are approximately correct. If not, dis-
card the candidates.

2. Apply the new correctness amplification mechanism on all the re-
maining iO candidates.

3. Construct n 2-ary FE candidates from the n iO candidates obtained
from the previous step.

4. Then using an onion-based approach, obtain a 2-ary FE combiner
that only combines two candidates. This will lead to N = n2 − n
candidates.

5. Construct a compact FE scheme starting from the above N 2-ary
FE candidates and an n-party MPC protocol with OT preprocessing
phase. Essentially every (i, j)th 2-ary FE candidate implements a
channel between ith and jth party.

We expand on the above high level approach in the relevant technical
sections.

3 Preliminaries

Let λ be the security parameter. For a distribution D we denote by

x
$←− an element chosen from D uniformly at random. We denote that{
D1,λ

}
≈c,µ

{
D2,λ

}
, if for every PPT distinguisher A,

∣∣∣∣Pr
[
A(1λ, x

$←−

D1,λ) = 1
]
− Pr

[
A(1λ, x

$←− D2,λ) = 1
]∣∣∣∣ ≤ µ(λ) where µ is a negligible

function. For a language L associated with a relation R with denote by
(x,w) ∈ R an instance x ∈ L with a valid witness w. For an integer n ∈ N
we denote by [n] the set {1, . . . , n}. By negl we denote a negligible func-
tion. We assume that the reader is familiar with the concepts of one-way
functions, pseudorandom functions, functional encryption, NIWI, statis-
tically binding commitments and in particular sub-exponential security
of these primitives. We say that the one-way function is sub-exponentially
secure if no polynomial time adversary inverts a random image with a
probability greater than inverse sub-exponential in the length of the in-
put. We refer the reader to full version for the definitions of these prim-
itives.

Important Notation. We introduce some notation that will be use-
ful throughout this work. Consider an algorithm A. We define the time
function of A to be T if the runtime of A(x) ≤ T (|x|). We are only in-
terested in time functions which satisfy the property that T (poly(n)) =
|poly(T (n))|. In this section, we describe NIZK with Pre-Processing.



3.1 NIZK with Pre-Processing

We consider a specific type of zero knowledge proof system where the
messages exchanged is independent of the input instance till the last
round. We call this zero knowledge proof system with pre-processing. The
pre-processing algorithm essentially simulates the interaction between
the prover and the verifier till the last round and outputs views of the
prover and the verifier.

Definition 1. Let L be a language with relation R. A scheme PZK =
(PZK.Pre,PZK.Prove,PZK.Verify) of PPT algorithms is a zero knowledge
proof system with pre-processing, PZK, between a verifier and a prover
if they satisfy the following properties. Let (σV , σP )← PZK.Pre(1λ) be a
preprocessing stage where the prover and the verifier interact. Then:
1. Completeness: for every (x,w) ∈ R we have that:

Pr [PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] = 1.

where the probability is over the internal randomness of all the PZK
algorithms.

2. Soundness: for every x /∈ L we have that:

Pr[∃π : PZK.Verify(σV , x, π) = 1] < 2−n

where the probability is only over PZK.Pre.
3. Zero-Knowledge: there exists a PPT algorithm S such that for any

x,w where V (x,w) = 1 there exists a negligible function µ such that
it holds that:

{σV ,PZK.Prove(σP , x, w)} ≈c,µ {S(x)}

We say that PZK is sub-exponentially secure if µ(λ) = O(2−λ
c

) for
a constant c > 0.

Such schemes were studied in [22,41] where they proposed constructions
based on one-way functions. Sub-exponentially secure PZK can be built
from sub-exponentially secure one-way functions.

4 Definitions: IO Combiner

We recall the definition of IO combiners from [1]. Suppose we have many
indistinguishability obfuscation (IO) schemes, also referred to as IO can-
didates. We are additionally guaranteed that one of the candidates is
secure. No guarantee is placed on the rest of the candidates and they
could all be potentially broken. Indistinguishability obfuscation combin-
ers provides a mechanism of combining all these candidates into a single
monolithic IO scheme that is secure. We emphasize that the only guar-
antee we are provided is that one of the candidates is secure and in
particular, it is unknown exactly which of the candidates is secure.
We formally define IO combiners next. We start by providing the syntax
of an obfuscation scheme. We then present the definitions of an IO can-
didate and a secure IO candidate. To construct IO combiner, we need
to also consider functional encryption candidates. Once we give these
definitions, we present our construction in Section 5.2.



Syntax of Obfuscation Scheme. An obfuscation scheme associated to
a class of circuits C = {Cλ}λ∈N with input space Xλ and output space
Yλ consists of two PPT algorithms (Obf,Eval) defined below.

– Obfuscate, C ← Obf(1λ, C): It takes as input security parameter
λ, a circuit C ∈ Cλ and outputs an obfuscation of C, C.

– Evaluation, y ← Eval
(
C, x

)
: This is usually a deterministic algo-

rithm. But sometimes we will treat it as a randomized algorithm. It
takes as input an obfuscation C, input x ∈ Xλ and outputs y ∈ Yλ.

Throughout this work, we will only be concerned with uniform Obf al-
gorithms. That is, Obf and Eval are represented as Turing machines (or
equivalently uniform circuits).
We require that each candidate satisfy the following property called poly-
nomial slowdown.

Definition 2 (Polynomial Slowdown.). An obfuscation scheme Π =
(Obf,Eval) is an IO candidate for a class of circuits C = {Cλ}λ∈N, with
every C ∈ Cλ has size poly(λ), if it satisfies the following property:
Polynomial Slowdown: For every C ∈ Cλ, we have the running time
of Obf on input (1λ, C) to be poly(|C|, λ). Similarly, we have the running
time of Eval on input (C, x) for x ∈ Xλ is poly(|C|, λ).

We now define various notions of correctness.

Definition 3 (Almost/ Perfect Correct IO candidate). An obfus-
cation scheme Π = (Obf,Eval) is an almost correct IO candidate for a
class of circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it
satisfies the following property:

– Almost Correctness: For every C : Xλ → Yλ ∈ Cλ, x ∈ Xλ it
holds that:

Pr
[
∀x ∈ Xλ,Eval

(
Obf(1λ, C), x

)
= C(x)

]
≥ 1− negl,

over the random coins of Obf. The candidate is called a correct IO
candidate if this probability is 1.

Definition 4 (α−worst-case Correctness). An obfuscation scheme
Π = (Obf,Eval) is α−worst-case correct IO candidate for a class of
circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size poly(λ), if it satisfies
the following property:

– α−worst-case Correctness: For every C : Xλ → {0, 1} ∈ Cλ, x ∈
Xλ it holds that:

Pr
[
Eval

(
Obf(1λ, C), x

)
= C(x)

]
≥ α,

over the random coins of Obf and Eval. The candidate is correct if
this probability is 1.

Remark 1. Given any α−worst case correct IO candidate where α >
1/2 + 1/poly(λ), as observed by [12] we can gen an almost correct IO
candidate while retaining security via BPP amplification.



ε-Secure IO candidate. If any IO candidate additionally satisfies the
following (informal) security property then we define it to be a secure
IO candidate: for every pair of circuits C0 and C1 that are equivalent6

we have obfuscations of C0 and C1 to be indistinguishable by any PPT
adversary.

Definition 5 (ε-Secure IO candidate). An obfuscation scheme Π = (
Obf,Eval) for a class of circuits C = {Cλ}λ∈N is a ε-secure IO candidate
if it satisfies the following conditions:

– Security. For every PPT adversary A, for every sufficiently large
λ ∈ N, for every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ Xλ
and |C0| = |C1|, we have:∣∣∣Pr

[
0← A

(
Obf(1λ, C0), C0, C1

)]
−Pr

[
0← A

(
Obf(1λ, C1), C0, C1

)]∣∣∣ ≤ ε(λ)

Remark 2. We say that Π is a secure IO candidate if it is a ε-secure IO
candidate with ε(λ) = negl(λ), for some negligible function negl.

We remarked earlier that the identity function is an IO candidate. How-
ever, note that the identity function is not a secure IO candidate. When-
ever we refer an IO candidate we will specify the correctness and the
security notion it satisfies. For example [4,34,25] are examples of negl-
secure correct IO candidate. In particular, an IO candidate need not
necessarily have any security/correctness property associated with it.
We have the necessary ingredients to define an IO combiner.

4.1 Definition of IO Combiner

We present the formal definition of IO combiner below. First, we provide
the syntax of the IO combiner. Later we present the properties associated
with an IO combiner.
There are two PPT algorithms associated with an IO combiner, namely,
CombObf and CombEval. Procedure CombObf takes as input circuit C
along with the description of multiple correct IO candidates7 and outputs
an obfuscation of C. Procedure CombEval takes as input the obfuscated
circuit, input x, the description of the candidates and outputs the eval-
uation of the obfuscated circuit on input x.

Syntax of IO Combiner. We define an IO combinerΠcomb = (CombObf,CombEval)
for a class of circuits C = {Cλ}λ∈N.

– Combiner of Obfuscate algorithms, C ← CombObf(1λ, C,Π1, . . . , Πn):
It takes as input security parameter λ, a circuit C ∈ C, description
of correct IO candidates {Πi}i∈[n] and outputs an obfuscated circuit
C.

6 Two circuits C0 and C1 are equivalent if they (a) have the same size, (b) have the
same input domain and, (c) for every x in the input domain, C0(x) = C1(x).

7 The description of an IO candidate includes the description of the obfuscation and
the evaluation algorithms.



– Combiner of Evaluation algorithms, y ← CombEval(C, x,Π1, . . . , Πn):
It takes as input obfuscated circuit C, input x, descriptions of IO
candidates {Πi}i∈[n] and outputs y.

We define the properties associated to any IO combiner. There are three
main properties – correctness, polynomial slowdown, and security. The
correctness and the polynomial slowdown properties are defined on the
same lines as the corresponding properties of the IO candidates.
The intuitive security notion of IO combiner says the following: sup-
pose one of the candidates is a secure IO candidate then the output of
obfuscator (CombObf) of the IO combiner on C0 is computationally in-
distinguishable from the output of the obfuscator on C1, where C0 and
C1 are equivalent circuits.

Definition 6 ((ε′, ε)-secure IO combiner). Consider a circuit class
C = {Cλ}λ∈N. We say that Πcomb = (CombObf,CombEval) is a (ε′, ε)-
secure IO combiner if the following conditions are satisfied: Let Π1, . . . , Πn

be n correct IO candidates for P/poly, and ε is a function of ε′.

– Correctness. Let C ∈ Cλ∈N and x ∈ Xλ. Consider the following pro-
cess: (a) C ← CombObf(1λ, C,Π1, . . . , Πn), (b) y ← CombEval(C, x,
Π1, . . . , Πn).
Then with overwhelming probability over randomness of CombObf,

Pr[y = C(x)] ≥ 1, where the probability is over x
$←− Xλ .

– Polynomial Slowdown. For every C : Xλ → Yλ ∈ Cλ, we have the
running time of CombObf on input (1λ, C,Π1, . . . , Πn) to be at most
poly(|C|+ n+ λ). Similarly, we have the running time of CombEval
on input (C, x,Π1, . . . , Πn) to be at most poly(|C|+ n+ λ).

– Security. Let Πi be ε-secure correct IO candidate for some i ∈ [n].
For every PPT adversary A, for every sufficiently large λ ∈ N, for
every C0, C1 ∈ Cλ with C0(x) = C1(x) for every x ∈ Xλ and |C0| =
|C1|, we have:∣∣∣Pr

[
0← A

(
C0, C0, C1, Π1, . . . , Πn

)]
− Pr

[
0← A

(
C1, C0, C1, Π1, . . . , Πn

)]∣∣∣
≤ ε′(λ),

where Cb ← CombObf(1λ, Cb, Π1, . . . , Πn) for b ∈ {0, 1}.

Some remarks are in order.

Remark 3. We say that Πcomb is an IO combiner if it is a (ε′, ε)-secure
IO combiner, where, (c) ε′ = negl′ and, (d) ε = negl with negl and negl′

being negligible functions.

Remark 4. We alternatively call the IO combiner defined in Definition 6
to be a 1-out-n IO combiner. In our construction we make use of 1-out-2
IO combiner. This can be instantiated using a folklore “onion combiner”
in which to obfuscate any given circuit one uses both the obfuscation
algorithms to obfuscate the circuit one after the other in a nested fashion.



Remark 5. We also define robust combiner, where the syntax is the same
as above except that security and correctness properties hold even if there
is only one input candidate that is secure and correct. No restriction
about correctness and security is placed on other candidates.

As seen in [1], a robust combiner for arbitrary many candidates imply
universal obfuscation as defined below.

Definition 7 ((T, ε)-Universal Obfuscation). We say that a pair of
Turing machines Πuniv = (Πuniv.Obf, Πuniv.Eval) is a universal obfus-
cation, parameterized by T and ε, if there exists a correct ε-secure indis-
tinguishability obfuscator for P/poly with time function T then Πuniv is
an indistinguishability obfuscator for P/poly with time function poly(T ).

4.2 Definition of 2-ary Functional Encryption Candidate

We now define 2-ary (public-key) functional encryption candidates, also
referred to as MIFE candidates). We start by providing the syntax of a
MIFE scheme.

Syntax of 2-ary Functional Encryption Scheme. A MIFE scheme as-
sociated to a class of circuits C = {Cλ}λ∈N consists of four polynomial
time algorithms (Setup,Enc,KeyGen,Dec) defined below. Let Xλ be the
message space of the scheme and Yλ be the space of outputs for the
scheme (same as the output space of Cλ).

– Setup, (EK1,EK2,MSK)← Setup(1λ): It is a randomized algorithm
takes as input security parameter λ and outputs a keys (EK1,EK2,MSK).
Here EK1 and EK2 are encryption keys for indices 1 and 2 and MSK
is the master secret key.

– Encryption, CT← Enc(EKi,m): It is a randomized algorithm takes
the encryption key EKi for any index i ∈ [2] and a message m ∈ Xλ
and outputs an encryption of m (encrypted under EKi).

– Key Generation, skC ← KeyGen (MSK, C): This is a randomized
algorithm that takes as input the master secret key MSK and a 2-
input circuit C ∈ Cλ and outputs a function key skC .

– Decryption, y ← Dec (skC ,CT1,CT2): This is a deterministic algo-
rithm that takes as input the function secret key skC and a cipher-
texts CT1 and CT2 (encrypted under EK1 and EK2 respectively).
Then it outputs a value y ∈ Yλ.

Throughout this work, we will only be concerned with uniform algo-
rithms. That is, (Setup,Enc,KeyGen,Dec) are represented as Turing ma-
chines (or equivalently uniform circuits).
We define the notion of an MIFE candidate below. The following def-
inition of multi-input functional encryption scheme incorporates only
the correctness and compactness properties of a multi-input functional
encryption scheme [32]. In particular, an MIFE candidate need not nec-
essarily have any security property associated with it. Formally,



Definition 8 (Correct MIFE candidate). A multi-input functional
encryption scheme MIFE = (Setup,Enc,KeyGen,Dec) is a correct MIFE
candidate for a class of circuits C = {Cλ}λ∈N, with every C ∈ Cλ has size
poly(λ), if it satisfies the following properties:

– Correctness: For every C : Xλ×Xλ → {0, 1} ∈ Cλ,m1,m2 ∈ Xλ it
holds that:

Pr


(EK1,EK2,MSK)← Setup(1λ)
CTi ← Enc(EKi,mi) i ∈ [2]
skC ← KeyGen(MSK, C)

C(m1,m2)← Dec(skC ,CT1,CT2)

 ≥ 1− negl(λ)

, where negl is a negligible function and the probability is taken over
the coins of the setup only.

– Compactness: Let (EK1,EK2,MSK) ← Setup(1λ), for every m ∈
Xλ and i ∈ [2], CT← Enc(EKim). We require that |CT| < poly(|m|, λ).

A scheme is an MIFE candidate if it only satisfies the correctness and
compactness property.

Selective Security. We recall indistinguishability-based selective secu-
rity for MIFE. This security notion is modeled as a game between a
challenger C and an adversary A where the adversary can request for
functional keys and ciphertexts from C. Specifically, A can submit 2-
ary function queries f and respond with the corresponding functional
keys. It submits message queries of the form (m0

1,m
0
2) and (m1

1,m
1
2) and

receive encryptions of messages mb
i for i ∈ [2], and for some random

bit b ∈ {0, 1}. The adversary A wins the game if she can guess b with
probability significantly more than 1/2 if the following properties are
satisfied:

– f(m0
1, ·) is functionally equivalent to f(m1

1, ·).
– f(·,m0

2) is functionally equivalent to f(·,m1
2)

– f(m0
1,m

0
2) = f(m1

1,m
1
2)

Formal definition is presented next.

ε-Secure MIFE candidate. If any MIFE candidate additionally satisfies
the following (informal) security property then we define it to be a secure
MIFE candidate:

Definition 9 (ε-Secure MIFE candidate). A scheme MIFE for a
class of circuits C = {Cλ}λ∈N and message space Xλ is a ε-secure FE
candidate if it satisfies the following conditions:

– MIFE is a correct and compact MIFE candidate with respect to C,
– Security. For every PPT adversary A, for every sufficiently large
λ ∈ N, we have:∣∣∣Pr

[
0← ExptMIFE

A

(
1λ, 0

)]
− Pr

[
0← ExptMIFE

A

(
1λ, 1

)]∣∣∣ ≤ ε(λ)

where the probability is taken over coins of all algorithms. For each b ∈ B
and λ ∈ N, the experiment ExptMIFE

A (1λ, b) is defined below:
1. Challenge message queries: A outputs (m0

1,m
0
2) and (m0

1,m
0
2)

where each mi
j ∈ Xλ



2. The challenger computes Setup(1λ)→ (EK1,EK2,MSK). It then com-
putes CT1 ← Enc(EK1,m

b
1) and CT2 ← Enc(EK1,m

b
2). Challenger

hands CT1,CT2 to the adversary.
3. A submits functions fi to the challenger satisfying the constraint

given below.
– fi(m

0
1, ·) is functionally equivalent to fi(m

1
1, ·).

– fi(·,m0
2) is functionally equivalent to fi(·,m1

2)
– fi(m

0
1,m

0
2) = fi(m

1
1,m

1
2)

For every i, the adversary gets skfi ← KeyGen(MSK, fi).
4. Adversary submits the guess b′. The output of the game is b′.

Remark 6. We say that MIFE is a secure MIFE candidate if it is a ε-
secure FE candidate with ε(λ) = negl(λ), for some negligible function
negl.

5 Construction of IO Combiner

In this section we describe our construction for IO combiner. We first
define an MPC framework that will be used in our construction.

5.1 MPC Framework

We consider an MPC framework in the pre-processing model described
below. Intuitively the input is pre-processed and split amongst n deter-
ministic parties which are also given some correlated randomness. Then,
they run a protocol together to compute f(x) for any function f of the
input x. The syntax consists of the following algorithms:

– Preproc(1λ, n, x) → (x1, corr1, .., xn, corrn): This algorithm takes as
input x ∈ Xλ, the number of parties computing the protocol n, and
the security parameter λ. It outputs strings xi, corri for i ∈ [n]. Each
corri = corri(r) is represented both a function and a value depending
on the context. (x1, .., xn) forms a secret sharing of x.

– Eval(Party1(x1, corr1), ..,Partyn(xn, corrn), f) → f(x): The evaluate
algorithm is a protocol run by n parties with Partyi having input
xi, corri. Each Partyi is deterministic. The algorithm also takes as
input the function f ∈ Cλ of size bounded by poly(λ) and it outputs
f(x).

We now list the notations used for the protocol.
1. The number of rounds in the protocol is given by a polynomial

tf (λ, n, |x|).
2. For every i ∈ [n], corri = {corri,j}j 6=i. Let lenf = lenf (λ, n) denote a

polynomial. Then, for each i, j ∈ [n] such that i 6= j, corri,j and corrj,i

are generated as follows. Sample ri,j
$←− {0, 1}lenf then compute

corri,j = corri,j(ri,j) and corrj,i = corrj,i(ri,j).
3. There exists an efficiently computable function φf that takes as input

a round number k ∈ [tf ] and outputs φf (k) = (i, j). Here, (i, j)
represents that the sender of the message at kth round is Partyi and
the recipient is Partyj .

4. The efficiently computable next message function for every round
k ∈ [tf ], Mk does the following. Let φf (k) = (i, j). Then, Mk takes
as input (xi, y1, .., yk−1, corri,j) and outputs the next message as yk.



Correctness : We require the following correctness property to be sat-
isfied by the protocol. For every n, λ ∈ N, x ∈ Xλ, f ∈ Cλ it holds that:

Pr

[
(x1, corr1, .., xn, corrn)← Preproc(1λ, n, x)

Eval(Party1(x1, corr1), ...,Partyn(xn, corrn), f)→ f(x)

]
= 1

, Here the probability is taken over coins of the algorithm Preproc.

Security Requirement. We require the security against static corruption
of n − 1 semi-honest parties. Informally the security requirement is the
following. There exists a polynomial time algorithm that takes as input
f(x) and inputs of n − 1 corrupt parties {(corri, xi)}i 6=i∗ and simulates
the outgoing messages of Partyi∗ . Formally, consider a PPT adversary
A. Let the associated PPT simulator be Sim. We define the security
experiment below.

Exptreal,A(1λ)

– A on input 1λ outputs n, the circuit f and input x along with the
index of the honest party, i∗ ∈ [n].

– Secret share x into (x1, .., xn).
– Part of the pre-processing step is performed by the adversary. For

every i > j such that i∗ 6= i and i∗ 6= j, A samples ri,j
$←− {0, 1}lenf .

Then, it computes, corri,j = corri,j(ri,j) and corrj,i = corrj,i(ri,j).

– Sample rj
$←− {0, 1}lenf for j 6= i∗. Then compute corri∗,j = corri∗,j(rj)

and corrj,i∗ = corrj,i∗(rj). We denote corri = {corri,j}j 6=i. This com-
pletes the pre-processing step.

– Let y1, .., ytf be the messages computed by the parties in the pro-

tocol computing f(x). Output
(
{xi, corri}i6=i∗ , y1, .., ytf

)
. In MPC

literature ({xi, corri}i6=i∗ , y1, .., ytf ) is referred to the view of the ad-
versary in this experiment. We refer this as viewExptreal,A .

Exptideal,A(1λ)

– A on input 1λ outputs n, the circuit f and input x along with the
index of the honest party, i∗ ∈ [n].

– Secret share x into (x1, .., xn).
– Part of the pre-processing step is performed by the adversary. For

every i > j such that i∗ 6= i and i∗ 6= j, A samples ri,j
$←− {0, 1}lenf .

Then, it computes, corri,j = corri,j(ri,j) and corrj,i = corrj,i(ri,j).

– Sample rj
$←− {0, 1}lenf for j 6= i∗. Then compute corri∗,j = corri∗,j(rj)

and corrj,i∗ = corrj,i∗(rj). This completes the pre-processing step.
– Compute Sim

(
1λ, 1|f |, f(x), {xi, corri}i6=i∗

)
. Output the result. We

refer this as viewExptideal,A .
We require that the output of both the above experiments is computa-
tionally indistinguishable from each other. That is,

Definition 10 (Security). Consider a PPT adversary A and let the
associated PPT simulator be Sim. For every PPT distinguisher D, for



sufficiently large security parameter λ, it holds that:∣∣∣Pr
[
1← D

(
Exptreal,A(1λ)

)]
− Pr

[
1← D(Exptideal,A

(
1λ)
)]∣∣∣ ≤ negl(λ),

where negl is some negligible function.

Instantiation of MPC Framework: We show how to instantiate this
MPC framework. We use a 1-out-of-n (i.e., n − 1 of them are insecure)
information theoretically secure MPC protocol secure against passive ad-
versaries [31,39] in the OT hybrid model. We then replace the OT oracle
by preprocessing all the OTs [5] before the execution of the protocol
begins. Note that every OT pair is associated exactly with a pair of
parties.

5.2 Construction Roadmap

In this section, we describe the roadmap of our construction. We start
with n IO candidates, Π1, .., Πn and construct n2 − n IO candidates
Πi,j where i 6= j. Πi,j is constructed by using an onion obfuscation
combiner (one in which each obfuscation candidate is run sequentially
on the circuit). Each candidate Πi,j is now used to construct a 2-ary
public-key multi-input functional encryption scheme FEi,j candidates
using [32,9] (this step uses the existence of one-way function). This is
because [32] uses an existence of a public-key encryption, statistically
binding commitments and statistically sound non-interactive witness-
indistinguishable proofs. All these primitives can be constructed using
IO and one-way functions as shown in works such as [47,9]. These primi-
tives maintain binding/soundness as long as the underlying candidate is
correct.
Any candidate FEi,j is secure as long as either Πi or Πj is secure. This
follows from the security of onion obfuscation combiner. We describe
below how to construct a compact functional encryption FE from these
multi-input functional encryption candidates and MPC framework in
Section 5.3. Finally, using [2,11] and relying on complexity leveraging we
construct a secure IO candidate Πcomb from FE. Below is a flowchart
describing the roadmap.

5.3 Constructing compact FE from n2 −n FE candidates

Consider the circuit class C. We now present our construction for a
compact functional encryption scheme FE for C starting from compact
multi-input functional encryption candidates FEi,j for C. Let Γ be a
secure MPC protocol described in Section 5.1. Let λ be the security
parameter and F denote a pseudorandom function (PRF) where F :
{0, 1}λ × {0, 1}∗ → {0, 1}len(λ) where len is some large enough polyno-
mial. Finally let Com be a statistically binding commitment scheme.

FE.Setup(1λ) Informally, the setup algorithm samples encryption and
master secret keys for candidates FEi,j such that i 6= j and i, j ∈ [n].



1. Start with n IO candidates

2. Combine each candidate pair (i,j) to get n2 − n IO candidates

3. Construct 2-ary public-key multi-input functional encryption candidates FEi,j for every i 6= j

4. Construct compact functional encryption FE from all FEi,j candidates

5. Construct secure IO from compact functional encryption scheme

Using Onion Obfuscation

[32,9]

Using MPC Framework

[2,11]

These candidates act as a channel between candidate i and j. It also
samples NIWIi,j prover strings for these candidates to prove consistency
of the messages computed during the protocol.

1. Setting up MIFE candidates:

- For every i, j ∈ [n] and i 6= j run FEi,j .Setup(1λ)→ (EKi,j,1,EKi,j,2,
MSKi,j)

2. Sample NIWI prover strings

- Run NIWIi,j .Setup→ σi,j for i, j ∈ [n] and i 6= j. Recall, NIWIi,j
is a non-interactive statistically sound witness-indistinguishable
proof scheme (in the CRS model) constructed using IO candi-
date Πi,j and any one-way function as done in [9]8. This proof
scheme remains sound if the underlying obfuscation candidate is
correct/almost correct. The proof retains witness indistinguisha-
bility if the candidate is additionally secure.

- Output MPK = {EKi,j,1,EKi,j,2, σi,j}i,j∈[n],i 6=j and MSK = {MSK}i,j∈[n],i 6=j .

8 We note that we could have also used NIZKs with pre-processing based on one-way
functions. The construction becomes a little complicated with that.



FE.Enc(MPK,m) Informally, the encryption algorithm takes the message
m and runs preprocessing to get (m1, corr

′
1, ...,mn, corr

′
n). It discards corr′i

(which is allowed by our MPC framework). Then it samples PRF keys
Ki,j for i 6= j, which are used to generate randomness for next message
function (via computing corri for every decryption). It also commits these
message shares mi and PRF keys, which are used to compute proofs
about messages of the MPC protocol. Finally, these shares and PRF
keys are encrypted using an appropriate FE candidate.
1. MPC Preprocessing

- Run Preproc(1λ, n,m)→ (m1, corr
′
1, ..,mn, corr

′
n). Compute com-

mitments Zin,i = Com(mi) for all i ∈ [n]. Let rin,i be the corre-
sponding randomness.

2. Sample and commit PRF keys
- Sample PRF keys Ki,j for i, j ∈ [n] and i 6= j with the constraint

that Ki,j = Kj,i. Compute Zi,j = Com(Ki,j) for i, j ∈ [n] and
i 6= j. Let ri,j be the corresponding randomness.

- Sample PRF keys K
′
i,j for i, j ∈ [n] such that i 6= j.

3. Compute encryptions
- For every i, j ∈ [n] and i 6= j compute CTi,j = FEi,j .Enc(EKi,j,1,mi,

Ki,j ,K
′
i,j , {Zin,k, Zk,j}k,j∈[n],k 6=j , ri,j , rin,i,⊥). Here ⊥ is a slot of

size poly(λ), which is described later.
- Output CT = {CTi,j}i6=j

FE.KeyGen(MSK, C)

Let tC denote the number of rounds for the MPC protocol Γ for com-
puting the circuit C. Let lenmsg denote the maximum length of any
message sent in the protocol while computing C on input. Informally,
this algorithm generates FE keys for the circuits implementing next mes-
sage function (used to compute C(m)) for every round k ∈ [tC ].
1. Computing commitments

- Compute Zout,i ← Com(⊥lenmsg ) for i ∈ [tC ].
2. Compute secret-key encryptions

- Let E by a secret-key encryption scheme. Run E.Setup(1λ)→ sk.
For every i ∈ [tC ], compute ci = E.Enc(sk, 0). These encryptions
encrypt messages of sufficient length (described later).

3. Generate keys
- Sample a random tag ∈ {0, 1}λ.
- For every round k ∈ [tC ], let φ(k) = (i′, j′), generate a key
skC,k ← FEi′,j′ .KeyGen(MSKi′,j′ , Gk) where Gk is described in
Figure 1. Output {skC,k}k∈[tC ].

FE.Dec(skC ,CT)

1. Evaluating the MPC protocol for circuit C
- Let φ(1) = (i1, j1). Compute CT1 = FEi1,j1 .Enc(EKi1,j1,2,⊥,⊥).

Set (x1, π1) = FEi,j .Dec(skC,1,CTi1,j1 ,CT1).
- For every round k ∈ [tC ], compute xk, πk iteratively from x1, π1,
.., xk−1, πk−1 as described below.

a Compute φ(k) = (i, j). Then, compute CTk = FEi,j .Enc(EKi,j,2,
x1, π1, .., xk−1, πk−1).

b Run (xk, πk)← FEi,j .Dec(skC,k,CTi,j ,CTk)
- Output xtC



Gk
[
{σi,j}i,j∈[n].i 6=j , ck, {Zout,i}i∈[tC ], tag

]
Hardwired values: NIWI verifier strings {σi}i∈[n], Encryption ck, Commitments
{Zout,i}i∈[tC ], a random tag

Inputs 1: mi′ ,Ki′,j′ ,K
′
i′,j′ , {Zin,i, Zi,j}i,j∈[n],i 6=j , ri′,j′ , rin,i′ , s

Inputs 2: x1, π1, ..., xk−1, πk−1

– Initialise counter = 0. For every counter ≤ k − 1 do the following:
– Check to see if (x1, .., xk−1) are according to the MPC protocol

- φ(counter) = (i, j). Check that NIWIi,j .Verify(σi,j , x1, .., xcounter, πcounter) = 1
for the language Li described below.

- Output ⊥ if any check fails.
– Trapdoor condition, output hardwiring . If s 6= ⊥ output E.Dec(s, ck).
– Compute the next message and the proof of consistency

- Let φ(k) = (i′, j′). Compute corri′,j′ = corri′,j′(F (Ki′,j′ , tag)). Compute
xk = Mk(mi′ , x1, .., xk−1, corri′,j′).

- Compute a NIWIi′,j′ proof πk using the reference string σi′,j′ and ran-

domness F (K
′

i′,j′ , x1, .., xk−1, xk) that the statement (x1, .., xk) ∈ Li′

(language defined below). This proof is computed using the witness as
mi′ ,Ki′,j′ , ri′,j′ , rin,i′ , 0 where φ(k) = (i′, j′).

– Output (xk, πk)

Language Li: An NP language Li is defined by the relation as defined below:
Instance: x1, .., xk where k ∈ [tC ]
Witness: mi,Ki,j , ri,j , rin,i, rk
Hardwired: {Zi,j}j 6=i, tag, Zin,i, Zout,k

– Check φ(k) = (i, j) for some j. If not, output 0.
– Let corri,j = corri,j(F (Ki,j , tag)). Check that either, xk =
Mk(mi, x1, .., xk−1, corri,j), Zi,j = Com(Ki,j ; ri,j) and Zin,i = Com(mi; rin,i). Or,

– Zout,k = Com(yk; rk), where yk 6= ⊥ and yk = xk. If the check passes output 1
otherwise 0.

Fig. 1: Circuit Gk

Correctness: If the underlying MPC protocol is correct and the multi-
input functional encryption candidates FEi,j are correct then one can
inspect that our scheme satisfies correctness.

Compactness. Compactness is discussed next. The cipher-text encrypt-
ing any message m, consists of FEi,j encryptions CTi,j for any i, j ∈ [n]

such that i 6= j. Each CTi,j encryptsmi,Ki,j ,K
′
i,j , {Zin,k, Zk,j}k,j∈[n],k 6=j ,

ri,j , rin,i,⊥. Note that mi is of the same length of the message where as

Ki,j ,K
′
i,j are just the PRF keys that are of length λ. {Zin,k, Zk,j}k,j∈[n],k 6=j

are commitments of mi and the PRF keys respectively while ri,j and rin,i
is the randomness used for the commitments Zi,j and Zin,i. ⊥ is a slot of
size poly(λ) (which is the length of the decryption key for scheme E). All
these strings are of a fixed polynomial size (polynomial in n, λ, |m|). If



the underlying scheme FEi,j is compact, the scheme FE is also compact.
We give a brief sketch of proof here. We refer the reader to our full version
for a detailed proof.

Theorem 4. Consider the circuit class C = P/poly. Assuming Γ is
a secure MPC protocol for C according to the framework described in
Section 5.1 and one-way functions exist, then scheme FE is a secure
functional encryption scheme as long as there is i∗ ∈ [n] such that Πi∗

is a secure candidate.

Proof (Sketch). We now sketch the security proof of this theorem. As-
sume Πi∗ is a secure IO candidate. This implies FEi∗,j and FEj,i∗ is
secure for any j 6= i∗. We use this crucially in our proofs. We employ
the standard hybrid argument to prove the theorem. In the first hybrid

(Hyb1), the message Mb is encrypted honestly with b
$←− {0, 1}. In the

final hybrid (Hyb9), the ciphertext contains no information about b. At
this point, the probability of guessing the bit b is exactly 1/2. By arguing
indistinguishability of every consecutive intermediate hybrids, we show
that the probability of guessing b in the first hybrid is negligibly close to
1/2 (or the advantage is 0), which proves the theorem.
The first hybrid corresponds to the regular FE security game. Then we
switch to a hybrid where the secret-key encryption cipher-text ci in the
function keys for all rounds i ∈ [tC ] are hard-wired as encryptions of
the output of the MIFE decryption in those rounds. This can be done,
because the cipher-text and the function key fixes these outputs (as a
function of PRF keys, e.t.c). Then, we change the commitments Zout,k to
commtiments of message output in round k (for k such that the i∗ is the
receiving or sending party in that round). This security holds due to the
security of the commitment. In the next hybrid, we rely on the security
of the scheme FEi∗,j and FEj,i∗ by generating encryptions that does not
contain the PRF keys and the openings of the commitments but only
contain the secret key for the encryption scheme E. Now we invoke the
security of the PRF to generate proofs πk hard-wired in ck for any round
k (for k such that the i∗ is the receiving or sending party in that round)
randomly. Next, we rely on the security of NIWIi∗,j and NIWIj,i∗ to use
the opening of Zout,k (for k such that the i∗ is the receiving or sending
party in that round) to generate the proofs. Now relying on the secu-
rity of commitment scheme, we make the commitments Zi∗,j , Zj,i∗ and
Zin,i∗ to commit to ⊥. Then we use the security of the PRF to generate
corri∗,j and corrj,i∗ (used for generating outputs xn) randomly. Finally,
we invoke the security of the MPC framework (by using the simulator)
to make the game independent of b.

5.4 Summing Up: Combiner Construction

We now give the combiner construction:
– CombObf(1λ, C,Π1, .., Πn) : Use Π1, .., Πn and any one-way func-

tion to construct a compact functional encryption FE as in Sec-
tion 5.2. Use [2,11] to construct an obfuscator Πcomb. Output C ←
Πcomb(1

λ, C).



– CombEval(C, x) : Output Πcomb.Eval(C, x).

Correctness of the scheme is straight-forward to see because of the cor-
rectness of FE as shown in Section 5.2. The security follows from the
sub-exponential security of construction in Section 5.2. The construc-
tion in Section 5.2 is sub-exponentially secure as long as the underlying
primitives are sub-exponentially secure.

We now state the theorem.

Theorem 5. Assuming sub-exponentially secure one-way functions, the
construction described above is a (negl, 2−λ

c

)−secure IO combiner for
P/poly where c > 0 is a constant and negl is some negligible function.

6 From Combiner to Robust Combiner

The combiner described in section 5.2, is not robust. It guarantees no se-
curity/correctness if the underlying candidates are not correct. A robust
combiner provides security/correctness as long as there exists one candi-
date Πi∗ such that it is secure and correct. There is no other restriction
placed on the other set of candidates. A robust combiner for arbitrary
many candidates imply universal obfuscation [1].
In this section we describe how to construct a robust combiner. The idea
is the following.

- We correct the candidates (upto overwhelming probability) before
feeding it as input to the combiner.

- First, we leverage the fact that secure candidate is correct. We trans-
form each candidate so that all candidates are (1− 1/λ)−worst case
correct while maintaining security of the secure candidate.

- Then using [12] we convert a worst-case correct candidate to an
almost correct candidate.

In the discussion below, we assume C consists polynomial size circuits
with one bit output. One can construct obfuscator for circuits with mul-
tiple output bits from obfuscator with one output bit. For simplicity let
us assume that Cλ consists of circuits with input length p(λ) for some
polynomial p.

6.1 Generalised Secure Function Evaluation

The starting point to get a worst-case correct IO candidate is a variant
of “Secure Function Evaluation” (SFE) scheme as considered in [12].
They use SFE to achieve worst-case correctness by obfuscating evaluation
function of SFE for the desired circuit C. To evaluate on input x, the
evaluator first encodes x according to the SFE scheme and feeds it as an
input to the obfuscated program. Then, it finally decodes the result as the
output of the obfuscated program. Worst case correctness is guaranteed
because using the information hard-wired in the obfuscated program its
hard to distinguish an encoding of any input x1 from that of x2.
We essentially use the same idea except that we consider a variant of
SFE with a setup algorithm (which produces secret parameters), and



the evaluation function for the circuit C is not public. It requires some
helper information to perform evaluation on the input encodings.

We consider a generalised variant of secure function evaluation [12] with
the following properties. Let Cλ be the allowed set of circuits. Let Xλ
and Yλ denote the ensemble of inputs and outputs. A secure function
evaluation scheme consists of the following algorithms:

– Setup(1λ) : On Input 1λ, the setup algorithm outputs secret param-
eters SP.

– CEncode(SP, C) : The randomized circuit encoding algorithm on in-
put a circuit C ∈ Cλ and SP outputs another C̃ ∈ Cλ.

– InpEncode(SP, x) : The randomized input encoding algorithm on in-
put x ∈ Xλ and SP outputs (x̃, z) ∈ Xλ ×Zλ.

– Decode(y, z) : Let y = C̃(x̃). The deterministic decoding algorithm
takes as input y and z to recover C(x) ∈ Yλ.

We require the following properties:

Input Secrecy: For any x1, x2 ∈ Xλ, any circuit C ∈ Cλ and SP ←
Setup(1λ), it holds that:

{CEncode(SP, C), InpEncode(SP, x1)} ≈c

{CEncode(SP, C), InpEncode(SP, x2)}

Correctness: For any circuit C ∈ Cλ and any input x, it holds that:

Pr[Decode(C̃(x̃), z) = C(x)] = 1

Where SP← Setup(1λ), C̃ ← CEncode(SP, C), (x̃, z)← InpEncode(SP, x)
and the probability is taken over coins of all the algorithms.

Functionality: For any equivalent circuits C0, C1, SP ← Setup(1λ),
C̃0 ← CEncode(SP, C0) and C̃1 ← CEncode(SP, C1), it holds that C̃0 is
equivalent to C̃1 with overwhelming probability over the coins of setup
and the circuit encoding algorithm. This captures the behaviour of the
circuit encodings when evaluated on maliciously generated input encod-
ings.

6.2 Modified Obfuscation Candidate

In this section we achieve the following. Given any candidate Π, we
transform it to a candidate Π ′ such that the following holds:

- If Π is both secure and correct, then so is Π ′.

- Otherwise Π ′ is guaranteed to be (1− 1/λ)−worst-case correct.

In either case, we can amplify its correctness to get an almost correct
IO candidate, which can be used by our combiner construction. Given
any IO candidate Π we now describe a modified IO candidate Π ′. For
simplicity let us assume that Cλ consists of circuits with one bit output
and input space Xλ corresponds to the set {0, 1}p(λ) for some polynomial
p. Let SFE be a secure function evaluation scheme as described in Section
6.1 for Cλ with Zλ = Yλ = {0, 1}.



– Obfuscate: On input the security parameter 1λ and C ∈ Cλ, first
run SP ← SFE.Setup(1λ), compute C̃ ← CEncode(SP, C). We now
define an algorithm Obfint,Π that takes as input C̃ and 1λ and does
the following:

- Compute C ← Π.Obf(1λ, C̃).
- Then sample randomly x1, .., xλ2 ∈ {0, 1}p(λ). Compute (x̃i, zi)←
InpEncode(SP, xi). Check that Π.Eval(C, x̃i) = C̃(x̃i) for all
i ∈ [λ2].

- If the check passes output C, otherwise output C̃ 9.
Output of the obfuscate algorithm is (SP,Obfint,Π(C̃)).

– Evaluate: On input (SP, C) and an input x, first compute (x̃, z)←
InpEncode(SP, x). Then compute ỹ ← Π.Eval(C, x̃) or ỹ ← C(x̃)
depending on the case if C = C̃ or not. We define as an intermediate
evaluate algorithm, i.e. ỹ = Evalint,Π(C, x̃).
Output y = SFE.Decode(ỹ, z).

Few claims are in order:

Theorem 6. Assuming SFE is a secure function evaluation scheme as
described in section 6.1, if Π is a secure and correct candidate, then so
is, Π ′.

Proof. We deal with this one by one. First we argue security. Note
that when Π is correct, the check at λ2 random points passes. In this
case the obfuscation algorithm always outputs (SP, Π.Obf(1λ, C̃b)) where
C̃b ← SFE.CEncode(SP, Cb) for b ∈ {0, 1} and SP ← SFE.Setup(1λ).
Since, C̃0 is equivalent to C̃1 due to functionality property of the SFE
scheme, the security holds due to the security of Π.

The correctness holds due to the correctness of SFE and Π.

Theorem 7. Assuming SFE is a secure function evaluation scheme as
described in section 6.1, if Π is an IO candidate, then Π ′ is (1 − 2/λ)-
worst case correct IO candidate.

Proof. The check step in the obfuscate algorithm ensures the following:
Using Chernoff bound it follows that, with overwhelming probability, for
any circuit C,

Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C)← Π ′.Obf(1λ, C), x
$←− Up(λ)] ≥ (1− 1/λ)

(1)

We now prove that for any x1, x2 it holds that, with overwhelming prob-
ability over coins of obfuscate algorithm, for any circuit C,

|Pr[Π ′.Eval(SP, C, x1) = C(x1)|(SP, C)← Π ′.Obf(1λ, C)]−

Pr[Π ′.Eval(SP, C, x2) = C(x2)|(SP, C)← Π ′.Obf(1λ, C)]| ≤ negl(λ)

(2)

9 This step ensures circuit-specific correctness. Note that any correct candidate will
always pass the step. Any candidate that is not correct with high enough probability
will not pass the check. In this case, the algorithm outputs the circuit in the clear.



This is because for any input x,

Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C)← Π ′.Obf(1λ, C)] =

Pr[Evalint,Π(C, x̃) = C̃(x̃)|SP← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃, z)← InpEncode(SP, x),C ← Obfint,Π(1λ, C̃)]

(3)

Note that due to the input secrecy property of the SFE scheme we have
that,

|Pr[Evalint,Π(C, x̃1) = C̃(x̃1)|SP← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃1, z1)← InpEncode(SP, x1), C ← Obfint,Π(1λ, C̃)]−

Pr[Evalint,Π(C, x̃2) = C̃(x̃2)|SP← Setup(1λ), C̃ ← CEncode(SP, C),

(x̃2, z2)← InpEncode(SP, x2), C ← Obfint,Π(1λ, C̃)]| < negl(λ)

(4)

for a negligible function negl. Otherwise we can build a reduction R that
given any circuit-encoding, input encoding pair C̃, x̃b decides if b = 0
or b = 1 with a non-negligible probability. The reduction just computes
C ← Obfint,Π(C̃) and checks if Evalint,Π(C, x̃b) = C̃(x̃b).

Using the pigeon-hole principle and Equation 1, for any C ∈ Cλ there
exists x∗ such that,

|Pr[Π ′.Eval(SP, C, x∗) = C(x∗)|(SP, C)← Π ′.Obf(1λ, C)] ≥ (1− 1/λ)
(5)

Now substituting x1 = x and x2 = x∗ in Equation 4 and then plugging
into Equation 3 gives us,

|Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C)← Π ′.Obf(1λ, C)]−

Pr[Π ′.Eval(SP, C, x∗) = C(x∗)|(SP, C)← Π ′.Obf(1λ, C)]| ≤ negl(λ)

(6)

Substituting result of Equation 5 gives us the desired result. That is, For
any circuit C and input x, it holds that,

|Pr[Π ′.Eval(SP, C, x) = C(x)|(SP, C)← Π ′.Obf(1λ, C)] ≥(1− 1/λ)− negl(λ)

>(1− 2/λ)

(7)

This proves the result.

6.3 Instantiation of SFE

To instantiate SFE as described in Section 6.1, we use any single-key
functional encryption scheme. To compute the circuit encoding for any
circuit C we compute a function key for a circuit that has hard-wired a
function key skHC for a circuit HC that takes as input (x, b) and outputs



C(x) ⊕ b. This circuit uses the hard-wired function key to decrypt the
input. To encode the input x, we just compute an FE encryption of
(x, b). But this does not suffice, because then for any equivalent circuits
C0 and C1, the circuit encodings are not equivalent. Hence, we use a
one-time zero-knowledge proof system to prove that the cipher-text is
consistent. The details follow next. Our decoding/evaluation operation
is not randomized in contrast to [12], hence this allows us to directly
argue security with polynomial loss, instead of going input by input.

Theorem 8. Assuming (non-compact) public-key functional encryption
scheme for a single function key query exists, there exists an SFE accord-
ing to the definition in Section 6.1.

Proof. Let FE denote any public-key functional encryption scheme for
a single function key. Let PZK denote a non-interactive zero knowledge
proof system with pre-processing. We now describe the scheme.

– Setup(1λ): The setup takes as input the security parameter 1λ. It first
runs (MPK,MSK) ← FE.Setup(1λ) and PZK.Pre(1λ) → (σP , σV ).
Output SP = (MPK,MSK, σP , σV ).

– CEncode(SP, C): The algorithm on input (SP, C) does the following.

- Compute skHC ← FE.KeyGen(MSK, HC). HC represents a cir-
cuit that on input (x, b) outputs C(x)⊕ b.

- Let H be the circuit described in figure 2. Output H.

– InpEncode(SP, x): On input an SP and an input x do the following:

- Sample a random bit b and compute CT = FE.Enc(MPK, x, b; r1).
- Compute the NIZK with pre-processing proof π proving that
CT ∈ L using the witness (x, b, r1).

- Output ((CT, π), b) = (x̃, b)

– Decode(y, b): Output y ⊕ b.

H [σV ,MPK, skHC ]

Hardwired values: NIZK Verifier sting σV , Functional encryption key MPK, Func-
tion secret key skHC

Inputs: FE ciphertext CT, Proof π

– First run PZK.Verify(σV ,CT, π). The verification is with respect to the NP lan-
guage L defined below. If it fails output ⊥.

– Otherwise, output FE.Dec(skHC ,CT)

Language L: An NP language L is defined by the relation as defined below:
Instance: A functional encryption key MPK and an FE ciphertext CT
Witness: x, b, r

– CT = FE.Enc(MPK, x, b; r) where b ∈ {0, 1}.

Fig. 2: Circuit H



We now discuss the properties:
Correctness. It is straightforward to see correctness as it follows from
the completeness of the proof system and correctness of the functional
encryption scheme.

Functionality: Let Hb denote an circuit encoding of circuit Cb for
b ∈ {0, 1} where C0 and C1 are equivalent circuits. The circuit takes
as input (CT, π) where π is a proof that CT is an encryption of (x, b′) for
some x and a bit b′. Then it verifies the proof and decrypts the cipher-
text using a function key that computes Cb(x) ⊕ b′. Since, the proof
system is statistically sound and FE scheme is correct this property is
satisfied with overwhelming probability over the coins of the setup.

Input Secrecy: We want to show that for any circuit C and inputs
x0, x1:

{(H, x̃0)|H ← CEncode(SP, C), SP← Setup(1λ), (x̃0, z)← InpEncode(SP, x0)} ≈c

{(H, x̃1)|H ← CEncode(SP, C), SP← Setup(1λ), (x̃1, z)← InpEncode(SP, x1)}
We claim this in a number of hybrids. The first one corresponds to the
actual game where x̃0 is given while the last one corresponds to the case
of x̃1. We also show that the hybrids are indistinguishable.
Hyb0 : This hybrid corresponds to the following experiment for C, x0.
To run setup we run (MPK,MSK) ← FE.Setup(1λ). Then we sample
a random bit b and compute CT ← FE.Enc(MPK, x0, b). We sample
(σP , σV )← PZK.Pre(1λ) and compute a proof π using PZK prover string
σP and a witness of CT ∈ L. We output SP = (MPK,MSK, σP , σV ). This
SP is used to encode C by computing a functional encryption key for
circuit HC first (skHC ). Call this circuit H (this circuit depends upon,
σV and skHC ).

Hyb1 : This hybrid is the same as the previous one except that we gener-
ate π, σV differently. We run the simulator of PZK system and compute
(σV , π) ← Sim(CT). Hyb0 is indistinguishable to Hyb1 due to the zero-
knowledge security of PZK proof.

Hyb2 : This hybrid is the same as the previous one except that we gen-
erate CT differently. CT = FE.Enc(MPK, x1, b⊕C(x0)⊕C(x1)). Hyb1 is
indistinguishable to Hyb2 due to the security of FE proof.

Hyb3 : This hybrid is the same as the previous one except that (σP , σV )
are generated honestly. Hyb2 is indistinguishable to Hyb3 due to the zero-
knowledge security of PZK.

Hyb4 : This hybrid is the same as the previous one except that CT is
generated as FE.Enc(MPK, x1, b). this corresponds to the experiment for
input x1. Hyb3 is identical to Hyb4 as b is a random bit.

Corollary 2. Assuming public-key encryption exists[46], there exists an
SFE scheme satisfying requirements described in Section 6.1.



Remark 7. We note that such a scheme can be instantiated from one-
way functions alone. The idea is to use a secret-key functional encryption
for single function query along with a statistically binding commitment
scheme. The public parameters now include a commitment of a master
secret key which is used to proof consistency of the cipher-text. Since
the end result of constructing public key functional encryption from IO
candidates itself imply PKE, we do not describe this construction.

6.4 Robust Combiner: Construction

We now describe our robust combiner. On input the candidatesΠ1, .., Πn,
we transform them using the SFE scheme as done in Section 6.2 so that
they are (1 − 1/λ)−worst-case correct. Then using majority trick as in
[12], we convert them to almost correct. Plugging it to the construction in
Section 5.2, gives us the desired result. Finally, we also state our theorem
about universal obfuscation

Theorem 9. Assuming sub-exponentially secure one-way functions, there
exists a (poly, ε)-Universal Obfuscation with ε = O(2−λ

c

) for any con-
stant c > 0 and any polynomial poly.
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