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Abstract. Multivariate Cryptography is one of the main candidates for
creating post-quantum cryptosystems. Especially in the area of digital
signatures, there exist many practical and secure multivariate schemes.
However, there is a lack of multivariate signature schemes with special
properties such as blind, ring and group signatures. In this paper, we
propose a generic technique to transform multivariate signature schemes
into blind signature schemes and show the practicality of the construction
on the example of Rainbow. The resulting scheme satisfies the usual
blindness criterion and a one-more-unforgeability criterion adapted to
MQ signatures, produces short blind signatures and is very efficient.
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1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [24], DSA [14] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers are built. The rea-
son for this is Shor’s algorithm [28], which solves number theoretic problems like
integer factorization and discrete logarithms in polynomial time on a quantum
computer. Therefore, one needs alternatives to those classical public key schemes
which are based on hard mathematical problems not affected by quantum com-
puter attacks (so called post-quantum cryptosystems).
The increasing importance of research in this area has recently been empha-
sized by a number of authorities. For example, the american National Security
Agency has recommended governmental organizations to change their security
infrastructures from schemes like RSA to post-quantum schemes [17] and the
National Institute of Standards and Technologies (NIST) is preparing to stan-
dardize these schemes [18]. According to NIST, multivariate cryptography is one



of the main candidates for this standardization process. Multivariate schemes
are in general very fast and require only modest computational resources, which
makes them attractive for the use on low cost devices like smart cards and RFID
chips [5,6]. However, while there exist many practical multivariate standard sig-
nature schemes such as UOV [15], Rainbow [9] and Gui [23], there is a lack of
multivariate signature schemes with special properties such as blind, ring, and
group signatures.
Blind signature schemes allow a user, who is not in charge of the private signing
key, to obtain a signature for a message d by interacting with the signer. The
important point is that this signer, who holds the secret key, receives no informa-
tion about the message d that is signed nor about the signature s that is created
through the interaction. Nevertheless, anyone with access to the public verifi-
cation key is capable of verifying that signature. Because of these unlinkability
and public verifiability properties, blind signature schemes are an indispensable
primitive in a host of privacy-preserving applications ranging from electronic
cash to anonymous database access, e-voting, and anonymous reputation sys-
tems.
In this paper, we present a technique to transform any multivariate quadratic
signature scheme into a blind signature scheme. This transformation is accom-
plished by joining the MQ signature scheme with the zero-knowledge identifica-
tion scheme of Sakumoto et al. [27]. The user queries the signer on a blinded
version of the message to be signed; the signer’s response is then combined with
the blinding information in order to produce a non-interactive zero-knowledge
proof of knowledge of a pre-image under the public verification key, which is a
set of quadratic polynomials that contains the signer’s public key in addition
to a large random term. The only way the user can produce such a proof is by
querying the signer at some point for a partial pre-image; however, because it
is zero-knowledge, this proof contains no information on the message that was
seen and signed by the signer, thus preventing linkage and ensuring the user’s
privacy.
We obtain one of the first multivariate signature schemes with special proper-
ties and more generally one of the very few candidates for establishing prac-
tical and secure post-quantum blind signatures. In terms of security require-
ments, our scheme satisfies the usual blindness notion, but an adapted one-
more-unforgeability one which we call universal -one-more-unforgeability. This
change is justified by the observation that the usual one-more-unforgeability no-
tion generalizes existential unforgeability for regular signatures; however, MQ
signatures can only be shown to offer universal unforgeability and hence require
a universal one-more-unforgeability generalization. We instantiate our scheme
with the Rainbow signature scheme and propose parameters targeting various
levels of security.
The rest of this paper is organized as follows. Section 2 recalls the basic con-
cepts of blind signatures and discusses the basic security notions. In Section 3
we recall the basic concepts of multivariate cryptography and review the Rain-
bow signature scheme, Sakumoto’s multivariate identification scheme [27], and
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its transformation into a digital signature scheme due to Hülsing [12]. Section 4
presents our technique to extend multivariate signature schemes such as Rain-
bow to blind signature schemes, while Section 5 discusses the security of our
construction. In Section 6 we give concrete parameter sets and analyze the effi-
ciency of our scheme. Furthermore, in this section, we describe a proof of concept
implementation of our scheme and compare it with other existing (classical and
post-quantum) blind signature schemes. Finally, Section 7 concludes the paper.

2 Blind Signatures

Blind signature schemes as proposed by David Chaum in [3] allow a user, who is
not in charge of the private signing key, to obtain a signature for a message d on
behalf of the owner of the private key (called the signer). The key point hereby
is that the signer gets no information about the content of the message d.
The signature generation process of a blind signature scheme is an interactive
process between the user and the signer. In the first step, the user computes
from the message d a blinded message d? and sends it to the signer. The signer
uses his private key to generate a signature σ? for the message d? and sends it
back to the signer. Due to certain homomorphic properties in the inner structure
of the blind signature scheme, the user is able to compute from σ? a valid sig-
nature σ for the original message d. The receiver of a signed message can check
the authenticity of the signature σ in the same way as in the case of a standard
signature scheme. Figure 1 shows a graphical illustration of the signature gener-
ation process of a blind signature scheme.
Formally, a blind signature scheme BS is a three-tuple, consisting of two poly-

user: d , pk signer: sk

compute blinded
message d? -d?

compute signature
σ? for d?� σ?

compute signature
σ for d

Fig. 1. Signature Generation Process of a Blind Signature Scheme

nomial time algorithms KeyGen and Verify and an interactive signing protocol
Sign [13].

– KeyGen(1κ): The probabilistic algorithm KeyGen takes as input a security
parameter κ and outputs a key pair (sk, pk) of the blind signature scheme.

3



– Sign: The signature generation step is an interactive protocol between the
User, who gets as input a message d and a public key pk and the Signer

who is given the pair (pk, sk) generated by algorithm KeyGen. At the end
of the protocol, the Signer outputs either “completed” or “non-completed”,
while the user outputs either “failed” or a signature σ.

– Verify((d, σ), pk): The deterministic algorithm Verify takes as input a mes-
sage/signature pair (d, σ) and the public key pk. It outputs TRUE, if σ is
a valid signature for the message d and FALSE otherwise.

In the following, we assume the correctness of the blind signature scheme BS: If
both the User and the Signer follow the protocol, the Signer outputs always
“completed”, independently of the message d and the output (sk, pk) of the
algorithm KeyGen. Similarly, the User always outputs a signature σ and we have

Pr[Verify((d, σ), pk) = TRUE] = 1.

The basic security criteria of a blind signature scheme are Blindness and One-
More-Unforgeability.

– Blindness: By signing the blinded message d?, the signer of a message gets
no information about the content of the message to be signed nor about the
final blind signature σ. More formally, blindness can be defined using the
following security game.

Game[Blindness]:

1. The adversary A uses the algorithm KeyGen to generate a key pair
(sk, pk) of the blind signature scheme. The public key pk is made public,
while A keeps sk as his private key.

2. The adversary A outputs two messages d0 and d1, which might depend
on sk and pk.

3. Let u0 and u1 be users with access to the public key pk but not to the se-
cret key sk. For a random bit b that is unknown to A, user u0 is given the
message db, while the message d1−b is sent to user u1. Both users engage
in the interactive signing protocol (with A as signer), obtaining blind
signatures σ0 and σ1 for the messages d0 and d1. The message/signature
pairs (d0, σ0) and (d1, σ1) are given to the adversary A.

4. A outputs a bit b̄. He wins the game, if and only if b̄ = b holds.

The blind signature scheme BS is said to fulfill the blindness property, if the
advantage

Advblindness
BS (A) = |2 · Pr[b′ = b]− 1|

for every PPT adversary A is negligible in the security parameter.
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– One-More-Unforgeability: Even after having successfully completed L
rounds of the interactive signing protocol, an adversary A not in charge of
the private key sk cannot forge another valid blind signatures for a given
message. More formally, we can define One-More-Unforgeability using the
following game.

Game [Universal-One-More-Unforgeability]
1. The algorithm KeyGen is used to generate a key pair (sk, pk). The pub-

lic key pk is given to the adversary A, while sk is kept secret by the
challenger.

2. The adversary A engages himself in polynomially many interactive sign-
ing protocols with different instances of Signer. Let L be the number of
cases in which the Signer outputs completed.

3. A outputs a list L of L message / signature pairs. The challenger checks
if all the message / signature pairs are valid and pairwise distinct.

4. The challenger outputs a message d? not contained in the list L. The
adversary wins the game, if he is able to generate a valid blind signature
σ for the message d?, i.e. if Verify((d?, σ), pk) = TRUE holds.

The blind signature scheme BS is said to provide the One-More-Unforgeability
property, if the success probability

Pr[A wins]

is, for any PPT adversary A, negligible in the security parameter.
We note that this formalism is different from the standard security game for
blindness, where the adversary is allowed to choose his own message but is
required to forge at least L + 1 valid and distinct signatures. We choose to
restrict the adversary’s choice to accurately reflect the similar lack of choice
in the standard security model for MQ signatures: universal unforgeability as
opposed to existential unforgeability.

3 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quad-
ratic polynomials. Their security is based on the MQ Problem: Given m multi-
variate quadratic polynomials p(1)(x), . . . , p(m)(x) in n variables x1, . . . , xn, find
a vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem is proven to be NP-hard even for quadratic polynomials over
the field GF(2) [11]. Moreover, it is widely assumed as well as experimentally
validated that solving random instances of the MQ problem (with m ≈ n) is a
hard task, see for example [30].
To build a public key cryptosystem on the basis of the MQ problem, one starts
with an easily invertible quadratic map F : Fn → Fm (central map). To hide
the structure of F in the public key, one composes it with two invertible affine
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(or linear) maps S : Fm → Fm and T : Fn → Fn. The public key of the scheme
is therefore given by P = S ◦F ◦ T : Fn → Fm. The private key consists of S, F
and T and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate schemes is
not only based on the MQ-Problem, but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the decomposition of P.
In this paper we concentrate on multivariate signature schemes. The standard
signature generation and verification process of a multivariate signature scheme
works as shown in Figure 2.

Signature Generation

w ∈ Fm -S−1

x ∈ Fm -F−1

y ∈ Fn -T −1

z ∈ Fn

6

P

Signature Verification

Fig. 2. Standard workflow of multivariate signature schemes

Signature generation: To sign a message w ∈ Fm, one computes recursively
x = S−1(w) ∈ Fm, y = F−1(x) ∈ Fn and z = T −1(y). The signature of the
message w is z ∈ Fn. Here, F−1(x) means finding one (of possibly many) pre-
image of x under the central map F .

Verification: To check the authenticity of a signature z ∈ Fn, one simply com-
putes w′ = P(z) ∈ Fm. If w′ = w holds, the signature is accepted, otherwise
rejected.

3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [9] is one of the most promising and best studied
multivariate signature schemes. The scheme can be described as follows:

Let F = Fq be a finite field with q elements, n ∈ N and v1 < v2 < . . . < v` <
v`+1 = n be a sequence of integers. We set m = n− v1, Oi = {vi + 1, . . . , vi+1}
and Vi = {1, . . . , vi} (i = 1, . . . , `).
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Key Generation: The private key of the scheme consists of two invertible affine
maps S : Fm → Fm and T : Fn → Fn and a quadratic map F(x) = (f (v1+1)(x),
. . . , f (n)(x)) : Fn → Fm. The polynomials f (i) (i = v1 +1, . . . , n} are of the form

f (i) =
∑
k,l∈Vj

α
(i)
k,l · xk · xl +

∑
k∈Vj ,l∈Oj

β
(i)
k,l · xk · xl +

∑
k∈Vj∪Oj

γ
(i)
k · xk + η(i) (1)

with coefficients randomly chosen from F. Here, j is the only integer such that
i ∈ Oj . The public key is the composed map P = S ◦ F ◦ T : Fn → Fm.

Signature Generation: To generate a signature for a document w ∈ Fm , we
compute recursively x = S−1(w) ∈ Fm, y = F−1(x) ∈ Fn and z = T −1(y).
Here, F−1(x) means finding one (of approximately qv1) pre-image of x under
the central map F . This is done as shown in Algorithm 1.

Algorithm 1 Inversion of the Rainbow central map

Input: Rainbow central map F , vector x ∈ Fm.
Output: vector y ∈ Fn such that F(y) = x.
1: Choose random values for the variables y1, . . . , yv1 and substitute these values into

the polynomials f (i) (i = v1 + 1, . . . , n).
2: for k = 1 to ` do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ Ok) to get the values

of the variables yi (i ∈ Ok).
4: Substitute the values of yi (i ∈ Ok) into the polynomials f (i), i ∈
{vk+1 + 1, . . . , n}.

5: end for

It might happen that one of the linear systems in step 3 of the algorithm does
not have a solution. In this case one has to choose other values for y1, . . . , yv1
and start again. The signature of the document w is z ∈ Fn.

Signature Verification: To verify the authenticity of a signature z ∈ Fn, one
simply computes w′ = P(z) ∈ Fm. If w′ = w holds, the signature is accepted,
otherwise rejected.

3.2 The MQ-based Identification Scheme

In [27] Sakumoto et al. proposed an identification scheme based on multivariate
polynomials. There exist two versions of the scheme: a 3-pass and a 5-pass vari-
ant. In this section we introduce the 5-pass variant.
The scheme uses a system P of m multivariate quadratic polynomials in n vari-
ables as a public parameter. The prover chooses a random vector s ∈ Fn as his
secret key and computes the public key v ∈ Fm by v = P(s).
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To prove his identity to a verifier, the prover performs several rounds of the
interactive protocol shown in Figure 3.
Here,

G(x,y) = P(x + y)− P(x)− P(y) + P(0) (2)

is the polar form of the system P.
The scheme is a zero-knowledge argument of knowledge for a solution of the
system P(x) = v.
The knowledge error per round is 1

2 + 1
2q . To decrease the impersonation prob-

ability below 2−η, one therefore needs to perform r = d −η
log2(1/2+1/2q)e rounds

of the protocol. For identification purposes, η ≈ 30 may be sufficient, but for
signatures we require η to be at least as large as the security level.

Prover: P,v, s Verifier: P,v

r0, t0 ∈R Fn, e0 ∈R Fm

r1 = s− r0

c0 = Com(r0, t0, e0)

c1 = Com(r1,G(t0, r1) + e0) -(c0, c1)
α ∈R F

� α
t1 = αr0 − t0

e1 = αP(r0)− e0 -(t1, e1)
ch ∈R {0, 1}

� ch
If ch = 0, resp = r0

Else, resp = r1 -resp
If ch = 0, check

c0
?
= Com(r0, αr0 − t1,

αP(r0)− e1)

If ch = 1, check

c1
?
= Com(r1, α(v − P(r1))

−G(t1, r1)− e1)

Fig. 3. The 5-pass MQ identification scheme of Sakumoto et al. [27].

3.3 The MQDSS signature scheme

In [12], Hülsing et al. developed a technique to transform (2n+1) pass identifi-
cation schemes into signature schemes. The technique can be used to transform
the above described 5-pass multivariate identification scheme into an EU-CMA
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secure signature scheme.
To generate an MQDSS signature for a message d, the signer produces a tran-
script of the above identification protocol over r rounds. The challenges α1, . . . , αr
and ch1, . . . , chr are hereby computed from the message d and the commitments
(using a publicly known hash function H). Therefore, the signature has the form

σ = (c0,1, c1,1, . . . , c0,r, c1,r, t1,1, e1,1, . . . , t1,r, e1,r, resp1, . . . , respr).

To check the authenticity of a signature σ, the verifier parses σ into its compo-
nents, uses the commitments to compute the challenges αi and chi (i = 1, . . . , r)
and checks the correctness of the responses respi as shown in Figure 3 (for
i = 1, . . . , r).

4 Our Blind Signature Scheme

In this section we present MBSS, an extension of the Rainbow signature scheme
of Section 3.1 to a multivariate blind signature scheme. We chose to restrict
our discussion to Rainbow due to its short signatures and good performance.
Moreover, the key sizes of Rainbow are acceptable and can be further reduced
by the technique of Petzoldt et al. [21].
Nevertheless, we would like to emphasize that our technique applies to any MQ
signature scheme relying on the construction of Fig. 2, i.e., relying on the hiding
of a trapdoor to a quadratic map behind linear or affine transforms. As the other
MQ signature schemes rely on the same construction, our technique applies to
those cryptosystems as well. We do not use any property of Rainbow that is not
shared by, e.g., HFEv− [23], pC∗ [7], or UOV [15].

4.1 The Basic Idea

The public key of our scheme consists of two multivariate quadratic systems
P : Fn → Fm and R : Fm → Fm. Hereby, P is the public key of a multivariate
signature scheme (e.g. Rainbow), while R is a random system. The signer’s
private key allows him to invert the system P.
In order to obtain a blind signature for a message (hash value) w ∈ Fm, the
user chooses randomly a vector z? ∈ Fm, computes w̃ = w − R(z?) and sends
w̃ to the signer. The signer uses his private key to compute a signature z for the
message w̃ and sends it to the user. Therefore, the user obtains a solution (z, z?)
of the system P(x1) + R(x2) = w. However, the user can not publish (z, z?)
as his signature for the document w since this would destroy the blindness
of the scheme. Instead, the user has to prove knowledge of a solution to the
system P(x1)+R(x2) = w using a zero knowledge protocol. We use the MQDSS
technique (see Section 3.3) for this proof.

4.2 Description of the Scheme

In this section we give a detailed description of our blind signature scheme. As
every blind signature scheme, MBSS consists of three algorithms KeyGen, Sign
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and Verify, where Sign is an interactive protocol between user and signer.

Parameters: Finite field F, integers m,n and r (depending on a security pa-
rameter κ). r hereby determines, how many rounds of the identification scheme
are performed during the generation of a signature.

Key Generation: The signer chooses randomly a Rainbow private key (consisting
of two affine maps S : Fm → Fm and T : Fn → Fn and a Rainbow central map
F : Fn → Fm). He computes the public key P as P = S ◦ F ◦ T : Fn → Fm
(see Section 3.1) and uses a CSPRNG to generate the system R = CSPRNG(P) :
Fm → Fm. The public key of our blind signature scheme is the pair (P,R), the
signer’s private key consists of S,F and T . However, since R can be computed
from the system P, it is not necessary to publish R (if the CSPRNG in use is
publicly accessible).

Signature Generation: The interactive signature generation process of our blind
signature scheme can be described as follows: To get a signature for the message
d with hash value H(d) = w ∈ Fm, the user chooses randomly a vector z? ∈ Fm.
He computes w? = R(z?) ∈ Fm and sends w̃ = w−w? ∈ Fm to the signer. The
signer uses his private key (S,F , T ) to compute a Rainbow signature z ∈ Fn
such that P(z) = w̃ (see Section 3.1) and sends z back to the user, who therefore
obtains a solution (z, z?) of the system P̄(x) = P(x1) +R(x2) = w.
To prove this knowledge to the verifier in a zero knowledge way, the user gen-
erates an MQDSS signature for the message w. As the public parameter of the
scheme he hereby uses the system P̄(x) = P(x1) +R(x2), which is a system of
m quadratic equations in n+m variables. Furthermore, G(x,y) is the polar form
of the system P̄, i.e. G(x,y) = P̄(x + y) − P̄(x) − P̄(y) + P̄(0). In particular,
the user performs the following steps.

1. Use a publicly known hash function H to compute C = H(P||w) and D =
H(C||w).

2. Choose random values for r0,1, . . . , r0,r, t0,1, . . . , t0,r ∈ Fm+n, e0,1, . . . , e0,r ∈
Fm, set r1,i = (z||z?)− r0,i (i = 1, . . . , r) and compute the commitments

c0,i = Com(r0,i, t0,i, e0,i) and

c1,i = Com(r1,i,G(t0,i, r1,i)− e0,i) (i = 1, . . . , r).

Set COM = (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r).
3. Derive the challenges α1, . . . , αr ∈ F from (D, COM).
4. Compute t1,i = αi · r0,i − t0,i ∈ Fm+n and e1,i = αi · P̄(r0,i) − e0,i (i =

1, . . . , r). Set Rsp1 = (t1,1, e1,1, . . . , t1,r, e1,r).
5. Derive the challenges (ch1, . . . , chr) from (D, COM,Rsp1).
6. Set Rsp2 = (rch1,1, . . . , rchr,r).
7. The blind signature σ for the message w ∈ Fm is given by

σ = (C, COM,Rsp1, Rsp2).
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The length of the blind signature σ is given by

|σ| = 1 · |hash value|+ 2r · |Commitment|+ r · (2n+ 3m) F−elements.

Figure 4 shows the full protocol for obtaining a blind signature.
Signature Verification: To check the authenticity of a blind signature σ for a
message d with hash value w ∈ Fm, the verifier parses σ into its components
and computes D = H(C||w). He derives the challenges αi ∈ F from (D, COM)
and chi from (D, COM,Rsp1) (i = 1, . . . , r).
Finally, he parses COM into (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r), Rsp1 into t1, e1,
. . . , tr, er and Rsp2 into r1, . . . , rr and checks if, for all i = 1, . . . , r, ri is a correct
response to chi with respect to COM , ti and ei, i.e.

c0,i
?
= Com(ri, αi · ri − ti, αi · P(ri)− ei) (for chi = 0)

c1,i
?
= Com(ri, αi · (w − P(ri))− G(ti, ri)− ei) (for chi = 1). (3)

If all of these tests are fulfilled, the blind signature σ is accepted, otherwise re-
jected.

Note: As the resulting blind signature depends on the randomness sampled
for generating the zero-knowledge proof, there may be many signatures asso-
ciated to one tuple (z, z?). To prevent a malicious user from reusing the same
preimage to P(x̄1) + R(x̄2), two signatures to messages d1, d2 are considered
essentially different whenever w1 = H(d1) 6= w2 = H(d2). In other words, the
zero-knowledge proof is taken into account for validity but not for distinctness.

4.3 Reducing the Signature Length

In this section we present a technique to reduce the length of the blind signature
σ, which was already mentioned in [27] and [12].
Instead of including all of the commitments c0,1, c1,1, . . . , c0,r, c1,r into the sig-
nature, we just transmit COM = H(c0,1||c1,1 . . . c0,r||c1,r). However, in this sce-
nario, we have to add (c1−ch1,1, . . . , c1−chr,r) to Rsp2. In the verification process,
the verifier recovers (cch1,1, . . . , cchr,r) by equation (3) and checks if

COM
?
= H(c0,1, c1,1, . . . , c0,r, c1,r)

is fulfilled. By doing so, we can reduce the length of the blind signature σ to

|σ| = 2 · |hash value|+ r · (2n+ 3m) F elements + r · |Commitment| .

4.4 Correctness

Theorem 1. If both user and signer follow the above protocol, the blind signa-
ture generated by the user will be accepted by an honest verifier with probability
1.
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User: P,R,H, d Signer: S, T ,F ,P,R

1 w = H(d) ∈ Fm,

z? ∈R Fm,

w? = R(z?) ∈ Fm,

w̃ = w −w? ∈ Fm - w̃ ∈ Fm

2 z ∈ Fn z = T −1 ◦ F−1 ◦ S−1(w̃)�

P̄(z, z?) = P(z) +R(z?)
?
= w, abort if not true

3 G(x,y) = P̄(x + y)− P̄(x)− P̄(y) + P̄(0),

C = H(P||w) and D = H(C||w),

r0,1, . . . , r0,r, t0,1, . . . , t0,r ∈R Fm+n, e0,1, . . . , e0,r ∈R Fm,

r1,i = (z||z?)− r0,i, i ∈ {1, . . . , r},
c0,i = Com(r0,i, t0,i, e0,i),

c1,i = Com(r1,i,G(t0,i, r1,i)− e0,i), i ∈ {1, . . . , r},
COM = (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r),

(D, COM)⇒ α1, . . . , αr ∈ F,
t1,i = αi · r0,i − t0,i ∈ Fm+n,

e1,i = αi · P̄(r0,i)− e0,i (i = 1, . . . , r),

Rsp1 = (t1,1, e1,1, . . . , t1,r, e1,r),

(D, COM,Rsp1)⇒ (ch1, . . . , chr),

Rsp2 = (rch1,1, . . . , rchr,r),

σ = (C, COM,Rsp1, Rsp2).

Fig. 4. Our blind signing protocol.
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Proof. The proof consists out of two steps. In the first step we show that, at
the end of the interactive process, the user obtains a solution (z, z?) of the
system P(x1) + R(x2) = w. This can be seen as follows. In the course of the
interactive protocol, the (honest) user chooses randomly a vector z?, computes
w? = R(z?) and w̃ = w − w? and sends w̃ to the signer. The (honest) signer
uses his private key to compute a vector z such that P(z) = w̃. Altogether, we
get P(z) +R(z?) = w̃ + w? = w −w? + w? = w, which means that (z, z?) is
indeed a solution of the public system P̄(x) = P(x1) +R(x2).
In the second step we simply use the correctness proof of the MQDSS [12] to
show that an MQDSS signature produced by an honest signer knowing a solution
to the public system P̄ is, by an honest verifier, accepted with probability 1.

5 Security

In this section, we analyze the security of our construction. For a security analysis
of the underlying Rainbow scheme we refer to [20] and concentrate here on
our construction of our blind signature scheme. For this, we have to show the
blindness and one-more-unforgeability of the resulting scheme.

5.1 Blindness

Theorem 2. Assuming that the distribution of R(x) for uniform x ∈ Fmq is
computationally indistinguishable from uniform, and assuming that a perfectly
hiding commitment scheme is used, our blind signature scheme provides blind-
ness against any computationally bounded adversary. In particular, for all PPT
adversaries A, their advantage in the blindness game (of Section 2) for our
scheme is at most negligible:

∀A .Advblindness
MBSS (A) ≤ negl .

Proof. In order to prove this theorem, we have to show that

1. the signer gets no information about the message w from the blinded message
w̃; and

2. the signer cannot link the final blind signature σ to the signature interaction
that was necessary to generate it.

It is clear that a signer who violates (1) or (2) or both can win the blindness
game. Conversely, an adversary who wins the blindness game with a noticeable
probability succeeds in linking the users to the messages they received. The only
information that the adversary can use to identify the user is the message w̃ that
is coming from him during the blind-signature generation interaction. Therefore
the winning adversary is capable of linking w̃ to d, or of linking w̃ to σ (or both).
This corresponds to violating points (1) or (2) (or both). Therefore, showing that
points (1) and (2) hold is equivalent to showing that no PPT adversary can win
the blindness game with more than a negligible probability.
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Point (1) is guaranteed by the fact that the user chooses the vector z? ∈ Fn
uniformly at random and completely independent from w. Therefore, R(z?) is
computationally indistinguishable from uniform, and as a result so is the blinded
message w̃ = w −R(z?). In particular, this means that no PPT adversary can
successfully compute any predicate of w from w̃ with more than a negligible
probability.
With regards to (2), due to the perfect zero-knowledge property of the MQDSS
scheme [12] when instantiated with a perfectly hiding commitment scheme, the
signer gets no information about the solution (z, z?) of P(x1) +R(x2) from σ.
Therefore, he gets no information aboutR(z?), and as a result he cannot connect
σ to w̃ or for that matter to the user.

5.2 (One-More) Unforgeability

Unfortunately, we do not have a rigorous proof of unforgeability but we do have
a heuristic argument showing that our scheme satisfies the Universal-One-More-
Unforgeability game of Section 2. In order to show that the adversary A can win
this game only with at most a negligible probability, we work in two steps. In
the first step we present a sequence of games argument showing that any adver-
sary winning the Universal-One-More-Unforgeability game logically implies that
a particular hard problem is efficiently solvable. In the second step we argue that
this problem is, in fact, hard.
Let Game 0 be the universal-one-more-unforgeability game as defined in Sec-
tion 2. By assumption, we have an adversary A who wins with noticeable prob-
ability in polynomial time.
Let Game 1 be the universal-one-more-unforgeability game but for the modified
blind signature scheme where for each signature knowledge of (z, z?) satisfying
P(z) + R(z?) = H(d) is proven interactively using the protocol of Section 3.2,
instead of producing a non-interactive proof σ. The simulator can win this game
by simulating an instance of Game 0 and presenting the Game 0-adversary
with a random oracle that is programmed to respond with the same challenge-
message that the simulator receives from the challenger.
Let Game 2 be the universal-one-more-unforgeability game for the modified
scheme that drops blindness altogether. Instead of proving knowledge of (z, z?)
in zero-knowledge, knowledge is proven straightforwardly by simply sending this
pair to the challenger. The simulator can win this game by simulating Game 1
and using the extractor machine associated with the zero-knowledge proof to
obtain (z, z?).
Let Game 3 be the universal unforgeability under chosen message attack game
for the signature scheme whose public key is (P,R), with the additional option
for the adversary to query inverses under P as long as the message d?, the mes-
sage for which a signature is to be forged, was not yet sent. The simulator wins
this game by simulating Game 2. The blind-signature requests are answered by
querying for an inverse under P. After the adversary outputs his list L of mes-
sage / signature pairs, the simulator requests the message d? from the challenger
for which a signature is to be forged. This message is relayed to the simulated
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adversary.
Let Game 4 be the proper universal unforgeability under chosen message at-
tack game for the signature scheme whose public key is (P,R), i.e., without the
ability to query for inverses under P. Heuristically, the same adversary that wins
Game 3 should win Game 4. The reason is that the ability to query inverses
under P before d? is known does not help the adversary at all. Since P is the
public key of a secure signature scheme in its own right, the ability to query
inverses should not help the adversary to either recover the secret key or find
his own inverses.
Let Game 5 be the following non-interactive game, or problem: given (P,R),
find (x1,x2) ∈ Fnq × Fmq such that P(x1) +R(x2) = 0. The simulator can solve
this problem by picking a random s ∈R Fmq . He then simulates Game 4 and
presents its adversary with (P,R + s) and with access to the backdoored ran-
dom oracle H′(x) = P(H1(x)) + R(H2(x)) + s, where H1 : {0, 1}∗ → Fnq and
H2 : {0, 1}∗ → Fmq are true random oracles. Under the (very reasonable) as-
sumption that the distribution of H′ is computationally indistinguishable from
that of a true random oracle, the adversary’s winning probability is still signif-
icant. The simulator answers a signature query d ∈ {0, 1}∗ with (x1,x2) where
x1 = H1(d) and x2 = H2(d), which is necessarily a valid signature from the
point of view of the adversary who can verify that P(x1) +R(x2) + s = H′(d).
When the adversary indicates he is done with querying signatures, the simulator
chooses a new message d?, programs H′(d?) = s, and sends d? to the adversary.
A winning adversary therefore solves P(x1) +R(x2) + s = s, which is equivalent
to solving P(x1) +R(x2) = 0.
It remains to be shown that finding a solution to the system P̄(x) = P(x1) +
R(x2) = 0, which is a system of m quadratic equations in n + m variables, is
a difficult task. There are two attack strategies known against multivariate sys-
tems:

Direct Attacks: In a direct attack, one tries to solve the system P̄(x) = 0
as an instance of the MQ Problem. Since the system P̄ is underdetermined,
there are two possibilities to do this. One can use a special algorithm against
underdetermined multivariate systems [29] or, after fixing n of the variables, a
Gröbner Basis algorithm such as Faugéres F4 [10]. For suitably chosen parame-
ters, both approaches are infeasible.

The second possibility to solve a multivariate system such as P ′ are the so
called Structural Attacks. In this type of attack one uses the known structure
of the system P̄ in order to find a decomposition P̄ into easily invertible maps.
Note that, in our case we can write

P̄(x) = P(x1) +R(x2)

= S ◦ F ◦ T (x1) + S ◦ S−1 ◦ R︸ ︷︷ ︸
R′

(x2)

= S ◦ (F +R′)︸ ︷︷ ︸
F ′

◦T ′(x),

15



where the matrix T’ representing the linear transformation T ′ is given by

T ′ =

(
T 0
0 1m

)
∈ F(n+m)×(n+m).

In order to solve the system P̄ using a structural attack, we have to use the
known structure of the map F ′ = F + S−1 ◦ R to recover the linear maps S
and T ′ (or, since the structure of T ′ is mostly known, the matrix T ). However,
since the coefficients of both S and R are chosen uniformly at random, the
map R′ = S−1 ◦ R is a random quadratic map over Fm. The only structure
we can use for a structural attack therefore comes from the map F , which is
the central map of the underlying multivariate signature scheme. Therefore, we
are in exactly the same situation as if attacking the underlying multivariate
scheme using a structural attack. This means that a structural attack against
our blind signature scheme is at least as hard as a structural attack against the
underlying multivariate signature scheme. By choosing the parameters of the
underlying scheme in an appropriate way, we therefore can prevent this type of
attack against our blind signature scheme.

5.3 Quantum Security

The technique proposed in [12] is capable of transforming (2n + 1)-pass zero-
knowledge proofs into non-interactive zero-knowledge proofs that are secure
against classical adversaries in the random oracle model. However, the behaviour
of this transform against quantum adversaries is not well understood because
the random oracle should be accessible to the quantum adversary and answer
queries in quantum superposition, and many standard proof techniques do not
carry over to this setting. See Boneh et al. [2] for an excellent treatment of proofs
that fail in the quantum random oracle model.
Formally proving soundness against quantum adversaries seems to be a rather
involved task beyond the scope of this paper. Instead, we are content to con-
jecture that there exists a commitment scheme such that the technique of [12]
results in a non-interactive zero-knowledge proof that is secure against quantum
adversaries as well as classical ones. This conjecture is implicit in the works of
Sakumoto et al. [27], and Hülsing et al. [12].

6 Discussion

6.1 Parameters

In this section we propose concrete parameter sets for our blind signature scheme.
As observed in the previous section, we have to choose the parameters in a way
that

a) solving a random system ofm quadratic equations inm variables is infeasible,
b) inverting an MQ public key with the given parameters is infeasible, and
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c) a direct attack against a system of m quadratic equations in n+m variables
is infeasible.

Since condition (a) is implied by (c), we only have to consider (b) and (c). In order
to defend our scheme against attacks of type (b), we follow the recommendations
of [20]. Regarding (c), we have to consider that the system P(x1) +R(x2) = w
is highly underdetermined (in the case of P being a Rainbow public key, the
number of variables in this system exceeds the number of equations by a factor
of about 3). As a result of Thomae et al. shows, such systems can be solved
significantly faster than determined systems.

Proposition 1. [29] Solving an MQ system of m equations in n = ω ·m vari-
ables is only as hard as solving a determined MQ system of m−bωc+1 equations.

According to this result, we have to increase the number of equations in our
system by 2 (compared to the parameters of a standard Rainbow instance).
Table 1 shows the parameters we propose for our scheme for various targeted
security levels.

security parameters # rounds public key private key blind sig.
level (bit) (F, (v1, o1, o2)) size (kB) size (kB) size (kB)

80 (GF(31),(16,18,17)) 84 29.4 20.1 11.5

100 (GF(31),(20,22,21)) 105 54.6 36.6 17.6

128 (GF(31),(25,27,27)) 135 106.8 70.2 28.5

192 (GF(31),(37,35,35)) 202 342.8 219.0 63.2

256 (GF(31),(50,53,53)) 269 802.4 507.1 111.9

Table 1. Proposed parameters for our blind signature scheme (GF(31)).

6.2 Efficiency

During the interactive part of the signature generation process, the signer has
to generate one Rainbow signature for the message w̃ = w −w?.
For the user, the most costly part of the signature generation is the repeated
evaluation of the system P̄(x) = P(x1) +R(x2). During the computation of the
commitments c0,i and c1,i (i = 1, . . . , r) (step 2 of the signature generation
process) this has to be done 3 · r times (one evaluation of G corresponds to
3 evaluations of P̄). In step 4 of the process (computation of e1,i) we need r
evaluations of P̄. Altogether, the user has to evaluate the system 4r times.
During verification, the verifier has to compute the commitments cchi,i (i =
1, . . . , r). If chi = 0, he needs for this 1 evaluation of P̄, in the case of ch2 = 1 he
needs 4 evaluations. On average, the verifier needs therefore r

2 · (1 + 4) = 2.5 · r
evaluations of the system P̄.
While the system P̄ consists of m quadratic equations in m + n variables, the
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inner structure of the system can be used to speed up the evaluation. In fact,
the system P̄ is the sum of two smaller systems P : Fn → Fm and R : Fm → Fm.
Therefore, we can evaluate P̄ by evaluating P and R separately and adding the
results.

6.3 Implementation

We implemented all functionalities in Sage [26] to prove concept validity. Ta-
ble 2 contains the timing results for the matching parameter sets of Table 1,
demonstrating that our scheme is somewhat efficient and practicable even for
very poorly-optimized Sage code. These results were obtained on a 3.3 GHz Intel
Quadcore with 6,144 kB of cache.
Despite of these relatively large numbers, we are very optimistic about the
speed of our blind signatures when implemented in a less abstract and more
memory-conscious programming language. For instance, Hülsing et al.’s opti-
mized MQDSS manages to generate (classically) 256-bit-secure signatures in
6.79 ms and verify them in even less time [12]. As the MQDSS represents the
bottleneck of our scheme, a similarly optimized implementation could potentially
drop signature generation and verification time by several orders of magnitude.

sec. lvl. Key Gen. Sign (Signer) Sig. Gen. (User) Sig. Verification

80 4,007 7 2,018 1,424

100 9,392 13 3,649 2,656

128 25,517 19 7,760 5,505

192 87,073 41 23,692 16,040

256 613,968 103 86,540 59,669

Table 2. Timing results of a Sage implementation of our blind signature scheme. All
units are milliseconds, except for the security level.

6.4 Comparison

Table 3 shows a comparison of our scheme to the standard RSA blind signature
scheme and the lattice-based blind signature scheme of Rückert [25]. The RSA
blind signature scheme does not offer any security against quantum computers.
The public keys of Rückert’s scheme are smaller than those of our scheme, al-
though ours are still competitive. Like the standard RSA blind signature scheme,
our scheme requires 2 steps of communication between the user and the signer
in order to produce the blind signature. This is in contrast to Rückert’s scheme
where this number is 4. More importantly, our scheme outperforms that of Rück-
ert in terms of signature size.
At this point, an apples-to-apples comparison of operational speed is not possi-
ble. Nevertheless, regardless of speed, the main selling point of our scheme is its

18



reliance on different computational problems from those used in other branches
of cryptography, including lattice-based cryptography.

Security Scheme comm. Pub. key Sig. size Post-
lvl. (bit) size (kB) (kB) quantum?

76
RSA-1229 2 1.2 1.2 ×

Lattice-1024 4 10.2 66.9 X
Our scheme(GF(31),16,18,17) 2 29.4 11.5 X

102
RSA-3313 2 3.3 3.3 ×

Lattice-2048 4 23.6 89.4 X
Our scheme(GF(31),20,22,21) 2 54.6 17.6 X

Table 3. Comparison of different blind signature schemes. The secrutiy levels are
adopted from Rückert [25].

7 Conclusion

In this paper we proposed the first multivariate based blind signature scheme.
Our scheme is very efficient and produces much shorter blind signatures than
the lattice based scheme of Rückert [25], making our scheme the most promising
candidate for establishing a post-quantum blind signature scheme.
Our construction is notably generic, applying to any MQ signature scheme in
conjunction with any zero-knowledge proof capable of proving knowledge of the
solution to an MQ problem. Our design demonstrates that the combination of
a dedicated signature scheme with an identification scheme relying on the same
hard problem, is a powerful construction — and may apply in other branches of
cryptography as well.
Lastly, one major use case of blind signatures is anonymous identification. In this
scenario, one may reasonably dispense with the transformed signature scheme
and instead directly use the underlying interactive identification scheme, thus
sacrificing non-interactivity for less computation and bandwidth. Likewise, other
use cases such as anonymous database access require reusable anonymous creden-
tials. Our scheme can be adapted to fit this scenario as well, simply by specifying
that all users obtain a blind signature on the same public parameter.
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