
Hashing Garbled Circuits for Free

Xiong Fan1, Chaya Ganesh2, and Vladimir Kolesnikov3

1 Cornell University, Ithaca, NY, USA. xfan@cs.cornell.edu
2 New York University, New York, NY, USA. ganesh@cs.nyu.edu

3 Bell Labs, Murray Hill, NJ, USA. kolesnikov@research.bell-labs.com

Abstract. We introduce Free Hash, a new approach to generating Gar-
bled Circuit (GC) hash at no extra cost during GC generation. This is
in contrast with state-of-the-art approaches, which hash GCs at compu-
tational cost of up to 6× of GC generation. GC hashing is at the core
of the cut-and-choose technique of GC-based secure function evaluation
(SFE).
Our main idea is to intertwine hash generation/verification with GC
generation and evaluation. While we allow an adversary to generate a
GC ĜC whose hash collides with an honestly generated GC, such a ĜC
w.h.p. will fail evaluation and cheating will be discovered. Our GC hash
is simply a (slightly modified) XOR of all the gate table rows of GC. It
is compatible with Free XOR and half-gates garbling, and can be made
to work with many cut-and-choose SFE protocols.
With today’s network speeds being not far behind hardware-assisted
fixed-key garbling throughput, eliminating the GC hashing cost will sig-
nificantly improve SFE performance. Our estimates show substantial cost
reduction in typical settings, and up to factor 6 in specialized applica-
tions relying on GC hashes.
We implemented GC hashing algorithm and report on its performance.

1 Introduction

Today Garbled Circuit (GC) is the main technique for secure computation. It
has advantages of high performance, low round complexity/low latency, and,
importantly, relative engineering simplicity. Both core GC (garbling), as well
as the meta-protocols, such as Cut-and-Choose (C&C), have been thoroughly
investigated and are today highly optimized. Particularly in the semi-honest
model there have been few asymptotic/qualitative improvements since the orig-
inal protocols of Yao [Yao86] and Goldreich et al. [GMW87]. Possibly the most
important development in the area of practical SFE since the 1980s was the very
efficient oblivious transfer (OT) extension technique of Ishai et al. [IKNP03].
This allowed the running of an arbitrarily large number of OTs by executing a
small (security parameter) number of (possibly inefficient) “bootstrapping” OT
instances and a number of symmetric key primitives. The cheap OTs made a
dramatic difference for securely computing functions with large inputs relative
to the size of the function, as well as for GMW-like approaches, where OTs are
performed in each level of the circuit. Another important GC core improvement
is the Free-XOR algorithm [KS08a], which allowed for the evaluation of all XOR
gates of a circuit without any computational or communication costs.



As SFE moves from theory to practice, even “small” factor improvements
can have a significant effect.

1.1 Motivation of efficient GC hashing: cut-and-choose (C&C) and
other uses.

In this work we improve (actually show how to achieve it for free) a core garbling
feature of GC, circuit hashing. We discuss how this improves standard GC-based
SFE protocols. We also discuss evaluation of certified functions, and motivate
this use case.

GC hashing is an essential tool for C&C, and is employed in many uses of
C&C. We start with describing C&C at the high level.

C&C. According to the “Cut-and-Choose Protocol” entry of the Encyclopedia
of Cryptography and Security [TJ11], a (non-zero-knowledge) C&C protocol was
first mentioned in the protocol of Rabin [Rab77] where this concept was used
to convince a party that the other party sent it a specially formed integer n.
The expression “cut and choose” was introduced later by Chaum in [BCC88] in
analogy to a popular cake-sharing problem: given a cake to be divided among
two distrustful players, one of them cuts the cake in two shares, and lets the
other one choose.

Recall, the basic GC protocol is not secure against cheating GC genera-
tor, who can submit a maliciously garbled circuit. Today, C&C is the standard
tool in achieving malicious security in secure computation. At the high level,
it proceeds as follows. GC generator generates a number of garbled circuits
GC1, ...,GCn and sends them to GC evaluator, who chooses a subset of them
(say, half) at random to be opened (with the help of the generator) and verifies
the correctness of circuit construction. If all circuits were constructed correctly,
the players proceed to securely evaluate the unopened circuits, and take the
majority output. It is easy to see that the probability of GC generator suc-
ceeding in submitting a maliciously garbled circuit is exponentially small in n.
We note that significant improvement in the concrete values of n required for
a specific probability guarantee was achieved by relatively recent C&C tech-
niques [LP11,Lin13,HKE13,Bra13,LR14,HKK+14,AO12,KM15].

Using GC hashing for C&C. What motivates our work is the following natu-
ral idea, which was first formalized in Goyal et al. [GMS08]. To save on communi-
cation (usually a more scarce resource than computation), GC generator, firstly,
generates all the circuits GC1, ...,GCn from PRG seeds s1, ..., sn. Then, instead
of sending the circuits GC1, ...,GCn, it sends their hashes H(GC1), ...,H(GCn).
Finally, while the evaluation circuits will need to be sent in full over the net-
work, only the seeds s1, ..., sn need to be sent to verify that GC generator did
not cheat in the generation of the opened circuits, saving a significant amount of
communication at the cost of computing and checking H(GCi) for all n circuits.

On many of today’s computing architectures (e.g. Intel PC CPUs, with or
without hardware AES), the cost of hashing the GC can be up to 6× greater
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than the cost of fixed-key garbling. At the same time, today’s network speeds
are comparable in throughput with hardware-assisted fixed-key garbling (see our
calculations in Section 5.3). Hence, eliminating the GC hashing cost will improve
SFE performance by eliminating the (smaller of the) cost of hashing or sending
the open circuits. We stress that the use of our Free Hash requires syntactic
changes in C&C protocols and it provides a security guarantee somewhat distinct
from collision-resistant hash. Hence its use in C&C protocols should be evaluated
for security. See Section 5.1 for more details.

Additionally, we show that a new computation/communication cost ratio
offered by our free GC hash will allow for reduced communication, computation,
and execution time, while achieving the same cheating probability.

SFE of private certified functions. One advantage offered by GC is the
hiding of the evaluated function from the evaluator. To be more precise,
the circuit topology of the function is revealed, but this information leak-
age can be removed or mitigated by using techniques such as universal cir-
cuit [Val76,KS08b,LMS16,KS16] or circuit branch overlay [KKW16].

In practical scenarios, evaluated functions are to be selected as allowed by a
mutually agreed policy, e.g., to prevent evaluation of identity function outputting
player’s private input. Then evaluating a hidden function presumes either a semi-
honest GC generator, or employing a method for preventing/deterring out-of-
policy GC generation. An efficient C&C approach does not seem to help prevent
cheating here, since check circuits will reveal the evaluated function and will not
be acceptable to the GC generator. Further, depending on policy/application,
the zero-knowledge proofs of correctly constructing the circuits may be very
expensive.

In many scenarios, Certificate Authorities (CA) may be used to certify the
correct generation of GCs. Indeed, this is quite feasible at small to medium scale.
Our motivating application here is the private attribute-based credential (ABC)
checking. Very recent concurrent works [CGM16,KKL+16] showed for the first
time that ABCs can be based on GCs. While both [CGM16,KKL+16] discuss
public policy only, their GC-based constructions will not preclude achieving pri-
vate policy. We note that this is a novel property in the ABC literature, where
all previous work (in addition to supporting very small policies only) relied in
an essential manner on the policy being known to both prover and verifier.

At the high level, the architecture/steps for evaluation of private CA-certified
functions is as follows.

1. CA generates seeds s1, ...sn and, for i = 1, ...n, CA generates GCs GCi,
GC hashes H(GCi) and signatures σi = SignCA(H(GCi)). It sends all
si, H(GCi), σi to ABC verifier V .

2. Prover P and V proceed with execution of the ABC proto-
cols [CGM16,KKL+16], with the following modification:
(a) Whenever GC GCi needs to be sent by V , instead V generates GCi from

si and sends to P the pair (GCi, σi).
(b) P computes H(GC) and verifies the signature σi prior to continuing. If

the verification or GC evaluation fails, P outputs abort.
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Free Hash will allow to significantly (up to factor 6) reduce the computational
effort required by the CA to support such an application. Indeed the cost of the
signature generation can be small and ignored in cases where the signed circuits
are large, or a single signature can certify a number of circuits. The latter would
be the case where two players may be expected to evaluate a number of circuits.

Importantly, evaluation of certified functions may be essential in scenarios
where legislative and/or operational demands require high degree of accountabil-
ity and auditability (recall, digital signatures are a recognized legal instrument
in many countries [Wik]). These scenarios may frequently arise in government,
intelligence or military applications.

Technical results of this work will have direct impact, up to factor 6 improve-
ment, in the bottleneck (CA load) in many scenarios discussed above.

1.2 Our Contributions and Outline of the Work

We start the presentation with a brief discussion of related work and then pro-
viding a high-level technical overview of our approach. Then, in Section 2, we
introduce existing definitions and constructions required for this work. In Sec-
tion 3 we discuss definitional aspects, assumptions and parameter choices of our
work.

We start technical Section 4 with introducing our proposed definition of
GC hash security. Our definition is weaker than the standard hash collision
guarantees, yet it is possible to make free hashing work with several standard
GC constructions (cf. Section 5.1 for discussion about its C&C use). We then
present hashed garbling algorithms for standard garbling (based on Just Garble
of [BHKR13]) as well as for half-gates garbling of [ZRE15]. Our main contri-
bution is the improvement of the state-of-the-art half-gates; we consider hashed
Just Garble a valuable generalization and an instructional example.

In Section 5, we discuss the impact of Free Hash garbling and C&C. We
report on our implementation and its performance evaluation. We discuss the
application to certified circuits. We propose a unified cost metric (time) and
show higher speeds/smaller computation and communication for the same error
probability. We estimate total execution time reduction of about 43% for the
C&C components of [LP11], and of about 64% for [AO12,KM15] in settings we
consider (1Gbps channel and hardware AES).

1.3 Technical Overview of Free GC Hash

In this section we present the main intuition behind our technical approach.
We take advantage of the observation that the input to the hash is a garbled

circuit GC, which must be evaluatable using the garbled circuit Eval function. We
will not require standard hash collision resilience of GC strings, achieving which
is very costly relative to the cost of GC generation. Instead, we guarantee that

if an adversary can find another string ĜC that matches the hash of a correctly

garbled GC, then with high probability, the garbled circuit property of ĜC is
broken and its evaluation will fail.
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We present our intuition iteratively; we start with a naive efficient approach,
which we then refine and arrive at a secure hashed garbling. Recall, we start
with a correctly generated GC GC with the set of output decoding labels d.

Adversary’s goal is to generate a circuit ĜC with the same hash as GC, and
which will not fail evaluation/decoding given the same output labels d. This
hash guarantee is sufficient for certain GC-based SFE protocols. A syntactic
difference with [GMS08] C&C hashing is that verification of Free Hash involves
GC evaluation, and is only possible once input labels are received (e.g., after
OT of input labels). More importantly, Free Hash, as applied to C&C, provides
a security guarantee subtly distinct from collision-resistant hash. Hence, drop-
in replacement of [GMS08] C&C hashing with Free Hash may not be always
possible, and in general should be done by hand and original proofs re-checked.
See Section 5.1 for additional discussion.

We present the intuition for the classical four-row GC; we use similar ideas
to achieve half-gates GC hashing as well. We present and prove secure both Free
Hash constructions.

The first Free Hash idea is to simply set the hash of the garbled circuit to
be the XOR of all garbled table (GT) rows of GC. This is clearly problematic,
since a cheating garbler A can mount, for example, the following attack. A will
set one GT entry to be the encryption of the wrong wire label. This affects the

XOR hash as follows H(ĜC) = H(GC)⊕∆. Now suppose the garbler knows (or
guesses) which GT entry anywhere in GC will not be used in evaluation (inactive
GT row). Now A simply replaces the inactive GT row X with value X⊕∆. This
will restore the hash to the desired value, and since this entry will not be used
in the evaluation, the garbler will not be caught.

The following refinement of this approach counters the above attack: we make
the gate’s output wire key depend (in an efficient manner) on all GT rows of
that gate. The idea is that XOR hash correction, such as above, will necessarily
involve modification to an active GT row, which will affect the computed wire
key on that gate. Importantly, because wire keys and GT rows are related via a
random (albeit known) function, a GT row offset by ∆ (needed to “fix” the hash)
will result in effectively randomizing the output wire label of the gate. Because a
non-failing evaluation requires output wire labels to be consistent with the fixed
decoding information d, A will now be stuck.

We attempt this by starting with a secure garbling scheme G, and modify-
ing the way the wire labels are defined, as follows. The two wire labels w0

i , w
1
i

associated with gate Gi’s output wire will now be treated as temporary labels.
A label W j

i of the new scheme will be obtained from the wji simply by XORing
it with all the GT rows of Gi.

This is not quite sufficient, as it still allows the attacker to modify a GT
row and then correct it within the same gate table. This is possible since a “fix”
for the hash does not disrupt the validity of the wire label, as both the hash
and the new wire label are defined in the same manner (as XOR of all the GT
rows of Gi). Our final idea, is to use the GT rows as XOR pads in a different
manner for computing the GC hash and for offsetting the wire values. This way,
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the fix for the hash w.h.p. will not simultaneously keep the wire label valid. We
achieve this by malleating GT rows prior to using them as XOR pads in wire
value computation.

It is not hard to show that the above changes preserve the privacy and
authenticity properties of the garbling scheme.

We summarize the intuition for the hash security of the above construction.

Consider a ĜC 6= GC that collides under the above hash. Then, the evaluation

of ĜC will deviate from that of GC w.r.t. some wire label. Importantly, ĜC
evaluation can subsequently either return to a valid wire label or to a correct

running hash, but not both. Thus, evaluation of ĜC using encoding information
ê cannot go back to both the wire label and the hash being correct.

1.4 Related Work

To our knowledge, there is no prior work specifically addressing hashing of GCs.
At the same time, significant research effort has been expended on optimizing
core GC performance. Work includes algorithmic GC improvements, such as
Free XOR [KS08a], FleXOR [KMR14], half-gates [ZRE15], as well as optimizing
underlying primitives, such as JustGarble [BHKR13]. Our work complements
the existing GC improvement work.

Of course, the natural GC hashing approach works: just hash the generated
GC. The problem with this is, of course, its cost. Relative cost of fixed-key cipher
garbling and hashing are strongly architecture-dependent. They can be almost
the same (e.g., when both AES and SHA are implemented in hardware). In
another extreme, Intel’s white paper [GGO+] reports that AES-NI evaluation of
16-byte blocks is 23× faster that that of SHA1 (35, 965.9 vs 793, 718.7 KB/sec).
In our experiments reported in Section 5.2, we observed about 6× performance
difference between AES-NI and SHA1.

Improving on this, and motivated in part by the availability
of fast hardware AES implementations, there was a short series of
works [BRS02,RS08b,RS08a,BÖS11], implementing a hash function with
three fixed-key AES function calls. A recent work of Rogaway and Stein-
berger [RS08a] constructs a class of linearly-determined, permutation-based
compression functions {0, 1}mn → {0, 1}rn making k calls to the different
permutations πi for i ∈ [k], where they named their construction as LPmkr.
The fastest construction LP362 (12.09 cycles per byte) [BÖS11], with 6 calls to
fixed-key AES would cost about 6× of that of fast garbling. Davies-Meyer-based
hash construction [Win84] in the ideal cipher model considered in literature is
reported to have similar speeds [BÖS11].

In comparison, our work eliminates the cost of hash whatsoever, while adding
no cost to garbling or GC evaluation.

C&C and uses of hashed GC. There is a long sequence of GC-based SFE
work, e.g. [Lin13,HKE13,Bra13,LR14,HKK+14,KM15], most of which uses some
form of C&C or challenging the GC generator. Based on [GMS08], these works
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will benefit from our result, to varying degree. The exact performance benefit
will depend on where the Free Hash is used, the ratio of evaluated/test circuits,
as well as the computational/communication resources available to the players.
In Section 5, we calculate performance improvement in several C&C protocols
due to our GC hash.

2 Preliminaries

Notation. Let ppt denote probabilistic polynomial time. We let λ be the se-
curity parameter, [n] denote the set {1, ..., n}, and |t| denote the number of
bits in a string. We denote the i-th bit value of a string s by s[i], use || to de-

note concatenation of bit strings. We write x
R← X to mean sampling a value x

uniformly from the set X . For a bit string s, we let s�i denote the bit string
obtained by shifting s by i bits to the left. Throughout, by shift we mean a
circular shift, where the vacant bit positions are filled not by zeros but by the
shifted bits. lsb(s) denotes the least significant bit of string s. We say a function
f(·) is negligible if ∀c ∈ N, there exists n0 ∈ N such that ∀n ≥ n0, it holds that
f(n) < n−c.

Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be distribution
ensembles. We say X and Y are computationally indistinguishable, if for any
ppt distinguisher D and all sufficiently large s ∈ S, we have |Pr[D(Xs) =
1]− Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p(·).

Ideal cipher model. The Ideal Cipher Model (ICM) is an idealized model of
computation, similar to the random oracle model (ROM) [BR93]. In ICM, one
has a publicly accessible random block cipher (or ideal cipher). This is a block
cipher with a k-bit key and a n-bit input/output, that is chosen uniformly at
random among all block ciphers of this form; this is equivalent to having a family
of 2k independent random permutations. All parties including the adversary can
make both encryption and decryption queries to the ideal block cipher, for any
given key. ICM is shown to be equivalent to ROM [CPS08].

Collision-resistant hash function. A hash function family H is a collection
of functions, where each H ∈ H is a mapping from {0, 1}m to {0, 1}n, such that
m > n and m,n are polynomials in security parameter λ. An instance H ∈ H
can be described by a key which is public known. We say a hash function family
H is collision-resistant if for any ppt adversary A

Pr[H
R← H, (x, x′)← A(H) : x 6= x′ ∧H(x) = H(x′)] = negl(λ)

2.1 Yao’s construction

A comprehensive treatment of Yao’s construction of garbled circuits, was given
in [LP09]. At a high-level, in Yao’s construction, each wire of the boolean circuit
is associated with two random strings called wire labels or wire keys that encode
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logical 0 and 1 wire values. A garbled truth table is constructed for every gate in
the circuit, where each combination of input wire labels is used to encrypt the
appropriate output wire label as per the gate functionality. This results in four
ciphertexts per gate, one for each input combination of the gate. The evaluator
knows only one label for each input wire, and can therefore, open only one of
the four ciphertexts.

2.2 Garbled Circuits

We make use of the abstraction of garbling schemes [BHR12] introduced by Bel-
lare et al. At a high-level, a garbling scheme consists of the following algorithms:
Gb takes a circuit as input and outputs a garbled circuit, encoding information,
and decoding information. En takes an input x and encoding information and
outputs a garbled input X. Eval takes a garbled circuit and garbled input X and
outputs a garbled output Y . Finally, De takes a garbled output Y and decoding
information and outputs a plain circuit-output (or an error ⊥).

We note that this deviates from the definition of [BHR12], in that, we include
⊥ in the range of the decoding algorithm De, so it now outputs a plain output
value corresponding to a garbled output value or ⊥ if the garbled output value
is invalid. [JKO13] add an additional verification algorithm Ve to the garbling
scheme. Formally, we define a verifiable garbling scheme by a tuple of functions
G = (Gb,En,Eval,De,Ve) with each function defined as follows.

– Garbling algorithm Gb(1λ, C): A randomized algorithm which takes as input
the security parameter and a circuit C : {0, 1}n → {0, 1}m and outputs a
tuple of strings (GC, {X0

j , X
1
j }j∈[n], {Z0

j , Z
1
j }j∈[m]), where GC is the garbled

circuit, the values {X0
j , X

1
j }j∈[n] denote the input-wire labels, and the values

{Z0
j , Z

1
j }j∈[m] denote the output-wire labels.

– Encode algorithm En(x, {X0
j , X

1
j }j∈[n]): a deterministic algorithm that out-

puts the input wire labels X = {Xx[i]
i }i∈[n] corresponding to input x.

– Evaluation algorithm Eval(GC, {Xj}j∈[n]): A deterministic algorithm which
evaluates garbled circuit GC on input-wire labels {Xj}j∈[n], and outputs a
garbled output Y.

– Decode algorithm De(Y, {Z0
j , Z

1
j }j∈[m]): A deterministic algorithm that out-

puts the plaintext output corresponding to Y or ⊥ signifying an error if the
garbled output Y is invalid.

– Verification algorithm Ve(C,GC, {Z0
j , Z

1
j }j∈[m], {X0

j , X
1
j }j∈[n]): A determin-

istic algorithm which takes as input a circuit C, garbled circuit GC, input-
wire labels {X0

j , X
1
j }j∈[n], and output-wire labels {Z0

j , Z
1
j }j∈[m] and outputs

accept if GC is a valid garbling of C and reject otherwise.

A verifiable garbling scheme may satisfy several properties such as correct-
ness, privacy, obliviousness, authenticity and verifiability. We now review some
of these notions: (1) correctness, (2) privacy (3) authenticity, and (4) verifia-
bility. The definitions for correctness and authenticity are standard: correctness
enforces that a correctly garbled circuit, when evaluated, outputs the correct
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output of the underlying circuit; authenticity enforces that the evaluator can
only learn the output label that corresponds to the value of the function. Veri-
fiability [JKO13] allows one to check that the garbled circuit indeed implements
the specified plaintext circuit C.

We include the definitions of these properties for completeness.

Definition 2.1 (Correctness) A garbling scheme G is correct if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the
following probability is negligible in λ:

Pr(De(Eval(GC, {Xxj

j }j∈[n]), {Z
0
j , Z

1
j }j∈[m]) 6= C(x) :

(GC, {X0
j , X

1
j }j∈[n], {Z0

j , Z
1
j }j∈[m])← Gb(1λ, C))

Definition 2.2 (Privacy) A garbling scheme G has privacy if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, there exists a ppt simulator
Sim such that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time
adversaries A, the following two distributions are computationally indistinguish-
able:

– Real(f, x) : run (GC, e, d)← Gb(1λ, C), and output (GC,En(x, e), d).
– IdealSim(C, f(x)): output Sim(1λ, C, C(x))

Definition 2.3 (Authenticity) A garbling scheme G is authentic if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all
probabilistic polynomial-time adversaries A, the following probability is negligible
in λ:

Pr

(
Ŷ 6= Eval(GC, {Xxj

j }j∈[n])
∧De(Ŷ , {Z0

j , Z
1
j }j∈[m]) 6= ⊥

:
(GC, {X0

j , X
1
j }j∈[n], {Z0, Z1}j∈[m])← Gb(1λ, C)

Ŷ ← A(C, x,GC, {Xxj

j }j∈[n])

)

Definition 2.4 (Verifiability) A garbling scheme G is verifiable if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all
probabilistic polynomial-time adversaries A, the following probability is negligible
in λ:

Pr

(
De(Eval(GC,En(x, e)), d) 6= C(x) :

(GC, e, d)← A(1λ, C)
Ve (C,GC, d, e) = accept

)
In the definition of verifiability above, we give the decoding information ex-

plicitly to the verification algorithm since in our construction the garbled circuit
includes only the garbled tables and not the decoding information. We note that
a natural and efficient way to obtain a verifiable garbling scheme is to generate
GC by using the output of a pseudorandom generator on a seed as the random
tape for Gb, and then provide the seed to the verification procedure Ve. Ve will
regenerate the GC and the encoding and decoding tables, and will output accept
for a garbled circuit if and only if it is equal to the generated one.
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2.3 Free-XOR and other optimizations

Several works have studied optimizations to reduce the size of a garbled gate
down from four ciphertexts. Garbled row-reduction was introduced by Naor,
Pinkas and Sumner [NPS99]. There, instead of choosing the wire labels at ran-
dom for each wire, they are chosen such that the first ciphertext will be the
all-zero string, and hence need not be sent. In [PSSW09], the authors describe a
way to further reduce the number of ciphertexts per gate to 2, by applying poly-
nomial interpolation at each gate. Kolesnikov and Schneider [KS08a] introduced
the Free XOR approach, allowing evaluation of XOR gates without any cost.
Here, the idea is to choose wire labels such that the two labels on the same wire
have the same (secret) offset across the entire circuit. The two labels for a given
wire are of the form (A,A⊕∆), where ∆ is secret and common to all wires. Now,
as first proposed in [Kol05], an evaluator who has one of (A,A⊕∆) and one of
(B,B⊕∆) can compute the XOR by simply XORing the wire labels. The result
is either C or C ⊕ ∆ where C = A ⊕ B and correctly represents the result of
XOR. Thus, no ciphertexts are needed for the XOR gate. Kolesnikov, Mohassel
and Rosulek proposed a generalization of Free XOR called FleXOR [KMR14]. In
FleXOR, each XOR gate can be garbled using 0,1, or 2 ciphertexts, depending
on certain structural properties of the circuit. In [ZRE15], the authors present a
method built on Free XOR that can garble an AND gate using only two cipher-
texts. This technique is also compatible with Free XOR. The idea is to write an
AND gate as a combination of XOR and two half-gates, where a half-gate is an
AND gate for which one party knows one of the inputs. The half-gates can be
garbled with one ciphertext each, and the resulting AND gate, in combination
with free-XOR, uses two ciphertexts.

3 Preliminary Discussion

3.1 Our Treatment of GC Topology and Formalization of the GC
Representation

A formalization of what precisely the GC description string GC includes is often
natural and hence is usually omitted from discussion. In our setting this an
important aspect, as we focus on the collision resilience-related properties of GC
strings, as well as on minimizing the size of GC and its computation time.

Firstly, we remind the reader that in the BHR [BHR12] notation the func-
tion Gb outputs the garbling function F. Since it is problematic to operate on
functions, BHR regards Gb as operating on strings representing and defining the
corresponding functions. In our notation, Gb outputs GC, which we treat as a
string defining the evaluation process as well.

Clearly, GC will contain a set of garbled tables; the question is how to treat
the circuit topology, i.e. exactly how to describe/define how Eval should process
GC. One choice is to treat the plaintext circuit/topology as a part of GC. Because
we focus on size/computation, this approach would cause some waste. Indeed,
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in most scenarios, the circuit and topology is known to both players, and hence
could be implicit in GC.

Instead, we opt to consider the circuit description, including the locations of
the free XOR gates as an externally generated string. It is certainly the case in
SFE where the evaluated function is known to both players, and players can a
priori adopt a convention on how to map the GC garbled gates to the circuit
gates, hence defining the evaluation process. In PFE, which is the case in our
certified function evaluation scenario (see Section 1.1), the evaluated function is
not known to the evaluator. In this case, we still treat the topology/evaluation
instructions as external to GC and assume that they are correctly delivered to
the evaluator.

We note that in the certified function case, this can be naturally achieved by
the CA signing the topology with a unique identifier, and including this identifier
with GC and the hash of GC.

3.2 Our Assumptions

Our work optimizes high-performance primitives, and it is important to be clear
on the assumptions we require of them so as to properly compare to related
work.

We use the same primitives, and nearly identical constructions as JustGar-
ble [BHKR13] and half-gates [ZRE15]. As a result, privacy and authenticity prop-
erties of our schemes hold under the same assumptions as [BHKR13,ZRE15],
namely that the Davies-Meyer (DM) construction is a primitive meeting the
guarantee of the random-permutation model (RPM). While [BHKR13] proves
the security of their construction in RPM directly, [ZRE15] abstracts the DM
security property as a variant of correlation-robust function. Our first (auxiliary)
construction, namely, the privacy property, is proven under assumption that DM
is correlation-robust.

To achieve hash security, we need to assume collision resistance of DM. We
note that collision resistance of DM can be achieved e.g., by assuming that DM
meets the requirement of the ideal-cipher model (ICM) [BRS02].

3.3 Cipher Instantiation

As noted above, we instantiate the key derivation function (KDF) calls as
do [BHKR13,ZRE15], with the Davies-Meyer construction. Namely, the input
X to KDF H(X, i) are the 128-bit long wire keys, and i is an internal integer
that simply increments per hash function call. We set Hπ(X, i) = π(K) ⊕ K,
where K = 2x⊕ i (π is assumed to be an ideal cipher, instantiated with 128-bit
AES with randomly chosen key).

3.4 Hash Security Parameters

We use λ = 128-bit security parameter, which is standard for encryption and
GCs. However, 128-bit hash domain is often seen as insufficient. This is be-
cause of the birthday attack, which provides time-space tradeoff for an attacker.
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Specifically, a collision-finding attacker can precompute and store a square-root
number of hash images. Then by birthday paradox, a random collision will be
found among these images with significant probability. This attack requires 264

hash computations and efficiently accessible storage for 264 hash values.

We argue that 128-bit hash security is nevertheless acceptable in SFE, if used
carefully.

Firstly, we note that computing 264 hashes is an extremely expensive task.
Indeed, recent Bitcoin reports [Bra] suggest that world’s hashing power recently
peaked at 1 PetaHash per second (i.e. 10005 < 250 hashes/sec). That is, global
Blockchain hashing power can compute 264 hashes in the order of 214 seconds
(or 4.5 hours). Much more importantly, storage systems operate many orders
of magnitude slower than CPUs and hashing ASICs, implying that storing and
searching these hashes will take 103–106 times more time than generating them.
Thus, extremely conservatively, we estimate that today a random hash collision
may be found by engaging the entire Bitcoin mining system fitted with global-
scale storage system in 4500 hours (about 6 months).

In the majority of applications, the time and financial expense to achieve
such a task will not be feasible.

Importantly, SFE hash checks have an online property, meaning that we
can set up the system such that preprocessing or post-processing will not aid
the attacker. Indeed, consider the SFE scenario and the following solution. In
the existing fixed-key cipher-based protocols it is specified that the fixed key
is chosen at random prior to GC generation. We can simply explicitly require
that both players contribute to key generation, and that the selected key will
be the one defining the fixed-key permutation used in GC. This will render any
precomputation useless. Post-computation, while a threat to the privacy and,
perhaps, authenticity of GC, is not helping the attacker, since the GC evaluator
decision to accept or reject reached during the execution, is irrevocable. GC
evaluator can set a generous time limit (e.g. several seconds or even minutes)
after which it will abort the execution. The probability of A cheating via finding
a 128-bit hash collision in this period of time sufficiently small, even given entire
world’s resources available to A.

In sum, we have argued that using 128-bit hash security is appropriate for
SFE and the applications we discuss in this work. Further, as eventually we move
from 128-bit AES to next-generation of ciphers, our hash security guarantee will
benefit from the transition.

4 GC hashing scheme

In this section, we define our hashed garbled circuit scheme. We capture the secu-
rity guarantees we require from this new notion, and then present our construc-
tion that outputs a garbled circuit and its hash. Our garbled circuit construction
satisfies the properties of correctness, authenticity and privacy. We then show
that our construction is secure according to our hash security definition.
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4.1 Hashed Garbled Circuit security

Recall, we want to define hash security of garbled circuits with the same topology
(cf. Section 3.1). We require that if the hash of such two garbled circuits collide,
and one of them verifies correctly, then with high probability the other garbled
circuit will fail evaluation. We now formalize this intuition in the definition
below.

Definition 4.1 (Hash security) A garbling scheme G is hash-secure with respect
to a hash function H if for every boolean circuit C, input x and ppt adversary
A,

Pr


De(Eval(ĜC,En(x, ê)), d) 6= ⊥ :

(
GC, ĜC, e = {X0

j , X
1
j }j∈[m],

ê = {X̂0
j , X̂

1
j }j∈[m], d, h

)
← A(C, 1λ),

GC 6= ĜC,

Topology(GC) = Topology(ĜC),
Ve(C,GC, d, e) = accept,

H(GC) = H(ĜC) = h)


is negligible in λ.

We point out that the decoding information d that results in failed decoding

of ĜC is the same decoding information with respect to which GC successfully
verifies, and this is essential to hash security. If we did not place this requirement,

then an adversary can change d to d̂ which decodes any string that Eval on ĜC
returns. We note that in full generality it is not necessary to requireA to generate
a GC passing the verification Ve of a specific circuit C. We can achieve that if
an A generates two unequal GCs with the same hash, at least one of them will
always output ⊥. However, the above definition 4.1 reflects the typical use of
GCs, and is sufficient for our construction.

In this work we consider verifiable garbling schemes with hash security. That
is, G = (Gb,En,Eval,De,Ve,H). Because we apply our constructions to secure
computation, we will need schemes additionally satisfying the properties of cor-
rectness (cf. Definition 2.1) and privacy (cf. Definition 2.2). If needed, the au-
thenticity property of GC (cf. Definition 2.3) can be achieved as well.

4.2 Our Construction

We now formalize the intuition of Section 1.3 on how to generate a GC hash
for free when garbling. The full construction is presented in Figure 1; here we
provide additional intuition. Recall, in Section 1.3, we explained that after we
generated (temporary) GC tables, we need to XOR their GT entries into the
GC hash in one manner, and into the GC wire labels in another manner. In our
construction, we do so by bitwise shifting the GT entries Ci prior to XORing
them into the wire labels.
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We note that we use bit shifting because it is fast and easy to implement,
but a more general condition is sufficient for security of our scheme4.

In presenting our construction, we adopt the approach used by [BHKR13]
and others, where the gates are garbled as H(wi||wj ||r)⊕ wk, where wi and wj
are wire labels on input wires, r is a nonce and wk is a wire label on the output
wire. H is a key-derivation function modeled as a random oracle.

The scheme we present below follows the standard point-and-permute op-
timization. This was introduced by Beaver, Micali and Rogaway in [BMR90],
where a select bit is appended to each wire label, such that the two labels on
each wire have opposite select bits. This association between select bits and the
logical truth values is random and kept secret. Now the garbled truth table can
be arranged by these public select bits. The evaluator can select the correct ci-
phertext to decrypt based on the select bit instead of trying all four. For each
wire label w, its least significant bit lsb(w) is reserved as a select bit that is used
as in the point-and-permute technique, and complementary wire labels have op-
posite select bits. For the ith wire, define pi = lsb(w0

i ). When using Free XOR,
the global randomly chosen offset R is such that lsb(R) = 1. Since w0

i ⊕w1
i = R

holds for each i in the circuit, we have that lsb(w0
i ) 6= lsb(w1

i ).
To simplify presentation, in our constructions and notation we set the de-

coding information simply to be the output wire labels. We note, this does not
preserve the authenticity property of GC. Authenticity can be easily achieved in
our scheme, e.g. by instead setting the decoding information to be the collision-
resistant hashes of the output labels. In more detail, let H be a collision-
resistant hash function. The output translation table for a wire will now be
{H(w0

i ), H(w1
i )}. Given a garbled value wbi on an output wire, it is possible to

determine whether it corresponds to the 0 or 1 key by computing H(wbi ) and
checking whether it is equal to the first or second value in the pair. However,
given this output translation table, it is not feasible to find the actual garbled
values.

Let H : {0, 1}∗ → {0, 1}λ be a function, satisfying properties discussed in
Section 3.2. For a function represented by a circuit C : {0, 1}n → {0, 1}m, we use
Win,Wout to denote the input and output wires of f respectively, and Ginter for
intermediate gates. The Free Hash garbling scheme hG = (Gb,En,De,Eval,Ve,H)
is described in Figure 1.

4 This condition is as follows. We set the wire labels of a gate output wire as a function
of its temporary wire labels and the entries of the garbled gate table. Consider
functions fi such that, if

4⊕
i=1

Ci =

4⊕
i=1

Ĉi

for Ci 6= Ĉi. Then,

Pr[

4⊕
i=1

fi(Ci) =

4⊕
i=1

fi(Ĉi)]

is negligible. As we will later see in the proof, this is the property that we use in
proving the hash security of our construction in proof of Theorem 4.6.
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– Gb(1λ, C): On input the security parameter λ and a circuit C, choose R ←
{0, 1}λ−1||1 and set h = 0.
1. For each input wire Wi ∈Win of the circuit C, set garbled labels in the following

way: Randomly choose K0
i ∈ {0, 1}λ. Set K1

i = K0
i ⊕ R. Set the garbled labels

for input wire Wi as wi = (K0
i ,K

1
i ).

2. For each intermediate gate Gi : Wc = gi(Wa,Wb) of C in topological order:
(a) Parse the garbled input labels as wa = (K0

a,K
1
a) and wb = (K0

b ,K
1
b ).

(b) If Gi is an XOR gate, set garbled labels for the gate output wire Wc as
K0
c = K0

a ⊕K0
b , and K1

c = K0
c ⊕R.

(c) If Gi is an AND gate
• Choose temporary garbled labels for the gate output wire Wc as T 0

c ∈
{0, 1}λ, and set T 1

c = T 0
c ⊕R.

• Create Gi’s garbled table: For each possible combination of Gi’s in-
put values va, vb ∈ {0, 1}, set τ iva,vb = H(Kva

a |Kvb
b |i) ⊕ T

gi(va,vb)
c .

Sort entries τ i in the table by input pointers, and let the entries be
Ci,1, Ci,2, Ci,3, Ci,4.

• For d ∈ {0, 1}, compute:

padi,1 = C�1
i,1 ⊕ C�2

i,2 ⊕ C�3
i,3 ⊕ C�4

i,4

K0
c = T 0

c ⊕ padi,1

Set the garbled labels for wire Wc as

wc = (K0
c ,K

1
c ), where K1

c = K0
c ⊕R

• Define
padi,2 = Ci,1 ⊕ Ci,2 ⊕ Ci,3 ⊕ Ci,4

h = h⊕ padi,2

3. For each output wire Wi ∈Wout of C, set d0i = (0,K0
i ) and d1i = (1,K1

i )
4. Output encoding information e, decoding information d, garbled circuit GC and

hash H(GC) as

e = {(K0
i ,K

1
i )}Wi∈Win , d = {(d0i , d1i )}Wi∈Wout ,GC = {τ ia,b}a,b∈{0,1}

Gi∈Ginter

,H(GC) = h

– En(x, e): On input encoding information e and input x, output encoding X =

{Xx[i]
i }i∈[n].

– De(Y, d): On input the decoding information d and the garbled output of the
circuit Y = (Y1, ..., Ym), for each output wire i of the circuit C, parse d as
d = {(0,K0

i ), (1,K1
i )}i∈[m]. Then, set yi = b if Yi = Kb

i and yi = ⊥ if Yi 6∈ {K0
i ,K

1
i }.

Output the result y = (y1, ..., ym) if ∀i, yi 6= ⊥. Else, output ⊥.
– Eval(GC,X): On input the garbled circuit GC and garbled input X, for each gate
Gi : Wc = gi(Wa,Wb) with garbled inputs wa = Kva

a , wb = K
vb
b . If Gi is an XOR

gate, compute w
gi(va,vb)
c = Kva

a ⊕Kvb
b . If Gi is an AND gate:

1. Let C1, C2, C3, C4 be the table entries. Compute pad =
4⊕
i=1

C�ii .

2. Decode the temporary output value from garbled table entry τ i in position
(va, vb) as T

gi(va,vb)
c = H(Kva

a |Kvb
b |i)⊕ τ

i.

3. Compute the garbled value as w
gi(va,vb)
c = T

gi(va,vb)
c ⊕ pad.

– Ve(C,GC, d, e): Check that each gate in GC correctly encrypts the gate in C given
the encoding information e. If yes, then output accept, else output reject.

– H(GC): On input the garbled circuit GC, output h as the XOR of all ciphertexts,

h =
⊕
gi

(Ci,1 ⊕ Ci,2 ⊕ Ci,3 ⊕ Ci,4)

Fig. 1: The Free Hash garbling scheme hG
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The construction in Figure 1 satisfies the properties of authenticity (cf. Def-
inition 2.3), privacy (cf. Definition 2.2) and hash security (cf. Definition 4.1).

Theorem 4.2 The Free Hash garbling scheme hG described in Figure 1 satisfies
privacy as in Definition 2.2 assuming the correlation robustness of H.

Theorem 4.3 The Free Hash garbling scheme hG described in Figure 1 satisfies
authenticity as in Definition 2.3 assuming the correlation robustness of H.

We omit the proofs of privacy and authenticity in the main body, since our
changes to the standard construction do not affect them, and closely follow the
arguments of [BHKR13] and [ZRE15]. We include the proofs in the full version.

Hash security. We now state and prove a technical lemma on which we rely for
proving hash security (Theorem 4.6). The lemma below captures the following

useful fact about GC and ĜC: a gate in ĜC whose padi,2 (XOR hash of the gate
table) collides with that of the gate in GC will not be evaluated correctly (i.e.
will not produce a valid label on the output wire) if the gate table is different,
or if the input wire keys of the gate are different, or both. We say that a wire
label, obtained during evaluation on input x encoded using ê, is valid if it is
one of the two possible wire labels for the same wire in GC. For presentation,
we slightly abuse notation, by writing gi to mean both the gate and the garbled
table corresponding to the gate. It will be clear from context, which of the two
is meant.

Definition 4.4 (Valid key) Let (GC, e, ĜC, ê, d, h) be such that GC 6=
ĜC,Topology(GC) = Topology(ĜC),H(ĜC) = H(GC) = h and Ve(GC, d, e) =

accept. An internal wire key K̂b
i obtained on wire wi during Eval of ĜC is called

valid if K̂b
i ∈ {K0

i ,K
1
i } where (K0

i ,K
1
i ) are the wire keys corresponding to 0 and

1 on wire wi in GC.

Lemma 4.5 Let (GC, e, ĜC, ê, d, h) ← A(1λ) be such that GC 6=
ĜC,Topology(GC) = Topology(ĜC),H(ĜC) = H(GC) = h and Ve(GC, d, e) =

accept. Assuming padi,2 = p̂adi,2, evaluation of the garbled gate ĝi during Eval
results in a valid wire label for the output wire of the gate with probability negl(λ)
in the following cases:

1. Input wire keys to gate ĝi are valid, and ĝi 6= gi.
2. At least one input wire key to gate ĝi is invalid and ĝi = gi.
3. At least one input wire key to gate ĝi is invalid, and ĝi 6= gi.

Proof. Let gi = {C1, C2, C3, C4} be the ith garbled table in GC and ĝi =

{Ĉ1, Ĉ2, Ĉ3, Ĉ4} the ith garbled table in ĜC.

Case 1 Since ĝi 6= gi, w.l.o.g., let C1 6= Ĉ1. Since padi,2 = p̂adi,2, there must be

(at least) one j 6= 1 such that Ĉj 6= Cj . Now, padi,2 = p̂adi,2 gives,

Ĉj ⊕ Ĉ1 = Cj ⊕ C1 (1)
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Let K̂ = (K̂a, K̂b) be the input wire key to gate gi in ĜC during Eval, which
by assumption is valid.

For the sake of contradiction, say, one of the ciphertexts, say, Ĉ1, in ĝi gives a
valid output wire key. Let T be the intermediate key obtained by decrypting

Ĉ1. Now validity of output wire key implies T ⊕ p̂adi,1 = K ∈ {K0,K1}.

T ⊕ p̂adi,1 = K

Ĉj
�j
⊕ Ĉ1

�1
= C�jj ⊕ C�1

1 ⊕R (2)

where R = T ⊕K⊕padi,1 is a fixed value, and T = H(K̂||i)⊕ Ĉ1. Therefore,
K is valid only when both (1) and (2) hold. We now argue that this happens
with probability ≤ 1/2λ. By the assumption that Ve(GC, d, e) = accept,
C1 and Cj are random keys masked by the outputs of the function H. If,

therefore, a Ĉ1 and Ĉj that satisfies (1), also satisfies (2), then we can find
r1 and r2 such that r1 ⊕ r2 is δ for some fixed δ and r�1 ⊕ r�2 collides with
the output of the function H on a fixed value. By collision resistance of the
function H, this happens only with probability ≤ 1/2λ.

Case 2 gi = ĝi. Either K̂a 6∈ {K0
a ,K

1
a) or K̂b 6∈ {K0

b ,K
1
b ) or both, where

(K0
a ,K

1
a) and (K0

b ,K
1
b ) are the wire keys corresponding to the input wires

of ĝi in GC. Let (K0,K1) be the wire keys of the output wire of gi.

For the sake of contradiction, say, one of the ciphertexts, say, C1, gives a valid
output wire key with K̂ as the input wire keys. Let T be the intermediate
key obtained by decrypting C1. Now validity of output wire key implies
T ⊕ padi,1 = K ∈ {K0,K1}. That is,

H(K̂||i)⊕ C1 ⊕ padi,1 = K (3)

K is valid when (3) holds, and that happens with negligible probability since
we can find a r such that the output of H on r collides with a given value
only with probability ≤ 1/2λ.

Case 3 W.l.o.g., let C1 6= Ĉ1. Since padi,2 = p̂adi,2, there must be (at least)

one j 6= 1 such that Ĉj 6= Cj .

Either K̂a 6∈ {K0
a ,K

1
a) or K̂b 6∈ {K0

b ,K
1
b ) or both, where (K0

a ,K
1
a) and

(K0
bK

1
b ) are the wire keys corresponding to the input wires of ĝi in GC.

(K0,K1) be the wire keys of the output wire of gi.

Now, padi,2 = p̂adi,2 gives,

Ĉj ⊕ Ĉ1 = Cj ⊕ C1 (4)

Let K̂ = (K̂a, K̂b) be the input wire key to gate gi in ĜC during Eval. Since

K̂ is invalid by assumption, either K̂a 6∈ {K0
a ,K

1
a) or K̂b 6∈ {K0

b ,K
1
b ) or

both, where (K0
a ,K

1
a) and (K0

b ,K
1
b ) are the wire keys corresponding to the

input wires of ĝi in GC. (K0,K1) be the wire keys of the output wire of gi.

17



For the sake of contradiction, say, one of the ciphertexts, say, Ĉ1, in ĝi gives a
valid output wire key. Let T be the intermediate key obtained by decrypting

Ĉ1. Now validity of output wire key implies T ⊕ p̂adi,1 = K ∈ {K0,K1}.

T ⊕ p̂adi,1 = K

Ĉj
�j
⊕ Ĉ1

�1
= C�jj ⊕ C�1

1 ⊕R (5)

where R = T ⊕ K ⊕ pad1, and T = H(K̂||i) ⊕ Ĉ1. Therefore, K is valid
only when both (4) and (5) hold. We now argue that this happens with
probability ≤ 1/2λ. By the assumption that Ve(GC, d, e) = accept, C1 and
Cj are random keys masked by the outputs of the function H. If, therefore,

K̂, Ĉ1 and Ĉj satisfy (4) and (5), then we can find r, r1 and r2 such that
the output of the function H on r collides with r�1 ⊕ r�2 and r1⊕ r2 is δ for
some fixed δ. By collision resistance of the function H, this happens with
probability at most 1/2λ.

When there is more than one j 6= 1 such that Ĉj 6= Cj in cases (1) and (3)
above, we will have, ⊕

j 6=1

Ĉj ⊕ Ĉ1 =
⊕
j 6=1

Cj ⊕ C1

⊕
j 6=1

Ĉj
�j
⊕ Ĉ1

�1
=
⊕
j 6=1

C�jj ⊕ C�1
1 ⊕R

and the same arguments extend.

ut

Theorem 4.6 The Free Hash garbling scheme hG described in Figure 1 satisfies
hash security as defined in Definition 4.1 assuming the collision-resistance of H.

Proof. Given an adversary A who outputs (GC, e, ĜC, ê, d, h) such that

GC 6= ĜC,H(ĜC) = H(GC) = h, Ve(GC, d, e) = accept, we show that

∀x,Pr[Eval(ĜC,En(x, ê)) 6= ⊥] = negl(λ). Since GC 6= ĜC, they differ in at least
one garbled gate. Let gi be the first gate in topological order that differs in GC

and ĜC. When padi,2 = p̂adi,2 for all ĝi 6= gi, by case (1) of Lemma 4.5, we have
that the output wire key for ĝi is invalid. Now, by inductively applying cases
(2) and (3) of Lemma 4.5, all wire keys from then on, in topological order of
evaluation remain invalid.

Now, when padi,2 6= p̂adi,2, Eval on ĜC can return to a valid wire key for

the output wire of ĝi 6= gi. Let us denote by Ĥi the running hash up until

gate ĝi in ĜC. Since padi,2 6= p̂adi,2, we have Ĥi 6= Hi. By the assumption that

H(ĜC) = H(GC), there must be a gate ĝj 6= gj such that
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∆ =
⊕

i:padi,2 6=p̂adi,2

(padi,2 ⊕ p̂adi,2) = Ĥi ⊕Hi (6)

p̂adj,2 = padj,2 ⊕∆ (7)

We now argue that the output wire of ĝj is invalid. From an argument similar
to case (1) of Lemma 4.5 (since the input wire keys to ĝj are valid), (7) imposes
a constraint on the ciphertexts of ĝj . Thus the probability that output wire key
is valid is bounded by the probability of finding r1 and r2 such that r1 ⊕ r2 is
δ for some fixed δ and r�1 ⊕ r�2 collides with the output of the function H on
a fixed value. By collision resistance of the function H, this happens only with
probability ≤ 1/2λ.

By Lemma 4.5 and the union bound, we have that,

Pr[De(Eval(ĜC,En(x, ê)), d) 6= ⊥] ≤ |C|q2/2λ, where |C| is the number of
gates in the circuit, and q is the number of queries to the function H that A is
allowed to make.

Since the input x that lead to the above wire labels was arbitrary, we have

that, given H(ĜC) = H(GC),GC 6= ĜC,Ve(GC, d, e) = accept,

∀x,Pr[De(Eval(ĜC,En(x, ê)), d) 6= ⊥] = negl(λ)
ut

As calculated in the proof, the probability of hash collision is bounded by
|C|q2/2λ. See Section 3.4 for discussion on parameter choices.

4.3 Hashing in half-gates garbling scheme

The current state of the art for garbled circuit construction is the half-gates
scheme of Zahur et al. In the half-gates construction, two ciphertexts are used for
each AND gate and the construction is compatible with the free-XOR technique
[KS08a]. A half-gate is a garbled AND gate where one of the inputs to the gate
is known in clear to one of the parties. Consider an AND gate c = a ∧ b. Now
suppose the generator chooses a uniformly random bit r, and imagine we can
have the evaluator learn the value of r ⊕ b. We can write c as

c = a ∧ b = (a ∧ r)⊕ (a ∧ (r ⊕ b))

[ZRE15] show how to garble the first AND gate with a generator-half-gate
where the generator knows one of the values r, and the second AND gate with
evaluator-half-gate since the evaluator know r⊕ b. The full AND gate is garbled
by taking XOR of the two half-gates. Each garbled half-gate is one ciphertext,
and with free-XOR, the full AND gate is two ciphertexts.

Let GC′ = (Gb′,En′,De′,Eval′) be the algorithms of the half-gate garbling
procedure in [ZRE15]. The algorithms for encoding and evaluation in our scheme
are the same; we only include the garbling and decoding algorithms, Gb and De.
We assume that the half-gate garbling scheme outputs wire labels corresponding
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to both 0 and 1 on the output wires as the decoding information. Gb outputs
a garbled circuit, the encoding and decoding information and the hash of the
garbled circuit. De returns a decoded output or ⊥ if the garbled output is invalid.

– Gb(1λ, C): On input security parameter λ and a circuit C, run the half-gate garbling
algorithm (e′, d′,GC′) ← Gb′(1λ, C), where GC′ = {τGi , τEi}gi∈Ginter , and d′ =
{(d0i , d1i )}Wi∈Wout . Set the encoding information e, decoding information d, garbled
circuit GC and hash H(GC) as

e = e′, d = d′, GC = GC′, H(GC) =
⊕
i

(τGi ⊕ τEi)

– En is defined to be En′ .
– Eval is defined to be Eval′.
– De(Y, d): On input the decoding information d and the garbled output of the circuit

Y = (Y1, ..., Ym), for each output wire i of the circuit C, parse d as d = {d0i , d1i }i∈[m].
Then, set yi = b if Yi = dbi and yi = ⊥ if Yi 6∈ {d0i , d1i }. Output the result
y = (y1, ..., ym) if ∀i, yi 6= ⊥. Else, output ⊥.

Fig. 2: The Half-Gate Free Hash garbling scheme halfG

Note that in the construction of hashed garbling scheme for half-gates above,
the hash is the XOR of all the ciphertexts. Unlike our construction for general
garbled circuits (cf. Figure 1), we do not modify the wire keys. Since the garbled
circuit is the same as the original half-gates construction, we retain the privacy
and authenticity properties. To argue hash security, first observe that in the half-
gates scheme both ciphertexts in a garbled gate (one per half-gate) are decrypted
and used for output wire computation. Consider an attacker A which modifies
a gate table and changes one entry to decrypt to a wrong label. Then there
must be another modified entry to correct the hash, and both modified entries
need to decrypt correctly during evaluation to produce a valid label. Thus, in
the half-gate garbling, the intuition for hash security is similar to that of our
original 4-row construction. Namely, any modified gate will break the XOR hash.
Further, any gate table that brings back the hash to the correct value will result
in an invalid output wire label. We provide a proof sketch below.

Theorem 4.7 The Half-Gate Free Hash garbling scheme halfG described in Fig-
ure 2 satisfies hash security as defined in Definition 4.1 assuming the collision-
resistance of H.

Proof Sketch. Given an adversary A who outputs (GC, e, ĜC, ê, d, h) such that

GC 6= ĜC,H(ĜC) = H(GC) = h, Ve(GC, d, e) = accept, we show that

∀x,Pr[Eval(ĜC,En(ê, x)) 6= ⊥] = negl(λ). Since GC 6= ĜC, they must differ in
at least one garbled gate, and let gi 6= ĝi be the first gate in topological order
that differs: gi = {τGi

, τEi
} and ĝi = {τ̂Gi

, τ̂Ei
}. Let Ĥi be the running hash up

until gate ĝi in ĜC. We consider the following cases:
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1. Ĥi = Hi where Hi is the running hash until gate gi in GC. Now gi 6= ĝi and
Ĥi = Hi implies that both half-gates are modified since ĝi is the first gate
that differs from GC. That is,

τGi
6= τ̂Gi

and τEi
6= τ̂Ei

Let (K̂a, K̂b) be the input wire keys of ĝi. The output wire key of ĝi during
Eval is given by

K̂ = H(K̂a)⊕ saτ̂Gi ⊕H(K̂b)⊕ sb(τ̂Ei ⊕ K̂a)

where sa and sb are select bits. The probability that K̂ is valid is at most
1/2λ by the collision resistance of function H. Now, by inductively using

argument similar to cases (2) and (3) of Lemma 4.5, the wire keys of ĜC
remain invalid.

2. gi 6= ĝi, Ĥi 6= Hi and H(GC) = H(ĜC) implies there must be a gate ĝj 6= gj
such that

τ̂Gj
⊕ τ̂Ej

= Ĥi ⊕Hi ⊕ (τGj
⊕ τEj

) (8)

We now argue that the output wire of ĝj is invalid: (8) imposes a constraint
on the ciphertexts of ĝj . Thus the probability that output wire key is valid
is bounded by the probability of finding r1 and r2 such that r1 ⊕ r2 is δ
for some fixed δ and r1 and r2 collide with the outputs of function H. By
collision resistance of H, this happens with probability at most 1/2λ. Again,

inductively all further wire keys of ĜC remain invalid.

By the union bound, we have that, Pr[De(Eval(ĜC,En(ê, x)), d) 6= ⊥] ≤
|C|q2/2λ, where |C| is the number of gates in the circuit, and q is the num-
ber of queries to the function H that A is allowed to make. ut

As calculated in the proof, the probability of hash collision is bounded by
|C|q2/2λ. See Section 3.4 for discussion on parameter choices.

5 Performance and Impact

5.1 Cut-and-choose protocols using hG

As pointed out in [GMS08], an improvement in communication complexity can
be achieved by taking the following approach. To compute a garbled circuit, the
garbler P1 generates a random PRG seed. Then the output of the pseudorandom
generator is used as the random tape for the garbling algorithm. In C&C, P1

sends to P2 only a collision-resistant (CR) hash of each GC. In a later stage of
the protocol, if a GC GC is chosen as a check circuit and needs to be opened, P1

simply sends the seed corresponding to that circuit to P2.
hG hash can be used in C&C similarly to standard CR hash of GC.

In [GMS08], P1 commits via a collision resistant hash function to garbled cir-
cuits. These GCs can be either good or cheating. Importantly, due to the CR
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property of the hash, a malicious P1 cannot change this designation at a later
time. In using hG, P1 has the same choice: he can compute hG of either a good
or a cheating GC. If he computed and sent the hash h of a good garbled circuit

GC, then h cannot be claimed to match a cheating evaluation circuit ĜC, even

if the XOR hash H(GC) = H(ĜC). Indeed, w.h.p., evaluation of such a ĜC will
fail and P2 will abort, independently of P2’s input. Similarly, if P1 computed and

sent the hash of a cheating circuit ĜC, it cannot be later opened as a good check
circuit GC.

We stress that we must be careful when P2 is allowed to abort, so as to not
allow a selective failure attack. Specifically, a malicious P1 could cause evaluation
failure by sending an invalid label on a specific input wire/value pair or by
generating a GC which produces an invalid label based on a value of an internal
wire. Thus, while it is OK for P2 to abort if it sees a GC which does not match
the hG-hash, it should not (necessarily) abort simply based on seeing a decoding
failure. Instead, this failure should be treated by the C&C procedure. We stress
that it is protocol dependent, and protocol security should be evaluated. At the
high level, our hashing guarantees that the garbler cannot open/equivocate an
“honest” hashed circuit as a valid “malicious” circuit (or vice versa). However,
he can open any (i.e. honest or malicious) hashed circuit as a “broken” one (i.e.
one which will fail evaluation).

Covert C&C protocols [AL07,KM15], as well as C&C based on majority
output, such as [LP11], can be made to work with hG. Indeed, exercising the extra
power the adversary has (turning a good or bad evaluation circuit into a broken
evaluation circuit) will simply cause covert evaluator to abort independently of
its input. Similarly, in [LP11], the evaluation circuits which were made broken
cannot be used to contribute to majority output. Using hG with [KM15] requires
a bit of care. [KM15] actually already explicitly support using [GMS08]. Using
hG differs from [GMS08] only in that a cheating P1 can open an honest evaluation
circuit as a broken one, resulting in an abort. However, the same effect could be
achieved by P1 sending an invalid signature on the garbled circuit.

We note that [Lin13] uses [LP11] as a basic step in cheating punishment
and our hG can be used within the [LP11] subprotocol of [Lin13]. However, it
is not immediately clear hG can be used elsewhere in [Lin13]. This is because
the cheating punishment relies on evaluator having received a good evaluation
circuit to recover the cheating garbler’s input. However, in our case, malicious
garbler can present a broken circuit, preventing input recovery.

Similarly, it is not immediately clear that the dual-execution C&C protocols
of [HKE13,KMRR15] can take advantage of hG. Intuitively, this is because a
malicious generator P1 might produce a single cheating circuit, which is likely to
be chosen for evaluation among a number of honest circuits. Then, P1 will open
all honest evaluation circuits as broken ones. Avoiding selective failure attack,
P2 will not abort, and the resulting output will depend on the output of the
cheating circuit.
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5.2 Implementation

We implemented our scheme using libgarble [Mal] for garbling and report on
the performance below. In Table 1, we compare the cost of our GC hashing
construction with garbling and then hashing the GC using SHA. We use the
AES circuit to garble in the comparisons. The numbers in Table 1 are in cycles
per gate. The configuration of the machine we used to run our implementation is:
2.3 GHz Core i5-2410M processor with 4 GB RAM. The processor has AES-NI
integrated.

Our hG construction Garble + SHA justGarble

Standard Garbling 31.1 226.7 29
Half-gates 26.8 157.7 25.3

Table 1

We believe that free hashing will simplify and speed up GC use par-
ticularly in larger systems using GC, such as the Blind Seer encrypted
database [PKV+14,FVK+15], where GC processing will be competing for the
CPU resource with a number of other tasks.

SFE of private certified functions. We now consider the use case described
in Section 1.1, where a Certificate Authority (CA) generates and certifies a
number of GCs for use by the subscribers of the CA. In this case, clearly, CA is
the bottleneck; Table 1 demonstrates over 6× performance improvement for the
state-of-the-art half-gates GC, as compared with using standard hashing avail-
able with the OpenSSL library. Again, we stress that with half-gates hashing,
simple XOR of all rows of all the gate tables provides a secure hash. This allows
simple implementation in addition to the performance improvement.

5.3 Impact on Cut-and-choose

We discuss the SFE performance improvement brought by our work on the
example of the state-of-the-art approach of [LP11] and [KM15]. (Subsequent
improvements to [LP11], as well as C&C, covert and other GC protocols will
benefit from free GC hashing correspondingly). We review the C&C choices and
parameters of [LP11,AO12,KM15] in light of [GMS08] and free hashing allowed
by our work. We will show that:

1. Computing and sending additional GC hashes does not increase communi-
cation cost (computation cost is minimal due to our work), but significantly
reduces cheating probability (see Table 2).

2. Keeping the cheating probability constant, we improve total C&C time
by 43 − 64% by sending circuit hashes instead of circuits as suggested
by [GMS08] (See Table 3).

For concreteness, to achieve a cheating probability of, say, 2−40, the number
of garbled circuits that need to be sent is n. This incurs a communication cost,
in bits, of k, where k = nC, and C is the cost of a garbled circuit.
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Sending only the hashes of the garbled circuits in the beginning of the cut-
and-choose, let the total number of garbled circuits be ñ. Let h be the size of
the hash of a GC, which is the communication cost of a check circuit. Now, we
have that the communication bits incurred,

k̃ = ñh +
1

2
ñC

Setting the communication complexity to be the same, k̃ = k = nC, we have,

n = ñq +
ñ

2

where q = h
C is the ratio of the cost of a check circuit and the cost of a garbled

circuit. For q < 1/2, we have ñ = n
q+ 1

2

> n, thus giving a cheating probabil-

ity 2−ñ < 2−n for the same communication complexity. For large circuits, we
expect C � h, giving concrete improvements in the security at no additional
communication cost.

Communication k Number of circuits Cheating probability / Deterrence
[LP11] k = 125|GC| n = 125 2−40

[LP11] with hG, q = 1/4 k = 125|GC| ñ = 166 2−51

[LP11] with hG, q = 1/8 k = 125|GC| ñ = 200 2−62

[KM15] without [GMS08]5 k = 10|GC| n = 10 0.9
[KM15] with hG, q = 1/4 k = 10|GC| ñ = 36 0.972
[KM15] with hG, q = 1/8 k = 10|GC| ñ = 72 0.986

Table 2

Performance improvement for constant cheating probability. Consider
the task of evaluating a billion-gate circuit (cf. [KSS12]). We show estimated
improvement due to our technique as applied to [LP11] and [KM15]. We do
this in terms of expended time by unifying the computation and communication
costs of generating and sending garbled circuits. These calculations are not based
on specific implementations or protocol definitions. Instead they are based on
simple estimates of time needed to generate, hash and send GCs, and adding
them together.

We first calculate and explain the computation and communication costs in
seconds of our basic tasks.

According to [BHKR13], using JustGarble to garble the AES circuit (6660
non-XOR gates) takes 637 microseconds. Adjusting for size, we calculate that

5 We note that [KM15] incorporates the [GMS08] hashing in the protocol. As we
discussed, sending circuits over a fast channel may only be about 3× slower than
hardware-assisted garbling, while computing SHA1 may be up to 6× slower than
such garbling. Hence, sending circuits over a fast channel may actually be faster than
generating SHA1 hash. Therefore, in our calculations for the fast channel setting as
above, we consider [KM15] without [GMS08] hash.
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the time taken for GC generation for a circuit with 1 billion gates to be 95
seconds. For communication, assuming ideal scenario in 1Gbps channel, assume
we can send 1 billion bits/sec. Thus the time to send a circuit of 1 billion gates
is 256 seconds at (assuming half gates and 2× 128 bits per gate).

The total number of seconds needed in the cut-and-choose phase to ma-
liciously evaluate a 1 billion-gate circuit with 2−40 cheating probability using
previous technique and our construction using the optimal parameters. In our
calculation we include the costs of generating, hashing (in our scheme) and send-
ing the GCs. We do not include the cost of regenerating the check circuits at the
evaluator’s end that is incurred by our technique. This is because this cost is
also incurred by other techniques. Indeed, checking correctness of a circuit that
the evaluator already has (directly, or when using [GMS08] hash) is simplest
and fastest by receiving its generating seed, reconstructing and comparing. We
are concerned only with the cut-and-choose phase, and ignore the time taken for
OT and GC evaluation in the protocol and show how our construction allow for
reduced execution time in the cut-and-choose phase.

The cost in seconds calculated in Table 3 is obtained by adding the time to
generate, hash (if needed) and send all the required garbled circuits. As explained
above, we assume that it takes 95 seconds to generate a 1-Billion gate GC, and
256 seconds to send it.

Finally, we note that even though we don’t know whether the dual-execution
C&C of Huang et al. [HKE13] could be modified to take advantage of our Free
Hash, we point out that an improved balance between the check and evaluation
circuits is possible when [HKE13] is used with the [GMS08] hash. We include
the calculations of optimal parameters for [HKE13] in Appendix A.

Total number Number of Circuits Time
of circuits check circuits sent (in secs)

[LP11] 125 75 125 43875
[LP11] +hG 125 75 50 24675

Table 3: A billion-gate circuit. Execution time estimates of cut-and-choose with
our improvements to achieve cheating probability of 2−40

Total number Number of Circuits Time
of circuits check circuits sent (in secs)

[AL07] 10 9 10 3510
[AL07]+hG 10 9 1 1260

[KM15] without [GMS08] 5 10 9 10 3510
[KM15]+hG 10 9 1 1260

Table 4: A billion-gate circuit. Execution time estimates of cut-and-choose with
our improvements to achieve deterrence of ε = 0.9.
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Bra13. Lúıs T. A. N. Brandão. Secure two-party computation with reusable
bit-commitments, via a cut-and-choose with forge-and-lose technique -
(extended abstract). In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 441–463. Springer,
Heidelberg, December 2013.

BRS02. John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analy-
sis of the block-cipher-based hash-function constructions from PGV. In
Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 320–335.
Springer, Heidelberg, August 2002.

CG13. Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part II, volume
8043 of LNCS. Springer, Heidelberg, August 2013.

26

http://www.coindesk.com/bitcoin-mining-difficulty-soars-hashing-power-nudges-1-petahash/
http://www.coindesk.com/bitcoin-mining-difficulty-soars-hashing-power-nudges-1-petahash/


CGM16. Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-
knowledge proof of algebraic and non-algebraic statements with applica-
tions to privacy preserving credentials. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 499–
530. Springer, Heidelberg, August 2016.
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A Performance Calculation for the Protocol of [HKE13]

The idea in the protocol of [HKE13] is to have both parties play the role of
the circuit constructor and circuit evaluator respectively in two simultaneous
executions of a cut-and-choose of the protocol. The protocol is thus symmetric,
and symmetric protocols might be desirable in certain situations since they have
less idle time. The number of garbled circuits required in the cut-and-choose to
achieve statistical security 2−κ is κ+O(log κ). In the cut-and-choose of [HKE13],
a party successfully cheats if it generates exactly n−c incorrect circuits and none
of them is checked by the other party. The probability that a cheating garbler
succeeds,

Pr[A wins] =
1(
n
c

)
where n is the number of garbled circuits and c is the number of check circuits.
It is easy to see that the above probability is minimized by setting c = n/2.
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This gives Pr[A wins] = 2−n+logn. We now apply the hash optimization in the
cut-and-choose phase of the protocol. And now, we want compute the optimal
value of c in the case where the communication cost of a circuit is a check circuit
is cheaper than the cost of a garbled circuit that is evaluated. Let h be the cost
of the hash of a garbled circuit. The cost of a check circuit is just the hash and
the cost of an evaluation circuit is the cost of the hash plus the cost of a garbled
circuit. Let q = h

C be the ratio of the cost of a check circuit and the cost for
an evaluation circuit, where C = h + |GC|. We have, the total communication
complexity,

k = ch + eC

where e is the number of evaluation circuits, c the number of check circuits,
n = c+ e the total number of circuits. Now, for a fixed k, given q we find the c
and n that minimizes

Pr[A wins] = P =
1(
n
c

)
Using Stirling’s approximation, we get,

P ≈ (n− c)n−c+ 1
2 cc+

1
2

nn+
1
2

Let r = c
n be the optimal fraction. Using k = ch+ eC and q = h

C , differentiating
P with respect to c, and setting the first derivative to 0, we get,

r = (1− r)q (9)

When q = 1, this gives r = c
n = 1

2 which is indeed the optimal value when
no hashes are used and a check circuit costs the same as an evaluation circuit.
Now we compare the standard cut-and-choose with the cut-and-choose using
hash and using optimal parameters as computed above. For security 2−κ, κ +
O(log κ) circuits need to be sent in the standard cut-and-choose, which gives a
communication k = |GC|(κ+O(log κ)), (for each party) where |GC| is the cost
of a garbled circuit. Now given the cost of a hashed GC to be h, we get cost of
a check circuit = h, C = |GC|+ h,q = h

C . We now solve (9) for r and set

n =
k

rh + (1− r)C
and c = rn

This achieves a better cheating probability for the same communication k.
In the table below, we compare the cheating probability for values of k and q.
Recall, in the protocol, both parties act as sender and send κ+O(log κ) number
of circuits each. The first column in Table 5 denoting the communication is the
total communication of the cut-and-choose.

Communication Optimal number Optimal number Cheating
k of circuits of check circuits probability

[HKE13] k ≈ 90|GC| n = 45 c = n/2 2−40

[HKE13] + [GMS08] hash, q = 1/4 k ≈ 90|GC| ñ = 71 c = 0.7ñ ≈ 49 2−60

[HKE13] + [GMS08] hash, q = 1/8 k ≈ 90|GC| ñ = 98 c = 0.8ñ = 78 2−68

Table 5
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