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Abstract. The Advanced Encryption Standard (AES) is one of the
most studied symmetric encryption schemes. During the last years, sev-
eral attacks have been discovered in different adversary models. In this
paper, we focus on related-key differential attacks, where the adversary
may introduce differences in plaintext pairs and also in keys. We show
that Constraint Programming (CP) can be used to model these attacks,
and that it allows us to efficiently find all optimal related-key differen-
tial characteristics for AES-128, AES-192 and AES-256. In particular,
we improve the best related-key differential for the whole AES-256 and
give the best related-key differential on 10 rounds of AES-192, which is
the differential trail with the longest path. Those results allow us to im-
prove existing related-key distinguishers, basic related-key attacks and
q-multicollisions on AES-256.

Introduction

As attacking the Advanced Encryption Standard (AES) in the unknown key
model seems to be out of reach at this time, many recent results focus on the
so-called related-key, known-key or chosen-key models. During the last decade,
many results bring some grist to this research direction. In particular, the notion
of differential q-multicollisions has been introduced in [BKN09]. A differential
q-multicollision for a cipher EK(·) is defined by a non zero key difference δK,
a non zero plaintext difference δX and a set of q distinct pairs (Xi,Ki) with
i ∈ [1, q] such that all EKi(Xi) ⊕ EKi⊕δK(Xi ⊕ δX) are equal (where ⊕ is
the XOR operator). Constructing such a q-multicollision for an ideal n-bit block

cipher has a time complexity of O(q · 2
q−2
q+2n). However, for AES-256 the number

of required AES encryptions has been shown to be equal to q · 267 in [BKN09].
Building such q-multicollisions requires finding optimal (in terms of proba-

bility) related-key differential characteristics. This challenging task was tackled
for AES-128 with a graph traversal approach in [FJP13], and for AES-128, AES-
192, and AES-256 with a depth-first search approach in [BKN09]. However, the
4-round solution for AES-128 claimed to be optimal in [BKN09,FJP13] has been



shown to be sub-optimal in [GMS16]. In this article, the authors used Constraint
Programming (CP) to efficiently enumerate related-key differential characteris-
tics on AES-128.

When using CP to solve a problem, one simply has to model the problem
using a high-level declarative language: This model may be viewed as a math-
ematical definition of the problem by means of constraints. Then, this model
is solved by generic solvers which are usually based on a Branch & Propagate
approach: The search space is explored by building a search tree, and constraints
are propagated at each node of the tree in order to prune branches.

Finding AES related-key differentials is a highly combinatorial problem that
hardly scales. For example, the approach of [FJP13] requires about 60 GB of
memory for 5 rounds of AES-128 and has not been extended to AES-192 nor
AES-256. The approach of [BN10] only takes several megabytes of memory, but
it requires several days of computation for AES-128, and several weeks for AES-
192. Of course, each of these problems must be solved only once, and CPU time is
not the main issue provided that it is “reasonable”. However, during the process
of designing new ciphers, this evaluation sometimes needs to be repeated several
times. Hence, even though not crucial, a good CPU time is a desirable feature.
Another point that should not be neglected is the time needed to design and
implement these approaches: To ensure that the computation is completed within
a “reasonable” amount of time, it is necessary to reduce branching by introducing
clever reasoning. Of course, this hard task is also likely to introduce bugs, and
checking the correctness or the optimality of the computed solutions may not be
so easy. Finally, reproducibility may also be an issue. Other researchers may want
to adapt these algorithms to other problems, with some common features but
also some differences, and this may again be very difficult and time-consuming.

The CP approach introduced in [GMS16] opens new perspectives with re-
spect to these points: A CP model is a mathematical model which is usually
rather short compared to a full implementation. For example, the CP model of
[GMS16] for AES-128 contains less than 200 lines4. This model mainly describes
the problem to be solved, by means of variables and constraints, and we argue
that it is easier to check or re-use than a full program that not only describes the
problem to solve, but also how to solve it. The CP approach of [GMS16] is also
competitive with existing approaches for AES-128: CP solvers such as Gecode
[Gec06], Choco [PFL16], or Chuffed [CS14] are able to give optimal solutions for
AES-128 up to 5 rounds in less than two hours and to show that the optimal
solution for 4 rounds of AES-128 has only 12 active S-boxes instead of 13 as
claimed in [FJP13,BN10].

Our goal is to further investigate the interest of using CP for finding opti-
mal related-key differential characteristics for AES-192 and AES-256. We more
particularly address the following questions:

– Can CP find optimal solutions for AES-192 and AES-256 in a reasonable
amount of time?

4 This model is available at http://gerault.net/resources/CP_AES.tar.gz.
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– Can CP check the consistency of characteristics previously published for
AES, and explain inconsistencies if any?

– Can we use these optimal solutions to improve existing related-key differen-
tial attacks?

Contributions. A first contribution of this paper is the extension of the CP model
proposed for AES-128 in [GMS16] to analyze AES-192 and AES-256. We also
improve this model by introducing a new way of modeling equivalence classes at
the byte level, in order to speed-up the solution process of generic CP solvers.
These models are defined with the MiniZinc language [NSB+07] and with the
Choco library [PFL16]5. We show that these models may be used by generic CP
solvers to find the best related-key differential paths for all possible instances of
AES-128, AES-192, and AES-256 in less than 35 hours for the first step (which
involves finding difference positions), and in less than 6 minutes for the second
step (which involves finding actual byte values given difference positions).

A second contribution is the use of CP to prove the inconsistency of the 11-
round solution proposed in [BN10] for AES-192, and to extract an explanation
of this inconsistency.

Finally, our main contribution consists in new optimal solutions found with
our CP approach. More precisely we obtain the following results:

AES-192: We give the optimal related-key differential characteristic probabili-
ties for all rounds up to 10, and we show that there is no related-key differ-
ential characteristic with a probability higher than 2−192 when the number
of rounds is at least 11. Finally, we give the actual optimal related-key dif-
ferential characteristic for AES-192: It is on 10 rounds, and it has 29 active
S-Boxes and a probability of 2−176.

AES-256: Using our CP model, we rediscover the full-round related-key dis-
tinguisher on AES-256 given in [BKN09], which has a probability of 2−154.
In addition, we provide a solution with a higher probability, i.e., 2−146, and
prove its optimality. Using this trail, we improve the related-key distinguisher
and the basic related-key differential attack on the full AES-256 by a factor
at least 26 and the q-multicollisions by a factor 2.

All these results demonstrate that CP provides a convenient declarative
scheme to model cryptanalysis problems, along with powerful generic tools to
efficiently solve them and to check the consistency of existing solutions.

Positioning with respect to existing related-key attacks against the AES. From
the related-key differentials found using CP, we are able to derive basic related-
key attacks, related-key distinguishers and q-multicollisions against AES-192
or AES-256. For the last decade, several attacks in different attacker mod-
els against the different AES versions have been proposed: related-key differ-
ential distinguishers against AES-192 and AES-256 in [BKN09,BK09,BN10],
known-key distinguishers in [KR07] [GP10,Gil14] and chosen-key distinguishers

5 These models are available as auxiliary supporting material, joined to the submission.
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in [FJP13,BKN09]. Table 1 summarizes existing attacks against AES-192 and
AES-256 along with our own results in the related-key and chosen-key models.

AES-192

Attack Nb rounds Nb keys Data Time Memory Source

RK rectangle 10 64 2124 2183 N/A [KHP07]

RK amplified boomerang 12 4 2123 2176 2152 [BK09]

RK distinguisher 10 237 2176 2176 - Section 5.2

basic RK differential 10 237 2151 2151 233 Section 5.2

AES-256

Attack Nb rounds Nb keys Data Time Memory Source

RK boomerang 14 4 299.5 299.5 277 [BK09]

RK distinguisher 14 235 2154 2154 - [BKN09]

basic RK differential 14 235 2131 2131 265 [BKN09]

q-multicollisions 14 2q 2q q267 - [BKN09]

RK distinguisher 14 232 2146 2146 - Section 5.3

basic RK differential 14 232 2125 2125 265 Section 5.3

q-multicollisions 14 2q 2q q266 - Section 5.3

Table 1: Summary of existing attacks against AES-192 and AES-256 in the
related-key and chosen-key models. RK stands for Related-Key and N/A means
Not Available.

Related Work. Since the Matsui’s fundamental work [Mat94] for automatically
finding linear relations in DES, many algorithms have been proposed to automate
the search for longest paths in different attack models [BN10,BN11]. However,
using approaches that allow one to easily model problems which are then solved
by generic solvers is more recent. Mixed Integer Linear Programming (MILP)
was used in [SHW+14] to find optimal (related key) differential characteristics
against bit-oriented block ciphers such as SIMON, PRESENT or LBlock or,
in [ST16], to search for impossible differential paths. In [GL16], CP was used
to find related-key differentials against Midori. And for the fist time (up to our
knowledge), in [BJK+16], MILP was used to provide security bounds in the
design of the new lightweight block cipher SKINNY. Recently, in [SGL+17],
CP was also used to efficiently analyze several symmetric encryptions including
AES-128, PRESENT, SKINNY, and HIGHT.

Outline of the paper. In Section 1, we introduce the notations used in the paper.
In Section 2, we describe the considered CP models. In Section 3, we evaluate
the scale-up properties of these CP models. In Section 4, we show how to use
our CP models not only to check the consistency of existing solutions, but also
to explain inconsistencies if any. In Section 5, we show how to use the solutions
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found by our CP models to improve existing related-key differential attacks for
AES-192 and AES-256. Finally, in Section 6, we conclude this paper.

1 Notations

We denote by r the number of rounds and by l the key length in bits. Given
an n ×m matrix M , we denote by M [j][k] the byte at row j ∈ [0, n − 1] and
column k ∈ [0,m − 1]. We use the following notations to denote plaintext and
key matrix states:

– X and X ′ denote the initial plaintext pair;
– Xi and X ′i denote the plaintext pair at the beginning of round i, starting at

round 0;
– Yi and Y ′i denote the plaintext pair at the end of round i but before the

subkey addition;
– K and K ′ denote the master key pair. K and K ′ generate through the key

schedule the subkeys Ki and K ′i which correspond to the subkey added at
round i− 1. The initial subkey addition is done with subkey K0.

All matrices but K and K ′ are 4× 4 byte matrices, and K and K ′ are 4×Nk
byte matrices, where Nk = l/32. Given a pair of bytes A[j][k] and A′[j][k], where
A ∈ {X,Xi, Yi,Ki}, we denote by δA[j][k] = A[j][k]⊕A′[j][k] the XOR difference
between A[j][k] and A′[j][k].

As in [BN10] and [FJP13], we use a two-step solving process. Step 1 works
with a boolean representation of differences: We note ∆A[j][k] the boolean rep-
resentation of δA[j][k] such that ∆A[j][k] = 0 ⇔ δA[j][k] = 0 and ∆A[j][k] =
1 ⇔ δA[j][k] ∈ [1, 255]. These boolean variables give difference positions, as
presented in Fig. 1. Then, Step 2 uses these positions to determine difference
values at the byte level, i.e., to find the actual value δA[j][k] ∈ [1, 255] for each
boolean variable ∆A[j][k] which is equal to 1. Note that some solutions at the
boolean level (found during Step 1) cannot be transformed into solutions at the
byte level during Step 2. These solutions are said to be byte inconsistent.

Bytes that pass through the AES S-box play a particular role: Basically, we
aim at minimizing the number of differences that pass through them. All the
bytes of the Xi matrices pass through S-boxes. Some bytes of the Ki subkey
matrices also pass through S-Boxes, and the exact definition of these bytes de-
pends on the key length. We note Sboxesl (with l ∈ {128, 192, 256}) the set of
bytes that pass through an S-Box for the three AES versions:

Sboxes128 = {Xi[j][k] | i ∈ [0, r − 1], j, k ∈ [0, 3]}
∪ {Ki[j][3] | i ∈ [0, r − 1], j ∈ [0, 3]},

Sboxes192 = {Xi[j][k] | i ∈ [0, r − 1], j, k ∈ [0, 3]}
∪ {K3m+1[j][1] | m ∈ [0, br/3c − 1], j ∈ [0, 3]}
∪ {K3m+2[j][3] | m ∈ [0, br/3c − 1], j ∈ [0, 3]}, and

Sboxes256 = {Xi[j][k] | i ∈ [0, r − 1], j, k ∈ [0, 3]}
∪ {Ki[j][3] | i ∈ [1, r − 1], j ∈ [0, 3]}.
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Fig. 1: Notations used in the paper, where SB stands for the AES SubBytes

operation, SR for ShiftRows, MC for MixColumns, and where AddRoundKey

(ARK for short) is represented by the XOR operator with the key ∆Ki.

<<S

<<S

<<S

S

Fig. 2: Key shedule for AES-128, AES-192, and AES-256. Note that the bytes
passing through the S-boxes in the AES key schedule are the four bytes of the
last column along with, for AES-256 only, the four bytes of the middle column.

Finally, in Fig. 2, we recall one round of the key schedule algorithms for the
three AES key lengths.

2 CP models for AES related-key differential attacks

When using CP to solve a problem, one “only” has to define a CP model that
describes the problem by means of constraints, thanks to a declarative lan-
guage. Then, this model may be solved by generic solvers such as, for exam-
ple, Choco [PFL16], Chuffed [CS14], Gecode [Gec06], or Picat [ZKF15]. A same
problem may be defined by different CP models, and the time needed to solve
the problem both depends on the model and on the solver that are used.

In this section, we describe and compare different CP models to search for
related-key differential paths on the AES. We first recall basic principles of prob-
lem modeling and solving with CP in Section 2.1. As proposed in both [BN10]
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and [FJP13], the solving process is decomposed into two steps (recalled in Sec-
tion 1). In Sections 2.2, 2.3, and 2.4, we describe three CP models for Step 1 (at
the boolean level).

– The first model, called CPBasic, basically encodes AES transformation rules
by means of constraints and was first described in [MSJ14] for AES-128. We
show how to extend it to AES-192 and AES-256.

– The second model, called CPEQ, improves CPBasic by adding constraints
that remove many boolean solutions which are byte-inconsistent. It was first
described in [GMS16] for AES-128, and we show how to extend it to AES-192
and AES-256.

– The third model, called CPClass, is a new model that improves CPEQ by
using a new way for modeling equality relations at the byte level.

In Section 2.5, we describe the CP model used to solve Step 2 (at the byte
level), which is the same as the one introduced in [GMS16] for AES-128, simply
extended to AES-192 and AES-256.

2.1 Reminders on Constraint Programming

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is defined
by a triple (X,D,C) such that

– X is a finite set of variables;
– D is a function that maps every variable xi ∈ X to its domain D(xi), that

is, the finite set of values that may be assigned to xi;
– C is a set of constraints, that is, relations between some variables which

restrict the set of values that may be assigned simultaneously to these vari-
ables.

Constraints may be defined by using tables or mathematical operators. Let us
consider for example a CSP with 3 variables X = {x1, x2, x3} such that D(x1) =
D(x2) = D(x3) = {0, 1}, and let us consider a constraint that ensures that the
sum of the variables in X is different from 1. This constraint may be defined by
a table constraint that enumerates all allowed tuples:

(x1, x2, x3) ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Conversely, it may be defined by enumerating all forbidden tuples:

(x1, x2, x3) 6∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Finally, it may be defined by using an algebraic equation with the + and 6=
operators:

x1 + x2 + x3 6= 1.

Solving a CSP involves assigning values to variables such that constraints are
satisfied. More formally, an assignment A is a function which maps each variable
xi ∈ X to a value A(xi) ∈ D(xi). An assignment A satisfies (resp. violates) a
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constraint c ∈ C if the tuple defined by the values assigned to the variables of c
in A belongs (resp. does not belong) to the relation defined by c. An assignment
is consistent (resp. inconsistent) if it satisfies all the constraints (resp. violates
some constraints) of the CSP. A solution of a CSP is a consistent assignment.

An objective function may be added to a CSP, thus defining a Constrained
Optimization Problem (COP). This objective function is defined on some vari-
ables of X and the goal is to find the solution that optimizes (minimizes or
maximizes) the objective function. This solution is said to be optimal.

Constraint Programming (CP) languages provide high-level features to de-
fine CSPs and COPs in a declarative way. Then, these problems are solved by
generic constraint solvers which are usually based on a systematic exploration
of the search space: Starting from an empty assignment, they incrementally ex-
tend a partial consistent assignment by choosing a non-assigned variable and a
consistent value for it until either the current assignment is complete (a solution
has been found) or the current assignment cannot be extended without violating
constraints (the search must backtrack to a previous choice point and try an-
other extension). To reduce the search space, this exhaustive exploration of the
search space is combined with constraint propagation techniques: Each time a
variable is assigned to a value, constraints are propagated to filter the domains
of the variables that are not yet assigned, i.e., to remove values that are not
consistent with respect to the current assignment. Let us consider for example
the constraint that ensures that the sum of three variables is different from 1.
Whenever two of these variables are assigned and their sum is equal to 1 (resp.
0), the propagation mechanism removes the value 0 (resp. 1) from the domain
of the third variable. When constraint propagation removes all values from a
domain, the search must backtrack.

2.2 CPBasic: Basic CP model for Step 1

This model associates one boolean variable to each differential byte, and relates
these variables with constraints derived from AES operations. The only AES op-
eration that does not imply constraints for Step 1 is SubBytes, which applies to
a byte b an S-box transformation S(b). As the S-box is bijective, an input differ-
ence produces an output difference (i.e., (b⊕ b′ 6= 0)⇔ (S(b)⊕S(b′) 6= 0)). As a
consequence, the SubBytes transformation has no effect on the presence/absence
of differences during Step 1.

Let us now describe the variables, the constraints, the objective function and
ordering heuristics of the CPBasic model for Step 1.

Variables. We consider the boolean variables introduced in Section 1: ∆X[j][k],
∆Xi[j][k], ∆Yi[j][k], and ∆Ki[j][k] with i ∈ [0, r], and j, k ∈ [0, 3]. The domain
of each of these variables is the set {0, 1}: A variable is assigned to 0 if there is
no difference at the byte level, and to 1 otherwise.

XOR. As many AES transformations use the XOR operator, we define a constraint
to model it. Suppose that, at byte level, we have δA⊕ δB = δC. Then, we have
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the following relation between the three boolean values ∆A, ∆B and ∆C:

∆A ∆B ∆C
0 0 0
0 1 1
1 0 1

1 1
0 if δA = δB
1 if δA 6= δB

This table corresponds to the following constraint:

XOR(∆A,∆B,∆C)⇔ ∆A+∆B +∆C 6= 1.

where + stands for the integer addition. Note that the last line of the table
creates the branches in the Branch & Bound approach proposed in [BN10].

AddRoundKey. At the beginning of the encryption process, ARK performs XOR

operations on ∆X and ∆K0 to obtain ∆X0. This is modeled by the following
constraint:

∀(j, k) ∈ [0, 3]2 : XOR(∆X[j][k], ∆K0[j][k], ∆X0[j][k]).

Then, for each round i ∈ [1, r], ARK performs XOR operations on ∆Yi−1 and
∆Ki to obtain ∆Xi. This is modeled by the following constraint:

∀i ∈ [1, r],∀(j, k) ∈ [0, 3]2 : XOR(∆Yi−1[j][k], ∆Ki[j][k], ∆Xi[j][k]).

ShiftRows and MixColumns. For each round i ∈ [0, r − 1], SB, SR and MC are
successively applied on δXi to obtain δYi. Recall that the SubBytes operation
SB does not modify boolean values. SR rotates on the left by one byte position
(resp. 2 and 3 byte positions) the second row (resp. third and fourth rows) of
the current matrix. Hence, for each j, k ∈ [0, 3], we have to model the fact that
∆Xi[j][k] is moved to column (k − j) mod 4 after the application of SR. Then,
MC is a linear mapping that ensures the Maximum Distance Separable (MDS)
property, such that for each column the total number of differential bytes for
which there is a difference, before and after the application of SR, is either equal
to 0 or strictly greater than 4. Hence, SR and MC are modeled by the following
constraint:

∀i ∈ [0, r − 1],∀k ∈ [0, 3] :

 3∑
j=0

∆Xi[j][(k + j) mod 4] +∆Yi[j][k]

 ∈ {0, 5, 6, 7, 8}.
KeySchedule. The subkey at round 0, K0, is the first four columns of the initial
key K. Then, for each round i, the subkey Ki is generated from Ki−1 and/or
Ki−2 by applying the KeySchedule transformations recalled in Fig. 2. The exact
definition of this transformation depends on the key length l and the value
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Nk = l
32 . In [GMS16], the constraints related to KS are described for AES-128

only. Let us recall them before extending them to AES-192 and AES-256.
For AES-128, the first column is obtained by performing XOR operations

between bytes at the first and the last column of the previous round (combined
with a SubBytes operation on bytes of the last column and a word rotation
done at byte level). The last three columns are obtained by performing XOR

operations between bytes at the previous column in the same round, and bytes
at the same column in the previous round. Hence, KS for AES-128 is modeled
by the following constraint:

∀i ∈ [1, r],∀j ∈ [0, 3] : XOR(∆Ki−1[j][0], ∆Ki−1[(j + 1) mod 4][3], ∆Ki[j][0])

∧ ∀k ∈ [1, 3] : XOR(∆Ki−1[j][k], ∆Ki[j][k − 1], ∆Ki[j][k]).

For AES-192, the initial key K has Nk = 6 columns. The first four columns
of K are used to initialize the four columns of K0, and the last two columns of
K are used to initialize the first two columns of K1. The last two columns of K1

are defined by the constraint:

∀j ∈ [0, 3] : XOR(∆K0[j][0], ∆K1[(j + 1) mod 4][1], ∆K1[j][2])

∧ XOR(∆K0[j][1], ∆K1[j][2], ∆K1[j][3]).

Then, each following column is obtained by performing a XOR between bytes of
the previous and the 6th previous column, sometimes combined with a SubBytes

operation on some of them and a word rotation performed at byte level, depend-
ing on the value of (4i mod 6) (that may be equal to 0, 2, or 4). For columns 1
and 3, this corresponds to the constraint:

∀i ∈ [2, r],∀j ∈ [0, 3] : XOR(∆Ki−2[j][3], ∆Ki[j][0], ∆Ki[j][1])

∧ XOR(∆Ki−1[j][1], ∆Ki[j][2], ∆Ki[j][3]).

For column 0, this corresponds to the constraint: For each round i ∈ [2, r], if
(4i mod 6) = 0, then

∀j ∈ [0, 3] : XOR(∆Ki−2[j][2], ∆Ki−1[(j + 1) mod 4][3], ∆Ki[j][0])

else
∀j ∈ [0, 3] : XOR(∆Ki−2[j][2], ∆Ki−1[j][3], ∆Ki[j][0]).

For column 2, this corresponds to the constraint: For each round i ∈ [2, r], if
(4i mod 6) = 2, then

∀j ∈ [0, 3] : XOR(∆Ki−1[j][0], ∆Ki[(j + 1) mod 4][1], ∆Ki[j][2])

else
∀j ∈ [0, 3] : XOR(∆Ki−1[j][0], ∆Ki[j][1], ∆Ki[j][2].

For AES-256, the initial key K has Nk = 8 columns. The first four columns
of K are used to initialize the four columns of K0, and the last four columns of K
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are used to initialize the four columns of K1. Then, for each round i ∈ [2, r], the
first column is obtained by performing a XOR between bytes of the last column
of the previous round (after passing them through a SubBytes operation), and
bytes at column 0 in round i − 2. Furthermore, a word rotation is applied if
(4i mod 8) = 0. This corresponds to the constraint: For each round i ∈ [2, r], if
(4i mod 8) = 0, then

∀j ∈ [0, 3] : XOR(∆Ki−2[j][0], ∆Ki−1[(j + 1) mod 4][3], ∆Ki[j][0])

else
∀j ∈ [0, 3] : XOR(∆Ki−2[j][0], ∆Ki−1[j][3], ∆Ki[j][0]).

The last three columns are obtained by performing a XOR between bytes of the
previous column in the same round, and bytes at the same position in round
i− 2, thus leading to the constraint:

∀i ∈ [2, r],∀j ∈ [0, 3],∀k ∈ [1, 3] : XOR(∆Ki−2[j][k], ∆Ki[j][k − 1], ∆Ki[j][k]).

Objective function. The goal is to find boolean values that minimize the number
of differences passing through S-boxes, i.e., the number of 1 in all ∆A variables
such that A ∈ Sboxesl (where Sboxesl is defined in Section 1). Thus, we define
an integer variable objStep1 which is constrained to be equal to the number of
differences passing through S-boxes:

objStep1 =
∑

A∈Sboxesl

∆A

and we define the objective function as the minimization of objStep1. The domain
of this variable is D(objStep1) = [1, l6 ]. Indeed, the smallest possible value is 1
because we need to have at least one active S-box to have a differential trail.
The largest possible value is l

6 because the highest probability to pass through
the AES S-box is 2−6 [DR13], and because we want a differential trail which is
more efficient than the key exhaustive search.

Note that some solutions of Step 1 may not be byte-consistent (i.e., they
do not have solutions at Step 2). In particular, it may happen that none of the
optimal boolean solutions is byte-consistent. In this case, we need to search for
new boolean solutions, such that objStep1 is minimal while being strictly greater
than its previous optimal value v. This is done by adding the following constraint

objStep1 > v.

Ordering heuristics. A key point to speed up the solving process of CSPs is to
define the order in which variables are assigned, and the order in which values are
assigned to these variables, when building the search tree. CP languages allow
the user to specify this order through variable and value ordering heuristics. As
the goal is to minimize the number of active S-boxes, we define these ordering
heuristics as follows: first assign variables associated with bytes of Sboxesl, and
first try to assign them to 0.

11



2.3 CPEQ: Improved CP model for Step 1

The CPBasic model is complete in the sense that for any solution at the byte level
(on δ variables), there exists a solution of CPBasic at the boolean level (on ∆
variables). However, some solutions of CPBasic may not correspond to a solution
at the byte level. Preliminary experiments have shown us that there is a huge
number of solutions of CPBasic which are byte inconsistent. For example, for
AES-128, when the number of rounds is r = 3, the optimal solution of CPBasic
has objStep1 = 3 active S-boxes, and there are more than five hundred differ-
ent solutions of CPBasic with this number of active S-boxes. However, none of
these boolean solutions is byte-consistent. Actually, the optimal byte-consistent
boolean solution has objStep1 = 5 active S-boxes.

In this case, most of the Step 1 solving time is spent at generating useless
boolean solutions which are discarded in Step 2. CPBasic has been refined in
[GMS16], by introducing new constraints that drastically reduce the number of
byte inconsistent solutions for AES-128. These new constraints exploit equality
relations at the byte level and the MDS property. In this section, we describe
these constraints extended to AES-192 and AES-256.

Propagation of MDS at the byte level. Due to the linearity of the MixColumns

transformation and to its MDS nature, at byte level, the MDS property also holds
for XOR of differences. In other words and including the ShiftRows operation,
for all i1, i2 in [0, r − 1], and for all k1, k2 in [0, 3], we have:

3∑
j=0

wH(δXi1 [j][(j + k1) mod 4]⊕ δXi2 [j][(j + k2) mod 4])

+wH(δYi1 [j][k1]⊕ δYi2 [j][k2]) ∈ {0, 5, 6, 7, 8}.

where wH(δA) is the Hamming weight of byte δA, i.e., wH(δA) = 0 if δA = 0,
and wH(δA) = 1 if δA ∈ [1, 255].

To ensure this property (that removes many byte-inconsistent boolean solu-
tions), we introduce new boolean variables, called equality variables: For each
pair of differential bytes δA and δB (in δXi, δYi, and δKi matrices), we introduce
the boolean equality variable EQδA,δB which is equal to 1 if δA = δB, and to
0 otherwise. Using these equality variables, the MDS property between different
columns is ensured by the following constraint: ∀i1, i2 ∈ [0, r−1],∀k1, k2 ∈ [0, 3],

3∑
j=0

EQδXi1
[j][(j+k1) mod 4],δXi2

[j][(j+k2) mod 4] + EQδYi1
[j][k1],δYi2

[j][k2] ∈ {0, 1, 2, 3, 8}.

Constraints derived from XOR constraints. As pointed out in Section 2.2 when
defining the constraint XOR(∆A,∆B,∆C) (where ∆A, ∆B and ∆C are boolean
variables associated with differential bytes δA, δB and δC, respectively), if ∆A =
∆B = 1, then we cannot know if ∆C is equal to 0 or 1. However, whenever
∆C = 0 (resp. ∆C = 1), we know for sure that the corresponding byte δC is
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equal to 0 (resp. different from 0), meaning that the two bytes δA and δB are
equal (resp. different), i.e., that EQδA,δB = 1 (resp. EQδA,δB = 0). The same
reasoning may be done for ∆A and ∆B because (δA⊕ δB = δC)⇔ (δB⊕ δC =
δA)⇔ (δA⊕ δC = δB). Therefore, we redefine the XOR constraint as follows:

XOR(∆A,∆B,∆C)⇔ ((∆A+∆B +∆C 6= 1)

∧ (EQδA,δB = 1−∆C)

∧ (EQδA,δC = 1−∆B)

∧ (EQδB,δC = 1−∆A)).

Constraints to ensure that equality variables define an equivalence relation. Sym-
metry and transitivity are ensured by:

∀δA, δB : EQδA,δB = EQδB ,δA
∀δA, δB, δC : (EQδA,δB = EQδB,δC = 1)⇒ (EQδA,δC = 1).

Constraints that relate equality variables with boolean differential variables. For
each pair of differential bytes δA, δB such that the corresponding boolean vari-
ables are ∆A and ∆B, respectively, we have:

(EQδA,δB = 1)⇒ (∆A = ∆B)

EQδA,δB +∆A+∆B 6= 0.

Constraints derived from KeySchedule. In the AES KeySchedule, each byte of
each subkey Ki may be expressed as a combination of XOR operations between
bytes of the master key K and bytes obtained by applying the AES S-box to
some particular columns (depending on l). For example, with l = 128, we have:

K2[1][1] = K2[1][0]⊕K1[1][1]

= K1[1][0]⊕ S(K1[2][3])⊕K1[1][0]⊕K0[1][1]

= S(K1[2][3])⊕K0[1][1].

When reasoning at the differential byte level, we have

δK2[1][1] = δS1[2][3]⊕ δK0[1][1].

where δS1[2][3] is a new differential byte which is equal to S(K1[2][3])⊕S(K ′1[2][3]).
There is a finite set KSBytes of such new differential bytes, corresponding to
differences of bytes that have passed through S-boxes:

KSBytes = {δSi[j][k] | Ki[j][k] ∈ Sboxesl}.

For each new differential byte δSi[j][k] ∈ KSBytes, we define a new boolean
variable ∆Si[j][k] which is equal to 0 if δSi[j][k] = 0, and to 1 otherwise. Note
that ∆Si[j][k] is a redundant variable which is equal to ∆Ki[j][k]. So, we add
the following constraint:

∀δSi[j][k] ∈ KSBytes,∆Ki[j][k] = ∆Si[j][k].

13



We introduce this redundant variable because at the byte level this equality no
longer holds, i.e., δKi[j][k] = A 6⇒ δSi[j][k] = S(A), and for the V sets defined
below we reason at the byte level.

We exploit the fact that each differential byte of Ki is the result of a XOR

between a finite set of bytes. We first build, for each i ∈ [1, r], and j, k ∈ [0, 3], the
set V (i, j, k) of all differential bytes (coming either from δK0 or from KSBytes),
such that:

δKi[j][k] =
⊕

δA∈V (i,j,k)

δA.

For example, for AES-128, V (1, 0, 0) = {δK0[0][0], δS0[1][3]}.
Note that these sets are computed before the search and do not depend on

the initial values of plaintexts and keys.
For each of these sets, we introduce a set variable which contains the corre-

sponding boolean variables which are equal to 1:

V1(i, j, k) = {∆A | δA ∈ V (i, j, k) ∧∆A = 1}.

For example, if ∆K0[1][1] = 1 and ∆S1[3][2] = 0, then V1(2, 1, 1) = {∆K0[1][1]}.
Whenever two differential key bytes δKi1 [j1][k1] and δKi2 [j2][k2] have the

same V1 sets, then we may infer that δKi1 [j1][k1] = δKi2 [j2][k2]. More precisely,
we define the constraint:

∀i1, i2 ∈ [1, r],∀j1, j2, k1, k2 ∈ [0, 3] : (V1(i1, j1, k1) = V1(i2, j2, k2))

⇒ (EQδKi1 [j1][k1],δKi2 [j2][k2]
= 1).

Also, if V1(i, j, k) is empty (resp. contains one or two elements), we infer that
∆Ki[j][k] is equal to 0 (resp. a variable, or a XOR between 2 variables). More
precisely, we define the constraints: ∀i ∈ [1, r],∀j, k ∈ [0, 3],

V1(i, j, k) = ∅ ⇒ ∆Ki[j][k] = 0

V1(i, j, k) = {∆A} ⇒ ∆Ki[j][k] = 1 ∧ EQδKi[j][k],δA = 1

V1(i, j, k) = {∆A,∆B} ⇒ XOR(∆A,∆B,∆Ki[j][k]).

2.4 CPClass: New CP model for Step 1

CPEQ has much less byte-inconsistent solutions than CPBasic and, therefore,
it is much more efficient. However, for large numbers of rounds r and/or key
length l, the solution process may become too time-consuming. In this section,
we describe a new CP model which is more efficient, i.e., it allows CP solvers to
find solutions quicker.

Variables. In this new model, we keep all boolean variables ∆A associated with
differential bytes (as defined in Section 2.2). However, we do not use equality
variables EQδA,δB (as defined in Section 2.3). Instead, we introduce an integer
variable ClassδA for each boolean variable ∆A: ClassδA represents the equiva-
lence class of all boolean variables whose associated differential bytes are equal
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to δA. In other words, given two boolean variables ∆A and ∆B associated with
two differential bytes δA and δB, respectively, the two integer variables ClassδA
and ClassδB are equal if and only if δA = δB. The domain of each integer vari-
able ClassδA is D(ClassδA) = [0, 255], as there are 256 equivalence classes at
the byte level.

Constraints. We keep all constraints of CPBasic: They ensure that the boolean
variables satisfy the AES transformation rules.

We enforce the equivalence class 0 to correspond to all boolean variables
assigned to 0: For each boolean variable ∆A, we add the constraint

(∆A = 0)⇔ (ClassδA = 0).

We redefine the XOR constraint to propagate the fact that, whenever one of the
three boolean variables is equal to 0, then the differential bytes associated with
the two other boolean variables belong to the same equivalence class:

XOR(∆A,∆B,∆C)⇔ ((∆A+∆B +∆C 6= 1)

∧ ((ClassδA = ClassδB)⇔ (∆C = 0))

∧ ((ClassδA = ClassδC)⇔ (∆B = 0))

∧ ((ClassδB = ClassδC)⇔ (∆A = 0))).

We add a constraint to break symmetries due to the fact that equivalence classes
may be swapped. For example, if we have two equivalence classes such that, for
each differential byte δA in the first (resp. second) class, the variable ClassδA is
assigned to 1 (resp. 2), then we may obtain a symmetric solution (which models
the same equivalence classes) by exchanging 1 and 2. To break these symmetries
(that slow down the solution process), we use a precede constraint that enforces
an order on the equivalence classes (see [LL04] for more details).

Finally, all constraints of CPEQ that have been introduced in Section 2.3
to remove byte-inconsistent solutions are modified to handle equivalence class
variables instead of equality variables: Each time a constraint uses an equality
variable EQδA,δB , we replace it by a comparison of ClassδA and ClassδB (as
EQδA,δB is equivalent to ClassδA = ClassδB).

2.5 CP model for Step 2

Given a boolean solution for Step 1 (computed with CPClass, for example), Step
2 aims at searching for the byte-consistent solution with the highest differential
probability (or proving that there is no byte-consistent solution). In this section,
we describe the CP model introduced in [GMS16] for AES-128, extended to
AES-192 and AES-256 in a rather straightforward way.

Variables. For each boolean variable ∆A of Step 1, we define an integer variable
δA. The domain of this integer variable depends on the value of the boolean

15



variable in the Step 1 solution: If ∆A = 0, then the domain is D(δA) = {0}
(i.e., δA is also assigned to 0); otherwise, the domain is D(δA) = [1, 255].

For each byte that passes through an S-Box, i.e., ∀A ∈ Sboxesl, we define
an integer variable δSA which corresponds to the difference after the S-box. Its
domain is D(δSA) = {0} if ∆A is assigned to 0 in the Step 1 solution; Otherwise,
it is D(δSA) = [1, 255].

Finally, as we look for a byte-consistent solution with maximal probability,
we also add an integer variable PA for each byte A ∈ Sboxesl: This variable
corresponds to the base 2 logarithm of the probability Pr(δA→ δSA) of obtain-
ing the S-box output difference δSA when the S-box input difference is δA. The
domain of these variables depends on the value of the boolean variable in the
Step 1 solution: If ∆A = 0, then Pr(0→ 0) = 1 and therefore D(PA) = {0}; oth-
erwise, Pr(δA → δSA) ∈ { 2

256 ,
4

256} and D(PA) = {−7,−6} (we forbid couples
(δA, δSA) such that Pr(δA→ δSA) = 0).

Constraints. The constraints basically follow the AES operations to relate vari-
ables, as described in Section 2.2 for Step 1, but consider the definition of the
operations at the byte level, instead of the boolean level.

A main difference is that the SubBytes operation, which has no effect at the
boolean level, must be modeled at the byte level. This is done thanks to a ternary
table constraint which extensively lists all triples (X,Y, P ) such that there exists
two bytes B1 and B2 whose difference before and after passing through S-Boxes
is equal to X and Y , respectively, and such that P is the probability of this
transformation: For all A ∈ Sboxesl, we add the constraint

(δA, δSA, PA) ∈ {(X,Y, P ) | ∃(B1, B2) ∈ [0, 255]× [0, 255], X = B1 ⊕B2,

Y = S(B1)⊕ S(B2), P = log2(Pr(X → Y ))}.

All other constraints are defined in a rather straightforward way, using table
constraints.

Objective function. The goal is to find a byte-consistent solution with maximal
differential probability. As we consider logarithms, this amount to searching for
a solution that maximizes the sum of all PA variables. Hence, we introduce an
integer variable objStep2 which is constrained to be equal to the sum of all PA
variables:

objStep2 =
∑

A∈Sboxesl

PA

and we define the objective function as the maximization of objStep2. The domain
of objStep2 is derived from the solution of Step 1, i.e., the value of objStep1:
D(objStep2) = [−7 · objStep1,−6 · objStep1]

Ordering heuristics. We have used the following heuristic to define the order
for assigning variables during the search: We first assign δXi[j][k] variables such
that the total number of active S-boxes in the ∆X matrix at round i is minimal,
i.e., such that

∑
j,k∈[0,3]∆Xi[j][k] is minimal.
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3 Experimental results

In Section 3.1, we describe the CP solvers used to solve our CP models. In Section
3.2, we evaluate scale-up properties of these solvers on our models, and show that
CP is able to solve many instances in less than 24 hours. However, some instances
are more challenging and cannot be solved in less than 24 hours. In Section 3.3,
we show how to decompose these instances into independent subproblems, in
such a way that they may be solved within a reasonable amount of time using
several computers.

3.1 CP solvers

The CP models for Step 1 (described in Sections 2.2, 2.3, and 2.4) have been
implemented with MiniZinc [NSB+07], a high-level modeling language. Many
CP solvers accept MiniZinc models, such as Gecode [Gec06], Choco [PFL16],
Chuffed [CS14], or Picat [ZKF15]. In Section 3.2, we report experimental results
obtained with Chuffed, which has been shown to have better scale-up properties
than Gecode and Choco in [GMS16].

The CP model for Step 2 (described in Section 2.5) has been implemented
using the Java CP library Choco 3. As this implementation is able to solve all
instances within a reasonable amount of time, we have not tried to solve it with
other solvers.

Finally, in Section 3.3, we have used Picat and Chuffed to solve the subprob-
lems (obtained after decomposition of the hard instances).

The MiniZinc implementation of CPClass for Step 1 and the Choco 3 imple-
mentation of Step 2 are available as auxiliary supporting material, joined to the
submission. If the paper is accepted, they will be publicly available on a website.
All the solvers we have used (i.e., Choco, Chuffed, and Picat) are open-source
softwares and are publicly available.

3.2 Evaluation of scale-up properties

In this section, we evaluate scale-up properties of the CPEQ and CPClass models
for Step 1, and the CP model for Step 2. All runs have been done on a 3.5 GHz
i7-4710MQ processor with 8 gigabytes of memory, and CPU times are reported
in seconds. We report CPU times only if the instance has been solved in less
than 24 hours: Instances that are not solved within this time limit have been
decomposed into independent subproblems that have been solved in parallel, as
explained in Section 3.3.

We do not report experimental results obtained with CPBasic as it does not
scale at all, due to the fact that it has too many solutions which are not byte-
consistent. For example, for AES-128 with r = 4 rounds, we find more than 90
millions of boolean solutions with CPBasic when setting the number of active
S-boxes to objStep1 = 11. However, none of these solutions is byte-consistent.
When using CPEQ or CPClass, all these solutions are discarded thanks to the
new constraints: With these models, the smallest number of active S-boxes is
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objStep1 = 12, and there are 8 different boolean solutions with 12 active S-boxes,
among which 2 are byte-consistent.

Table 2 reports results for a number of rounds ranging from 3 to 5, 11,
and 14, for AES-128, AES-192, and AES-256, respectively. Beyond those round
numbers, the number of active S-boxes becomes too large implying that the
search complexity linked with the associated probability is greater than the key
exhaustive search.

For each number of rounds r, we search for the optimal boolean solution, and
objStep1 gives the number of active S-boxes in this optimal solution. We report
the CPU time needed to enumerate all boolean solutions with this number of
active S-boxes (if it is smaller than 24 hours). If none of these boolean solutions is
byte-consistent, we search for the optimal boolean solution with a higher number
of active S-boxes (as explained in paragraph Objective function of Section 2.2).
For example, for AES-192 with r = 7 rounds, the optimal boolean solution
has objStep1 = 11 active S-boxes, and there are 2 solutions with 11 active S-
boxes. However, none of these 2 solutions is byte-consistent. When adding the
constraint objStep1 > 11, the optimal boolean solution has objStep1 = 13 active
S-boxes, and there are 7 solutions with 13 active S-boxes, among which 4 are
byte-consistent. Finally, the optimal byte-consistent solution has a probability
equal to 2−78.

Table 2 shows us that, for Step 1, CPClass is more quickly solved by Chuffed
than CPEQ. This comes from the fact that CPEQ introduces a quadratic num-
ber of boolean EQ variables (one for each couple of differential bytes), whereas
CPClass only introduces a linear number of integer variables (one for each dif-
ferential byte). However, the largest instances (when the number of rounds is
greater than 8 for AES-192 and greater than 9 for AES-256) cannot be solved
within a CPU time limit of 24 hours.

For Step 2, Table 2 shows us that the CP solver Choco is always able to
quickly find the optimal byte-consistent solution for a given boolean solution.
The largest time is 326 seconds (i.e., less than 6 minutes), for AES-256 with
r = 13 and objStep1 = 24. However, this must be done for each boolean solution.
Therefore, when the number of boolean solutions is large, the total time spent to
find the optimal probability may become rather important. This is the case for
AES-192 with r = 10 and objStep1 = 29: As there are 29678 boolean solutions,
and the average time to find the optimal byte-consistent solution for a boolean
solution is 180 seconds, the total time for finding the optimal probability is 60
days. Of course, this may be done in parallel for each boolean solution.

3.3 Decomposition of large instances into independent subproblems

For the largest instances of AES-192 and AES-256, the CPU time of Chuffed with
CPClass exceeds the limit of 24 hours. In this case, we have sped-up the solving
process by decomposing each instance into independent subproblems that have
been solved on different computers in parallel. The decomposition of an instance
into independent subproblems has been done with respect to the positions of the
differences in the ciphering part (i.e., ∆Xi matrices) in the r rounds. To this
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AES-128

Step 1 Step 2

r objStep1 time # boolean # byte time Pr
CPEQ CPClass

3 5 1 1 4 2 3 2−31

4 12 114 81 8 2 5 2−79

5 17 2799 2049 1236 97 248 2−105

AES-192

Step 1 Step 2

r objStep1 time # boolean # byte time Pr
CPEQ CPClass

3 1 0 0 15 15 1 2−6

4 4 2 1 4 4 2 2−24

5 5 12 6 2 2 4 2−30

6 10 573 298 6 6 4 2−60

7 11 2108 988 2 0 8

7 13 5833 2999 7 4 8 2−78

8 16 44436 24619 4 0 19

8 18 - 81073 19 9 19 2−108

9 24 - - 240 13 36 2−146

10 29 - - 29678 34 180 2−176

11 30 - - 92 0 93

11 31 - - 2436 0 110

AES-256

Step 1 Step 2

r objStep1 time # boolean # byte time Pr
CPEQ CPClass

3 1 0 0 33 33 1 2−6

4 3 0 0 14 14 3 2−18

5 3 2 1 4 4 4 2−18

6 5 30 16 3 3 10 2−30

7 5 58 34 1 1 14 2−30

8 10 2894 1722 3 1 25 2−60

9 14 40064 21972 2 0 12

9 15 85465 49138 16 16 60 2−92

10 16 - - 4 4 106 2−98

11 20 - - 4 4 115 2−122

12 20 - - 4 4 238 2−122

13 24 - - 4 4 326 2−146

14 24 - - 4 4 150 2−146

Table 2: Experimental results for AES-128, AES-192, and AES-256. Each line
successively displays the number of rounds r, the results of Step 1 (number of
active S-boxes in boolean solutions objStep1, CPU time in seconds to enumer-
ate all boolean solutions with this number of active S-boxes with CPEQ and
CPClass, respectively, and number of boolean solutions # boolean), and the re-
sults of Step 2 (number of byte-consistent solutions # byte, average CPU time
in seconds to find the optimal byte-consistent solution for one boolean solution,
and probability of the optimal byte-consistent solution). ’-’ means that the CPU
time is greater than 24 hours (see Section 3.3).
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aim, we introduce r new integer variables, called SumXi with i ∈ [0, r− 1], and
we add the constraint:

∀i ∈ [0, r − 1] : SumXi =
∑

j,k∈[0,3]

∆Xi[j][k]

thus ensuring that SumXi is equal to the number of differences in the ciphering
part at round i. The domain of these new variables is D(SumXi) = [0, 16].

Then, given the CP model M of an instance of AES-192 or AES-256 with r
rounds (including the SumXi variables), we create r+2 subproblems as follows:

– We create a first subproblem M0 by adding to M the following constraint:

∀i ∈ [0, r − 1] : SumXi > 0.

This constraint ensures that, for each round i ∈ [0, r − 1], there is at least
one active S-box in ∆Xi.

– We create r subproblems, called M1:i with i ∈ [0, r−1], where each subprob-
lem M1:i is obtained by adding to M the following constraint:

(SumXi = 0) ∧ (∀i′ ∈ [0, r − 1] : i 6= i′ ⇒ SumXi′ > 0).

This constraint ensures that there is no active S-box in ∆Xi, whereas there
is at least one active S-box in every other ∆Xi′ with i′ 6= i.

– We create a last subproblem, called M≥2 by adding to M the following
constraint:

|{i ∈ [0, r − 1] : SumXi = 0}| ≥ 2.

This constraint ensures that there exist as least two different rounds with
no active S-boxes in the ciphering part.

Obviously, each solution sol of the initial problem M is a solution of exactly one
of these r+2 subproblems: sol satisfies the constraints of exactly one subproblem
as the number of rounds with no active S-box in the ciphering part of sol is either
0 (i.e., sol is a solution of M0), 1 (i.e., sol is a solution of M1:i where i is the
round of sol such that SumXi = 0), or 2 or more (i.e., sol is a solution of M≥2).
Furthermore, a solution of any subproblem of M is necessarily a solution of M
as each subproblem is obtained by adding a constraint to M .

Therefore, we may compute the set of solutions of M by solving each sub-
problem independently. Also, the optimal solution of M may be obtained by
selecting the best solution, among the optimal solutions of each subproblem.

We have decomposed each instance of AES-192 and AES-256 which has not
been solved within the CPU time limit of 24 hours. For each subproblem, we have
first used the Picat solver [ZKF15] to decide whether the subproblem contains
solutions or not (and, if the problem has solutions, to enumerate the values
of the SumXi variables for which there are solutions). Then, if the subproblem
contains solutions, we have used the Chuffed solver [CS14] to enumerate all these
solutions, given the values of the SumXi variables computed by Picat. Indeed,
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M0 M1:0 M1:1 M1:2 M1:3 M1:4 M1:5 M1:6 M1:7 M1:8 M1:9 M≥2 Total

Time Picat 10850 3795 5072 4889 1193 917 741 3787 2716 736 5326 83580 123602

Time Chuffed - - - - - 16 - - 395 30 - 12 453

# boolean 0 0 0 0 0 112 0 0 29538 2 0 26 29678

Table 3: Results of the decomposition of the hardest instance (AES-192 with
r = 10 and objStep1 = 29) in 12 subproblems: CPU time (in seconds) spent by
Picat to decide whether the subproblem contains solutions or not, CPU time (in
seconds) spent by Chuffed to enumerate all solutions for the subproblems that
have solutions, and number of boolean solutions for each subproblem.

on these more challenging instances, we have noticed that Picat is more efficient
than Chuffed to decide if a subproblem has solutions or not, whereas Chuffed
is more efficient than Picat to enumerate all the solutions of the subproblems
which have solutions.

Each subproblem has been solved independently, on different computers, and
we do not report detailed CPU times for each of these subproblems. Table 3
only reports results for AES-192 with r = 10 rounds and objStep1 = 29 active S-
boxes. Indeed, this instance revealed to be the hardest one, among all instances
of AES-192 and AES-256. This may come from the fact that it has many boolean
solutions (29678). For each subproblem, Table 3 reports the CPU time spent by
Picat to decide whether it has solutions or not, the CPU time spent by Chuffed
to enumerate all solutions (if the subproblem has solutions), and the number of
solutions. The total CPU time to solve this instance, obtained by adding the
solving time of all subproblems by Picat and Chuffed, is 124, 055 seconds, i.e.,
less than 35 hours (and this is the largest CPU time needed to solve an instance,
for all AES-192 and AES-256 instances).

4 Using CP to check the consistency of existing solutions

CP may be used to compute solutions, as shown in Section 3. In this Section,
we show that it may also be used to check that existing solutions (computed
with other approaches, for example) are consistent, i.e., they actually satisfy all
the constraints. Using CP to achieve this task is very easy: We simply have to
reduce the domain of each variable that occurs in the solution to a singleton {v},
where v is the value assigned to the variable in the solution.

When a solution is not consistent with the model (i.e., some constraints are
violated), the CP solver detects the inconsistency. In this case, it may be useful
to have an explanation of the inconsistency, that allows the user to understand
why the solution is not consistent. Many CP solvers (such as Choco [PFL16]) are
able to provide this kind of explanations: An explanation is a subset of decisions
applied during the search which justifies an inference made by the solver. They
are often used to improve the solution process by learning from failures. In our
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case, they may be used to understand why a solution is inconsistent, i.e., identify
a subset of constraints which are in contradiction with the solution.

Using these principles, we analyze the related-key differential trail for AES-
192 with 11 rounds and 31 active S-boxes given on page 20 (Fig. 2, right part) of
[BDK+10]. We first notice that the solution satisfies the constraints of CPBasic,
i.e., it satisfies the basic AES transformation rules. However, some constraints of
CPEQ (or CPClass, equivalently) are not satisfied by this solution: The violated
constraints are those that exploit the key schedule to define equalities between
some differential bytes of the subkeys (see the paragraph Constraints derived
from KeySchedule in Section 2.3).

More precisely, for K3[0][3], we have:

V (3, 0, 3) = {δK0[0][1], δK0[0][3], δS2[1][3]}.

In other words, δK3[0][3] = δK0[0][1] ⊕ δK0[0][3] ⊕ (S(K2[1][3]) ⊕ S(K ′2[1][3])),
by definition of the KS. Also, for K4[0][1], we have:

V (4, 0, 1) = {δK0[0][1], δK0[0][3], δK1[0][1], δS2[1][3]}.

In other words, δK4[0][1] = δK0[0][1] ⊕ δK0[0][3] ⊕ δK1[0][1] ⊕ (S(K2[1][3]) ⊕
S(K ′2[1][3])), by definition of the KS.

In the solution of [BDK+10], the variable δK1[0][1] is set to 0, whereas all
other variables of V (3, 0, 3) and V (4, 0, 1) are set to 1. As a consequence, the set
variables V1(3, 0, 3) and V1(4, 0, 1) are both assigned to

V1(3, 0, 3) = V1(4, 0, 1) = {∆K0[0][1], ∆K0[0][3], ∆S2[1][3]}.

This equality is propagated by the constraint

∀i1, i2 ∈ [1, r],∀j1, j2, k1, k2 ∈ [0, 3] : (V1(i1, j1, k1) = V1(i2, j2, k2))

⇒ (EQδKi1
[j1][k1],δKi2

[j2][k2] = 1),

to infer that EQδK3[0][3],δK4[0][1] = 1, i.e., that δK3[0][3] = δK4[0][1].

However, in the solution of [BDK+10], we have δK3[0][3] = 0 and δK4[0][1] 6=
0. This contradiction is detected by the CP solver.

Note that this contradiction holds for the whole column, i.e., ∀j ∈ [0, 3],
δK3[j][3] = 0 and δK4[j][1] 6= 0 in the solution whereas the set variables
V1(3, j, 3) and V1(4, j, 1) are equal, thus entailing a contradiction.

5 From related-key differentials to related-key attacks

In this Section, we summarize the new AES related-key differential paths that
we have computed with CP, and describe new basic related-key attacks, related-
key distinguishers and q-multicollisions that we are able to mount by using them
for AES-192 and AES-256.
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5.1 AES-128

Using CP, we retrieve all the results provided in [BN10,FJP13,GMS16] for 3,
4, and 5 rounds of AES-128. As already pointed out in the introduction and as
shown in Table 2, for four rounds, the minimum number of active S-boxes is 12
(instead of 13 as claimed in [BN10,FJP13]) leading to a probability equal, at the
best, to 2−79 (instead of 2−81).

Unfortunately, even if we improve the best solution on 4 rounds, we cannot
use this related-key differential trail to improve previous attacks as the best
attacks in the related-key and chosen-key models exploit the optimal 5 rounds
related-key differential trail.

5.2 AES-192

Summary of related-key differential paths computed with CP. As pointed out in
Table 2 for 11 rounds, even if there exist boolean solutions with objStep1 = 30
or 31, none of these solutions is byte consistent. The best related-key differential
trail is on 10 rounds with 29 active S-boxes and a highest probability equal
to 2−176: 2−37 coming from the keys and 2−139 from the ciphering part. This
trail is given in Table 9 of Appendix D. This differential allows us to mount a
related-key distinguisher and a basic related-key differential attack as done in
[BKN09].

Related-key distinguisher on 10 rounds. Considering the related-key distinguisher
model, the probability that the differences correctly propagate through the in-
ternal states is 2−139 = 2−7 · 2−22·6 as we have 23 active S-boxes in the internal
states: 22 with probability 2−6 and 1 with probability 2−7. It works for 1 out of
237 = 26·5 · 27 keys as we have 6 additional active S-boxes in the key schedule:
1 with probability 2−7 and the 5 others with probability 2−6. Therefore, the
related-key distinguisher has a data/time complexity equal to 2176 = 2139 · 237.

Basic related-key differential attack on 10 rounds. We first change the trail given
in Table 9 of Appendix D to get more active S-boxes in the two first rounds to
recover the key bytes implied at the input of those S-boxes. The new trail has
four active S-boxes in the first round and one in the second round.

Thus, we must find the 5 key bytes K0[0][2], K0[1][3], K0[2][0], K0[3][1], and
K1[0][2]. We use the following procedure for each of the 237 key pairs:

1. Repeat 281 times:
(a) Compose two structures of 232 plaintexts with all possible values for the

second diagonal. Encrypt the first structure with K and the second one
with K ′.

(b) Sort the ciphertexts and check for a pair with the correct output differ-
ence. Save these valid pairs if any.

2. For each of these pairs, derive 28 variants for the 5 key bytes. There are
5 S-boxes in the two first rounds for which we know the input and output
differences. Therefore, there are 25 · 8 = 28 possibilities for the 40 key bits
per candidate pair without false alarms.
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3. Pick the key candidate with the best occurrence.

The overall complexity of the whole procedure, which is repeated 237 times,
is 281+33 = 2114 in data and time and 233 in memory. We need to repeat 281

times step 1.(a) and 1.(b) to keep on average 281 · 232−109 = 24 = 16 right pairs
and 277 wrong pairs and to completely discard false alarms. This gives us 40 key
bits. We may also, in a second step, by relaxing the condition of the S-box of
the third round gain more information on key bytes in K1 at a lower cost.

5.3 AES-256

Summary of related-key differentials computed with CP. As reported in Table 2
for 14 rounds, there exist 4 boolean solutions, and each of these boolean solutions
is byte-consistent. For each of the first 2 boolean solutions, there are 826 byte
solutions (computed in Step 2) among which 3 have a maximal probability of
2−154. For the last 2 boolean solutions, the number of byte solutions is huge
(several millions) and represent about 35 GB of data.

The optimal byte solution has a probability of 2−146, and it is given in Table
5 of Appendix B. Note that the one given in [BKN09] has a probability of 2−154

to happen and is recalled in Table 4 of Appendix A. We also obtain 43 solutions
with a probability of 2−147.

We experimentally checked that the 7 bottom rounds of the AES conform
to the expected probability by producing the wanted difference after 230 pairs
on average, as predicted by the trail. We also provide in Tables 6, 7 and 8 in
Appendix C a pair of keys and two pairs of partial messages that verify the trail.

q-multicollisions. Using this optimized byte consistent differential solution, we
are able to improve the attacks proposed in [BKN09]. More precisely, the cost
to compute a q-multicollision given in [BKN09] depends on 11 active S-boxes
with probability 2−67. With the new trail, we gain a factor 2 on this complexity
leading to a time complexity equal to q · 266 encryptions. In the same way, the
time complexity to find partial q-multicollisions becomes q ·236 instead of q ·237.

Related-key distinguisher. Considering the related-key distinguisher, the prob-
ability that the differences correctly propagate through the internal states is
2−19·6 = 2−114 and it works for 1 out of 232 = 214·218 keys as we have 5 additional
active S-boxes: 2 with probability 2−7 and 3 with probability 2−6. Hence, the
related-key distinguisher has a data/time complexity equal to 2146 = 2114 · 232.

Related-key attack. The related-key attack described in [BKN09] may be directly
applied using our new trail. The procedure is about to be the same as the one
described for the basic related-key attack given for 10 AES-192 rounds except
that the number of key bits tested in the two first rounds is equal to 80 and that
for each of the 232 possible key pairs, we need to repeat 228 times the process
with two structures of 264 plaintexts. Thus after Step 1, we have on average 4
right pairs, and for each pair we derive 216 possible values for the ten key bytes
without false alarms. Thus, the overall complexity of this attack becomes 2125

in data and time while testing 232 keys. The required memory is 265.
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6 Conclusion

We have described three CP models for finding difference positions in AES
related-key differential characteristics (Step 1). The first two models, CPBasic
and CPEQ, are extensions to AES-192 and AES-256 of models initially defined
for AES-128 in [MSJ14] and [GMS16], respectively. The third model is new and
improves CPEQ by using a more efficient encoding of equality relations at the
byte level. We have shown that this new model is twice as fast as CPEQ and
allows Chuffed to solve all instances of AES-192 and AES-256 up to 8 and 9
rounds, respectively, in less than 24 hours. For harder instances, we have shown
how to decompose them into independent subproblems, thus allowing us to solve
Step 1 for all instances of AES-192 and AES-256 in less than 35 hours.

We have also described a CP model for finding the actual values of the differ-
ential bytes, given their positions (Step 2). This model is a simple extension to
AES-192 and AES-256 of the CP model initially defined for AES-128 in [GMS16].

These CP models are declarative, i.e., they define the problem to solve by
means of constraints, but do not specify how to solve it (except from ordering
heuristics that give some indications to the solver). As a consequence, they are
easier to implement, understand and check than a full program. Actually, these
models allowed us to find better related-key differential characteristics than the
approaches of [BKN09,FJP13].

These CP models are implemented with the MiniZinc language, and most CP
solvers accept MiniZinc models. Also, most of these solvers are open-source and
publicly available. The CP community is in permanent search for improving the
efficiency of these generic solvers. An obvious advantage of separating the model
(that describes the problem to solve) from the solver (that actually solves the
problem) is that each time a solver is improved, cryptanalysts may try to model
and solve harder problems. This is also a step forward for a more automatic
verification of the security of symmetric encryption schemes against this kind of
attacks, which might be a clear and practical criteria for determining the future
symmetric encryption standard.

Finally, a last question could also be asked: Is there a way to improve the
best attacks against AES-256 in the different attacker models merging the big
amount of found related-key differential solutions (more than 25 GB!) even if
those solutions have lower probabilities than the optimal one?
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A The Related-Key Differential used in [BKN09] against
14 rounds of AES-256

Round δXi = Xi ⊕X ′i δKi = Ki ⊕K′i Pr(States) Pr(Key)

init. 0e070709 0e070709 0e070709 0e070709

i = 0 01000000 00000000 01000000 00000000 0f070709 0e070709 0f070709 0e070709 2−6·2 −
1 09000000 00000000 09000000 00000000 371f1f21 00000000 371f1f21 00000000 2−7·2 −
2 01000000 01000000 00000000 00000000 0f070709 01000000 0e070709 00000000 2−6·2 −
3 09000000 09000000 00000000 00000000 371f1f21 371f1f21 00000000 00000000 2−7·2 −
4 01000000 00000000 00000000 00000000 0f070709 0e070709 00000000 00000000 2−6 −
5 09000000 00000000 00000000 00000000 371f1f21 00000000 00000000 00000000 2−7 −
6 01000000 01000000 01000000 01000000 0f070709 01000000 01000000 01000000 2−6·4 2−7

7 00000000 00000000 00000000 00000000 3e1f1f21 3e1f1f21 3e1f1f21 3e1f1f21 − 2−7·4

8 01000000 00000000 01000000 00000000 01000000 00000000 01000000 00000000 2−6·2 −
9 00000000 00000000 00000000 00000000 3e1f1f21 00000000 3e1f1f21 00000000 − −
10 01000000 01000000 00000000 00000000 01000000 01000000 00000000 00000000 2−6·2 −
11 00000000 00000000 00000000 00000000 3e1f1f21 3e1f1f21 00000000 00000000 − −
12 01000000 00000000 00000000 00000000 01000000 00000000 00000000 00000000 2−6 −
13 00000000 00000000 00000000 00000000 3e1f1f21 00000000 00000000 00000000 − −

End/14 01000000 01000000 01000000 01000000 01000000 01000000 01000000 01000000 − −

Table 4: The related-key differential described in Appendix A of [BKN09] that
happens with a probability 2−154. The four words represent the four columns
and are given in hexadecimal notation. We have the relation: δX ⊕ δK0 = δX0.

B Our own Related-Key Differential on 14 Rounds of
AES-256

Round δXi = Xi ⊕X ′i δKi = Ki ⊕K′i Pr(States) Pr(Key)

init. addbdb76 addbdb76 addbdb76 addbdb76

i = 0 69000000 00000000 69000000 00000000 c4dbdb76 addbdb76 c4dbdb76 addbdb76 2−6·2 −
1 9a000000 00000000 9a000000 00000000 b59a9ab5 00000000 b59a9ab5 00000000 2−6·2 −
2 69000000 69000000 00000000 00000000 c4dbdb76 69000000 addbdb76 00000000 2−6·2 −
3 9a000000 9a000000 00000000 00000000 b59a9ab5 b59a9ab5 00000000 00000000 2−6·2 −
4 69000000 00000000 00000000 00000000 c4dbdb76 addbdb76 00000000 00000000 2−6 −
5 9a000000 00000000 00000000 00000000 b59a9ab5 00000000 00000000 00000000 2−6 −
6 69000000 69000000 69000000 69000000 c4dbdb76 69000000 69000000 69000000 2−6·4 2−6

7 00000000 00000000 00000000 00000000 2f9a9ab5 2f9a9ab5 2f9a9ab5 2f9a9ab5 − 2−7·2 × 2−6·2

8 69000000 00000000 69000000 00000000 69000000 00000000 69000000 00000000 2−6·2 −
9 00000000 00000000 00000000 00000000 2f9a9ab5 00000000 2f9a9ab5 00000000 − −
10 69000000 69000000 00000000 00000000 69000000 69000000 00000000 00000000 2−6·2 −
11 00000000 00000000 00000000 00000000 2f9a9ab5 2f9a9ab5 00000000 00000000 − −
12 69000000 00000000 00000000 00000000 69000000 00000000 00000000 00000000 2−6 −
13 00000000 00000000 00000000 00000000 2f9a9ab5 00000000 00000000 00000000 − −

End/14 69000000 69000000 69000000 69000000 69000000 69000000 69000000 69000000 − −

Table 5: Our own related-key differential that happens with a probability 2−146.
The four words represent the four columns and are given in hexadecimal nota-
tion. We have the relation: δX ⊕ δK0 = δX0.
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C Verification of our own solution

We derive two pairs of messages/keys that verify our trail in the following way.
After having chosen the pair of keys, the first pair of messages verifies the differ-
ential trail between the round 6 and the end starting numbering the round by 0
and the second pair of messages verifies the differential trail between the round
6 and the end of round 2.

Let us first specify the key pair:

K f763a263 f263a263 f463a263 00000000

63636363 63636363 63636363 0017001a

K′ 33b87915 5fb87915 30b87915 addbdb76

d6f9f9d6 63636363 63636363 0017001a

δK = K ⊕K′ c4dbdb76 addbdb76 c4dbdb76 addbdb76

b59a9ab5 00000000 b59a9ab5 00000000

Table 6: The used key pair. The eight words represent the eight columns of the
keys.

X6 00020202 00d70202 00c56902 0002022d

X ′6 69020202 69d70202 69c56902 6902022d

δX6 = X6 ⊕X ′6 69000000 69000000 69000000 69000000

Table 7: The pair of messages verifying the path between rounds numbered 6 to
the end. The four words represent the four columns.

X6 00100202 00020902 00a20c02 000202c4

X ′6 69100202 69020902 69a20c02 690202c4

δX6 = X6 ⊕X ′6 69000000 69000000 69000000 69000000

Table 8: The pair of messages verifying in the backward direction the path
between rounds numbered 6 to the end of round 2. The four words represent the
four columns.
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D Our own Related-Key Differential on 10 Rounds of
AES-192

Round δXi = Xi ⊕X ′i δKi = Ki ⊕K′i Pr(States) Pr(Key)

init. c816ad91 dc02027a d8000000 00000000

i = 0 d800a300 d800007a 00000000 00000000 10160e91 04020200 d8000000 00000000 2−6·4 −
1 00000000 00000000 d4000000 00000000 04020206 04020206 04020200 00000000 2−7 2−7 × 2−6·3

2 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 dc020206 d8000000 2−6·4 2−6

3 00000000 00000000 d8000000 00000000 04020206 04020206 dc020206 04020206 2−6 −
4 d8000000 00000000 00000000 00000000 d8000000 00000000 04020206 00000000 2−6 −
5 d8000000 d8000000 00000000 00000000 dc020206 d8000000 00000000 00000000 2−6·2 −
6 00000000 00000000 d8000000 00000000 04020206 04020206 d8000000 00000000 2−6 −
7 00000000 00000000 00000000 00000000 00000000 00000000 04020206 00000000 − −
8 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 d8000000 2−6·4 2−6

9 00000002 00000002 d8000002 00000002 04020204 04020204 dc020204 04020204 2−6·5 −
End/10 d8000400 06000400 ???????? ???????? dc020204 04020204 ???????? ???????? − −

Table 9: Our related-key differential on 10 rounds of AES-192 that happens with
a probability 2−176. The four words represent the four columns and are given in
hexadecimal notation. We have the relation: δX ⊕ δK0 = δX0.
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