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Abstract. Pattern matching is essential to applications such as filtering
content in Data streams, searching on genomic data, and searching for
correlation in medical data. However, increasing concerns of user and
data privacy, exacerbated by threats of mass surveillance, have made the
use of encryption practically standard for personal data. Hence, entities
performing pattern-matching on data they do not own must now be able
to provide the functionality of keyword-search on encrypted data.

Existent solutions in searchable encryption suffer from one of two main
disadvantages: either an exhausted list of keywords needs to be hard-
coded in the input ciphertexts, or the input must be tokenized, mas-
sively increasing the size of the ciphertext. In both cases, the symmetric-
key approach provides faster encryption, but also induces a token-re-
generation step at each instantiation (i.e., essentially, for each user).
Such approaches are not well-suited when either the data owner is un-
able to choose all the relevant keywords, or when a single searcher (e.g.,
an IDS, a firewall, or an independent medical researcher) must screen
ciphertexts from many different ownerships. Fast symmetric searchable
encryption alternatives (SSE) also come with an extensive leakage, which
is not well understood and has recently been under attack.

In this work, we introduce Searchable Encryption with Shiftable Trap-
doors (SEST), a new primitive, which allows for pattern matching with
universal tokens, i.e., trapdoors which can function on ciphertexts pro-
duced by multiple entities, and which allow to match keywords of arbi-
trary lengths to arbitrary ciphertexts. Our approach relies on a public-
key encryption scheme and on bilinear pairings. We essentially project
the plaintext bit by bit on a multiplicative basis consisting of powers of
a secret key. The keyword is also projected on the same basis, with the
order of its bits encoded as a polynomial of degree equal to the keyword
length. The searching entity receives unforgeable trapdoors for requested
keywords, and can match these against the input ciphertexts, thus find-
ing out whether the pattern matched, and at what position of the plain-
text the keyword can be found. In addition, very minor modifications to
our solution enable it to take into account regular expressions, such as
fully- or partly-unknown characters in a keyword (namely wildcards or
interval/subset searches).

Our scheme is a variation of Rabin-Karp and has many potential ap-
plications in deep-packet inspection on encrypted streams, searching on



genomic data, as well as searching on encrypted structured data. Com-
pared to other alternatives in the literature, our trapdoor size is only
linear in the keyword length (and independent of the plaintext size), and
we prove that the leakage to the searcher is only the trivial one, namely
the ability to distinguish based on different search results of a single trap-
door on two different plaintexts. Although our proofs use a (marginally)
interactive assumption, we argue that this is a relatively small price to
pay for the flexibility and privacy that we are able to attain.

1 Introduction

In many applications, such as searching on genomic data, deep-packet inspection,
or delegatable searches in databases, it is desirable to be able to match a given
pattern to a larger input, and learn whether that pattern occurs or not, and
where in the input this happens. In such cases, the entity performing the search
is called the gateway and it is only semi-trusted by the owner of the input data.
This is the case, for instance, when a middlebox – such as a firewall, or an IDS –
must inspect incoming and outgoing traffic between multiple sets of independent
peers, or when a single piece of recovered DNA must be matched against large-
scale genomic databases (in which each genome is owned by the physical person
to which it corresponds).

In such cases, pattern matching on plaintext data can have potentially harm-
ful consequences, and raises trust issues. In other words, a user may trust an
anti-virus scanner to scan its full data for viruses, but they may not want that
the full content of its data be disclosed to this entity. Such concerns have been
lately exacerbated by threats of mass-surveillance, following the revelations of
Edward Snowden. As a consequence, data encryption is slowly becoming the
standard approach to protecting personal information. Hence, pattern matching
must now be performed on encrypted data.

In cryptography, this research area is closely related to that of Symmetric
Searchable Encryption [SWP00,BDOP04,CGKO06,CK10a,CS15]. Though we re-
view such solutions in more detail later in this section, we mention that though
SSE is quite efficient even for large input, it comes with a lot of unnecessary leak-
age that is easily exploitable, see e.g., [CGPR15,ZKP16]. In addition, many of
the proposed scenarios only allow for searches for pre-chosen keywords, which are
hard-coded in the encrypted input. Thus, it is impossible to do pattern-matching
with arbitrary keywords.

Some further symmetric-key solutions to this problem require so-called tok-
enization [SLPR15]. In particular, a sliding-window technique is used to encode
key-words of a given, fixed length, which can then be matched by the searcher.
This allows searches to be performed for arbitrarily-chosen keywords; however,
a disadvantage is that each instantiation requires a new generation of tokens.
In this paper, we focus on extending this solution to public-key settings, and in
particular, we achieve secure pattern-matching on encrypted data with universal
tokens.

We review further related work in Section 1.2.
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1.1 Our contributions

For our construction, the encryption process does not depend on the searchable
keywords (even if the latter are of different sizes) and the size of the trapdoors
does not depend on the length of encrypted bitstrings. It is thus well-suited for
the cases of DPI, of pattern-matching on genomic data, and on delegated searches
on medical data. We also support regular expression such as the presence of
wildcards or matching encrypted input to general data-subsets.

Intuitively, in our construction we use public-key searchable encryption and
project each coordinate of the plaintext B (and then of the keyword W ) on
a geometric basis consisting of some values zi, for i = 1, . . . , |B|. We pre-
vent malleability of trapdoors by embedding the exact order of the bits of W
into a polynomial, which cannot be forged without the secret key. A funda-
mental part of the searching algorithm that we propose is the way in which
the middlebox will be able to shift from one part of the ciphertext to an-
other, when searching for a match with W . Thus, our scheme can be viewed
as an anonymous predicate encryption scheme where one could derive the secret
keys for (∗, w1, . . . , w`, ∗, . . . , ∗),. . .,(∗, . . . , ∗, w1, . . . , w`) from the secret key for
(w1, . . . , w`, ∗, . . . , ∗). Such changes require the definition of a new primitive that
we call Searchable Encryption with Shiftable Trapdoors (SEST). We then also
provide a security model for the latter which ensures that even a malicious gate-
way knowing trapdoors tdW1 , . . . , tdWq does not learn any information from an
encrypted bitstring B beyond the presence of the keyword Wk in B, for k ∈ [1, q].

Our construction is – to our knowledge – the first SEST scheme, and thus can
be taken as a proof-of-concept construction. We guarantee the desired properties
by only using asymmetric prime order bilinear groups (i.e. a set of 3 groups
G1,G2 and GT along with an efficient bilinear map e : G1×G2 → GT ) for which
very efficient implementations have been proposed (e.g. [BGM+10])). Encryption
of plaintexts B only requires operations in the group G1, while detection of the
keyword W is done by performing pairings. Both operations require only the
public key; only the trapdoor-issuing algorithm requires the corresponding secret
key.

We are able to allow for pattern-matching when some of the contents of the
keywords are either fully-unknown, i.e., wildcards, or partially-unknown, i.e., in
an interval. Searches for such regular expressions remain fully-compatbile with
our original solution. In the first case, the only difference is that when issuing the
trapdoor, instead of fully randomizing it we choose special randomness – equal
to 0 – for the “coefficients” of the polynomial that we project the wildcards or
unknown subsets to. For the scenario of partially-known trapdoors, we require
a more complex key-generation process since we use different values on which
to (uniformly) project the unclear values to. These will be used in the trapdoor
generation step, ensuring that if a partially-known input is used, that coefficient
of the trapdoor will still “vanish”.

In particular, our pattern-matching algorithm is very similar to Rabin-Karp
and consequently, we can use it to solve similar problems. In addition to the
three presented use-cases, our technique can also be used to perform 2D pattern
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matching in images, or searching subtrees in a rooted labelled trees. However,
note that due to the privacy-preserving goal of our work, we cannot benefit from
many of the tricks used by Rabin-Karp, thus yielding a scheme with limited
efficiency.

Impact and limitations. Our scheme allows for a flexible searchable encryption
mechanism, in which encrypters do not have to embed a list of possible keywords
into their ciphertexts. Moreover, we also provide a great deal of flexibility with
respect to searching for keywords of arbitrary lengths. In this sense, our technique
allows for searchable encryption with universal tokens, which can be used in
deep-packet inspection, applications on genomic and medical data, or matching
subtrees in labelled trees.

One limitation of our scheme is the size of our public keys. We require a
public key of size linear in the size of the plaintext to be encrypted (which is
potentially very large). This is mostly due to the need to shift the ciphertext
each time in order to detect the presence of the keyword. We also require a large
ciphertext, consisting of a number of elements that is again linear in the size of
the plaintext; however, the same inefficiency is inherent also to solutions such
as BlindBox [SLPR15], in which we must encrypt many “windows” of the data,
of same size. Finally, the search of a keyword of size ` in a plaintext of size n
requires `+1 pairing computations per each position in the ciphertext (with n−`
shifts, the middlebox needs to compute (n− `)(`+ 1) pairing computations).

Furthermore, we are only able to prove the security of our construction under
an interactive assumption, unless we severely restrict the size n of the message
space. Indeed, we need an assumption which offers enough flexibility to provide
shiftable trapdoors for all possible keywords except the one that allow trivial
distinction of the encrypted bitstring. We modify the GDH assumption in a
minimal way, to allow the adversary to request the values on which the reduc-
tion will break this assumption. We could remove the need for this flexibility,
by, for instance reducing the value of n so that the simulator could guess the
bitstrings targeted by the adversary but this strongly limits the applications of
our construction.

We argue that despite this interactive assumption, the intrinsic value of our
construction lies in its flexibility, namely in the fact that we are able to search
for arbitrary keywords. This significantly improves existing solutions of, e.g.,
detecting viruses on encrypted traffic over HTTPS [Jar12,HREJ14,SLPR15].

1.2 Related work

Pattern matching. Symmetric Searchable Encryption (SSE) enables pattern
matching on encrypted data [SWP00,BDOP04,CGKO06,CK10a,CS15]. A pe-
culiarity of the latter is that the encryption is done with a symmetric key; it is
required, upon encryption, to select key-words which can be later searched, i.e.,
the space of possible patterns to match. However, such approaches are not always
suitable to deep-packet inspection on data streams, nor on arbitrary matching
of (relatively) short patterns to much larger genomic data, since in those cases
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it is difficult to hard-code the exhaustive list of all possible keywords in the en-
cryption of the input data. We review in more detail how (S)SE works in the
following paragraph.

Searchable encryption is not limited to database searches – which is the
pet example in SSE. In particular, Chase and Kamara [CK10b] showed how to
generalize SSE to searching on encrypted structured data (such as web graphs
and social networks). Unfortunately, this work inherits some of the disadvantages
in SSE, such as more extensive leakage than that given by the queries themselves.
In our case, we do not seek to protect the privacy of our keyword, just to make
trapdoors for fresh keywords unforgeable without the secret key; as a result, the
privacy we obtain is more straight-forward to quantify and understand.

How searchable encryption works. In searchable encryption (SE), any party
that is given a trapdoor tdW associated with a keyword W is able to search for
that keyword within a given ciphertext. The ideal privacy guarantee required
is that searching reveals nothing else on the underlying plaintext (other than
the presence or absence of the keyword). Routing encrypted emails or running
an antivirus on encrypted traffic are typical applications which require such a
functionality.

In general, searches are usually performed by the middlebox on keywords
that have been pre-chosen by the party encrypting the ciphertexts (i.e., the en-
crypter). In particular, an encrypted string containing W can be detected by the
middlebox knowing tdW only if the sender has selected W as a keyword and has
encrypted it using the SE scheme. Such approaches are still suitable for some
types of database searches (in which documents are already indexed by key-
words), or in the case of emailing applications – for which natural keywords can
be the sender’s identity, the subject line, or flags such as “urgent”. Unfortunately,
in cases such as messaging applications, or just for common Internet browsing,
the keywords are much harder to find, and can include expressions that are not
sequences of words per se, but rather something of the kind “http://www.exam-
ple.com/index.php?username=1”.

The solution proposed in [SLPR15] to search keywords of length ` is to split
the string B = b1 . . . bn into [b1 . . . b`], [b2 . . . b`+1],. . .,[bn−`+1 . . . bn] and then
to encrypt each of these substrings using a searchable encryption scheme (the
substrings are thus the keywords associated with B). However, this solution has
a drawback: it works well if all the searchable keywords W1, . . . ,Wq have the
same length but this is usually not the case. In the worst case, if all searchable
keyword Wk are of different length `k, the sender will have, for each k ∈ [1, q],
to split B in substrings of size `k and encrypt them, which quickly becomes
cumbersome. One solution could be to split the searchable keywords Wk into
smaller keywords of the same length `min = mink(`k). For example, if `min = 3
the searchable keyword “execute” could be split into “exe”, “cut” and “ute”
for which specific trapdoors would be issued. Unfortunately, this severely harms
privacy since these smaller keywords will match many more strings B. Moreover,
repeating this procedure for every keyword Wk will lead the gateway to receive
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trapdoors for a large fraction of the set of strings of length `min and so to recover
large parts of B with significant probability.

Generic evaluation of functions on ciphertexts. Evaluation of functions over
encrypted data is a major topic in cryptography, which has known very impor-
tant results over the past decade. Generic solutions (e.g., fully homomorphic
encryption [Gen09], functional encryption [AGVW13,ABDP15],...), supporting
a wide class of functions, have been proposed but they suffer from a rather high
complexity. In practice, it is then better to use a scheme specifically designed
for the function(s) that one wants to evaluate.

Several recent publications study secure substring search and text process-
ing [BEM+12,MNSS12,HL10,GHS16,KM10,TPKC07,LLN14], specifically in two-
party settings. Some of these papers provide applications to genomic data, specif-
ically matching substrings of DNA to encrypted genomes. This was done by us-
ing secure multi-party computation or fully-homomorphic encryption. However,
the former solution requires interaction between the searcher and the encrypter,
whereas the use of FHE induces a relatively high complexity. Of particular inter-
est here is the approach by Lauter et al. [LLN14], which presents an application
to genomic data. The authors here go much farther than just matching patterns
with some regular expressions, however, they require fully-homomorphic encryp-
tion (FHE) for their applications. We leave it as future work to investigate in
how far we can modify our technique with universal tokens in order to provide
some support to the algorithms presented by Lauter et al. for genomic matching.

At first sight, anonymous predicate encryption (e.g. [KSW13]) or hidden
vector encryption [BW07] provide an elegant solution to the problem of searching
on encrypted streams. Indeed, the sender could use one of these schemes to
produce a ciphertext for some attributes b1, . . . , bn which together make up a
word B, while the middlebox, knowing the suitable secret keys, could detect
whether B contains a substring W . The encryption process would then not
depend on the searchable keywords and the anonymity property of these schemes
would ensure that the ciphertext does not leak more information on B.

However, another issue arises with this solution. Indeed,W = w1 . . . w` can be
contained at any position in B. Therefore, the gateway should receive the secret
keys for (w1, . . . , w`, ∗, . . . , ∗), (∗, w1, . . . , w`, ∗, . . . , ∗),. . .,(∗, . . . , ∗, w1, . . . , w`),
where “∗” plays the role of a wildcard, to take into account all the possible
offsets. So, for each searchable keyword of size `, the gateway would have to
store n− `+ 1 keys, which is obviously a problem for large bitstrings B.

DPI with multi-context key-distribution. Naylor et al. [NSV+15] recently pre-
sented a multi-context key-exchange over the TLS protocol, which aims to allow
middleboxes (read, write, or no) access to specific ciphertext fragments that they
are entitled to see. This type of solution has some important merits, such as the
fact that it is relatively easy to put into practice and allows the middlebox to
perform its task with a very low overhead (the cost of a simple decryption). In
addition, the parties sending and receiving messaged need not deviate from the
protocols they employ (such as TLS/SSL).
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However, such solutions also have important disadvantages. The first of these
is that the privacy they offer is not ideal. Instead of simply learning whether a
specific content is contained within a given message or not, the middlebox learns
entire chunks of messages. Moreover, the access-control scheme associated to
the key-exchange scheme is relatively inflexible. The middlebox is given read or
write access to a number of message fragments, and this is not easily modifiable
(except by running the key-distribution algorithm once more). Finally, despite
the efficiency of the search step (once the key-repartition is done), the finer-
grained the access control is – thus offering more privacy – the more keys will
have to be generated and stored by the various participating entities.

2 Searchable Encryption with Shiftable Trapdoors

We begin by presenting the syntax of our searchable encryption scheme with
shiftable trapdoors. Note that in addition to producing a bit indicating whether
the keyword was found in the (encrypted) plaintext, this scheme also outputs
the position(s) at which the keyword is found. Although not apparent in the
syntax, this is one advantage of shiftable trapdoors, namely yielding the exact
position, within the target plaintext, of the search word.

2.1 Syntax

A searchable encryption with shiftable trapdoors is defined by 5 algorithms that
we call Setup, Keygen, Issue, Encrypt and Test. The first three of these are
run by an entity called the receiver, while Encrypt is run by a sender and Test

by a gateway.

– Setup(1k, n): This probabilistic algorithm takes as input a security parame-
ter k and an integer n defining the maximum size of the bitstrings that one
can encrypt. It returns the public parameters pp that will be taken in input
by all the other algorithms. In the following, pp will then be considered as
an implicit input to all algorithms and so will be omitted.

– Keygen(n): This probabilistic algorithm run by the receiver returns a key
pair (sk, pk). The former value is secret and only known to the receiver,
while the latter is public.

– Issue(W, sk): This probabilistic algorithm takes as input a bitstring W of
any size 0 < ` ≤ n, along with the receiver’s secret key, and returns a
trapdoor tdW .

– Encrypt(B, pk): This probabilistic algorithm takes as input the receiver’s
public key along with a bitstringB of size 0 < m ≤ n and returns a ciphertext
C.

– Test(C, tdW ): This deterministic algorithm takes as input a ciphertext C
encrypting a bitstring B = b1 . . . bm of size m along with a trapdoor tdW
for a bitstring W = w1 . . . w` of size `. If m > n or ` > m, then the al-
gorithm returns ⊥. Else, the algorithm returns a set (potentially empty)
J ⊂ {0, . . . ,m− `} of indexes j such that bj+1 . . . bj+` = w1 . . . w`.
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Remark 1. Notice that searchable encryption, e.g., [ABC+05,BW07], usually
does not consider a decryption algorithm which takes as input sk and a ci-
phertext C encrypting B and which returns B. Indeed, this functionality can
easily be added by also encrypting B under a conventional encryption scheme.
Nevertheless, one can note that decryption can be performed by issuing a trap-
door for the bit 0 and running the Test algorithm on C. From the returned set
J one can easily recover B, since bj = 0⇐⇒ j − 1 ∈ J .

2.2 Security Model

Correctness. As in [ABC+05], we divide correctness into two parts. The first
one stipulates that the Test algorithm run on (B, tdW ) will always return j if
B contains the substring W at index j. More formally, this means that, for any
bitstring B of size m ≤ n and any bitstring W of length ` ≤ m:

bj+1 . . . bj+` = w1 . . . w` ⇒ Pr[j ∈ Test(Encrypt(B, pk), Issue(W, sk))] = 1,

where the probability is taken over the choice of the pair (sk, pk).
The second part of the correctness property requires that false positives (i.e.,

when the Test algorithm returns j despite the fact bj+1 . . . bj+` 6= w1 . . . w`)
only occur with negligible probability. More formally, this means that, for any
bitstring B of size m ≤ n and any bitstring W of length ` ≤ m:

Pr[j ∈ Test(Encrypt(B, pk), Issue(W, sk)) ∧ bj+1 . . . bj+` 6= w1 . . . w`] ≤ µ(k)

where µ is a negligible function.

Indistinguishability (SEST-IND-CPA). For the security requirement of
Searchable Encryption with Shiftable Trapdoors (SEST), we adapt the standard
notion of IND-CPA to this case (hence the name SEST-IND-CPA). Informally,
this notion requires that no adversary A, even with access to an oracle OIssue
which returns a trapdoor tdW for any queried bitstring W , can decide whether a
ciphertext C encrypts B0 or B1 as long as the trapdoors issued by the oracle do
not allow trivial distinction of these two bitstrings. This is formally defined by
the experiment Exp

ind−cpa−β
A (1k, n), where β ∈ {0, 1} as described in Figure 1.

The set W is the set of all the bitstrings W submitted to OIssue.
We define the advantage of such an adversary as Adv

ind−cpa
A (1k, n) as

|Pr[Expind−cpa−1A (1k, n)] − Pr[Expind−cpa−0A (1k, n)]|. A searchable encryption
scheme with shiftable trapdoors is SEST-IND-CPA secure if this advantage is
negligible for any polynomial-time adversary.

The restriction of step 6 simply ensures that if Bi contains W ∈ W at offset
j, then this also the case for B1−i. Otherwise, running the Test algorithm on
(C, tdW ) would enable A to trivially win this experiment.
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Exp
ind−cpa−β
A (1k, n)

1. pp← Setup(1k, n)
2. pk← Keygen(n)

3. (B0, B1)← AOIssue(pk), with Bi = b
(i)
1 . . . b

(i)
m for some m ≤ n

4. C ← Encrypt(Bβ , pk)
5. β′ ← AOIssue(C, pk)
6. If ∃W = w1 . . . w`W ∈ W and j such that:

b
(i)
j+1 . . . b

(i)
j+`W

= w1 . . . w`W 6= b
(1−i)
j+1 . . . b

(1−i)
j+`W

then return 0
7. Return (β = β′)

Fig. 1. SEST-IND-CPA Security Game

Selective-Indistinguishability (SEST-sIND-CPA). We also need a weaker
security notion in which the adversary commits to B0 and B1 at the beginning
of the experiment, before seeing pp and pk. Such a restriction is quite classical
and is usually referred to as selective security [CHK03].

3 Our Construction

We are able to construct our SEST scheme by “projecting” both the keyword and
the plaintext onto a multiplicative basis of the type zi for some secret integer
z. We encrypt the plaintext bit-by-bit, using a value α1 to encrypt any 1-bit
and α2 to encrypt bits that equal 0. The same two values are used to encrypt
the bits of the keyword. By using a bilinear mapping we are able to shift into
the ciphertext, which is encrypted bit-by-bit, and compare a given fragment of
suitable length to the encrypted keyword.

Note that in order to achieve the security notion of SEST-(s)IND-CPA, we
need to at least guarantee that, given some trapdoors tdWi

for words Wi, the
adversary is not able to forge a trapdoor for some fresh word W ∗. By projecting
keywords on a polynomial in a secret value z, we ensure that trapdoors on
keywords W are essentially un-malleable.

We describe our construction in detail in what follows, prefacing our scheme
by a brief introduction to bilinear groups and pairings.

3.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups, G1, G2, and GT , of prime order
p, along with a bilinear map e : G1 ×G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g 6= 1G1

and g̃ 6= 1G2
, e(g, g̃) 6= 1GT ;
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3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [GPS08] defined three types of pairings: in type
1, G1 = G2; in type 2, G1 6= G2 but there exists an efficient homomorphism
φ : G2 → G1, while no efficient one exists in the other direction; in type 3,
G1 6= G2 and no efficiently computable homomorphism exists between G1 and
G2, in either direction.

Our construction will make use of type 3 pairings and its security will strongly
rely on the lack of efficiently computable homomorphism between G1 and G2. We
therefore stress that it must not be instantiated with another type of pairings.

3.2 The Protocol

– Setup(1k, n): Let (G1,G2,GT , e) be the description of type 3 bilinear groups

of prime order p, this algorithm selects g
$← G1 and g̃

$← G2 and returns
pp← (G1,G2,GT , e, g, g̃, n).

– Keygen(n): This algorithm selects three random scalars α1, α2, z
$← Zp and

computes gi ← gz
i

along with (gα1
i , gα2

i ) for i = 1, . . . , n. The public key pk
is then set as {(gi, gα1

i , gα2
i )}ni=1 whereas sk is set as (α1, α2, z). One can note

that g0 = g is provided in the public parameters pp.

– Issue(W, sk): To issue a trapdoor tdW for a bitstring W = w1 . . . w` of length

` ≤ n, the algorithm selects ` random scalars vi
$← Z∗p and computes g̃V ,

where V =
∑`
i=1 vi · α

wi
1 · α

1−wi
2 · zi, along with g̃vi , for i = 1, . . . , `. The

trapdoor tdW is then set as (g̃V , {g̃vi}`i=1).

– Encrypt(B, pk): To encrypt a bitstring B = b1 . . . bm, where m ≤ n the user
selects a random scalar a and returns C = {(Ci, C ′i)}mi=1, where Ci ← gai−1

and C ′i ← g
a·αbi1 ·α

1−bi
2

i for i = 1 . . .m. The element C ′i is thus computed as
(gα1
i )a if bi = 1 and as (gα2

i )a otherwise.

– Test(C, tdW ): To test whether the string B encrypted by C contains the sub-
string W , the algorithm parses tdW as (g̃V , {g̃vi}`i=1) and C as {(Ci, C ′i)}mi=1

and checks, for j = 0, . . . ,m− `, if the following equation holds:

∏̀
i=1

e(C ′j+i, g̃
vi) ?= e(Cj+1, g̃

V ).

It then returns the set (potentially empty) J of indexes j for which there is
a match.
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Correctness. First note that, if B contains the substring W at index j (i.e.
bj+i = wi ∀i = 1, . . . , `), then:

∏̀
i=1

e(C ′j+i, g̃
vi) =

∏̀
i=1

e(g
α
bj+i
1 ·α

1−bj+i
2

i+j , g̃vi)

=
∏̀
i=1

e(g
a·αwi1 ·α

1−wi
2

i+j , g̃vi)

= e(g, g̃)
∑`
i=1 a·z

i+j ·αwi1 ·α
1−wi
2 ·vi

= e(gaj , g̃
∑`
i=1 z

i·αwi1 ·α
1−wi
2 ·vi)

= e(Cj+1, g̃
V ).

Therefore, the set J returned by Test contains j.
Now, let us assume that J contains j but that bj+1 . . . bj+` 6= w1 . . . w`, i.e.,

the algorithm returns a false positive. This means that:

∑̀
i=1

zi · αwi1 · α
1−wi
2 · vi =

∑̀
i=1

zi · αbj+i1 · α1−bj+i
2 · vi.

Let I6= be the (non-empty) set of indexes i such that bj+i 6= wi. The previous
equation becomes ∑

i∈I6=

(−1)bj+i · zi · (α1 − α2) · vi = 0.

For randomly generated scalars α1, α2, z, {vi}`i=1, this is very unlikely (the
probability is smaller than `

p ).

Remark 2. Our construction achieves the goals that we define at the beginning
of Section 1.1. Indeed, the Encrypt procedure does not depend on the searchable
words W , even if the latter are of distinct lengths. In particular, the size of C
only depends on the length of the message it encrypts. Moreover, the trapdoors
tdW allows to search the word W in B = b1 . . . bm at any possible offset, while
being of size independent of m.

All these features are provided using only asymmetric prime order bilinear
groups, which can be very efficiently implemented on a computer (e.g.,[BGM+10]).

Remark 3. We chose to consider bitstrings in our protocol but we stress that it
can easily be tailored to any string s1 . . . sm where si ∈ S for some finite set S:
one must simply generates |S| scalars α1, . . . , α|S| and associates each of them
to an element of S.

3.3 Intuition

Before analyzing the security of our construction we provide the intuition behind
it. Informally, the idea is to associate the value 1 (respectively 0) to a secret scalar
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α1 (respectively α2) and then to encrypt each bit bi of B by computing C ′i =
ga·xii , for a random scalar a, where xi = α1 if bi = 1 and α2 otherwise. Therefore,

if one combines ` elements C ′i by computing
∏`
j=1 C

′uj
ij

for some scalars uj , one

gets gU with U =
∑`
j=1 uj · xijzij . This property and the bilinearity of the

pairing are at the heart of our construction. Indeed, if we provide, for a keyword
W = w1 . . . w`, the element g̃V ∈ G2 where V is a polynomial of the form∑`
j=1 vj ·x′j ·zj , with x′j = α

wj
1 ·α

1−wj
2 , then one could use the pairing properties

to check whether U = V .
However, there are still some issues to address. First, one must ensures that

V will only be used to test ` successive bits. This can easily be done by requiring
that V does not contain any zero coefficient. Second, the gateway must be able to
search for W at any possible offset. It is thus necessary to provide a way to shift
the trapdoors. This is the reason why we add the elements Ci in the ciphertext.
Finally, we must ensure that no adversary will be able to derive new trapdoors
from the ones that it received. This is done by generating ` random coefficients
vi for the trapdoor tdW . In particular, we stress that a solution where vi = vj for
some i, j ∈ [1, `] is not secure. Indeed, let C be a ciphertext encrypting a bitstring
B = b1 . . . bm and let us assume that wr = ws = 1 for all r, s ∈ [1, `] (i.e. W is a

sequence of “1”). Then, e(C1 ·C−1i+1−j , g̃
V ) = e(g, g̃)a(1−z

i−j)V = e(g, g̃)aV
′
, with

V ′ =

i−j∑
k=1

vk ·x′k ·zk+
∑̀
i−j+1

(vk ·x′k−vk−i+j ·x′k−i+j)zk−
`+i−j∑
k=`+1

vk−i+j ·x′k−i+j ·zk.

The coefficient of zi is then vi ·x′i− vj ·x′j = (vi− vj)α1 = 0. Moreover, since
wr = ws = 1, we have x′k = α1 ∀k ∈ [1, `], so:

V ′ = α1(

i−j∑
k=1

vk ·zk+

i−1∑
i−j+1

(vk−vk−i+j)zk+
∑̀
i+1

(vk−vk−i+j)zk−
`+i−j∑
k=`+1

vk−i+j ·zk),

and can thus be used to check whether bu+1 . . . bu+i−1 =

(i−1)times︷ ︸︸ ︷
1 . . . 1 ∧ bu+i+1 . . .

bu+`+i−j =

(`−j)times︷ ︸︸ ︷
1 . . . 1 , for any u ∈ [0,m − ` − i + j]. Using tdW , a gateway is

then able to get more information on B than the presence of W as a substring,
which breaks the security of the construction. Such an attack can also occur if
the gateway knows one of the coefficients vi. It is therefore essential to randomly
generate the latter. The formal proof that we provide in the next section will
partly rely on this fact.

4 Security Analysis

4.1 Complexity Assumptions

Let us consider an adversary A which, knowing q trapdoors tdWk
, would like to

decide if a ciphertext C encrypts B0 or B1. The natural restrictions imposed by
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the security model imply that there is at least one index i∗ such that b
(0)
i∗ 6= b

(1)
i∗

and that, for all k ∈ [1, q] and all j ∈ [1, `k] (where `k is the length of Wk),

b
(0)
i∗−`k+j . . . b

(0)
i∗+j−1 and b

(1)
i∗−`k+j . . . b

(1)
i∗+j−1 both differ from wk,1, . . . , wk,lk . In

other words, any substring of B0 (or respectively B1) of length lk containing b
(0)
i∗

(resp. b
(1)
i∗ ) must be different from Wk, for all k ∈ [1, q].

If we focus on the index i∗, A must then distinguish whether C ′i∗ is ga·α1
i∗ or

ga·α2
i∗ . To this end, the attacker has access to many elements of G1 (the public

parameters and the other elements of the ciphertext) and of G2 (the trapdoors
tdWk

). All of them are of the form gPu(a,α1,α2,z) or g̃Qv(a,α1,α2,z,vi,Wk ) for a
polynomial number of multivariate polynomials Pu and Qv. The assumption un-
derlying the security of our scheme is thus related to the General Diffie-Hellman
GDH problem [BBG05], whose asymmetric version [Boy08] is recalled below.

Definition 4 (GDH assumption). Let r, s, t, and c be four positive integers
and R ∈ Fp[X1, . . . , Xc]

r, S ∈ Fp[X1, . . . , Xc]
s, and T ∈ Fp[X1, . . . , Xc]

t be three
tuples of multivariate polynomials over Fp. Let R(i), S(i) and T (i) denote the i-th
polynomial contained in R, S, and T . For any polynomial f ∈ Fp[X1, . . . , Xc],
we say that f is dependent on < R,S, T > if there are {aj}si=1 ∈ Fsp\{(0, . . . , 0)},
{bi,j}i=r,j=si,j=1 ∈ Fr·sp and {ck}tk=1 ∈ Ftp such that

f(
∑
j

ajS
(j)) =

∑
i,j

bi,jR
(i)S(j) +

∑
k

ckT
(k).

Let (x1, . . . , xc) be a secret vector. The GDH assumption states that, given

{gR(i)(x1,...,xc)}ri=1, {g̃S(i)(x1,...,xc)}si=1 and {e(g, g̃)T
(i)(x1,...,xc)}ti=1, it is hard to

decide whether U = gf(x1,...,xc) or U is random if f is independent of < R,S, T >.

Unfortunately, we cannot directly make use of this assumption unless we
severely restrict the size n of the bitstrings that one can encrypt. In our proof,
presented in Section 4.2, one of the main important steps is showing that, even
given a number of keyword trapdoors (and in particular, the polynomials v
associated with those keywords), the adversary is unable to forge a trapdoor for
a fresh keyword; consequently, we can bound the leakage on the input plaintexts
by only considering the adversary’s queries to the issuing oracle. This can be
mapped to an instance of GDH, but we will need the adversary to choose which
of those polynomials are input to the GDH instance.

If we did bound the size n of the plaintext, by making a guess on the

string Bβ = b
(β)
1 . . . , b

(β)
m , one could define a GDH instance providing all the

elements of the public parameters, the trapdoors for every word W that does

not match any of the substrings of Bβ containing b
(β)
i∗ , the elements {gai }ni=1 and

{ga·α
b
(β)
i

1 ·α
1−b(β)

i
2

i }i∈[1,n]\{i∗} along with the challenge element U ∈ G1 associated

with the polynomial f = zi
∗
(α
b
(β)

i∗
1 α

1−b(β)
i∗

2 ).
With such a GDH instance, the security proof becomes straightforward and

only requires a proof that f does not depend on the polynomials underlying
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the provided elements. However, the reduction does not abort only if the initial
guess is valid, which occurs with probability 1

2n .
So either we require n to be small (say n ≤ 30, for example) or we choose

to rely on an interactive variant of the GDH assumption, in which the elements

gR
(i)(x1,...,xc), g̃S

(i)(x1,...,xc) and e(g, g̃)T
(i)(x1,...,xc) can be queried to specific or-

acles, to offer enough flexibility to the simulator.
The latter solution is less than ideal because it essentially makes the GDH

instance interactive and consequently our construction will end up offering less
security than a static assumption. Nevertheless, we argue that this solution re-
mains of interest for two reasons. The first is that it allows to construct a quite
efficient scheme with remarkable features: the size of the ciphertext is inde-
pendent of the ones of the searchable strings, and the size of the trapdoors is
independent of the size of the messages. To achieve this, while being able to han-
dle any trapdoor query, is not obvious and may justify the use of an interactive
assumption.

A second reason is that, intrinsically, the hardness of the GDH problem
(proven in the generic group model [BBG05]) relies on the same argument as its
interactive variant: as long as the “challenge” polynomial f does not depend on
< R,S, T >, gf(x1,...,xc) is indistinguishable from a random element of G1. The
fact that the sets R, S, and T are defined in the assumption or by the queries
to oracles does not fundamentally impact the proof. We therefore define the
interactive-GDH (i-GDH) assumption and show that our scheme can be proven
secure under it.

Definition 5 (i-GDH assumption). Let r, s, t, c and k be five positive integers
and R ∈ Fp[X1, . . . , Xc]

r, S ∈ Fp[X1, . . . , Xc]
s and T ∈ Fp[X1, . . . , Xc]

t be three
tuples of multivariate polynomials over Fp. Let OR (resp. OS and OT ) be oracles

that, on input {{a(k)i1,...,ic
}dkij=0}k, add the polynomials {

∑
i1,...,ic

a
(k)
i1,...,ic

∏
j

X
ij
j }k to

R (resp. S and T ).
Let (x1, . . . , xc) be a secret vector and qR (resp qS) (resp. qT ) be the number of

queries to OR (resp. OS) (resp. OT ). The i−GDH assumption states that, given

{gR(i)(x1,...,xc)}r+k·qRi=1 , {g̃S(i)(x1,...,xc)}s+k·qSi=1 and {e(g, g̃)T
(i)(x1,...,xc)}t+k·qTi=1 , it is

hard to decide whether U = gf(x1,...,xc) or U is random if f is independent of
< R,S, T >.

4.2 Security Results

Theorem 6. The scheme described in Section 3 is SEST-sIND-CPA secure un-
der the i-GDH assumption for R, S and T initially set as R = {(zi, x · zi, y · zi, a ·
zi)}2ni=1, S = T = ∅ and f = a · x · zn.

Proof. Let G
(β)
0 denote the Exp

sind−cpa−β
A game, as described in Section 2.2 –

recall that this is the selective version of the IND-CPA security notion. Moreover,

let B0 = b
(0)
1 . . . b

(0)
m and B1 = b

(1)
1 . . . b

(1)
m be the two substrings returned by A

at the beginning of the game. Our proof uses a sequence of games G
(β)
j , for
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j = 1, . . . , n, to argue that the advantage of A is negligible. This is a standard
hybrid argument, in which at each game hop we randomize another element of
the challenge ciphertext.

Let I6= be the set of indexes i such that b
(0)
i 6= b

(1)
i and I(j)6= be the subset

containing the first j indexes of I 6= (if j > |I6=|, then I(j)6= = I 6=). For j = 1, . . . , n,

game G
(β)
j modifies G

(β)
0 by switching the elements C ′i of the challenge ciphertext

to random elements of G1, for i ∈ I(j)6= . Ultimately, in the last game, G
(β)
n , the

challenge ciphertext contains no meaningful information about b
(β)
i ∀i ∈ I 6=, so

the adversary cannot distinguish whether it plays G
(0)
n or G

(1)
n .

In particular, we can write:

Adv
sind−cpa
A (1k, n) = |Pr[Expsind−cpa−1A (1k, n)]− Pr[Expsind−cpa−0A (1k, n)]|

= |G(1)
0 (1k, n)−G(0)

0 (1k, n)|

≤
n−1∑
j=0

|G(1)
j (1k, n)−G(1)

j+1(1k, n)|+ |G(1)
n (1k, n)−G(0)

n (1k, n)|

+

n−1∑
j=0

|G(0)
j+1(1k, n)−G(0)

j (1k, n)|

≤
n−1∑
j=0

|G(1)
j (1k, n)−G(1)

j+1(1k, n)|+
n−1∑
j=0

|G(0)
j+1(1k, n)−G(0)

j (1k, n)|

In order to bound the latter probability, we must prove that A cannot dis-

tinguish G
(β)
j from G

(β)
j+1, which is formally stated by the lemma below, proved

in the next section.

Lemma 7. For all j = 0, . . . , n−1 and β ∈ {0, 1}, the difference |Pr[Gβj (1k, n) =

1]− Pr[Gβj+1(1k, n) = 1]| is negligible under the i-GDH assumption for R, S and

T initially set as R = {(zi, x · zi, y · zi, a · zi)}2ni=1, S = T = ∅ and f = a · x · zn.

Assuming that this lemma were proved, each term of the sums is negligible
under the i-GDH assumption, which concludes the proof.

5 Proof of Lemma 7

First, let us note that if |I6=| ≤ j, then I(j+1)
6= = I(j)6= . The games G

(β)
j and G

(β)
j+1

are therefore exactly the same and there is nothing to prove. We thus just have
to consider the case |I 6=| ≥ j + 1.

Let i∗ be the (j + 1)-st index of I 6=. From the i−GDH challenge containing

{(gzi , gx·zi , gy·zi , ga·zi)}2ni=1 along with U ∈ G1, the simulator generates the pub-

lic key pk by first defining gi = gz
n+i−i∗

(so gi∗ = gz
n

). Next, it sets (gα1
i , gα2

i )
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as (gx·z
n+i−i∗

, gy·z
n+i−i∗

) if b
(β)
i∗ = 1 and as (gy·z

n+i−i∗

, gx·z
n+i−i∗

) otherwise. By

setting g = gz
n−i∗

, one can note that pk is well-formed.

Upon receiving an OIssue query for a bitstring W = w1 . . . w`, the simulator
checks that the latter fulfills the condition defined in step 6 of Figure 1 (namely
the fact that W does not match only one of the bitstrings B0 and B1). The
simulator then uses the OS oracle to return a valid trapdoor. It is worth noting

that this condition implies that w1 . . . w` 6= b
(β)
i∗−min(i∗,`)+j . . . b

(β)
i∗−min(i∗,`)+`−1+j ,

for all j ∈ [1,min(`, n− i∗+ 1)]. Indeed, if this relation held for some j, then we
would have:

b
(β)
i∗−min(i∗,`)+j . . . b

(β)
i∗−min(i∗,`)+`−1+j = w1 . . . w`

6= b
(1−β)
i∗−min(i∗,`)+j . . . b

(1−β)
i∗−min(i∗,`)+`−1+j

since b
(β)
i∗ 6= b

(1−β)
i∗ . Thus, the condition would not be satisfied.

Finally, the simulator creates the challenge ciphertext as follows. It sets Ci
as ga·z

n+i−i∗−1

for i = 1, . . . ,m (all these elements are provided in the i-GDH

challenge). It then generates C ′i
$← G1 for the first j-th indexes of I 6=, uses the

OR oracle to get valid C ′i for i /∈ I(j+1)
6= and sets C ′i∗ as U .

If U = ga·x·z
n

= g
a·αbi∗1 ·α(1−bi∗ )

2
i∗ , then C ′i∗ is a valid element and the simulator

is playing game G
(β)
j . Else, C ′i∗ is a random element from G1 and the simulator

is playing game G
(β)
j+1. An adversary able to distinguish G

(β)
j from G

(β)
j+1 is thus

able to break the i-GDH assumption if the polynomial f = a·x·zn is independent
of the sets R,S, and T (after q queries to OS and 1 query to OR), which remains
to prove.

Before stating this result in the next lemma we first simplify the notations
to make the proof easier to follow. First, we will omit the superscript (β) and

so we will denote the challenge bitstring as b1 . . . bm instead of b
(β)
1 . . . b

(β)
m . Each

query to OS is associated with a bitstring w
(k)
1 . . . w

(k)
`k

(for k ∈ [1, q]) submitted

to the OIssue oracle. In the following we will thus simply say that w
(k)
1 . . . w

(k)
`k

is submitted to OS . Such a query adds the polynomials
∑`k
i=1 v

(k)
i x

(k)
i zi and

{v(k)i }
`k
i=1 to S, where x

(k)
i = α

w
(k)
i

1 α
1−w(k)

i
2 . Similarly, a query to OR adds {a ·

x′i · zn−i
∗+i}i∈[1,n]\{i∗} to R, where x′i = αbi1 α

1−bi
2 .

We recall that the set R initially contains {(zi, x · zi, y · zi, a · zi)}2ni=1, while
S and T are initially empty.

Lemma 8. Let R, S, and T be the sets defined above after q queries to OS and

one query to OR. If, for any k ∈ [1, q], the string w
(k)
1 . . . w

(k)
`k

submitted to OS
differs from bi∗−min(i∗,`k)+j . . . bi∗−min(i∗,`k)+`k−1+j for all j ∈ [1,min(`k, n −
i∗ + 1)], then the polynomial a · x · zn is independent of < R,S, T >.
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Proof. We want to prove that one cannot find polynomials P1 6= 0, P2, and P3

with P1, P3 ∈ S and P2 ∈ R such that:

(a · x · zn) · P1(x, y, z, a, {v(k)i }) = (P2 · P3)(x, y, z, a, {v(k)i }).

First note that the variable a is only involved in the polynomials included
in R. The left hand side of the above equation is then necessarily of the form

a·Q1(x, y, z, {v(k)i }) which implies that P2 is also of the form a·Q2(x, y, z, {v(k)i }).
Therefore, P2 can only be a combination of elements of {a · zi}2ni=1 or {a · x′i ·
zn−i

∗+i}i∈[1,n]\{i∗}. Let `max ≤ n be the maximum length of the strings submit-

ted to OS . Let {ui,k,j}i=2n,k=q,j=`max
i=0,k=1,j=0 and {u′i,k,j}

i=n,k=q,j=`max
i=0,k=1,j=0 be such that:

(a · x · zn)(
∑
k

[u′i∗,k,0(
∑
m

v(k)m x(k)m zm) +

`k∑
j=1

u′i∗,k,jv
(k)
j ])

=

2n∑
i=0

a · zi(
∑
k

[ui,k,0(
∑
m

v(k)m x(k)m zm) +

`k∑
j=1

ui,k,jv
(k)
j ])

+
∑

i∈[1,n]\{i∗}

a · x′i · zn−i
∗+i(

∑
k

[u′i,k,0(
∑
m

v(k)m x(k)m zm) +

`k∑
j=1

u′i,k,jv
(k)
j ]).

Our goal is then to prove that u′i∗,k,j = 0 for all k ∈ [1, q] and j ∈ [0, `k].

Since x′i∗ = x we can merge the left hand side of the equation into the sum∑
i∈[1,n]\{i∗} on the right hand side. Moreover, by dividing both sides by a, we

get:

−
2n∑
i=0

zi(
∑
k

[ui,k,0(
∑
m

v(k)m x(k)m zm) +

`k∑
j=1

ui,k,jv
(k)
j ]) =

∑
i∈[1,n]

x′i · zn−i
∗+i(

∑
k

[u′i,k,0(
∑
m

v(k)m x(k)m zm) +

`k∑
j=1

u′i,k,jv
(k)
j ]).

Since x′i and xm belong to {x, y} we can deduce that:

1. The term−
∑2n
i=0 z

i(
∑
k ui,k,0

∑
m v

(k)
m x

(k)
m zm) is of the form x·U1(z, {v(k)i }i,k)

+ y · V1(z, {v(k)i }i,k);

2. The term −
∑2n
i=0 z

i(
∑
k

∑`k
j=1 ui,k,jv

(k)
j ) is of the form U2(z, {v(k)i }i,k);

3. The term
∑
i∈[1,n] x

′
i · zn−i

∗+i(
∑
k u
′
i,k,0(

∑
m v

(k)
m x

(k)
m zm)) is of the form x2 ·

U3(z, {v(k)i }i,k) + y2 · V3(z, {v(k)i }i,k) + x · y ·W3(z, {v(k)i }i,k);

4. The term
∑
i∈[1,n] x

′
i·zn−i

∗+i(
∑
k

∑`k
j=1 u

′
i,k,jv

(k)
j ) is of the form x·U4(z, {v(k)i }i,k)

+ y · V4(z, {v(k)i }i,k);
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for some polynomials U1, U2, U3, U4, V1, V3, V4, and W4. Therefore, the equation
holds only if the second and the third terms are both equal to 0. The fact that

the third term vanishes implies that u′i,k,0(
∑
m v

(k)
m x

(k)
m zm) = 0, ∀k ∈ [1, q] (since

each term of the sum
∑
k involves a polynomial

∑
m v

(k)
m x

(k)
m zm whose variables

v
(k)
m differ for each k). Therefore, u′i,k,0 = 0 ∀i ∈ [1, n] (and in particular for
i = i∗) and k ∈ [1, q].

We thus obtain that:

−
2n∑
i=0

zi(
∑
k

ui,k,0(
∑
m

v(k)m x(k)m zm)) =
∑
i∈[1,n]

x′i · zn−i
∗+i(

∑
k

`k∑
j=1

u′i,k,jv
(k)
j )

The smallest power of z on the right-hand side is zn−i
∗+1. The left-hand side

thus cannot contain smaller powers of z, which means that ui,k,0 = 0 if i < n−i∗.
The same reasoning applies for the greatest power of z, which allows to conclude
that ui,k,j = 0 if i > 2n− i∗ − `k.

Now, one can note that the left (resp. right) hand side of this equation is of

the form
∑
k Pk(x, y, z, {(v(k)1 , . . . v

(k)
`k
}k) (resp.

∑
kQk(x, y, z, {(v(k)1 , . . . v

(k)
`k
}k))

where Pk (resp. Qk) are polynomials whose monomials are all multiples of v
(k)
j

for some j ∈ [1, `k]. Since the variables {v(k)j }k are independent, the equality
holds only if Pk = Qk for all k ∈ [1, q]. We then get, for each k = 1, . . . , q:

−
2n−i∗−`k∑
i=n−i∗

zi(ui,k,0(
∑
m

v(k)m x(k)m zm)) =
∑
i∈[1,n]

x′i · zn−i
∗+i(

`k∑
j=1

u′i,k,jv
(k)
j ).

Now if we consider the coefficients of zn−i
∗+i for i = 1, . . . , n, we get:

`k∑
m=1

un−i∗+i−m,k,0 · v(k)m · x(k)m = x′i(

`k∑
j=1

u′i,k,jv
(k)
j ). (1)

For i = i∗, (since `k ≤ n) the equation becomes:

`k∑
m=1

un−m,k,0 · v(k)m · x(k)m = x′i∗(

`k∑
j=1

u′i∗,k,jv
(k)
j ).

Proving that u′i∗,k,j = 0 is then equivalent to proving that un−j,k,0 = 0 for
all j ∈ [1, `k].

Now recall the restriction placed on the string w
(k)
1 . . . w

(k)
`k

for every k ∈ [1, q].
The fact that, ∀j ∈ [1,min(`k, n−i∗+1)], bi∗−min(i∗,`k)+j . . . bi∗−min(i∗,`k)+`k−1+j

differs from w
(k)
1 . . . w

(k)
`k

implies that there is at least one integer dj ∈ [0, `k − 1]

such that w
(k)
1+dj

6= bi∗−min(i∗,`k)+j+dj . Therefore, x
(k)
1+dj

6= x′i∗−min(i∗,`k)+j+dj
and the equation (1) for i = i∗−min(i∗, `k)+j+dj , gives us un−min(i∗,`k)+j−1,k,0 =
0 for j ∈ [1,min(`k, n− i∗ + 1)].
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It thus remains to show that un−j,k,0 = 0 for j ∈]min(i∗, `k), `k] and for
j ∈ [1, 1 +min(i∗, `k)−min(n− i∗ + 1, `k)[.

Let us consider the first interval. If min(i∗, `k) = `k, then the interval is
empty we have nothing further to prove. We can then focus on the case i∗ <
`k. However, in that case j ∈]i∗, `k] implies that n − j < n − i∗ and so that
un−j,k,0 = 0 since we previously proved that ui,k,0 = 0 if i < n− i∗.

The second interval is not-empty only if min(i∗, `k) > min(n − i∗ + 1, `k).
We distinguish the two following cases:

• i∗ ≤ `k. Then, min(n − i∗ + 1, `k) = n − i∗ + 1 otherwise the previous
inequality is not verified. For all j ∈ [1, 1 +min(i∗, `k)−min(n− i∗+ 1, `k)[
it holds that:

n− j > n− 1−min(i∗, `k) +min(n− i∗ + 1, `k)

> n− 1− i∗ + n− i∗ + 1

> 2n− 2i∗

> 2n− i∗ − `k.

• i∗ > `k. Then, we again have that min(n− i∗ + 1, `k) = n− i∗ + 1 and, for
all j ∈ [1, 1 +min(i∗, `k)−min(n− i∗ + 1, `k)[:

n− j > n− 1−min(i∗, `k) +min(n− i∗ + 1, `k)

> n− 1− `k + n− i∗ + 1

> 2n− i∗ − `k.

For both cases, we have n− j > 2n− i∗− `k, which implies, as explained above,
that un−j,k,0 = 0.

We have thus proved that un−j,k,0 = 0 for all j ∈ [1, `q] which is equivalent
to u′i∗,k,j = 0 for all j ∈ [1, `q]. The polynomial a ·x · zn is therefore independent
of < R,S, T >.

6 Handling Regular Expressions

Our solution, introduced in Section 3, allows for pattern matching of keywords
of arbitrary lengths, for ciphertexts emitted from arbitrary sources (we call this
having universal tokens). In this section, we extend our notion of keyword-search
to a more generic case, in which some of the keyword characters are fully-
unknown (wildcards) and some are only partially-unknown (in an interval of
size greater than 1).

Consider the general case in which the input strings we encrypt s1, . . . , sm
are no longer bitstrings, but rather strings of characters belonging to some finite
set S. As mentioned in Remark 3, our scheme can be trivially extended to handle
this case, although the larger size of S (compared to {0, 1}) may lead to more
complex queries. Moreover, one might want to search for substrings of the form

W = w1 . . . wt−1w
(St)
t wt+1 . . . w` where w

(St)
t denotes any element from the set

St ⊂ S. For example, St can be the set [0-9] of all integers between 0 and 9.
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A trivial solution could be to issue a trapdoor for every possible value of wt
but this would imply, for the gateway, to store the |St| resulting trapdoors and
to test each of them separately. This not only raises a question of efficiency, but
it also gives the gateway much more information on the input string. Intuitively,
at the end of the search, the gateway will not only be able to tell that a given
character is within a certain subset, but also which particular element of the
subset it corresponds to.

In the following, we show how to modify our construction to allow for two
notable regular expressions: wildcards and interval searches, without leaking any
additional information, and with a minimal efficiency loss.

6.1 Handling Wildcards

The first case we consider here is that in whichW = w1 . . . w
(Si1 )
i1

. . . , w
(Sir )
ir

. . . w`

with Si1 = ... = Sir = S, which means that w
(Si1 )
i1

, . . . , w
(Sir )
ir

can take any value
from the set S and can consequently be seen as “wildcards”.

Informally, this implies that the (j+ i1)-th,...,(j+ ir)-th ciphertext elements
must not be taken into account when testing if Cj+1 . . . Cj+` = W . This leads
to the following variant of our main protocol. For sake of simplicity, we assume
that there is a public indexation of the set S, which means that any element of S
is associated with an integer between 1 and S = |S|. We can therefore, without
loss of generality, talk of the w-th element of S and use w as an index for any
element w ∈ S.

– Setup(1k, n): Let (G1,G2,GT , e) be the description of type 3 bilinear groups

of prime order p, this algorithm selects g
$← G and g̃

$← G and returns
pp← (G1,G2,GT , e, g, g̃, n).

– Keygen(n): This algorithm selects S + 1 random scalars α1, . . . , αS , z
$← Zp

and computes gi ← gz
i

along with g
αj
i for i = 1, . . . , n and j = 1, . . . , S.

The public key pk is then set as {(gi, g
αj
i )}i=n,j=Si,j=1 whereas sk is set as

(α1, . . . , αS , z). One can note that g0 = g is provided in the public pa-
rameters pp.

– Issue(W, sk): To issue a trapdoor tdW for a stringW = w1 . . . w
(S)
i1

. . . , w
(S)
ir

. . . w`

of length ` ≤ n, the algorithm selects ` − r random scalars vi
$← Z∗p,

for i ∈ D = {1, . . . , n} \ {i1, . . . , ir}. It then computes g̃V , where V =∑
i∈D vi ·αwi · zi, along with g̃vi , for i ∈ D. The trapdoor tdW is then set as

(g̃V , {g̃vi}i∈D).
– Encrypt(B, pk): To encrypt a string B = b1 . . . bm, where m ≤ n the user

selects a random scalar a and returns C = {(Ci, C ′i)}mi=1 where Ci ← gai−1
and C ′i ← g

a·αbi
i for i = 1, . . . ,m.

– Test(C, tdW ): To test whether the string B encrypted by C contains the sub-
string W , the algorithm parses tdW as (g̃V , {g̃vi}i∈D) and C as {(Ci, C ′i)}mi=1

and checks, for j = 0, . . . ,m− `, if the following equation holds:∏
i∈D

e(C ′j+i, g̃
vi) ?= e(Cj+1, g̃

V ).
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It then returns the set (potentially empty) J of indexes j for which there is
a match.

One can note that the encryption process remains unchanged compared to
the original protocol. The only difference with the latter is that the coefficients
vi of the polynomial V associated with the trapdoor W are now set as 0 if the
i-th element of W is a wildcard. The product in the Test algorithm can thus be
performed only for the indexes i ∈ D. Correctness of this variant follows directly
from the one of the previous protocol.

Regarding security, one can note that the proof of Section 4 still applies here,
since the latter does not require the coefficients vi to be different from 0.

6.2 Handling General Subsets

Now let us consider the general case where the substring W one wants to search

contains w
(Si)
i for a subset Si ( S. For example, Si can be the set [0,9] of all the

integers x ∈ [0, 9] or the set {a, . . . , z} of the letters of the Latin alphabet. Our
construction can actually be modified to handle this kind of searches provided
that: 1) the searchable sets Si are known in advance, and can be used during
the Keygen process; and 2) all these subsets are disjoint. We argue that both
conditions are reasonable since this is usually the case for regular expressions.

– Setup(1k, n): Let (G1,G2,GT , e) be the description of type 3 bilinear groups

of prime order p. This algorithm selects g
$← G and g̃

$← G, and returns
pp← (G1,G2,GT , e, g, g̃, n).

– Keygen(n,S(1), . . . ,S(k)): This algorithm now takes as input k disjoint sub-
sets of S. We can assume, without loss of generality, that S = S(1)∪. . .∪S(k)
since we can simply add the complement of all previous sets if this is not
the case. The function f : S → {1, . . . , k} which maps any element w ∈ S to
the index of the set S(j) which contains it is thus perfectly defined. The al-
gorithm then selects S+k+ 1 random scalars α1, . . . , αS , β1, . . . , βk, z

$← Zp
and computes gi ← gz

i

for i = 1, . . . , n along with (g
αj
i , gβdi ) for d =

1, . . . , k and all j ∈ S(d) (recall that we associate each element of S with
an integer in the interval [1,S]). The public key is then set to {gi}ni=1 ∪kd=1

{(gαji , gβdi )}i∈[1,n],j∈S(d) and sk as α1, . . . , αS , β1, . . . , βk, z.

– Issue(W, sk): To issue a trapdoor tdW for a stringW = w1 . . . w
(Si1 )
i1

. . . , w
(Sir )
ir

. . . w` of length ` ≤ n, the algorithm first checks that all the involved subsets
have been taken as input by the Keygen algorithm, i.e. Sij ∈ {S(1), . . . ,S(k)}
for j = 1, . . . , r, and returns ⊥ otherwise. The function h which maps every
index ij to the integer d ∈ {1, . . . , k} such that Sij = S(d) is thus correctly
defined.
Let D = {1, . . . , n}\{i1, . . . , ir}. The algorithm selects ` random scalars vi

$←
Z∗p and computes g̃V where V =

∑
i∈D vi ·αwi · zi+

∑
i∈{i1,...,ir} vi ·βh(i) · z

i.

The trapdoor tdW is then set to the tuple consisting of g̃V along with g̃vi ,
for i = 1, . . . , `.
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– Encrypt(B, pk): To encrypt a string B = b1 . . . bm, where m ≤ n the user

selects a random scalar a and returns C = {(Ci, C(1)
i , C

(2)
i )}mi=1 where Ci ←

gai−1, C
(1)
i ← (g

αbi
i )a and C

(2)
i ← (g

βf(bi)
i )a, for i = 1 . . .m.

– Test(C, tdW ): To test whether the string B = b1 . . . bm encrypted by C

contains the substring W = w1 . . . w
(Si1 )
i1

. . . , w
(Sir )
ir

. . . w`, the algorithm

parses tdW as (g̃V , {g̃vi}ni=1) and C as {(Ci, C(1)
i , C

(2)
i )}mi=1 and checks, for

j = 0, . . . ,m− `, if the following equation holds:∏
i∈D

e(C
(1)
j+i, g̃

vi)
∏

i∈{i1,...,ir}

e(C
(2)
j+i, g̃

vi) ?= e(Cj+1, g̃
V ).

It then returns the set (potentially empty) J of indexes j for which there is
a match.

The values βj defined in this protocol can thus be seen as an encoding of the
subset S(j), in the same way as the scalars αi encode the i-th character of S.
The fact that one encrypts using both encodings makes the ciphertext compatible
with any kind of trapdoors: if the i-th element of W is of the form wj , we use

C
(1)
j , whereas we use C

(2)
j for an element of the form w

(Sj)
j . Correctness and

security follow directly from the original construction.

7 Some application scenarios

Far from being an esoteric cryptographic functionality, pattern matching on
encrypted data has many interesting applications. We review just a few of those
here, in particular focusing on scenarios in which it is desirable to be able to
perform the search with universal tokens (arbitrarily-generated patterns, which
are moreover universal over input generated by multiple users).

DPI. The basic use-case scenario of the BlindBox scheme [SLPR15] is that
of deep-packet inspection (DPI). The latter refers to the ability of a gateway
(usually a middlebox such as a firewall, an IDS, etc.) to verify whether some
specific data does, or does not, contain given prohibited content (adult content,
malware, etc.). An easy way to ensure that such middleboxes can provide the
functionality of DPI with best results is to simply give them access to all data
stored, sent, or received by a given party. However, this also allows the middlebox
access to a great deal of data that is irrelevant to its goals. This raises privacy
concerns that are only fuelled by the recent revelations of Edward Snowden,
which warn of mass surveillance by massive collection of data. As a consequence,
it is desirable to restrict the access of middleboxes such as IDS, virus scanners,
or firewalls, so that they only access data on a need to know basis.

One approach to solving this problem is to encrypt ciphertexts with many
different keys, each key used for a different fragment of the plaintext (the header,
or a subfragment of the body for either the request or the response). Then, one
can simply give the middlebox the keys it requires to perform its task. This
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approach allows for efficient decryption; however, it also comes with a tradeoff
between the privacy of the user data and the overhead in terms of the associated
keys. In particular, the more finegrained the access control scheme is, the more
privacy is offered to the user, with less information leaking to the middlebox.
However, a finegrained access control mechanism also induces a very large num-
ber of keys, which must be computed and stored by the two communicating
parties and the middlebox.

The approach we take in this paper is different. We will specifically only allow
the middlebox to perform pattern matching on particular keywords, learning –
as an output – both whether the pattern occurs in the encrypted data, and
where exactly it occurs in the plaintext. This will not require any key-escrow; in
fact the searching will be done without requiring any secret keys (though we do
require trapdoors for the search patterns).

Matching genomic data. Genomic data is infamously large, and can be seen as
very large strings of private data. Arguably, one’s own genome is an individual
least-replicable, most personal identity, and hence it should always be stored in
encrypted data and accessed only upon the specific permission of its owner.

However, for both law-enforcement purposes and for the establishment of
possible family ties, it is imperative to allow the matching of substrings of DNA
to a target (encrypted) genome. We can see this process as pattern matching on
streams, since – for efficiency purposes – it is better to be able to find patterns
without backtracking. In law-enforcement, the DNA recovered from a crime scene
is sensitive evidence material, which must only be handled locally; thus, the
parties encrypting their genomes are not privvy to it. Moreover, if the search
process is delegated to a third party, the latter must learn no information apart
from the search results: notably, nothing about the keyword and nothing about
the input plaintext.

For pattern matching on genomic data, we thus need a mechanism that uses
universal tokens for searching. Furthermore, no data must be leaked about the
input data than the exact results of the search process. Finally, since DNA evi-
dence could also only provide partial data, it is better to have a pattern-matching
mechanism that can allow to match some regular expressions on patterns, such
as, e.g., the concatenation of two patterns, or patterns with missing characters.
The solution we present in this paper can effectively be used for applications
with genomic data, including by using regular expressions on the keywords.

Searching on medical data. In medical research, data from many research cen-
tres (or hospitals) is collected in massive databases, which can then be used by
researchers in detecting correlations between various factors, such as the diam-
eter of a blood-vessel and known symptoms of diabetes. However, since patient
data is a sensitive piece of information, most databases must be sanitized of
identifying information first. In addition, medical researchers must make a for-
mal request to be allowed to search for specific data in such databases. However,
mass-surveillance techniques can be used to correlate even sanitized data to spe-
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cific individuals, thus violating patient-data confidentiality. On the other hand,
medical research would severely suffer if access to patient data were limited.

Instead, it would be desirable to detect matches of specific patterns (such as
ranges of blood-vessel diameters) to encrypted patient records. In this way, such
records could be used to the fullest extent of their possibilities, without leak-
ing correlating data, on which no searches are authorized. In this application
scenario, we thus have encrypted data from many different sources. The entity
performing the search receives this encrypted data, and must ask permission to
search from a different entity, which enables the search by means of a trapdoor.
Our solution allows such searches, including with regular expressions, with uni-
versal trapdoors, i.e., a single trapdoor can be used to search on the medical data
from various searches; in addition, we support keywords of arbitrary lenghts.

In this paper we present – to our knowledge – the first searchable encryption
scheme that allows for the generation of universal trapdoors (i.e., trapdoors of
any length, applicable to any ciphertext). In our scheme, the party that encrypts
the ciphertext (the encrypter) will do so by using a public-key encryption scheme,
for which the entity generating the trapdoor (the issuer) holds the secret keys.
Finally, the searcher or gateway will be able to search for specific keywords
(for which it received trapdoors from the issuer) in the encrypter’s ciphertext,
learning whether there is a match and also at which position in the ciphertext
the match occurs.

8 Conclusion

In this work, we introduced the concept of searchable encryption with shiftable
trapdoors (SEST). This type of construction provides a practical solution to the
generic problem of pattern matching with universal tokens. Notably, we are the
first to provide a searchable encryption alternative that allows for arbitrarily-
chosen keywords of arbitrary length, which can be applied to any ciphertext
encrypted with the generated public key in this system. In particular, since we
do not rely on symmetric keys, multiple entities can use the same public key to
encrypt. Moreover, our construction is also highly usable for encrypted streams
of data (we need no backtracking), and it returns the exact position at which the
pattern occurs. Our instantiation of the SEST primitive uses bilinear pairings,
and we allow for some regular expressions such as wildcards, or partial keywords
in which we know some entries to be within a given interval.

Beyond immediate applications in deep-packet inspection, pattern-matching
also has extensive uses in matching of small DNA strings to much larger full-
genomic data. In this context we consider both very simplistic pattern matching
(notably of a small, but fully-known string of DNA), as well as some basic
regular expressions on such patterns. The advantage of our approach is that
a single trapdoor for a given pattern can be matched against potentially very
many encrypted genomes, even when those genomes were encrypted by many
distinct entities (using the same public-key information). Moreover, the size of
the ciphertext is independent of the size of the keywords.
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The fact that our algorithm essentially follows the approach of Rabin-Karp
allows us to also use that same algorithm for application scenarios such as search-
ing on structured data, matching subtrees to labelled trees, delegated searches
on medical data (compiled from multiple institutions), or 2D searches.

We propose a main construction, which we adapt to accounting for wildcards
and for interval searches. The former adaptation is relatively simple, since the
issued trapdoor just contains zero coefficients for the wildcards. For the interval
searches we need to modify our key generation algorithm, providing special ele-
ments that we map interval characters to; however, this only works for intervals
which are known in advance.

Our scheme provides trapdoors for the keywords which are linear in the size
of the keywords only, and the size of the ciphertexts is linear in the size of
the plaintext size. Although our public keys are large (linear in the size of the
maximal plaintext size), we do achieve a complete decorrelation between the
plaintext encryption and the trapdoor generation for the keywords. Our scheme
provides a quadratic – in the size of the keyword – complexity (in terms of the
number of pairings): consequently the efficiency is better for either relatively
small keywords or for large ones (but not minimum ones).

We prove the security of our scheme under an interactive version of the
GDH assumption. This is less than ideal; however note that our modification of
this assumption is relatively minor, allowing the adversary to choose on which
input to play the GDH instance. We also argue that our construction offers an
interesting tradeoff between the secure, but quite cumbersome, systems based on
existing cryptographic primitives and the fast, but unsecure, current solutions
where the gateway decrypts the traffic. Moreover, we hope that the practical
applications of this primitive will incite new work on this subject, in particular
to construct new schemes which would rely on standard assumptions.
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Blackburn, Diego R. López, Konstantina Papagiannaki, Pablo Rodriguez
Rodriguez, and Peter Steenkiste. Multi-Context TLS (mcTLS): Enabling
Secure In-Network Functionality in TLS. In Proceedings of SIGCOMM
2015, pages 199–212. ACM, 2015.

[SLPR15] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy.
Blindbox: Deep packet inspection over encrypted traffic. In Steve Uhlig,
Olaf Maennel, Brad Karp, and Jitendra Padhye, editors, SIGCOMM 2015,
pages 213–226. ACM, August 2015.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In 2000 IEEE Symposium on Secu-
rity and Privacy, pages 44–55. IEEE Computer Society Press, May 2000.

[TPKC07] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Ce-
lik. Privacy preserving error resilient dna searching through oblivious au-
tomata. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.
Syverson, editors, ACM CCS 07, pages 519–528. ACM Press, October 2007.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your
queries are belong to us: The power of file-injection attacks on search-
able encryption. In Proceedings of(USENIX Security 16), pages 707–720.
USENIX Association, 2016.

27


