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Abstract. Bitcoin is one of the most prominent examples of a distributed cryptographic protocol
that is extensively used in reality. Nonetheless, existing security proofs are property-based, and as
such they do not support composition.
In this work we put forth a universally composable treatment of the Bitcoin protocol. We specify
the goal that Bitcoin aims to achieve as a ledger functionality in the (G)UC model of Canetti et
al. [TCC’07]. Our ledger functionality is weaker than the one recently proposed by Kiayias, Zhou,
and Zikas [EUROCRYPT’16], but unlike the latter suggestion, which is arguably not implementable
given the Bitcoin assumptions, we prove that the one proposed here is securely UC realized under
standard assumptions by an appropriate abstraction of Bitcoin as a UC protocol. We further show
how known property-based approaches can be cast as special instances of our treatment and how
their underlying assumptions can be cast in (G)UC without restricting the environment or the
adversary.

1 Introduction

Since Nakamoto first proposed Bitcoin as a decentralized cryptocurrency [Nak08], several works have
focused on analyzing and/or predicting its behavior under different attack scenarios [BDOZ11, ES14,
Eya15, Zoh15, SZ15, KKKT16, PS16]. However, a core question remained:

What security goal does Bitcoin achieve under what assumptions?
An intuitive answer to this question was already given in Nakamoto’s original white paper [Nak08]:

Bitcoin aims to achieve some form of consensus on a set of valid transactions. The core difference of this
consensus mechanism with traditional consensus [LSP82, Lam98, Lam02, Rab83] is that it does not rely
on having a known (permissioned) set of participants, but everyone can join and leave at any point in
time. This is often referred to as the permissionless model. Consensus in this model is achieved by shifting
from the traditional assumptions on the fraction of cheating versus honest participants, to assumptions
on the collective computing power of the cheating participants compared to the total computing power
of the parties that support the consensus mechanism. The core idea is that in order for a party’s action
to affect the system’s behavior, it needs to prove that it is investing sufficient computing resources.
In Bitcoin, these resources are measured by means of solutions to a presumably computation-intensive
problem.

Although the above idea is implicit in [Nak08], a formal description of Bitcoin’s goal had not been
proposed or known to be achieved (and under what assumptions) until the recent works of Garay, Kiayias,
and Leonardos [GKL15] and Pass, Seeman, and shelat [PSS17]. In a nutshell, these works set forth models
of computation and, in these models, an abstraction of Bitcoin as a distributed protocol, and proved that
the output of this protocol satisfies certain security properties, for example the common prefix [GKL15]
or consistency [PSS17] property. This property confirms—under the assumption that not too much of the
total computing power of the system is invested in breaking it—a heuristic argument used by the Bitcoin
specification: if some block makes it deep enough into the blockchain of an honest party, then it will
eventually make it into the blockchain of every honest party and will never be reversed.1 In addition to
the common prefix property, other quality properties of the output of the abstracted blockchain protocol
were also defined and proved. A more detailed description of the security properties and a comparison
of the assumptions in [GKL15] and [PSS17] is included in Section 4.4.
? This is an extended version (updated February 14, 2018) of a paper that appeared at the 37th Interna-

tional Cryptology Conference (CRYPTO 2017). Proceedings version available at https://doi.org/10.1007/
978-3-319-63688-7_11.

?? Research supported in part by IOHK.
1 In the original Bitcoin heuristic ”deep enough” is defined as six blocks, whereas in these works it is defined as

linear in an appropriate security parameter.



Bitcoin as a service for cryptographic protocols. Evidently, the main use of the Bitcoin protocol is
as a decentralized monetary system with a payment mechanism, which is what it was designed for.
And although the exact economic forces that guide its sustainability are still being researched, and
certain rational models predict it is not a stable solution, it is a fact that Bitcoin has not met any of
these pessimistic predictions for several years and it is not clear it ever will do. And even if it does,
the research community has produced and is testing several alternative decentralized cryptocurrencies,
e.g., [MGGR13, BCG+14, But13], that are more functional and/or resilient to theoretic attacks than
Bitcoin. Thus, it is reasonable to assume that decentralized cryptocurrencies are here to stay.

This leads to the natural questions of how one can use this new reality to improve the security
and/or efficiency of cryptographic protocols? First answers to this question were given in [ADMM14a,
ADMM14b, BK14, KVV16, KB16, KMB15, KB14, AD15] where it was shown how Bitcoin can be used
as a punishment mechanism to incentivize honest behavior in higher level cryptographic protocols such
as fair lotteries, poker, and general multi-party computation.

But in order to formally define and prove the security of the above constructions in a widely accepted
cryptographic framework for multi-party protocols, one needs to define what it means for these protocols
to be run in a world that gives them access to the Bitcoin network as a resource to improve their security.
In other words, the question now becomes:

What functionality can Bitcoin provide to cryptographic protocols?
To address this question, Bentov and Kumaresan [BK14] introduced a model of computation in

which protocols can use a punishment mechanism to incentivize adversaries to adhere to their protocol
instructions. As a basis, they use the universal composition framework of Canetti [Can01], but the
proposed modifications do not support composition and it is not clear how standard UC cryptographic
protocols can be cast as protocols in that model.

In a different direction, Kiayias, Zhou, and Zikas [KZZ16] connected the above question with the
original question of Bitcoin’s security goal. More concretely, they proposed identifying the resource that
Bitcoin (or other decentralized cryptocurrencies) offers to cryptographic protocols as its security goal,
and expressing it in a standard language compatible with the existing literature on cryptographic mulit-
party protocols. More specifically, they modeled the ideal guarantees as a transaction-ledger functionality
in the universal composition framework. To be more precise, the ledger of [KZZ16] is formally a global
setup in the (extended) GUC framework of Canetti et al. [CDPW07].

In a nutshell, the ledger proposed by [KZZ16] corresponds to a trusted third party which keeps a
state of blocks of transactions and makes it available, upon request, to any party. Furthermore, it accepts
messages/transactions from any party and records them as long as they pass an appropriate validation
procedure that depends on the above publicly available state as well as other registered messages. Peri-
odically, this ledger puts the transactions that were recently registered into a block and adds them into
the state. The state is available to everyone. As proved in [KZZ16], giving multi-party protocols access to
such a transaction-ledger functionality allows for formally capturing, within the composable(G)UC frame-
work, the mechanism of leveraging security loss with coins. The proposed ledger functionality guarantees
in an ideal manner all properties that one could expect from Bitcoin and encompasses the properties
in [GKL15, PSS17]. Therefore, it is natural to postulate that it is a candidate for defining the security
goal of Bitcoin (and potentially other decentralized cryptocurrencies). However, the ledger functionality
proposed by [KZZ16] was not accompanied by a security proof that any of the known cryptocurrencies
implements it.

However, as we show, despite being a step in the right direction, the ledger proposed in [KZZ16] cannot
be realized under standard assumptions about the Bitcoin network. On the positive side, we specify a new
transaction ledger functionality which still guarantees all properties postulated in [GKL15, PSS17], and
prove that a reasonable abstraction of the Bitcoin protocol implements this ledger. In our construction,
we describe Bitcoin as a UC protocol which generalizes both the protocols proposed in [GKL15, PSS17].
Along the way we identify the assumptions in each of [GKL15, PSS17] by devising a compound way of
capturing such assumptions in UC, which enables us to compare their strengths.

Related Literature. The security of Bitcoin as a cryptographic protocol was previously studied by
Garay, Kiayias, and Leonardos [GKL15] and by Pass, Seeman, and shelat [PSS17] who proposed and
analyzed an abstraction of the core of the Bitcoin protocol in a property-based manner. As such, the
treatment of [GKL15, PSS17] does not offer composable security guarantees. More recently, Kiayias,
Zhou, and Zikas [KZZ16] proposed capturing the security goal and resource implemented by Bitcoin
by means of a shared transaction-ledger functionality in the universal composition with global setup
(GUC) framework of Canetti et al. [CDPW07]. However, the proposed ledger-functionality is too strong

2



to be implementable by Bitcoin. We refer the interested reader to Section A of the appendix for the
basic elements of these works, where we also discuss simulation-based security and its advantages. A
formal comparison of our treatment with [GKL15, PSS17], which indicates how both these protocols and
definitions can be captured as special cases of our security definition, is also given in Section 4.4.

Our Results. We put forth the first universally composable (simulation-based) proof of security of
Bitcoin in the (G)UC model of Canetti et at. [CDPW07]. We observe that the ledger functionality
proposed by Kiayias et al. [KZZ16] is too strong to be implemented by the Bitcoin protocol—in fact, by
any protocol in the permissionless setting, which uses network assumptions similar to Bitcoin. Intuitively,
the reason is that the functionality allows too little interference of the simulator with its state, making
it impossible to emulate adversarial attacks that result, e.g., in the adversary inserting only transactions
coming from parties it wants or that result in parties holding chains of different length.

Therefore, we propose an alternative ledger functionality Gledger which shares certain design proper-
ties with the proposal in [KZZ16] but which can be provably implemented by the Bitcoin protocol. As
in [KZZ16], our proposed functionality can be used as a global setup to allow protocols with different
sessions to make use of it, thereby enabling the ledger to be cast as shared among any protocol that wants
to use it. The ledger is parametrized by a generic transaction validation predicate which enables it to
capture decentralized blockchain protocols beyond Bitcoin. Our functionality allows for parties/miners
to join and or leave the computation and allows for adaptive corruption.

Having defined our ledger functionality we next prove that for an appropriate validation predicate
Gledger is implemented by Bitcoin assuming that miners which deviate from the Bitcoin protocol do not
control a majority of the total hashing power at any point. To this end, we describe an abstraction of
the Bitcoin protocol as a synchronous UC protocol. Our protocol construction follows a structure which
generalizes both [GKL15, PSS17]—as we argue, the protocols described in these works can be captured
as instances of our protocols. The difference between these two instances is the network assumption that
is used—more precisely, the assumption about knowledge on the network delay—and the assumption
on the number of queries per round. To capture these assumptions in UC, we devise a methodology to
formulate functionality wrappers to capture assumptions, and discuss the implications of such a method
in preserving universal composability.

We design our protocol to work over a network which basically consists of bounded-delay channels,
where similar to the protocol in [PSS17], the miners are not aware of (an upper bound on) the actual delay
that the network induces. We argue that such a network is strictly weaker than a network with known
bounded delay which, as we argue, is implicit in the synchrony assumptions of [GKL15] (cf. Remark 1.).
Notwithstanding, unlike previous works, instead of starting from a complete network that offers multicast,
we explain how such a network could be implemented by running the message-diffusion mechanism of the
Bitcoin network (which is run over a lower level network of unicast channels). Intuitively, this network
is built by every miner, upon joining the system, choosing some existing miners of its choice to use them
as relay-nodes.

Our security proof proposes a useful modularization of the Bitcoin protocol. Concretely, we first
identify the part of the Bitcoin code which intuitively corresponds to the lottery aspect, provide an ideal
UC functionality that reflects this lottery aspect, and prove that this part of the Bitcoin code realizes
the proposed functionality. We then analyze the remainder of the protocol in the simpler world where
the respective code that implements the lottery aspect is replaced by invocations of the corresponding
functionality. Using the UC composition theorem, we can then immediately combine the two parts into
a proof of the full protocol.

As is the case with the so-called backbone protocol from [GKL15] our above UC protocol descrip-
tion of Bitcoin relies only on proofs of work and not on digital signatures. As a result, it implements a
somewhat weaker ledger, which does not guarantee that transactions submitted by honest parties will
eventually make it into the blockchain.2 As a last result, we show that (similarly to [GKL15]) by incor-
porating public-key cryptography, i.e., taking signatures into account in the validation predicate, we can
implement a stronger ledger that ensures that transactions issued by honest users—i.e., users who do
not sign contradicting transactions and who keep their signing keys for themselves—are guaranteed to
be eventually included into the blockchain. The fact that our protocol is described in UC makes this a
straight-forward, modular construction using the proposed transaction ledger as a hybrid. In particular,
we do not need to consider the specifics of the Bitcoin protocol in the proof of this step. This also allows
us to identify the maximum (worst-case) delay a user needs to wait before being guaranteed to see its
transaction on the blockchain and be assured that it will not be inverted.
2 We formulate a weakened guarantee, which we then amplify using digital signatures.
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2 A Composable Model for Blockchain Protocols in the Permissionless
Model

In this section we describe our (G)UC-based model of execution for the Bitcoin protocol. We remark
that providing such a formal model of execution forces us to make explicit all the implicit assumptions
from previous works. As we lay down the theoretical framework, we will also discuss these assumptions
along with their strengths and differences.

Bitcoin miners are represented as players—formally Interactive Turing Machine instances (ITIs)—in
a multi-party computation. They interact which each other by exchanging messages over an unauthenti-
cated multicast network with eventual delivery (see below) and might make queries to a common random
oracle. We will assume a central adversary A who gets to corrupt miners and might use them to attempt
to break the protocol’s security. As is common in (G)UC, the resources available to the parties are de-
scribed as hybrid functionalities. Before we provide the formal specification of such functionalities, we
first discuss a delicate issue that relates to the set of parties (ITIs) that might interact with an ideal
functionality.

Functionalities with dynamic party sets. In many UC functionalities, the set of parties is defined
upon initiation of the functionality and is not subject to change throughout the lifecycle of the execution.
Nonetheless, UC does provide support for functionalities in which the set of parties that might interact
with the functionality is dynamic. In fact, this dynamic nature is an inherent feature of the Bitcoin
protocol—where miners come and go at will. In this work we make this explicit by means of the following
mechanism: All the functionalities considered here include the following instructions that allow honest
parties to join or leave the set P of players that the functionality interacts with, and inform the adversary
about the current set of registered parties:3

– Upon receiving (register, sid) from some party pi (or from A on behalf of a corrupted pi), set
P = P ∪ {pi}. Return (register, sid, pi) to the caller.

– Upon receiving (de-register, sid) from some party pi ∈ P, the functionality sets P := P \ {pi} and
returns (de-register, sid, pi) to pi.

– Upon receiving (is-registered, sid) from some party pi, return (register, sid, b) to the caller, where
the bit b is 1 if and only if pi ∈ P.4

– Upon receiving (get-registered, sid) from A, the functionality returns (get-registered, sid,P)
to A.

For simplicity in the description of the functionalities, for a party pi ∈ P we will use pi to refer to
this party’s ID.

In addition to the above registration instructions, global setups, i.e., shared functionalities that are
available both in the real and in the ideal world and allow parties connected to them to share state
[CDPW07], allow also UC functionalities to register with them.5 Concretely, global setups include, in
addition to the above party registration instructions, two registration/de-registration instructions for
functionalities:

– Upon receiving (register, sidC) from a functionality F, set F := F ∪ {F}.
– Upon receiving (de-register, sidC) from a functionality F, set F := F \ {F}.
– Upon receiving (get-registered-f, sidC) from A, return (get-registered-f, sidC , F ) to A.

The above four (or seven in case of global setups) instructions will be part of the code of all ideal
functionalities considered in this work. However, to keep the description simpler we will omit these
instructions from the formal descriptions. We are now ready to formally describe each of the available
functionalities.
3 Note that making the set of parties dynamic means that the adversary needs to be informed about which

parties are currently in the computation so that he can chose how many (and which) parties to corrupt.
4 Note that typcially a party knows whether it is registered at a functionality or not. However, it might be

useful for another functionality to access this information via the dummy party corresponding to pi. The exact
dynamics of such an information exchange can be found in [CSV16, Section 2].

5 Although we allow no communication between functionalities, we will allow functionalities to communicate
with global setups. (They can use the interface of global setups to additional honest parties, which is anyway
open to the environment.)
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The Communication Network. In Bitcoin, parties/miners communicate over an incomplete network
of asynchronous unauthenticated unidirectional channels. Concretely, every miner chooses a set of other
miners as its immediate neighbors—typically by using some public information on IP addresses of ex-
isting miners—and uses its neighbors to send messages to all the miners in the Bitcoin network. This
corresponds to multicasting the message6. This is achieved by a standard diffusion mechanism: The
sender sends the message it wishes to multicast to all its neighbors who check that a message with the
same content was not received before, and if this is the case forward it to their neighbors, who then do
the same check, and so on. We make the following two assumptions about the communication channels
in the above diffusion mechanism/protocol:

– They guarantee (reliable) delivery of messages within a delay parameter∆, but are otherwise specified
to be of asynchronous nature (see below) and hence no protocol can rely on timings regarding the
delivery of messages. The adversary might delay any message sent through such a channel, but at
most by ∆. In particular, the adversary cannot block messages. However, he can induce an arbitrary
order on the messages sent to some party.

– The receiver gets no information other than the messages themselves. In particular, a receiver cannot
link a message to its sender nor can he observe whether or not two messages were sent from the same
sender.

– The channel offers no privacy guarantees. The adversary is given read access to all messages sent on
the network.

Our formal description of communication with eventual delivery within the UC framework builds on
ideas from [KMTZ13, BHMQU05, CGHZ16]. In particular, we capture such communication by assuming
for each miner pj ∈ P a multi-use unicast channel Fu-ch with receiver pj , to which any miner pi ∈ P
can connect and input messages to be delivered to pj ∈ P. A miner connecting to the unicast channel
with receiver pj corresponds to the above process of looking up pj and making him one of its access
points. The unicast channel does not provide any information to its receiver about who else is using it. In
particular, messages are buffered but the information of who is the sender is deleted; instead, the channel
creates unique independent message IDs that are used as handles for the messages. Furthermore, the
adversary—who is informed about both the content of the messages and about the handles—is allowed
to delay messages by any finite amount, and allowed to deliver them in an arbitrary out-of-order manner.

To ensure that the adversary cannot arbitrarily delay the delivery of messages submitted by honest
parties, we use the following idea: We first turn the UC channel-functionality to work in a “fetch message”
mode, where the channel delivers the message to its intended recipient pj if and only if pj asks to receive
it by issuing a special “fetch” command. If the adversary wishes to delay the delivery of some message
with message ID mid, he needs to submit to the channel functionality an integer value Tmid—the delay for
message with ID mid. This will have the effect that the channel ignores the next Tmid fetch attempts, and
only then allows the receipt of the sender’s message. Importantly, we require that the channel does not
accept more than ∆ accumulative delay on any message. To allow the adversary freedom in scheduling
the delivery of messages, we allow him to input delays more than once, which are added to the current
delay amount. If the adversary wants to deliver the message in the next activation, all he needs to do
is submit a negative delay. Furthermore, we allow the adversary to schedule more than one messages to
be delivered in the same “fetch” command. Finally, to ensure that the adversary is able to re-order such
batches of messages arbitrarily, we allow A to send special (swap,mid,mid′) commands that have as
an effect to change the order of the corresponding messages. The detailed specification of the described
channels, denoted Fu-ch is given in Appendix B. Note that in the descriptions throughout the paper, for
a vector ~M we denote by the symbol || the operation which adds a new element to ~M .

From Unicast to Multicast. As already mentioned, the Bitcoin protocol uses the above asynchronous-
and-bounded-delay unicast network as a basis to achieve a multicast mechanism. A multicast functionality
with bounded delay can be defined similarly to the above unicast channel. The main difference is that
once a message is inserted it is recorded |P| times, once for each possible receiver. The adversary can
add delays to any subset of messages, but again for any message the cumulative delay cannot exceed ∆.
He is further allowed to do partial and inconsistent multicasts, i.e., where different messages are sent to
different parties. This is the main difference of such a multicast network from a broadcast network. The
detailed specification of the corresponding functionality FN-MC is similar to that of Fu-ch and can be
6 In [GKL15] this mechanism is referred to as “broadcast”; here, we use multicast to make explicit the fact that

this primitive is different from a standard Byzantine-agreement-type broadcast, in that it does not guarantee
any consistency for a malicious sender.
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found in Appendix B, where we also show how the simple round-based diffusion mechanism can be used
to implement a multicast mechanism from unicast channels as long as the corresponding network among
honest parties stays strongly connected. (A network graph is strongly connected if there is a directed
path between any two nodes in the network, where the unicast channels are seen as the directed edges
from sender to receiver.)

The Random Oracle. As usual in cryptographic proofs, the queries to the hash function are modeled
by assuming access to a random oracle (functionality) FRO. This functionality is specified as follows:
upon receiving a query (eval, sid, x) from a registered party, if x has not been queried before, a value y
is chosen uniformly at random from {0, 1}κ (for security parameter κ) and returned to the party (and
the mapping (x, y) is internally stored). If x has been queried before, the corresponding y is returned.
For completeness we include the functionality in B.

Synchrony. Katz et al. [KMTZ13], proposed a methodology for casting synchronous protocols in UC
by assuming they have access to an ideal functionality Gclock, the clock, that allows parties to ensure
that they proceed in synchronized rounds. Informally, the idea is that the clock keeps track of a round
variable whose value the parties can request by sending it (clock-read, sidC). This value is updated
only once all honest parties sent the clock a (clock-update, sidC) command.

Given such a clock, the authors of [KMTZ13] describe how synchronous protocols can maintain their
necessary round structure in UC: For every round ρ each party first executes all its round-ρ instructions
and then sends the clock a clock-update command. Subsequently, whenever activated, it sends the
clock a clock-read command and does not advance to round ρ + 1 before it sees the clocks variable
being updated. This ensures that no honest party will start round ρ + 1 before every honest party has
completed round ρ. In [KZZ16], this idea was transfered to the (G)UC setting, by assuming that the
clock is a global setup. This allows for different protocols to use the same clock and is the model we will
also use here. For completeness we include the clock functionality in Appendix B.

As argued in [KMTZ13], in order for an eventual-delivery (aka guaranteed termination) functionality
to be UC implementable by a synchronous protocol it needs to keep track of the number of activations
that an honest party gets—so that it knows when to generate output for honest parties. This requires that
the protocol itself, when described as a UC interactive Turing-machine instance (ITI), has a predictable
behavior when it comes to the pattern of activations that it needs before it sends the clock an update
command. We capture this property in a generic manner in Definition 1.

In order to make the definition better accessible, we briefly recall the mechanics of activations in UC.
In a UC protocol execution, an honest party (ITI) gets activated either by receiving an input from the
environment, or by receiving a message from one of its hybrid-functionalities (or from the adversary).
Any activation results in the activated ITI performing some computation on its view of the protocol and
its local state and ends with either the party sending a message to some of its hybrid functionalities or
sending an output to the environment, or not sending any message. In either of this case, the party loses
the activation.7

For any given protocol execution, we define the honest-input sequence ~IH to consist of all inputs that
the environment gives to honest parties in the given execution (in the order that they were given) along
with the identity of the party who received the input. For an execution in which the environment has
given m inputs to the honest parties in total, ~IH is a vector of the form ((x1,pid1), . . . , (xm,pidm)), where
xi is the i-th input that was given in this execution, and pidi is the corresponding party who received this
input. We further define the timed honest-input sequence, denoted as ~ITH , to be the honest-input sequence
augmented with the respective clock time when an input was given. If the timed honest-input sequence
of an execution is ~ITH = ((x1,pid1, τ1), . . . , (xm,pidm, τm)), this means that ((x1,pid1), . . . , (xm,pidm))
is the honest-input sequence corresponding to this execution, and for each i ∈ [n], τi is the time of the
global clock when input xi was handed to pidi.

Definition 1. A Gclock-hybrid protocol Π has a predictable synchronization pattern iff there exist an
algorithm predict-timeΠ(·) such that for any possible execution of Π (i.e., for any adversary and environ-
ment, and any choice of random coins) the following holds: If ~ITH = ((x1,pid1, τ1), . . . , (xm,pidm, τm))
is the corresponding timed honest-input sequence for this execution, then for any i ∈ [m− 1] :

predict-timeΠ((x1,pid1, τ1), . . . , (xi,pidi, τi)) = τi+1.

As we argue, all synchronous protocol described in this work are designed to have a predictable
synchronization pattern.
7 In the latter case the activation goes to the environment by default.
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Assumptions as UC Functionality Wrappers. In order to prove statements about cryptographic
protocols one often makes assumptions about what the environment (or the adversary) can or cannot
do. For example, a standard assumption in [GKL15, PSS17] is that in each round the adversary cannot
do more calls to the random oracle than what the honest parties (collectively) can do. This can be
captured by assuming a restricted environment and adversary which balances the amount of times that
the adversary queries the random oracle. In a property-based treatment such as [GKL15, PSS17] this
assumptions is typically acceptable.

However, in a simulation-based definition, restricting the class of adversaries and environments in
a security statement means that we can no longer generically apply the composition theorem, which
dismisses one of the major advantages of using simulation-based security in the first place. Therefore,
instead of restricting the class of environments/adversaries, here we take a different approach to capture
the fact that the adversary’s access to the RO is restricted with respect to that of honest parties. In par-
ticular, we capture this assumption by means of a functionality wrapper that wraps the RO functionality
and forces the above restrictions on the adversary, for example by assigning to each corrupted party at
most q activations per round for a parameter q. To keep track of rounds the functionality registers with
the global clock Gclock. For completeness we include the wrapped random oracle functionality Wq(FRO)
in Appendix B.

Remark 1 (Functionally Black-box Use of the Network (Delay)). A key difference between the models
in [GKL15] and [PSS17] is that in the latter the parties do not know any bound on the delay of the
network. In particular, although both models are in the synchronous setting, in [PSS17] a party in the
protocol does not know when to expect a message which was sent to it in the previous round. Using
terminology from [Ros12], the protocol uses the channel in a functionally black-box manner. Restricting to
such protocols—a restriction which we also adopt in this work—is in fact implying a weaker assumption
on the protocol than standard (known) bounded-delay channel. Intuitively the reason is that no such
protocol can realize a bounded-delay network with a known upper bound (unless it sacrifices termination)
since the protocol cannot decide whether or not the bound has been reached.

3 The Transaction-Ledger Functionality

In this section we describe our ledger functionality, denoted as Gledger, which can, for example, be
achieved by (a UC version) of the Bitcoin protocol. As in [KZZ16], our ledger is parametrized by certain
algorithms/predicates that allow us to capture a more general version of a ledger which can be instan-
tiated by various cryptocurrencies. Since our abstraction of the Bitcoin protocol is in the synchronous
model of computation (this is consistent with known approaches in the cryptographic literature), our
ledger is also designed for this synchronous model. Nonetheless, several of our modeling choices are made
with the foresight of removing or limiting the use of the clock and leaving room for less synchrony.

At a high level, our ledger Gledger has a similar structure as the ledger proposed in [KZZ16]. Con-
cretely, anyone (whether an honest miner or the adversary) might submit a transaction which is validated
by means of a predicate Validate, and if it is found valid it is added to a buffer buffer. The adversary
A is informed that the transaction was received and is given its contents.8 Informally, this buffer also
contains transactions that, although validated, are not yet deep enough in the blockchain to be consid-
ered out-of-reach for a adversary.9 Periodically, Gledger fetches some of the transactions in the buffer,
and using an algorithm Blockify creates a block including these transactions and adds this block to its
permanent state state, which is a data structure that includes the part of the blockchain the adversary
can no longer change. This corresponds to the common prefix in [GKL15, PSS17]. Any miner or the
adversary is allowed to request a read of the contents of the state.

This sketched specification is simple, but in order to have a ledger that can be implemented by
existing blockchain protocols, we need to relax this functionality by giving the adversary more power
to interfere with it and influence its behavior. Before sketching the necessary relaxations we discuss the
need for a new ledger definition and it potential use as a global setup.

Remark 2 (Impossibility to realize the ledger of [KZZ16]). The main reasons why the ledger functionality
in [KZZ16] is not realizable by known protocols under reasonable assumptions are as follows: first,
their ledger guarantees that parties always obtain the same common state. Even with strong synchrony
8 This is inevitable since we assume non-private communication, where the adversary sees any message as soon

as it is sent, even if the sender and receiver are honest.
9 E.g., in [KZZ16] the adversary is allowed to permute the contents of the buffer.
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assumptions, this is not realizable since an adversary, who just mined a new block, is not forced to
inform each party instantaneously (or at all) and thus could for example make parties observe different
lengths of the same prefix. Second, the adversarial influence is restricted to permuting the buffer. This
is too optimistic, as in reality the adversary can try to mine a new block and possibly exclude certain
transactions. Also, this excludes any possibility to quantify quality. Third, letting the update rate be
fixed does not adequately reflect the probabilistic nature of blockchain protocols.

Remark 3 (On the sound usage of a ledger as a global setup). As presented in [KZZ16], a UC ledger
functionality Gledger can be cast as a global setup [CDPW07] which allows different protocols to share
state. This fact holds true for any UC functionality as stated in [CDPW07] and [CSV16]. Nonetheless, as
pointed out in the recent work of Canetti, Shahaf, and Vald [CSV16], one needs to be extra careful when
replacing a global setup by its implementation, e.g., in the case of Gledger by the UC Bitcoin backbone
protocol of Section 4. Indeed, such a replacement does not, in general, preserve a realization proof of
some ideal functionality F that is conducted in a ledger-hybrid world, because the simulator in that
proof might rely on specific capabilities that are not available any more after replacement (as the global
setup is also replaced in the ideal world). The authors of [CSV16] provide a sufficient condition for such
a replacement to be sound. This condition is generally too strong to be satisfied by any natural ledger
implementation, which opens the question of devising relaxed sufficient conditions for sound replacements
in an MPC context.10 As this work focuses on the realization of ledger functionalities per se, we can
treat Gledger as a standard UC functionality.

In the following, we first review the necessary relaxations to obtain a realizable ledger. We conclude
this section with the specification of our generic ledger functionality.

State-buffer validation. The first relaxation is with respect to the invariant that is enforced by the
validation predicate Validate. Concretely, in [KZZ16] it is assumed that the validation predicate enforces
that the buffer does not include conflicting transactions, i.e., upon receipt of a transaction, Validate checks
that it is not in conflict with the state and the buffer, and if so the transaction is added to the buffer.
However, in reality we do not know how to implement such a strong filter, as different miners might be
working on different, potentially conflicting sets of transactions.11 The only time when it becomes clear
which of these conflicting transactions will make it into the state is once one of them has been inserted
into a block which has made it deep enough into the blockchain (i.e., has become part of state). Hence,
given that the buffer includes all transactions that might end up in the state, it might at some point
include both conflicting transactions.

To enable us for a provably implementable ledger, in this work we take a different approach. The
validate predicate will be less restrictive as to which transactions make it into the buffer. Concretely,
at the very least, Validate will enforce the invariant that no single transaction in the buffer contradicts
the state state, while different transactions in buffer might contradict each other. Looking ahead, a
stronger version that is achievable by employing digital signatures (presented in Section 5), could enforce
that no submitted transaction contradicts other submitted transactions. As in [KZZ16], whenever a new
transaction x is submitted to Gledger, it is passed to Validate which takes as input a transaction and
the current state and decides if x should be added to the buffer. Additionally, as buffer might include
conflicts, whenever a new block is added to the state, the buffer (i.e., every single transaction in buffer) is
re-validated using Validate and invalid transactions in buffer are removed. To allow for this re-validation
to be generic, transactions that are added to the buffer are accompanied by certain metadata, i.e., the
identity of the submitter, a unique transaction ID txid12, or the time τ when x was received.

State update policies and security guarantees. The second relaxation is with respect to the rate and the
form and/or origin of transactions that make it into a block. Concretely, instead of assuming that the
state is extended in fixed time intervals, we allow the adversary to define when this update occurs. This
is done by allowing the adversary, at any point, to propose what we refer to as the next-block candidate
10 To give an example, a natural condition would be to require that the ideal-world adversary (or simulator)

for F does only use the ledger to submit queries or reading the state, and plays the “dummy adversary” for
queries by the environment that request the additional adversarial capabilities. The simulator in [KZZ16] is of
this kind.

11 This will be the case for transactions submitted by the adversary even when signatures are used to authenticate
transactions.

12 In Bitcoin, txidwould be the hash-pointer corresponding to this transaction. Note that the generic ledger can
capture explicit guarantees on the ability or disability to link transactions, as this crucially depends on the
concrete choice of an ID mechanism.
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NxtBC. This is a data structure containing the contents of the next block that A wants to have inserted
into the state. Leaving NxtBC empty can be interpreted as the adversary signaling that it does not want
the state to be updated in the current clock tick.

Of course allowing the adversary to always decide what makes it into the state state, or if anything
ever does, yields a very weak ledger. Intuitively, this would be a ledger that only guarantees the common
prefix property [GKL15] but no liveness or chain quality. Therefore, to enable us to capture also stronger
properties of blockchain protocols we parameterize the ledger by an algorithm ExtendPolicy that, infor-
mally, enforces a state-update policy restricting the freedom of the adversary to choose the next block
and implementing an appropriate compliance-enforcing mechanism in case the adversary does not follow
the policy. This enforcing mechanism simply returns a default policy-complying block using the current
contents of the buffer. We point out that a good simulator for realizing the ledger will avoid triggering this
compliance-enforcing mechanism, as this could result in an uncontrolled update of the state which would
yield a potential distinguishing advantage. In other words, a good simulator, i.e., ideal-world adversary,
always complies with the policy.

In a nutshell, ExtendPolicy takes the current contents of the buffer buffer, along with the adversary’s
recommendation NxtBC, and the block-insertion times vector ~τstate. The latter is a vector listing the times
when each block was inserted into state. The output of ExtendPolicy is a vector including the blocks to
be appended to the state during the next state-extend time-slot (where again, ExtendPolicy outputting
an empty vector is a signal to not extend). To ensure that ExtendPolicy can also enforce properties that
depend on who inserted how many (or which) blocks into the state—e.g. the so-called chain quality
property from [GKL15]—we also pass to it the timed honest-input sequence ~ITH (cf. Section 2).

Some examples of how ExtendPolicy allows us to define ways that the protocol might restrict the
adversary’s interference in the state-update include the following properties from [GKL15]:

– Liveness corresponds to ExtendPolicy enforcing the following policy: If the state has not been extended
for more that a certain number of rounds and the simulator keeps recommending an empty NxtBC,
ExtendPolicy can choose some of the transactions in the buffer (e.g., those that have been in the
buffer for a long time) and add them to the next block. Note that a good simulator or ideal-world
adversary will never allow for this automatic update to happen and will make sure that he keeps the
state extend rate within the right amount.

– Chain quality corresponds to ExtendPolicy enforcing the following policy: Every block proposal made
by the simulator has to be associated with a special flag hFlag, where intuitively hFlag = 1 indicates
that the proposal is generated using the process that an honest miner would follow. ExtendPolicy
enforces two things: first, that block proposal indicating hFlag = 1 are frequent enough, and second
that such proposals fulfill some specific quality properties (such as including all recent transactions).
If these properties are not met, the ledger will define and add a default block to the state. 13 We
point out that unlike the original chain-quality property from [GKL15], this policy does not enforce
which miner should receive the reward for honest blocks and it is up to the simulator to do so (via
the so-called coinbased transaction).14

In addition to the above standard properties, ExtendPolicy allows us to also capture additional security
properties of various blockchain protocols, e.g., the fact that honest transactions eventually make it into
a block and the fact that transactions with higher rewards make it into a block faster than others.

In Section 4 where we prove the security of Bitcoin, we will provide the concrete specification of
Validate and ExtendPolicy for which the Bitcoin protocol realizes our ledger.

Output Slackness and Sliding Window of State Blocks. The common prefix property guarantees that
blocks which are sufficiently deep in the blockchain of an honest miner will eventually be included in
the blockchain of every honest miner. Stated differently, if an honest miner receives as output from the
ledger a state state, every honest miner will eventually receive state as its output. However, in reality
we cannot guarantee that at any given point in time all honest miners see exactly the same blockchain
13 More technically, ExtendPolicy looks into the proposed-block sequence and identifies the blocks of state that

where proposed by the simulator with hFlag set to 1 to deduce how long ago (in time or block-number) the
last proposed block that made it into the chain had hFlag = 1.

14 The actual Bitcoin protocol ensures that at the time when the block was created and circulated in the network
the originator of the block was honest. Note that this does not mean that he is still honest when the block
makes it into the state unless one considers static corruptions only (in which case one can indeed directly argue
about the fraction of honest originators in the state). To make this difference is crucial to explicitly see the
impact due to adaptive corruptions and was not made explicit in earlier versions of this work.
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length; this is especially the case when network delays are incorporated into the model, but it is also true
in the zero-delay model of [GKL15]. Thus it is unclear how state can be defined so that at any point
all parties have the same view on it.

Therefore, to have a ledger implementable by standard assumptions we make the following relaxation:
We interpret state as the view of the state of the miner with the longest blockchain. And we allow the
adversary to define for every honest miner pi a subchain statei of state of length |statei| = pti that
corresponds to what pi gets as a response when he reads the state of the ledger (formally, the adversary
can fix a pointer pti). For convenience, we denote by state|pti the subchain of state that finishes in the
pti-th block. Once again, to avoid over-relaxing the functionality to an unuseful setup, our ledger allows
the adversary to only move the pointers forward and it forbids the adversary to define pointers for honest
miners that are too far apart, i.e., more than windowSize state blocks. The parameter windowSize ∈ N
denotes a core parameter of the ledger. In particular, the parameter windowSize reflects the similarity
of the blockchain to the dynamics of a so-called sliding window, where the window of size windowSize
contains the possible views of honest miners onto state and where the head of the window advances with
the head of the state. In addition, it is convenient to express security properties of concrete blockchain
protocols, including the properties discussed above, as assertions that hold within such a sliding window
(for any point in time).

Synchrony. In order to keep the ideal execution indistinguishable from the real execution, the adversary
should be unable to use the clock for distinguishing. Since in the ideal world when a dummy party
receives a clock-update-message for Gclock it will forward it, the ledger needs to be responsible that
the clock counter does not advance before all honest parties have received sufficiently many activations.
This is achieved by the use of the function predict-time(~ITH) (see Definition 1), which, as we show, is
defined for our ledger protocol. This function allows Gledger to predict when the protocol would update
the round and ensure that it only allows the clock to advance if and only if the protocol would. Observe
that the ledger can infer all protocol-relevant inputs/activations to honest parties and can therefore easily
keep track of the honest inputs sequence ~ITH . In particular, in global UC communication between the
ledger and the (shared) clock functionality is allowed to access the relevant information (namely via a
dummy party as defined in [CSV16]).15 As the other functions explained above, the function predict-time
is a parameter of the (general) ledger functionality and hence needs to be instantiated when realizing a
specific ledger such as the Bitcoin ledger (which is the topic of the next section).

A final observation is with respect to guarantees that the protocol (and therefore also the ledger) can
give to recently registered honest parties, or to registered parties that get de-registered from the clock
(temporarily, for instance). We will call miners de-synchronized if one of the above properties are fulfilled
for this miner. We denote the set of such miners by PDS .

To provide more intuition, consider the following scenario: An honest party registers as miner in
round r and waits to receive from honest parties the transactions to mine and the current longest
blockchain. In Bitcoin, upon joining, the miner sends out a special request—we denote this here as a
special new-miner-message—and as soon as any party receives it, it responds with the set of transactions
and longest blockchain it knows. Due to the network delay, the parties might take up to ∆ rounds to
receive the new-miner notification, and their response might also take up to ∆ rounds before it arrives
to the new miner. However, because we do not make any assumption on honest parties knowing ∆ (see
Remark 1) they need to start mining as soon as a message arrives (otherwise they might wait indefinitely).
But now the adversary, in the worst case, can make these parties mine on any block he wants and have
them accept any valid chain he wants as the current state while they wait for the network’s response:
simply delay everything sent to these parties by honest miners by the maximum delay ∆, and instead,
immediately deliver what you want them to work on. Thus, for the first Delay := 2∆ rounds16 (where
Delay is a parameter of our ledger) these parties are practically in the control of the adversary and their
computing power is contributed to his.

The formal specification of our ledger functionality Gledger is given in the following. Using standard
notation, we write [n] to denote the set {1, . . . , n}.

15 In order to keep the description below simple, we omit how the ledger exactly infers ~ITH , but this is quite
straightforward. In particular, the mechanism of [CSV16] allows to assume that the ledger knows whether a
party is registered with the clock or not to deduce whether it is synchronized or de-synchronized.

16 For technical reasons described in Section 4.1, ∆ rounds in the protocol correspond to 2∆ clock-ticks.
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Gledger is parametrized by four algorithms, Validate, ExtendPolicy, Blockify, and predict-time, along with two
parameters: windowSize, Delay ∈ N. The functionality manages variables state, NxtBC, buffer, τL, and
~τstate, as described above. The variables are initialized as follows: state := ~τstate := NxtBC := ε, buffer := ∅,
τL = 0.

The functionality maintains the set of registered parties P, the (sub-)set of honest parties H ⊆ P, and the
(sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition in the previous paragraph).
The sets P,H,PDS are all initially set to ∅. When a new honest party is registered at the ledger, if it is
registered with the clock already then it is added to the party sets H and P and the current time of
registration is also recorded; if the current time is τL > 0, it is also added to PDS . Similarly, when a party is
deregistered, it is removed from both P (and therefore also from PDS or H). The ledger maintains the
invariant that it is registered (as a functionality) to the clock whenever H 6= ∅.
For each party pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a current-state view
statei := ε (initially set to empty). The functionality also keeps track of the timed honest-input sequence in
a vector ~ITH (initially ~ITH := ε).

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Gclock
and upon receiving response (clock-read, sidC , τ) set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously)
since time τ ′ < τL − Delay (to both ledger and clock). Set PDS := PDS \ P̂.

2. If I was received from an honest party pi ∈ P:
(a) Set ~ITH := ~ITH ||(I, pi, τL);
(b) Compute ~N = ( ~N1, . . . , ~N`) := ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate) and if ~N 6= ε set

state := state||Blockify( ~N1)|| . . . ||Blockify( ~N`) and ~τstate := ~τstate||τ `L, where τ `L = τL|| . . . , ||τL.
(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0 then delete BTX from buffer. Also, reset

NxtBC := ε.
(d) If there exists pj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set

ptk := |state| for all pk ∈ H \ PDS .

3. Depending on the above input I and its sender’s ID, Gledger executes the corresponding code from the
following list:
• Submiting a transaction:

If I = (submit, sid, tx) and is received from a party pi ∈ P or from A (on behalf of a corrupted party
pi) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, pi)
(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

• Reading the state:
If I = (read, sid) is received from a party pi ∈ P then set statei := state|min{pti,|state|} and return
(read, sid, statei) to the requestor. If the requestor is A then send (state, buffer, ~ITH) to A.

• Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party pi ∈ P and (after updating ~ITH
as above) predict-time(~ITH) = τ̂ > τL then send (clock-update, sidC) to Gclock. Else send I to A.

• The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid,minerID, τL, pi) ∈ buffer with ID txid = txidi
then set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.

• The adversary setting state-slackness:
If I = (set-slack, (pi1 , p̂ti1 ), . . . , (pi` , p̂ti`)), with {pi1 , . . . , pi`} ⊆ H \ PDS is received from the
adversary A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for every
j ∈ [`] and return (set-slack, ok) to A.

Functionality Gledger
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(b) Otherwise set ptij := |state| for all j ∈ [`].

• The adversary setting the state for desychronized parties:
If I = (desync-state, (pi1 , state′i1 ), . . . , (pi` , state′i`)), with {pi1 , . . . , pi`} ⊆ PDS is received from the
adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

4 Bitcoin as a Transaction Ledger Protocol

In this section we prove our main theorem, namely that, under appropriate assumptions, Bitcoin realizes
an instantiation of the ledger functionality from the previous section. More concretely, we cast the Bitcoin
protocol as a UC protocol, where consistent with the existing methodology we assume that the protocol
is synchronous, i.e., parties can keep track of the current round by using an appropriate global clock
functionality. We first describe the UC protocol, denoted Ledger-Protocol, in Section 4.1 which abstracts
the components of Bitcoin that are relevant for the construction of such a ledger—similar to how the
backbone protocol [GKL15] captures core Bitcoin properties in their respective model of computation.

Later, in Section 4.2, we specify the ledger functionality GB
ledger that is implemented by the UC ledger

protocol as an instance of our general ledger functionality, i.e., by providing appropriate instantiations
of algorithms Validate, Blockify, and ExtendPolicy. In fact, for the sake of generality, we specify generic
classes of Validate and Blockify and parameterize our Ledger-Protocol with these classes, so that the
security statement still stays generic. We then prove our main theorem (Theorem 1) which can be
described informally as follows:

Theorem (Informal). Let Validate be the class of predicates that only take into account the current
state and a transaction (i.e., no transaction IDs, time, or party IDs), and let windowSize = ω(log κ), κ
being the length of the outputs of the random oracle. Then, for an appropriate ExtendPolicy and for any
function Blockify, the protocol Ledger-Protocol instantiated with algorithms Validate and Blockify securely
realizes a ledger functionality GB

ledger (the generic ledger instantiated with the above functions) under the
following assumptions on network delays and mining power, where mining power is roughly understood
as the ability to find proofs of work via queries to the random oracle (and will be formally defined later):

– In any round of the protocol execution, the collective mining power of the adversary, contributed by
corrupted and temporarily de-synchronized miners, does not exceed the mining power of honest (and
synchronized) parties in that round. The exact relation additionally captures the (negative) impact of
network delays on the coordination of mining power of honest parties.

– No message can be delayed in the network by more than ∆ = O(1) rounds.

We prove the above theorem via what we believe is a useful modularization of the Bitcoin proto-
col (cf. Figure 1). Informally, this modularization distills out form the protocol a reactive state-extend
subprocess which captures the lottery that decides which miner gets to advance the blockchain next
and additionally the process of propagating this state to other miners. Lemma 1 shows that the state-
extend module/subprocess implements an appropriate reactive UC functionality FStX. We can then use
the UC composition theorem which allows us to argue security of Ledger-Protocol in a simpler hybrid
world where, instead of using this subprocess, parties make calls to the functionality FStX. We conclude
this section (Subsection 4.4) by showing how both the GKL and PSs protocols can be cast as special
cases of our protocol which provides the basis for comparing the different models and their respective
assumptions.

4.1 The Bitcoin ledger as a UC Protocol

In the following we provide the formal description of protocol Ledger-Protocol. The protocol assumes as
hybrids the multi-cast network FN-MC (recall that we assume that this network does have an upper bound
∆ on the delay unknown to the protocol) and a random oracle functionality FRO. Before providing the
detailed specification of our ledger protocol, we establish some useful notation and terminology that we
use throughout this section. For compatibility with existing work, wherever it does not overload notation,
we use some of the terminology and notation from [GKL15].
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(a) In the real world parties have access to the
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(c) In the ideal world, dummy parties have access
to the global clock Gclock and the ledger Gledger

Fig. 1. Modularization of the Bitcoin protocol.

Blockchain. A blockchain C = B1, . . . ,Bn is a (finite) sequence of blocks where each block Bi =
〈si, sti, ni〉 is a triple consisting of the pointer si, the state block sti, and the nonce ni. A special block
is the genesis block G = 〈⊥, gen,⊥〉 which contains the genesis state gen := ε. The head of chain C is the
block head(C) := Bn and the length length(C) of the chain is the number of blocks, i.e., length(C) = n.
The chain Cdk is the (potentially empty) sequence of the first length(C) − k blocks of C. The state ~st
encoded in C is defined as a sequence of the corresponding state blocks, i.e., ~st := st1|| . . . ||stn. In other
words, one should think of the blockchain C as an encoding of its underlying state ~st; such an encoding
might, e.g., organize C is an efficient searchable data structure as is the case in the Bitcoin protocol
where a blockchain is a linked list implemented with hash-pointers.

In the protocol, the blockchain is the data structure storing a sequence of entries, often referred to
as transactions. Furthermore, as in [KZZ16], in order to capture blockchains with syntactically different
state encoding, we use an algorithm blockifyB to map a vector of transactions into a state block. Thus,
each block st ∈ ~st (except the genesis state) of the state encoded in the blockchain has the form
st = Blockify( ~N) where ~N is a vector of transactions.

For a blockchain C to be considered a valid blockchain, it needs to satisfy certain conditions. Con-
cretely, the validity of a blockchain C = B1, . . . ,Bn where Bi = 〈si, sti, ni〉 depends on two aspects:
chain-level validity, also referred to as syntactic validity, and a state-level validity also referred to as
semantic validity. Syntactic validity is defined with respect to a difficulty parameter D ∈ [2κ], where κ
is the security parameter, and a given hash function H(·) : {0, 1}∗ → {0, 1}κ; it requires that, for each
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i > 1, the value si contained in Bi satisfies si = H[Bi−1] and that additionally H[Bi] < D holds, where
we interpret the output of the hash-function as an integer in this comparison.

The semantic validity on the other hand is defined on the state ~st encoded in the blockchain C and
specifies whether this content is valid (which might depend on a particular application). The validation
predicate Validate defined in the ledger functionality (cf. Section 3) plays a similar role. In fact, the
semantic validity of the blockchain can be defined using an algorithm that we denote isvalidstate which
is builds upon the Validate predicate. The idea is that for any choice of Validate, the blockchain protocol
using isvalidstate for semantic validation of the chain implements the ledger parametrized with Validate.
More specifically, algorithm isvalidstate checks that a given blockchain state can be built in an iterative
manner, such that each contained transaction is considered valid according to Validate upon insertion. It
further ensures that the state starts with the genesis state and that state blocks contain a special coin-
base transaction txcoin-base

minerID which assigns them to a miner. We remark that this only works for predicates
Validate which ignore all information other than the state and transaction that is being validated.17

To avoid confusion, throughout this section we use ValidTxB to refer to the validate predicate with the
above restriction. The pseudo-code of the algorithm isvalidstate which builds upon ValidTxB is provided
in Appendix C.

We succinctly denote by isvalidchainD(C) the predicate that returns true iff chain C satisfies syntactic
and semantic validity as defined above.

The Ledger Protocol. We can now formally define our blockchain protocol Ledger-Protocolq,D,T (we
usually omit the parameters when clear from the context). The protocol allows an arbitrary number of
parties/miners to communicate by means of a multicast network FN-MC. Note that this means that the
adversary can send different messages to different parties. New miners might dynamically joint or leave
the protocol by means of the registration/de-registration commands: when they join they register with
all associated functionalities and when they leave they deregister.18

Each party maintains a local blockchain which initially consists of the genesis block. The chains of
honest parties might differ (but as we will prove, it will have a common prefix which will define the
ledger state). New transactions are added in a ‘mining process’. First, a party collects valid transactions
(according to ValidTxB) and creates a new state block st using blockifyB. Next, the party attempts to
mine a new block which can be validly added to their local blockchain. The mining is done using the
extendchainD algorithm which takes as inputs a chain C, a state block st, and the number q of attempts.
The core idea of the algorithm is to find a proof-of-work which allows to extend C by a block which
encodes st. The pseudo-code of this algorithm is provided in Appendix C.2. After each mining attempt
parties will multicast their current chain. A party will replace its local chain if it receives a longer chain.
When queried to output the state of the ledger, Ledger-Protocol outputs the state of its longest chain,
where it first chops-off the most recent T blocks (or ε if the state has less than T blocks). This behavior
will ensure that all honest parties output a consistent ledger state.

As already mentioned, our Bitcoin-Ledger protocol proceeds in rounds which are implemented by
using a global synchronization clock Gclock. For formal reasons that have to do with how activations are
handled in UC, we have each round correspond to two sub-rounds (also known as mini-rounds). To avoid
confusion we refer to clock rounds as clock-ticks. We say that a protocol is in round r if the current time of
the clock is τ ∈ {2r−1, 2r}. In fact, having two clock-ticks per round is the way to ensure in synchronous
UC that messages (e.g., a block) sent within a round are delivered at the beginning of the next round.
The idea is that each round is divided into two mini-rounds, where each mini-round corresponds to a
clock tick, and treat the first mini-round as a working mini-round where parties might mine new blocks
and submit them to the multicast network for delivery, and in the second reading mini-round they simply
fetch messages from the network to obtain messages sent in the previous round. The pseudo-code of this
UC blockchain protocol, denoted as Ledger-Protocol, is provided in Appendix C.3 where we also argue
that the protocol satisfies Definition 1, i.e., there is a concrete function predict-timeBC that predicts the
synchronization pattern of our synchronous UC Bitcoin backbone protocol

17 Recall that in the general ledger description, Validate might depend on some associated metadata; although
this might be useful to capture alternative blockchains, it is not the case for Bitcoin.

18 Note that when a party registers to a local functionality such as the network or the random oracle it does not
lose its activation token. This is a subtle point to ensure that the real and ideal worlds are in-sync regarding
activations.
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4.2 The Bitcoin Ledger

We next show how to instantiate the ledger functionality from Section 3 with appropriate parameters
so that it is implemented by protocol Ledger-Protocol. To define this Bitcoin ledger GB

ledger, we give the
specific instantiations of the relevant functions Validate, Blockify, ExtendPolicy, and predict-time. First,
predict-time is defined to be predict-timeBC to reflect the synchronization pattern of the Bitcoin backbone
protocol.

Similarly, in case of Validate we use the same predicate as the protocol uses to validate the states: For
a given transaction tx and a given state state, the predicate decides whether this transaction is valid
with respect to state. Given such a validation predicate, the ledger validation predicate takes a specific
simple form which, excludes dependency on anything other than the transaction tx and the state state,
i.e., for any values of txid, τL, pi, and buffer:

Validate((tx, txid, τL, pi), state, buffer) := ValidTxB(tx, state).

Blockify can be an arbitrary algorithm, and if the same algorithm is used in Ledger-Protocol the security
proof will go through. However, as discussed below (in Definition 2), a meaningful Blockify should be in
certain relation with the ledger’s Validate predicate. (This relation is satisfied by the Bitcoin protocol.)

Finally, we define ExtendPolicy. At a high level, upon receiving a list of possible candidate blocks which
should go into the state of the ledger, ExtendPolicy does the following: for each block it first verifies that
the blocks are valid with respect to the state they extend. (Only valid blocks might be added to the
state.) Moreover, ExtendPolicy ensures the following property:

1. The speed of the ledger is not too slow. This is implemented by defining an upper bound maxTimewindow
on the time interval (number of clock-ticks) within which at least windowSize state blocks have to
be added. This is known as minimal chain-growth.

2. The speed of the ledger is not too fast. This is implemented by defining a lower bound minTimewindow
on the time interval (number of clock-ticks), such that the adversary is not allowed to propose new
blocks if windowSize or more blocks have already been added during that time interval.

3. The adversary cannot create too many blocks with arbitrary (but valid) contents. This is formally
enforced by defining an upper bound η on the number of these so-called adversarial blocks within
a sequence of state blocks. This is known as chain quality. Formally, this is enforced by requiring
that a certain fraction of blocks need to satisfy higher quality standards (to model blocks that are
honestly generated).

4. Last but not least, ExtendPolicy guarantees that if a transaction is “old enough”, and still valid with
respect to the actual state, then it is included into the state. This is a weak form of guaranteeing
that a transaction will make it into the state unless it is in conflict. As we show in Section 5, this
guarantee can be amplified by using digital signatures.

In order to enforce these policies, ExtendPolicy first defines alternative blocks which satisfy all of the
above criteria in an ideal way, and whenever it catches the adversary in trying to propose blocks that do
not obey the policies, it punishes the adversary by proposing its own generated blocks. In particular, if
the adversary violates the policy regarding minimal chain-growth, the ExtendPolicy will directly propose
a sequence of complying blocks. The formal description of the extend policy (as pseudo-code) for GB

ledger
is given in Appendix C.4.

On the relation between Blockify and Validate. As already discussed above, ExtendPolicy guarantees that
the adversary cannot block the extension of the state indefinitely, and that occasionally an honest miner
will create a block. These are implications of the chain-growth and chain-quality properties from [GKL15].
However, our generic ExtendPolicy makes explicit that a priori, we cannot exclude that the chain always
extends with blocks that include, for example, only a coin-base transaction, i.e., any submitted transaction
is ignored and never inserted into a new block. This issue is an orthogonal one to ensuring that honest
transactions are not invalidated by adversarial interaction—which, as argued in [GKL15], is achieved by
adding digital signatures.

To see where this could be problematic in general, consider a blockify that, at a certain point, creates
a block that renders all possible future transactions invalid. Observe that this does not mean that our
protocol is insecure and that this is as well possible for the protocols of [GKL15, PSS17]; indeed our
proof shows that the protocol will give exactly the same guarantees as an Gledger parametrized with such
an algorithm Blockify.

Nonetheless, a look in reality indicates that this situation never occurs with Bitcoin. To capture
that this is the case, Validate and Blockify need to be in a certain relation with each other. Informally,
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this relation should ensure that the above sketched situation never occurs. A way to ensure this, which
is already implemented by the Bitcoin protocol, is by restricting Blockify to only make an invertible
manipulation of the blocks when they are inserted into the state—e.g., be an encoding function of a
code—and define Validate to depend on the inverse of Blockify. This is captured in the following definition.

Definition 2. A co-design of Blockify and Validate is non-self-disqualifying if there exists an efficiently
computable function Dec mapping outputs of Blockify to vectors ~N such that there exists a validate
predicate Validate′ for which the following properties hold for any possible state state = st1|| . . . ||st`,
buffer buffer vectors ~N := (tx1, . . . , txm), and transaction tx:

1. Validate(tx, state, buffer) = Validate′(tx,Dec(st1)|| . . . ||Dec(st`), buffer)
2. Validate(tx, state||Blockify( ~N), buffer) = Validate′(tx,Dec(st1)|| . . . ||Dec(st`)|| ~N, buffer)

We remark that the actual validation of Bitcoin does satisfy the above definition, since a transaction
is only rendered invalid with respect to the state if the coins it is trying to spend have already been
spent, and this only depends on the transactions in the state and not the metadata added by Blockify.
Hence, in the following, we assume that ValidTxB and blockifyB satisfy the relation in Definition 2.

4.3 Security Analysis

We next turn to the security analysis of our protocol. As already mentioned, we argue security in two
step. In a first step, we distill out from the protocol Ledger-Protocol a state-extend module/subprocess,
denoted as StateExchange-Protocol, and devise an alternative, modular description of the Ledger-Protocol
protocol in which every party makes invocations of this subprocess. We denote this modularized pro-
tocol by Modular-Ledger-Protocol. By a game-hopping argument, we prove that the original protocol
Ledger-Protocol and the modularized protocol Modular-Ledger-Protocol are in fact functionally equiva-
lent. The advantage of having such a modular description is that we are now able to define an appro-
priate ideal functionality FStX that is realized by StateExchange-Protocol. Using the universal compo-
sition theorem we can deduce that Ledger-Protocol UC emulates Modular-Ledger-Protocol where invo-
cations of StateExchange-Protocol are replaced by invocations of FStX. The second step of the proof
consists of proving that, under appropriate assumptions, Modular-Ledger-Protocol, where invocations of
StateExchange-Protocol are replaced by invocations of FStX, implements the Bitcoin ledger described in
Section 4.2.

Step 1. The state-exchange functionality FStX allows parties to submit ledger states which are accepted
with a certain probability. Accepted states are then multicast to all parties. Informally, it can be seen
as as lottery on which (valid) states are exchanged among the participants. Parties can use FStX to
multicast a valid state, but instead of accepting any submitted state and sending it to all (registered)
parties, FStX keeps track of all states that it ever saw, and implements the following mechanism upon
submission of a new ledger state ~st and a state block st from any party: If ~st was previously submitted
to FStX and ~st||st is a valid state, then FStX accepts ~st||st with probability pH (resp. pA for dishonest
parties); accepted states are then sent to all registered parties. The formal specification follows:

The functionality is parametrized with a set of parties P. Any newly registered (resp. deregistered) party is
added to (resp. deleted from) P. For each party p ∈ P the functionality manages a tree Tp where each rooted
path corresponds to a valid state the party has received. Initially each tree contains the genesis state.
Finally, it manages a buffer ~M which contains successfully submitted states which have not yet been
delivered to (some) parties in P.

Submit/receive new states:

• Upon receiving (submit-new, sid, ~st, st) from some participant ps ∈ P, if isvalidstate( ~st||st) = 1 and
~st ∈ Tp do the following:
1. Sample B according to a Bernoulli-Distribution with parameter pH (or pA if ps is dishonest).
2. If B = 1, set ~stnew ← ~st||st and add ~stnew to Tps . Else set ~stnew ← ~st.
3. Output (success, sid, B) to ps.

Functionality F∆,pH ,pAStX
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4. On response (continue, sid) where P = {p1, . . . , pn} choose n new unique message-IDs
mid1, . . . ,midn, initialize n new variables Dmid1 := DMAX

mid1 := . . . := Dmidn := DMAX
midn := 1 set

~M := ~M ||( ~stnew,mid1, Dmid1 , p1)|| . . . ||( ~stnew,midn, Dmidn , pn), and send
(submit-new, sid, ~stnew, ps, (p1,mid1), . . . , (pn,midn)) to the adversary.

• Upon receiving (fetch-new, sid) from a party p ∈ P or A (on behalf of p), do the following:
1. For all tuples ( ~st,mid, Dmid, p) ∈ ~M set Dmid := Dmid − 1.
2. Let ~Mp

0 denote the subvector of ~M including all tuples of the form ( ~st,mid, Dmid, p) where Dmid = 0
(in the same order as they appear in ~M). For each tuple ( ~st,mid, Dmid, p) ∈ ~Mp

0 add ~st to Tp. Delete
all entries in ~Mp

0 from ~M and send ~Mp
0 to p.

• Upon receiving (send, sid, ~st, p′) from A on behalf some corrupted p ∈ P, if p′ ∈ P and ~st ∈ Tp, choose a
new unique message-ID mid, initialize D := 1, add ( ~st,mid, Dmid, p

′) to ~M , and return
(send, sid, ~st, p′,mid) to A.

Further adversarial influence on the network:

• Upon receiving (swap, sid,mid,mid′) from A, if mid and mid′ are message-IDs registered in the current
~M , swap the corresponding tuples in ~M . Return (swap, sid) to A.

• Upon receiving (delay, sid, T,mid) from A, if T is a valid delay, mid is a message-ID for a tuple
( ~st,mid, Dmid, p) in the current ~M and DMAX

mid + T ≤ ∆, set Dmid := Dmid + T and set
DMAX

mid := DMAX
mid + T .

The Modular-Ledger-Protocol uses the same hybrids as Ledger-Protocol but abstracts the lottery im-
plemented by the mining process by making calls to the above state exchange functionality F∆,pH ,pAStX .
The detailed specification of the Modular-Ledger-Protocol protocol can be found in Appendix D.1. Note
that the only remaining parameter of Modular-Ledger-Protocol is the chop-off parameter T , the rest is
part of F∆,pH ,pAStX . The following Lemma states that our Bitcoin protocol implements the above modular
ledger protocol. The proof appears in Appendix D.2.

Lemma 1. The blockchain protocol Ledger-Protocolq,D,T UC emulates protocol Modular-Ledger-ProtocolT
that runs in a hybrid world with access to the functionality F∆,pH ,pAStX with pA := D

2κ and pH = 1−(1−pA)q,
and where ∆ denotes the upper bound on the network delay.

Step 2. We are now ready to complete the proof of our main theorem. Before providing the formal
statement it is useful to discuss some of the key properties used in both, the statement and the proof.
The security of the Bitcoin protocol depends on various key properties of an execution. This means that
its security depends on the number of random oracle queries (or, in the FStX hybrid world, the number
of submit-queries) by the pool of corrupted miners. Therefore it is important to capture the relevant
properties of such a UC execution. In the following we denote by upper-case R the number of rounds of
a given protocol execution.

Capturing query power in an execution. In an execution, we measure the query power per logical round
r, which can be conveniently captured as a function Tqp(r). We observe that in an interval of, say, trc
rounds, the total number of queries is

Qr
′

trc =
r′+trc−1∑
r=r′

Tqp(r).

In each round r ∈ [R], each honest miner gets a certain number q(r)
i of activations from the environ-

ment to maintain the ledger (i.e., to try to extend the state). Let

q
(r)
H :=

∑
pi honest in round r

q
(r)
i .

Also, the adversary makes a certain number q(r)
A of queries to FStX. We get

Tqp(r) = q
(r)
A + q

(r)
H .
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Quantifying total mining power in an execution. Mining power is the expected number of successful state
extensions, i.e., the number of times a new state block is successfully mined. The mining power of round
r is therefore

Tmp(r) := q
(r)
A · pA + q

(r)
H · pH ,

Recall that pH is the success probability per query of an honest miner and pA is the success probability
per query of a corrupted miner. If pA = p and pH = 1−(1−p)q, it is convenient to consider (q(r)

A +q·q(r)
H )·p

as the total mining power (by applying Bernoulli’s inequality). Within an interval of trc rounds, we can
for example quantify the overall expectation by Ttotal

mp (trc) :=
∑trc
r=1 Tmp(r). This allows to formulate the

goal of a re-calibration of the difficulty parameter as requiring that this value should be 2016 blocks for
trc corresponding a desired time bound (such as roughly two weeks), which is part of future work.

Quantifying adversarial mining power in an execution. The adversarial mining power mpA(r) per round
is made up of two parts: first, queries by corrupted parties, and second, queries by honest, but de-
synchronized miners (recall that the latter are either active honest parties that are de-registered from
the clock or not yet registered with the clock for long enough and thus still out of sync).

mpA(r) := pA · q(r)
A + pH ·

∑
pi is de-sync

q
(r)
i .

Recall that a party is considered desynchronized for 2∆ rounds after its registration.
It is convenient to measure the adversary’s contribution to the mining power as the fraction of the

overall mining power. In particular, we assume there is a parameter ρ ∈ (0, 1) such that in any round r,
the relation mpA(r) ≤ ρ · Tmp(r) holds. We then define βr := ρ · Tmp(r). Looking ahead, if a model is flat,
then the fraction (1− ρ) corresponds to the fraction of users that are honest and synchronized.

Quantifying honest and synchronized mining power in an execution. In each round r ∈ [R], each honest
miner gets a certain number qi,r of activations from the environment, where it can submit one new state
to FStX. This state is accepted with probability pH . We define the vector ~qr such that for any honest
miner pi in round r, ~qr[i] = qi,r. The probability that a miner pi is successful to extend the state by at
least one block is αi,r := 1−(1−pH)qi,r and the probability that at least one registered and synchronized,
uncorrupted miner successfully queries FStX to extend its local longest state is

αr := 1−
∏

honest sync pi

(1− αi,r) = 1−
∏

honest sync pi

(1− pH)qi,r .

Looking ahead, in existing flat models of Bitcoin, parties are expected to be synchronized and are
otherwise counted as dishonest and the quantity (1 − ρ) is the fraction of honest and synchronized
miners.

Worst-Case Analysis. We analyze Bitcoin in a worst-case fashion. Let us assume that the protocol runs
for [R] rounds (e.g., R = trc if we do not take re-calibration into account), then

α := min {αr}r∈[R], and β := max {βr}r∈[R].

Remark 4. This view on Bitcoin gives already a glimpse for the relevance of the re-calibration sub-
protocol which is considered as part of future work. Ideally, we would like the variation among the
values αr and among the values βr to be small, which needs an additional assumption on the increase
of computing power per round. Thanks to the re-calibration phase, such a bound can exist at all. If no
re-calibration phase would happen, any strictly positive gradient of the computing power development
would eventually provoke Bitcoin failing, as the value β (as a fraction of the total mining power) could
not be reasonably bounded.

We are now ready to state the main theorem. The proof of the theorem can be found in Appendix D.3.

Theorem 1. Let the functions ValidTxB, blockifyB, and ExtendPolicy be as defined above. Let p ∈ (0, 1),
integer q ≥ 1, pH = 1 − (1 − p)q, and pA = p. Let ∆ ≥ 1 be the upper bound on the network delay.
Consider Modular-Ledger-ProtocolT in the (Gclock,F∆,pH ,pAStX ,F∆N-MC)-hybrid world. If, for some λ > 1,
the relation

α · (1− 2 · (∆+ 1) · α) ≥ λ · β (1)
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is satisfied in any real-world execution, where α and β are defined as above, then the protocol
Modular-Ledger-ProtocolT UC-realizes GB

ledger for any ledger parameters (which are positive and integer-
valued) in the range

windowSize = T and Delay = 4∆,

maxTimewindow ≥
2 · windowSize

(1− δ) · γ and minTimewindow ≤
2 · windowSize

(1 + δ) ·maxr Tmp(r)
,

η > (1 + δ) · windowSize · β
γ
,

where γ := α
1+∆α and δ > 0 is an arbitrary constant. In particular, the realization is perfect except

with probability R ·negl(T ), where R denotes the upper bound on the number of rounds (consisting of two
clock-ticks), and negl(T ) denotes a negligible function in T .
Remark 5. It is worth noting the implications of Equation 1. In practice, typically p is small such that α
(and thus γ) can be approximated using Bernoulli’s inequality to be (1−ρ)mp, where m is the estimated
number of hash queries in the Bitcoin network per round. Hence, by canceling out the term mp and
letting p be sufficiently small (compared to 1

∆m ), Equation 1 collapses roughly to the condition that
(1 − ρ)(1 − ε) ≥ (1 + δ)ρ, which basically relates the fractions of adversarial vs. honest mining power.
Also, as pointed out by [PSS17], for too large values of p in the order of p > 1

mp , Equation 1 is violated
for any constant fraction ρ of corrupted miners and they present an attack in this case.
Proof (Overview). To show the theorem we specify a simulator for the ideal world that internally runs
the round-based mining procedure of every honest party. Whenever the real world parties complete a
working round, then the simulator has to assemble the views of all honest (and synchronized) miners
that it simulates and determine their common prefix of states, i.e., the longest state stored or received
by each simulated party when chopping off T blocks. The adversary will then propose a new block
candidate, i.e., a list of transactions, to the ledger to announce that the common prefix has increased.
To reflect that not all parties have the same view on this common prefix, the simulator can adjust
the state pointers accordingly. This simulation is perfect and corresponds to an emulation of real-world
processes. What possibly prevents a perfect simulation is the requirement of a consistent prefix and the
restrictions imposed by ExtendPolicy. In order to show that these restrictions do not forbid a proper
simulation, we have to justify why the choice of the parameters in the theorem statement is acceptable.
To this end, we analyze the real-world execution to bound the corresponding bad events that prevent
a perfect simulation. This can be done following the detailed analysis provided by Pass, Seeman, and
shelat [PSS17] which includes the necessary claims for lower and upper on chain growth, chain quality,
and prefix consistency. From these claims, it follows that our simulator can simulate the real-world, since
the restrictions imposed by the ledger prohibit a prefect simulation only with probability R · negl(T ).
This is an upper bound on the distinguishing advantage of the real and ideal world. The detailed proof
is found in Appendix D.3 ut

Note that the theorem statement a-priori holds for any environment (but simply yields a void state-
ment if the conditions are not met). In order to turn this into a composable statement, we follow the
approach proposed in Section 2 and model restrictions as wrapper functionalities to ensure the condition
of the theorem. We review two particular choices in 4.4. The general conceptual principle behind this
is the following: For the hybrid world, that consists of a network FN-MC, a clock Gclock and a random
oracle FRO with output length κ (or alternatively the state-exchange functionality FStX instead of the
random oracle), define a wrapper functionality W which ensures the condition in Equation 1 and (possi-
bly) additional conditions on minimal (honest) and maximal (dishonest) mining power. This can be done
by enforcing appropriate restrictions along the lines of the basic example in Section 2 (e.g., imposing an
upper bound on parties, or RO queries per round etc.). We provide the details and the specification of
such a general random-oracle wrapper W∆,λ,Tmp

α,β,D (FRO) with its parameters19 in Appendix B.
For this wrapper we have the following desired corollary to Theorem 1 and Lemma 1. This statement

is guaranteed to compose according to the UC composition theorem.
Corollary 1. The protocol Ledger-Protocolq,D,T that is executed in the (Gclock,F∆N-MC,W

∆,λ,Tmp
α,β,D (FRO))-

hybrid world, UC-realizes functionality GB
ledger (with the respective parameters assured by Theorem 1).

19 The parameters are the ones introduced in this section: a lower bound on honest mining power (per round)
α, an upper bound on adversarial mining power (per round) β, the total mining power (per round) Tmp, the
network delay ∆, the difficulty parameter D (that influences the probability of a successful PoW), and finally
a value λ > 1 describing the required gap between honest and dishonest mining power.
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4.4 Comparison with Existing Work

We demonstrate how the protocols, assumptions, and results from the two existing works analyzing
security of Bitcoin (in a property based manner) can be cast as special cases of our construction.

We start with the result in [GKL15], which is the so-called flat and synchronous model20 with instant
delivery and a constant number of parties n (i.e., Bitcoin is seen as an n-party MPC protocol). 21 Consider
the concrete values for α and β as follows:

– Let n denote the number of parties. Each corrupted party gets at most q activations to query the
FStX per round. Each honest party is activated exactly once per round.

– In the model of GKL, we have q ≥ 1. Thus, we get pH = 1 − (1 − p)q and pA = p. We can further
conclude that TGKL

mp (r) ≤ p · q · n.
– The adversary gets (at most) q queries per corrupted party with probability pA = p and one query

per honest but desynchronized party with success probability pH = 1 − (1 − p)q. If tr denotes the
number of corrupted or desynchronized parties in round r, we get mpGKL

A (r) ≤ tr · q · p and thus
βGKL
r = p · q · (ρ · n), where ρn is the (assumed) upper bound on the number of miners contributing

to the adversarial mining power (independent of r).
– Each honest and synchronized miner gets exactly one activation per round, i.e., qi,r := 1, with
pH = 1 − (1 − p)q ∈ (0, 1), for some integer q > 0. Inserting it into the general equation yields
αGKL
r = 1 − (1 − p)q(1−ρ)·n (independent of r). Note that since n is assumed to be fixed in their

model, q(1− ρ) · n is in fact a lower bound on the honest and synchronized hashing power.

We can now easily specify a wrapper WGKL as special case of the above general wrapper. In the
hybrid world (Gclock,WGKL(F∆,pH ,pAStX ),F∆N-MC) this ensures the condition of Theorem 1and we arrive at
the following composable statement:

Corollary 2. The ledger protocol Modular-Ledger-ProtocolT UC-realizes the functionality GB
ledger in the

(Gclock,WGKL(F1,pH ,pA
StX ),F1

N-MC)-hybrid model (setting delay ∆ = 1) for the parameters assured by The-
orem 1 for the above choice:

αGKL = 1− (1− p)(1−ρ)·q·n and βGKL = p · q · (ρ · n).

Similarly, we can instantiate the above values with the assumptions of [PSS17]:

– For each corrupted (and desynchronized) party, the adversary gets at most one query per round.
Each honest miner makes exactly one query per round. This means that q(r)

A + q
(r)
H = nr.

– In the PSs model, pH = pA = p and hence TPSs
mp (r) ≤ p · nr = p · n, where n is as above. With these

values we get mpPSs
A (r) = p·ncorr

r and consequently βPSs
r = p·(ρ·n), where ρn denotes the upper bound

on corrupted parties in any round. Putting things together, we also have αPSs
r = 1− (1− p)(1−ρ)·n.

Note that since n is assumed to be fixed in their model, (1 − ρ) · n is in fact a lower bound on the
honest and synchronized hashing power.

We can again specify a wrapper functionality WPSs as above (where the restriction is 1 query per
corrupted instead of q). We again have that the hybrid world (Gclock,WPSs(F∆,p,pStX ),F∆N-MC) will ensure
the condition of the theorem and directly yields the following composable statement.

Corollary 3. The protocol Modular-Ledger-ProtocolT UC-realizes the ledger functionality GB
ledger in the

(Gclock,W(F∆,p,pStX ),F∆N-MC)-hybrid model (with network delay ∆ ≥ 1) for the parameters assured by
Theorem 1 for the above choice:

αPSs = 1− (1− p)(1−ρ)·n and βPSs = p · (ρ · n).

20 The flat model means that every party gets the same number of hash queries in every round.
21 In a recent paper, the authors of [GKL15] propose an analysis of Bitcoin for a variable number of parties.

Capturing the appropriate assumptions for this case, as a wrapper in our composable setting, is part of future
work.
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5 Implementing a Stronger Ledger

As already observed in [GKL15], the Bitcoin protocol makes use of digital signatures to protect trans-
actions which allows it to achieve stronger guarantees. Informally, the stronger guarantee ensures that
every transaction submitted by an honest miner will eventually make it into the state. Using our termi-
nology, this means that by employing digital signatures, Bitcoin implements a stronger ledger. In this
section we present this stronger ledger and show how such an implementation can be captured as a UC
protocol which makes black-box use of the Ledger-Protocol to implement this ledger. The UC composition
theorem makes such a proof immediate, as we do not need to think about the specifics of the invoked
ledger protocol, and we can instead argue security in a world where this protocol is replaced by GB

ledger.

Protection of transactions using accounts. In Bitcoin, a miner creates an account ID AccountID by
generating a signature key pair and hashing the public key. Any transaction of this party includes this
account ID, i.e., tx = (AccountID, tx′). An important property is that a transaction of a certain account
cannot be invalidated by a transaction with a different account ID. Hence, to protect the validity of a
transaction, upon submitting tx, party pi has to sign it, append the signature and verification key to get
a transaction ((AccountID, tx′), vk, σ). The validation predicate now additionally has to check that the
account ID is the hash of the public key and that the signature σ is valid with respect to the verification
key vk. Roughly, an adversary can invalidate tx, only by either forging a signature relative to vk, or by
possessing key pair whose hash of the public key collides with the account ID of the honest party. The
details of the protocol and the validate predicate as pseudo-code are provided in Appendix E.

Realized ledger. The realized ledger abstraction, denoted by GB+
ledger, is formally specified in Appendix E.

Roughly, it is a ledger functionality as the one from the previous section, but which additionally allows
parties to create unique accounts. Upon receiving a transaction from party pi, GB+

ledger only accepts a
transaction containing the AccountID that was previously associated to pi and ensures that parties are
restricted to issue transactions using their own accounts.

Amplification of transaction liveness. In Bitcoin a given transaction can only be invalidated due to
another one with the same account. By definition of the enhanced ledger, this means that no other party
can make a transaction of pi not enter the state. The liveness guarantee for transactions specified by
ExtendPolicy in the previous chapter captures that if a valid transaction is in the buffer for long enough
then it eventually enters the state. For GB+

ledger, this implies that if pi submits a single transaction which
is valid according to the current state, then this transaction will eventually be contained in the state.
More precisely, we can conclude that this essentially happens within the next 3 · windowSize new state
blocks in the worst case (neglecting the offset in the beginning). Relative to the current view of pi this
is no more than within the next 4 · windowSize blocks as argued in Appendix E.
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CRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734. Springer, Heidelberg, May 2016.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.
[Lam02] Leslie Lamport. Paxos made simple, fast, and byzantine. In OPODIS, 2002.
[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem. ACM

Trans. Program. Lang. Syst., 4(3):382–401, 1982.
[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zerocoin: Anonymous dis-

tributed E-cash from Bitcoin. In 2013 IEEE Symposium on Security and Privacy, pages 397–411.
IEEE Computer Society Press, May 2013.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. http://bitcoin.org/
bitcoin.pdf.

[PS16] Rafael Pass and Elaine Shi. FruitChains: A fair blockchain. Cryptology ePrint Archive, Report
2016/916, 2016. http://eprint.iacr.org/2016/916.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part II, pages 643–673. Springer, 2017.

[Rab83] Michael O. Rabin. Randomized byzantine generals. In FOCS, 1983.
[Ros12] Mike Rosulek. Must you know the code of f to securely compute f? In Reihaneh Safavi-Naini and

Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 87–104. Springer, Heidelberg,
August 2012.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In
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A Related Literature

At a high level, the Bitcoin works as follows: The parties (also referred to as miners) collect and circulate
messages (transactions) from users of the network, check that they satisfy some commonly agreed validity
property, put the valid transactions into a block, and them try to find appropriate metadata such that
the hash of the block-contents and this metadata is of a specific form—concretely that, parsed as a binary
string, it has a sufficient number of leading zeros. This is often referred to as a solving a mining puzzle.
If we assume that the hash function in this experiment is fully unpredictable (i.e., before computing
it one has probability 2−κ of predicting its output, where κ is the length of the hash), then the best
strategy for finding such metadata is by trial-and-error. Thus, informally, the probability that some party
finds appropriate metadata increases proportional to the number of times some party attempts a hash
computation. And the more leading zeros we require from a correct puzzle solution the harder it is to
find one.

Intuitively, a successful solution can be seen as a proof of work that testifies to the fact that the miner
presenting is tried a large number of hash queries. Once a miner finds such a solution, he puts it into
a block and sends it to the other miners. The miners who receive it check that it satisfies some validity
property (see below) and if so create new metadata using the hash of this (newly minted) block and
put this metadata together with transactions that are still valid into a new block and start working on
solving the puzzle induced by this block. This creates for each miner a sequence of seen miner blocks.
Moreover, a block is rendered valid by any miner only if it includes a hash-pointer the last valid block
that thus miner has seen. Thus, the sequence of valid blocks forms a linked list which is often referred
to as the blockchain.

The works of Garay, Kiayias, and Leonardos [GKL15] and that of Pass, Seeman, and shelat [PSS17]
include a formal specification and security proof of the Bitcoin protocol.22 However, the proved security
in these works is property-based, i.e., informally, they prove that conditioned on the largest part of the
network following the Bitcoin protocol (in fact and abstraction and generalization thereof), the output
of bitcoin satisfies certain properties.

These properties are as follows:

– The common prefix property from [GKL15] is a property of the linked list of blocks commonly referred
to as the blockchain that is created by executing Bitcoin. It requires that if a block B is “deep enough”
in a blockchain C that is considered valid by some honest party, then the prefix-subchain C|B of C
that results by ignoring in C all blocks that are after B will eventually become a prefix-subchain
of all honest parties. In [PSS17] this property was refined (and augmented ) by requiring a similar
consistency property which in addition to the above mandates that for every honest party, cutting
his chain at a deep enough block, yields a prefix-chain that will be prefix for ever. These properties
are satisfied with overwhelming probability (in a security parameter κ), where deep enough is defined
as O(κ).

– The chain growth, which was implicitly defined in [GKL15] and posted as a required property
in [PSS17], mandates, informally, that the blockchain of honest parties will increase with time. More
concretely, it postulates a lower bound on the speed in which blocks are added in the blockchain. In
fact, [PSS17] introduced also the notion of a corresponding upper bound which, as the argue, might
be useful for synchronization purposes.We observer that although [PSS17] adopts a round-based
model of execution (see below) which makes it unclear where or how such extra synchronization
would help, the proposed property would indeed be useful to have if one was to remove that assumed
synchronous structure from the model.23

– The chain quality [GKL15, PSS17] property postulates that the honest miners get to insert a fraction
of the blocks that eventually make it into the common prefix of honest parties.24 This, means that the
adversary is not able to monopolize the blocks that are inserted in the blockchain, and every so often
an honest miner is allowed to do so. This abstracts the property which was already postulated in the
original blockchain whitepaper that the Bitcoin implements a lottery which decides (according to the
computing power that each party contributes—alas not necessarily in a fair allocation manner [PS16])
who will insert that next block to the chain.

22 An extension of [GKL15] to allow capturing dynamically evolving miner-set was also recently posted on the
IACR eprint [GKL16].

23 Such an adaptation would however harm several of the arguments and would require a new analysis and
protocol.

24 More precisely, a state block is considered honest if the respective miner that proposed the block was honest
at the time of the proposal.
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Both [GKL15] and [PSS17] assume a multicast network—i.e., a network where a party sends messages
to arbitrary other parties25—and abstract the hash as a random oracle. Furthermore, they both have an
explicit round-based model of execution where parties proceed in rounds. The main differences between
the two are: (1) that in [GKL15] every party make q of hash-queries (i.e., q hash calls) in each round as
opposed to [PSS17] where every party exactly one hash-query per round; and (2) in [GKL15] message sent
in some round r are guaranteed to be delivered at the beginning of round r + 1, whereas in [PSS17] the
adversary might choose to delay message delivery but the statements are proved assuming no message
is delayed by more than ∆ rounds. We note that Property 1 implies that both models assume that
parties are fully synchronized, since in both models every party can simply count the number of queries
it has made to the random oracle and decide in what round it is (and by assumption this decision will
ensure that no party goes to round r + 1 before all parties have finished round r). Notwithstanding,
as we argue in Section 4 the network assumption in [PSS17] in combination with the design of the
protocol yields strictly weaker setting than the one in [GKL15], i.e., one can achieve strictly more with
the assumptions in [GKL15] even assuming an external synchronization mechanism. We will discuss these
difference further when we describe these network assumptions and in particular in Section 4 where we
argue how these two models are captured in UC and how the corresponding protocols can be cast as
special case of our UC protocol.

Property-based vs simulation-based security. Proving that Bitcoin satisfies the above properties has been
an essential step into the direction of understanding the security goals of Bitcoin. But as argued above,
this does not offer the tool to be able to argue security of cryptographic protocols that use Bitcoin—e.g.,
to achieve an improved fairness notion [ADMM14a, ADMM14b, BK14, KVV16, KB16, KMB15, KB14,
AD15]—without the need to always look at the Bitcoin specifics. In other words, such property based
security definitions do not support composition. The standard way to allow for such a generic use of
blockchain protocols as a cryptographic resource, is to prove that it implements an ideal functionality
in a one of the composable simulation-based frameworks, e.g., [Can01, Can00, CDPW07]. In such a
framework, security of a protocol is defined as follows: First we specify the goal the protocol is supposed
to achieve by means of a trusted third party, usually referred to as the ideal functionality F. Then we
prove that the protocol implements this functionality F which means that for any adversary A attacking
the protocol, there exists an ideal adversary (aka a simulator) S that attacks an ideal invocation of
F and emulates the attach that A launches to the protocol. We assume that the reader has some
familiarity with simulation-based security, and in particular with the UC and GUC frameworks of Canetti
et al. [Can01, CDPW07].

The advantage of simulation-based security is that it often comes with a composition theorem which,
intuitively, states that we can replace calls to a functionality with invocation of a protocol implementing
it without worrying about the protocol’s internals. Thus, in our case, a ledger functionality that is
implemented by Bitcoin allows us to use this functionality in any protocol that wants to use Bitcoin as a
resource, and the composition theorem will then imply that replacing the functionality with Bitcoin does
not compromise security. Note that [KZZ16] already includes an attempt to define such a functionality,
but as we argue here, the proposed functionality is too strong to be implemented from Bitcoin under
standard assumptions.

B Model (Cont’d)

This section includes complementary material for Section 2.

B.1 The Unicast Channel

The functionality is parametrized with a receiver pR, and and upper bound ∆ on the delay of any channel. I
keeps track of the set of possible senders P. Any newly registered (resp. deregistered) party is added to
(resp. deleted from) P.

Functionality F∆u-ch

25 Unlike [GKL15] where this operation is referred to as broadcast, we choose to call it multicast here to avoid
confusion with the standard broadcast primitive in the Byzantine agreement literature that offers stronger
consistency guarantees.
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– Upon receiving a message (send,m) from some ps ∈ P or from the adversary A, choose a new unique
message-ID midfor m, initialize variables Dmid := 1 and DMAX

mid = 1, set ~M := ~M ||(m,mid, Dmid), and
send (m,mid, Dmid) to the adversary.

– Upon receiving a message (fetch) from pR:
1. For all regired mids, set Dmid := Dmid − 1.
2. Let ~M0 denote the subvector ~M including all triples (m,mid, Dmid) with Dmid = 0 (in the same order

as they appear in ~M). Delete all entries in ~M0 from ~M and send ~M0 to pR.
– Upon receiving a message (delay, Tmid,mid) from the adversary, if DMAX

mid + Tmid ≤ ∆ and mid is a
message-ID registered in the current ~M , set Dmid := Dmid + Tmid and DMAX

mid := DMAX
mid + Tmid;

otherwise, ignore the message.
– Upon receiving a message (swap,mid,mid′) from the adversary, if mid and mid′ are message-IDs

registered in the current ~M , then swap the triples (m,mid, Dmid) and (m,mid′, Dmid′) in ~M . Return
(swap-ok) to the adversary.

B.2 The Multicast Network

The multicast network with bounded delay is described in the following.

The functionality is parametrized with a set possible senders and receivers P. Any newly registered (resp.
deregistered) party is added to (resp. deleted from) P.

– Honest sender multicast:
Upon receiving a message (multicast, sid,m) from some ps ∈ P, where P = {p1, . . . , pn} denotes the
current party set, choose n new unique message-IDs mid1, . . . ,midn, initialize 2n new variables
Dmid1 := DMAX

mid1 . . . := Dmidn := DMAX
midn := 1, set

~M := ~M ||(m,mid1, Dmid1 , p1)|| . . . ||(m,midn, Dmidn , pn), and send
(multicast, sid,m, ps, (p1,mid1), . . . , (pn,midn)) to the adversary.

– Adversarial sender (partial) multicast:
Upon receiving a message (multicast, sid, (mi1 , pi1 ), . . . , (mi` , pi`) from the adversary with
{pi1 , . . . , pi`} ⊆ P, choose ` new unique message-IDs midi1 , . . . ,midi` , initialize ` new variables
Dmidi1 := DMAX

midi1
:= . . . := Dmidi` := DMAX

midi`
:= 1, set

~M := ~M ||(mi1 ,midi1 , Dmidi1 , pi1 )|| . . . ||(mi` ,midi` , Dmidi` , pi`), and send
((multicast, sid, (mi1 , pi1 ,midi1 ), . . . , (mi` , pi` ,midi`) to the adversary.

– Honest party fetching:
Upon receiving a message (fetch, sid) from pi ∈ P (or from A on behalf of pi if pi is corrupted):
1. For all tuples (m,mid, Dmid, pi) ∈ ~M , set Dmid := Dmid − 1.
2. Let ~Mpi

0 denote the subvector ~M including all tuples of the form (m,mid, Dmid, pi) with Dmid = 0 (in
the same order as they appear in ~M). Delete all entries in ~Mpi

0 from ~M , and send ~Mpi
0 to pi.

– Adding adversarial delays:
Upon receiving a message (delays, sid, (Tmidi1 ,midi1 ), . . . , (Tmidi` ,midi`)) do the following for each pair
(Tmidij ,midij ) in this message:
If DMAX

midij
+ Tmidij ≤ ∆ and mid is a message-ID registered in the current ~M , set

Dmidij := Dmidij + Tmidij and set DMAX
midij

:= DMAX
midij

+ Tmidij ; otherwise, ignore this pair.
– Adversarially reordering messages:

Upon receiving a message (swap, sid,mid,mid′) from the adversary, if mid and mid′ are message-IDs
registered in the current ~M , then swap the triples (m,mid, Dmid, ·) and (m,mid′, Dmid′ , ·) in ~M . Return
(swap, sid) to the adversary.

Functionality F∆N-MC

On implementing a multicast network. We briefly sketch how to realize such a multicast network,
in particular its synchronized version along the lines of [KMTZ13], by means of a synchronized message-
diffusion protocol over a network of unicast channels (and implicitly assuming a local clock to obtain
the round structure). The core of this diffusion protocol are the assumed and known (e.g., by a common
list of IP addresses) relay-nodes to which parties thus can connect and which forward in each round all
new messages they received (either from registered parties or other relay nodes) in the previous round
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to all the unicast channels they are connected to as senders.26 Let G = (V,E) denote the (dynamically
updatable) directed graph whose vertices V are the parties and the relay-nodes which are currently
participating in the execution and an edge (pi, pj) is in E iff pi is one of the senders of the multicast
channel with receiver pj . It is straightforward to verify that provided that G restricted to the honest
parties (i.e., when corrupted parties and the edges that use them are deleted from G) remains strongly
connected (i.e., there is a directed path between any two honest parties, in either direction), then the
diffusion mechanism executed over unicast channels with delay at most ∆ security realizes a multicast
network with delay ∆d where d is an upper bound of the diameter of G. Indeed, the simulator, which
is given any message submitted to any unicast channel and enough activations when the dummy parties
themselves get activated (note that it is essentially a synchronous computation among the relay-nodes),
needs to simply simulate when the respective parties would see a message and schedule the corresponding
deliveries by using the delays submitted by the adversary. The fact that each channel has at most ∆
delay means that it will take delay at most ∆L rounds for it to travel through an honest path of length L.
Last but not least, in order to receive messages from the network established this way, when a party joins
the network, it has to multicast a special message to the relay-nodes that has to contain its identifier
such that the relay-nodes can start sending messages to that party. This induces at most a delay of ∆
rounds until the party is guaranteed to receive the messages sent over the network. For simplicity and
for the sake of presentation, we ignore this additional delay incurred by the registration to the network,
and we therefore also omit it in our specification of the multicast functionality.27

B.3 The Clock

The global clock functionality, i.e., a shared clock that may interact with more than one protocol session,
is denoted by Ḡclock. The standard UC functionality is denoted by Gclock (without the bar).

The functionality is available to all participants. The functionality is parametrized with variable τ , a set of
parties P ′, and a set F of functionalities. For each party p ∈ P ′ it manages variable dp. For each F ∈ F it
manages variable dF
Initially, τ := 0, P ′ := ∅ and F := ∅.
Synchronization:

– Upon receiving (clock-update, sidC) from some party p ∈ P ′ set dp := 1; execute Round-Update and
forward (clock-update, sidC , p) to A.

– Upon receiving (clock-update, sidC) from some functionality F ∈ F set dF := 1, execute Round-Update
and return (clock-update, sidC ,F) to F.

– Upon receiving (clock-read, sidC) from any participant (including the environment, the adversary, or
any ideal—shared or local—functionality) return (clock-read, sidC , τ) to the requestor.

Procedure Round-Update:
If dF := 1 for all F ∈ F and dp = 1 for all honest p in P ′, then set τ := τ + 1 and reset dF := 0 and dp := 0
for all parties in P ′.

Functionality Gclock

B.4 The Random Oracle Functionality

The functionality is parametrized by a security parameter κ. It maintains a set of registered parties/miners
P (initially set to ∅) and a (dynamically updatable) function table T (initially T = ∅). For simplicity we
write T [x] =⊥ to denote the fact that no pair of the form (x, )̇ is in T .

Functionality FRO

26 In order to ensure that parties can send some messages twice, a nonce is attached to each input message that
is to be multicasted. The relayers do not add another nonce to the message they relay.

27 Formally, one would have to define an additional party set P ′ which contains all parties that have joined (and
not yet left) the network at least ∆ rounds ago. All the guarantees would then hold the same, but with respect
to the set P ′ instead of the party set P in the above multicast specification.
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– Upon receiving (eval, sid, x) from some party p ∈ P (or from A on behalf of a corrupted p), do the
following:
1. If H[x] = ⊥ sample a value y uniformly at random from {0, 1}κ, set H[x]← y and add (x, T [x]) to T .
2. Return (eval, sid, x,H[x]) to the requestor.

B.5 Wrapping Functionalities

Basic example. We first provide a basic introductory example that illustrates how one can employ a
wrapper functionality to enforce an upper bound on the number of adversarial queries to the random
oracle (per round).

The wrapper functionality is parametrized by an upper bound q which restricts the F-evaluations of each
corrupted party per round. (To keep track of rounds the functionality registers with the global clock Gclock.)
The functionality manages the variable counter and the current set of corrupted miners P ′. For each party
p ∈ P ′ it manages variables countp.

Initially, P ′ = ∅ and counter = 0.

General:

– The wrapper stops the interaction with the adversary as soon as the adversary tries to exceed its budget
of q queries per corrupted party.

Relaying inputs to the random oracle:

– Upon receiving (eval, sid, x) from A on behalf of a corrupted party p ∈ P ′, then first execute Round
Reset. Then, set countp ← countp + 1 and only if countp ≤ q forward the request to FRO and return to A
whatever FRO returns.

– Any other request from any participant or the adversary is simply relayed to the underlying functionality
without any further action and the output is given to the destination specified by the hybrid functionality.

Standard UC Corruption Handling:

– Upon receiving (corrupt, sid, p) from the adversary, set P ′ ← P ′ ∪ {p}. If p has already issued t > 0
random oracle queries in this round, set countp ← t. Otherwise set countp ← 0.

Procedure Round-Reset:
Send (clock-read, sidC) to Ḡclock and receive (clock-read, sidC , τ) from Ḡclock. If

∣∣τ − counter
∣∣ > 0 and

the new time τ is even (i.e., a new round started), then set countp := 0 for each participant p ∈ P ′ and set
counter← τ .

Functionality Wq(FRO)

Bitcoin Assumptions as a wrapper. We provide here the more elaborate version of a wrapped random-
oracle functionality which controls the amount of hashing power of honest parties relative to the adver-
sary. To be more flexible, we also allow to specify an upper and lower bound on the computing power
that the environment has to provide. Otherwise, the execution is not allowed to advance.

The wrapper functionality is parametrized by the parameters for network delay, lower bound on honest
mining power, upper bound on adversarial mining power, the difficulty, the upper bound Tmp on the total
mining power per round (which thereby also implies an upper bound on the total number of RO-queries per
round), and a value λ > 1 (the parameter that describes the gap between the honest and adversarial mining
power). The wrapper is assumed to be registered with the global clock Gclock. The functionality manages the
variable counter and is aware of set of registered parties, and the set of corrupted parties.

Initially, P ′ = ∅ and counter = 0, qA = 0 and qH = 0. Define p := D
2κ (where κ is the output length of the

underlying random oracle).

General:

Functionality W∆,λ,Tmp
α,β,D (FRO)
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– The wrapper stops the interaction with the adversary as soon as the adversary tries to exceed its allowed
budget of hashing power.

Relaying inputs to the random oracle:

– Upon receiving (eval, sid, x) from A on behalf of a party P which is corrupted or registered but
de-synchronized, then first execute Round Reset. Then do the following:
qA ← qA + 1; βcounter ← qA · p
if (qA + qH) · p ≤ Tmp then

if βcounter ≤ β ∧ αcounter · (1− 2 · (∆+ 1) · αcounter) ≥ λ · βcounter then
Forward the request to FRO and return to A whatever FRO returns.

end if
end if

– Upon receiving (eval, sid, x) from an uncorrupted, registered and synchronized party P , then first
execute Round Reset. Then do the following:
qH ← qH + 1; αcounter ← 1− (1− p)qH
if (qA + qH) · p ≤ Tmp then

if αcounter · (1− 2 · (∆+ 1) · αcounter) ≥ λ · βcounter then
Forward the request to FRO and return to P whatever FRO returns.

end if
end if
if αcounter ≥ α then

Send (clock-update, sidC) to Gclock // Release the clock if lower bound is reached.
end if

– Any other request is relayed to the underlying functionality (and recorded by the wrapper) and the
corresponding output is given to the destination specified by the underlying functionality.

Standard UC Corruption Handling:

– Upon receiving (corrupt, sid, P ) from the adversary, set P ′ ← P ′ ∪ {P}.

Procedure Round-Reset:
Send (clock-read, sidC) to Ḡclock and receive (clock-read, sidC , τ) from Ḡclock. If

∣∣τ − counter
∣∣ > 0 and

the new time τ is even (i.e., a new round started), then set counter← τ and set qA ← 0 and qH ← 0.

C Bitcoin Protocol (Cont’d)

This section includes complementary material for Section 4.1.

C.1 Algorithm isvalidstate

The algorithm isvalidstate takes a state ~st as input and checks whether ~st is valid with respect to
ValidTxB, i.e., whether it was built by adding only valid transaction (note that this validity will be
ensured by the ledger protocol below).

Let ~st := st1|| . . . ||stn
for each sti do

Extract the transaction sequence ~txi ← txi,1, . . . , txi,ni contained in sti
end for
~st′ ← gen // Initialize the genesis state
for i = 1 to n do

if the first transaction in ~txi is not a coin-base transaction return false
~Ni ← txi,1
for j = 2 to | ~txi| do

st← blockifyB( ~Ni)
if ValidTxB(txi,j , ~st′||st) = 0 return false
~Ni ← ~Ni||txi,j

Algorithm isvalidstate( ~st)
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end for
~st′ ← ~st′||sti

end for
return true

C.2 Algorithm extendchain

The algorithm takes a chain C, a state block st and the number of attempts q as inputs. It tries to find
a proof-of-work which allows to extend the C by a block which encodes st.

Require: Chain C is valid with state ~st. The state ~st||st is valid.
Set B← ⊥
s← H[head(C)] // Compute the pointer s of the new block
for i ∈ {1, . . . , q} do

Choose nonce n uniformly at random from {0, 1}κ and set B← 〈s, st, n〉.
if H[B] < D then

break
end if

end for
if B 6= ⊥ then
C ← C||B

end if
return C

Algorithm extendchainD(C, st, q)

C.3 Ledger-Protocol

The Bitcoin ledger protocol is described in the following. It assumes as hybrids a random oracle FRO,
a network Fbc

N-MC for blockchains, a network F tx
N-MC for transcations, and clock Gclock. Note that the

two networks are (named) instances of F∆N-MC and can be realized from a single network F∆N-MC using
different message-IDs. The protocol is parametrized by q, D, T where q is the number of mining attempts
per round, D is the difficulty of the proof-of-work, and T is the number of blocks chopped off to get the
ledger state.

For the sake of simplicity, we omit the registration part from the explicit protocol description and
describe the general structure here: The registration process in the protocol works as follows. If a party
receives (register, sid) from the environment it registers at the random oracle and the network. Since
the clock is a shared functionality, the registrations are fully controlled by the environment and thus the
protocol relays such registration queries to the clock. Only if a party is registered to the clock already, it re-
acts to such register queries and otherwise stays idle. Once registration has succeeded the party returns
activation to the environment. Upon the next activation to maintain the ledger (maintain-ledger), the
party initializes its local variables and executes the main mining procedure. In this first execution of
the mining procedure, the party multicasts a special new-party message over the network (in addition
to the round messages). Consequently, in the mining procedure parties would additionally check if they
have received such a new-party message in the current round and if so, they multicast their transaction
buffer in addition to their other round messages (such as longest chains) to share also these transactions.

De-registering from the ledger (via a query (de-register, sid)) from the environment) works anal-
ogously, upon which the party erases all its state and becomes idle until its is freshly invoked with a
register-query.

Initialization:
We assume that the party p is registered to FRO, Fbc

N-MC, F tx
N-MC, and Gclock (note that a non-idle party is

otherwise considered de-synchronized). A party is considered not initialized after registration
(define isInit← false).
The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G).
It additionally manages a separate chain Cexp to store the current chain whose encoded state ~st is
exported as the ledger state (initially this chain contains the genesis block).

Protocol Ledger-Protocolq,D,T (p)
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The protocol also manages an initially empty buffer buffer which contains the received transactions. The
buffer forms the information base to build new chain blocks. Finally, set t← 0.
Once the initialization is complete after the next maintain-ledger-command as described above
(including requesting previous transactions), set isInit← true

Clock:

– Upon receiving (clock-read, sidC) forward the query to Gclock and return whatever is received as
answer from Gclock

– Upon receiving (clock-update, sidC), do the following: remember that a clock-update was received in
the current mini-round.

Ledger:

– Upon receiving (submit, sid, tx), set buffer← buffer||tx, and send (multicast, sid, tx) to F tx
N-MC.

– Upon receiving (read, sid) send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ)
and proceed as follows.

// Fetch new states in update mini-rounds
if τ corresponds to an update mini-round and t < τ and isInit then

Execute FetchInformation and set t← τ .
end if
// Return current ledger state
Let ~st be the encoded state in Cexp

Return (read, sid, ~stdT ).
– Upon receiving (maintain-ledger, sid,minerID) execute MiningProcedure

MiningProcedure:

Step 1: If a (clock-update, sidC) has been received during this update mini-round then send
(clock-update, sidC) to Gclock (if it hasn’t been sent already in the current mini-round), and in the
next activation go to the next step. Else in the next activation repeat this step.

Step 2: Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ), and proceed as
follows.

if τ corresponds to a working mini-round then
// Generate a new block: extract transactions and form a state-block and append
Let ~st be the encoded state in Cloc
Set buffer′ ← buffer
Parse buffer′ as sequence (tx1, . . . , txn)
Set ~N ← txcoin-base

minerID
Set st← blockifyB( ~N)
repeat

Let (tx1, . . . , txn) be the current list of (remaining) transactions in buffer′

for i = 1 to n do
if ValidTxB(txi, ~st||st) = 1 then

~N ← ~N ||txi
Remove tx from buffer′

Set st← blockifyB( ~N)
end if

end for
until ~N does not increase anymore
Execute ExtendState(st) and go to step 3 in the next activation.

else
Go to the beginning of step 2 in the next activation.

end if
Step 3:

If a (clock-update, sidC) has been received during this working round then send (clock-update, sidC)
to Gclock, and in the next activation go to the next step. Else in the next activation repeat this step.

Step 4:
Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ), and proceed as follows.

if τ corresponds to an update mini-round then
If t < τ execute FetchInformation and set t← τ .
Go to step 1 in the next activation.
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else
Go to the beginning of step 4 in the next activation.

end if

ExtendState(st):
Cnew ← extendchainD(Cloc, st, q)
if Cnew 6= Cloc then

Update the local chain, i.e., Cloc ← Cnew.
end if
// Broadcast current chain
Send (multicast, sid, Cloc) to Fbc

N-MC

FetchInformation:
// Fetch new chains and update the local state
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract valid chains C1, . . . , Ck from b.
Set both Cloc, Cexp to the longest valid chain in Cloc, Cexp, C1, . . . , Ck (to resolve ties the ordering decides).
// Fetch new transactions and add them to the buffer
Send (fetch, sid) to F tx

N-MC; denote the response from F tx
N-MC by (fetch, sid, b).

Extract received transactions (tx1, . . . , txk) from b.
Set buffer← buffer||(tx1, . . . , txk).
Remove all transactions from buffer which are invalid with respect to ~stdT

We now show that the ledger protocol has a predictable synchronization pattern according to Defi-
nition 1.
Lemma 2. The protocol Ledger-Protocolq,D,T satisfies Definition 1.

Proof (Sketch). Recall that we have to argue that there exists an algorithm predict-timeΠ(·) such that for
any possible execution of Π (i.e., for any adversary and environment, and any choice of random coins) it
holds the following: If ~ITH = ((x1,pid1, τ1), . . . , (xm,pidm, τm)) is the corresponding timed honest-inputs
sequence for this execution, then for any i ∈ [m− 1] :

predict-timeΠ((x1,pid1, τ1), . . . , (xi,pidi, τi)) = τi+1.

This is straightforward to see for our ledger protocol (and all protocols that share the same structure) in
all the respective hybrid worlds they are executed. Roughly, the predicate predict-time can be implemented
as follows: browse through the entire sequence ~ITH and determine how many times the clock advances.
The clock advances for the first time, when all miners got a maintain command, followed by a clock-
update command. By definition of Ledger-Protocol, in this each party will then send a clock-update to the
clock. If every party has done that, the clock advances. By an inductive argument, whenever the clock
has ticked, the check when the clock advances the next time is checked exactly the same way. Overall,
this allows to check whether the next activation of an honest party, given the history of activations will
provoke a clock update. Note that only an activation of an honest parties can make the clock advance. ut

C.4 The Bitcoin Ledger (Cont’d)

This section includes complementary material for Section 4.2. We here give the formal description of
the Extend Policy for GB

ledger. It is easy to observe that the computation performed by this algorithm is
well-defined for any definition of Validate and Blockify.

Compared to previous versions of this work, this policy implements the updated chain quality defi-
nition. In addition, the policy makes the initial bootstrapping time of the chain now explicit, where by
bootstrapping time we mean the time it takes for the first state block to be inserted into the state.

function ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate)
Let τL be current ledger time (computed from ~ITH)
// The function must not have side-effects: Only modify copies of relevant values.
Create local copies of the values buffer, state, and ~τstate.
// First, create a default honest client block as alternative:
Set ~Ndf ← txcoin-base

minerID of an honest miner

Algorithm ExtendPolicy for GB
ledger
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Sort buffer according to time stamps and let ~tx = (tx1, . . . , txn) be the transactions in buffer
Set st← blockifyB( ~Ndf)
repeat

Let ~tx = (tx1, . . . , txn) be the current list of (remaining) transactions
for i = 1 to n do

if ValidTxB(txi, state||st) = 1 then
~Ndf ← ~Ndf||txi
Remove txi from ~tx
Set st← blockifyB( ~Ndf)

end if
end for

until ~Ndf does not increase anymore
// Possibly more than one block have to be added
// Let τlow be the time of the block which is windowSize− 1 blocks behind the head of the state.
if |state|+ 1 ≥ windowSize then

Set τlow ← ~τstate[|state| − windowSize + 2]
else

Set τlow ← 0
end if
c← 1
while τL − τlow > maxTimewindow do

Set ~Nc ← txcoin-base
minerID of an honest miner

~Ndf ← ~Ndf|| ~Nc
c← c+ 1
// Update τlow to the time of the state block which is windowSize− c blocks behind the head.
if |state|+ c ≥ windowSize then

Set τlow ← ~τstate[|state| − windowSize + c+ 1]
else

Set τlow ← 0
end if

end while
// Now, parse the proposed block by the adversary
// Possibly more than one block should be added
Parse NxtBC as a vector ((hFlag1, NxtBC1), · · · , (hFlagn, NxtBCn))
~N ← ε // Initialize Result
// Determine the time of the state block which is windowSize blocks behind the head of the state
if |state| ≥ windowSize then

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 0
end if
oldValidTxMissing← false // Flag to keep track whether old enough, valid transactions are inserted.
for each list NxtBCi of transaction IDs do

// Compute the next state block
~Ni ← ε
// Verify validity of NxtBCi and compute content
Use the txid contained in NxtBCi to determine the list of transactions
Let ~tx = (tx1, . . . , tx|NxtBCi|) denote the transactions of NxtBCi
if tx1 is not a coin-base transaction then

return ~Ndf

else
~Ni ← tx1
for j = 2 to |NxtBCi| do

Set sti ← blockifyB( ~Ni)
if ValidTxB(txj , state||sti) = 0 then

return ~Ndf

end if
~Ni ← ~Ni||txj

end for
Set sti ← blockifyB( ~Ni)

end if
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// Test that all old valid transaction are included
if the proposal is declared to be an honest block, i.e., hFlagi = 1 then

for each BTX = (tx, txid, τ ′, pi) ∈ buffer of an honest party pi with time τ ′ < τlow − Delay
2 do

if ValidTxB(tx, state||sti) = 1 but tx 6∈ ~Ni then
oldValidTxMissing← true

end if
end for

end if
~N ← ~N || ~Ni
state← state||sti
~τstate ← ~τstate||τL
// Must not proceed with too many adversarial blocks
Determine the most recent honest block stj in state (last proposal added with hFlag = 1)
if |state| − j ≥ η then

return ~Ndf

end if
// Update τlow: the time of the state block which is windowSize blocks behind the head of the
// current, potentially already extended state
if |state| ≥ windowSize then

Set τlow ← ~τstate[|state| − windowSize + 1]
else

Set τlow ← 0
end if

end for
// Final checks (if policy is violated, it is enforced by the ledger):
// Must not proceed too fast, too slow, or with missing transactions.
if τL − τlow < minTimewindow then

return ε
else if τlow > 0 and τL− τlow > maxTimewindow then // A sequence of blocks cannot take too much time.

return ~Ndf

else if τlow = 0 and τL − τlow > 2 · maxTimewindow then // Bootstrapping cannot take too much time.
return ~Ndf

else if oldValidTxMissing then // If not all old enough, valid transactions have been included.
return ~Ndf

end if
return ~N

end function

D Security Analysis (Cont’d)

This section includes complementary material for Section 4.3.

D.1 Modular-Ledger-Protocol

The Modular-Ledger-Protocol uses the same hybrids as our original protocol Ledger-Protocol but abstracts
the lottery implemented by the mining process by making calls to the above state exchange functionality
FpH ,pAStX . The protocol is parameterized by T which is the number of blocks chopped off to get the ledger
state. The registration process work as in the Ledger-Protocol.

Initialization:
We assume that the party p is registered to FpH ,pAStX , F tx

N-MC, and Gclock. A party is considered not
initialized after registration (define isInit← false).
The protocol manages the exported ledger state ~stexp which initially is the genesis state, i.e. , ~st← (gen).
It also manages a local (working) state ~st (initially also the genesis state).
The protocol also manages an initially empty buffer buffer which contains the received transactions. The
buffer forms the information base to build new state blocks. Finally, set t← 0.
Once the initialization is complete after the next maintain-ledger-command as described above
(including requesting previous transactions), set isInit← true

Protocol Modular-Ledger-ProtocolT (p)
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Clock:
– Upon receiving (clock-read, sidC) forward the query to Gclock and return whatever is received as

answer from Gclock
– Upon receiving (clock-update, sidC), do the following: remember that a clock-update was received in

the current mini-round.

Ledger:
– Upon receiving (submit, sid, tx), set buffer← buffer||tx, and send (multicast, sid, tx) to F tx

N-MC.
– Upon receiving (read, sid) send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ)

and proceed as follows.
// Fetch new states in update mini-rounds
if τ corresponds to an update mini-round and t < τ and isInit then

Execute FetchInformation and set t← τ .
end if
// Return current ledger state
Return (read, sid, ~stdTexp)

– Upon receiving (maintain-ledger, sid,minerID) execute MiningProcedure

MiningProcedure:
Step 1:

If a (clock-update, sidC) has been received during this update mini-round then send
(clock-update, sidC) to Gclock (if it hasn’t been sent already in the current mini-round), and in the
next activation go to the next step. Else in the next activation repeat this step.

Step 2:
Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ), and proceed as follows.

if τ corresponds to a working mini-round then
// Generate a new block: extract transactions and form a state-block
Set buffer′ ← buffer
Parse buffer′ as sequence (tx1, . . . , txn)
Set ~N ← txcoin-base

minerID
Set st← blockifyB( ~N)
repeat

Let (tx1, . . . , txn) be the current list of (remaining) transactions in buffer′

for i = 1 to n do
if ValidTxB(tx, ~st||st) = 1 then

~N ← ~N ||tx
Remove tx from buffer′

Set st← blockifyB( ~N)
end if

end for
until ~N does not increase anymore
Execute ExtendState(st) and go to step 3 in the next activation.

else
Go to the beginning of step 2 in the next activation.

end if
Step 3:

If a (clock-update, sidC) has been received during this working round then send (clock-update, sidC)
to Gclock, and in the next activation go to the next step. Else in the next activation repeat this step.

Step 4:
Send (clock-read, sidC) to Gclock, receive as answer (clock-read, sidC , τ), and proceed as follows.

if τ corresponds to an update mini-round then
if t < τ then

Execute FetchInformation and set t← τ .
end if
Go to step 1 in the next activation.

else
Go to the beginning of step 4 in the next activation.

end if

ExtendState(st):
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Send (submit-new, sid, ~st, st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., ~st← ~st||st.
end if
// Broadcast current state using FStX.
Send (continue, sid) to FStX

FetchInformation:
// Fetch new states and update the local state
Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, ( ~st1, . . . , ~stk)).
Set both ~st, ~stexp to the longest state in ~st, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).
// Fetch new transactions and add them to the buffer
Send (fetch, sid) to F tx

N-MC; denote the response from F tx
N-MC by (fetch, sid, b).

Extract received transactions (tx1, . . . , txk) from b.
Set buffer← buffer||(tx1, . . . , txk).
Remove all transactions from buffer which are invalid with respect to ~stdT

D.2 Proof of Lemma 1

In the following we provide a proof for Lemma 1.

Lemma (1). The protocol Ledger-Protocolq,D,T UC emulates the protocol Modular-Ledger-ProtocolT that
runs in a hybrid world with access to the functionality F∆,pH ,pAStX with pA := D

2κ and pH = 1− (1− pA)q,
and where ∆ denotes upper bound on the network delay.

In a first step, we describe protocol StateExchange-Protocol and show that it UC-realizes the FStX
functionality in the FRO, Fbc

N-MC hybrid world. Note that Fbc
N-MC is a (named) instance of the F∆N-MC

functionality. The protocol is parametrized by q and D where q is the number of mining attempts per
submission attempt and D is the difficulty of the proof-of-work.

Initialization:
We assume that the party p is registered to FRO and Fbc

N-MC.
The protocol maintains a tree T of all valid chains. Initially it contains the genesis chain (G).

Message Exchange:

– Upon receiving (submit-new, sid, ~st, st) do
// Check if there exists a chain in T which contains the state ~st
if isvalidstate( ~st||st) = 1 then

if there exists C ∈ T with ~st then
// Try to extend the chain
Cnew ← extendchainD(C, st, q)
if Cnew 6= C then

Update the local tree, i.e., add Cnew to T
Output (success, sid, 1) to p.

else
Output (success, sid, 0) to p.

end if
// Broadcast current chain
On response (continue, sid) send (multicast, sid, Cnew) to Fbc

N-MC.
end if

end if
– Upon receiving (fetch-new, sid) if do the following:

Send (fetch, sid) to Fbc
N-MC and denote the response by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract states ~st1, . . . , ~stk from C1, . . . , Ck and output them.

Protocol StateExchange-Protocolq,D(p)

Lemma 3. Let p := D
2κ . The protocol StateExchange-Protocolq,D UC-realizes functionality F∆,pH ,pAStX in

the (FRO,F∆N-MC)-hybrid model where pA := p and pH := 1− (1− p)q.
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Proof. We consider the following simulator.

Initialization:
Set up a tree of valid chains T ← {(G)} and an empty network buffer ~M .
Set up an empty random oracle table H and set H[G] to a uniform random value in {0, 1}κ. If the
simulator ever tries to add a colliding entry to H, abort with collision-error.
The simulator manages a set PRO of parties registered to the random oracle and a set of parties Pnet
registered to the network.

Random Oracle:

– Upon receiving (eval, sid, v) for FRO from A on behalf of corrupted p ∈ PRO do the following.
1. If H[v] is already defined, output (eval, sid, v,H[v]).
2. If v is of the form (s, st, n) and there existsa a chain C = B1, . . . ,Bn such that H[Bn] = s proceed as

follows. If C 6∈ T abort with tree-error. Otherwise continue. Extract the state ~st from C and extract
the state block st from v. Send (submit-new, sid, ~st, st) to FStX and denote by (success, B) the
output of FStX. If B = 1 set H[v] to a uniform random value in {0, 1}κ strictly smallerb than D. Add
C||v to T . Otherwise set H[v] to a uniform random value in {0, 1}κ larger than D. Output
(eval, sid, v,H[v]).

3. Otherwise set v to a uniform random value in {0, 1}κ and output (eval, sid, v,H[v]).

Network:

– Upon receiving (multicast, sid, (mi1 , pi1 ), . . . , (mi` , pi`)) for Fbc
N-MC from A on behalf of corrupted

p ∈ Pnet with {pi1 , . . . , pi`} ⊆ Pnet proceed as follows.
1. Choose ` new unique message-IDs midi1 , . . . ,midi` , initialize ` new variables

Dmidi1 := . . . := Dmidi` := 1, set ~M := ~M ||(mi1 ,midi1 , Dmidi1 , pi1 )|| . . . ||(mi` ,midi` , Dmidi` , p`).
2. For each (mij , pij ) where mij is a chain T extract the state ~stij from mij , and send

(send, sid, ~st, pij ) to FStX. Store the message-ID m̂idij returned by FStX with midij .
3. Output (multicast, sid, (mi1 , pi1 ,midi1 ), . . . , (mi` , pi` ,midi`) to A.

– Upon receiving (fetch, sid) for Fbc
N-MC from A on behalf of corrupted p ∈ Pnet proceed as follows.

1. For all tuples (m,mid, Dmid, p) ∈ ~M , set Dmid := Dmid − 1.
2. Let ~Mp

0 denote the subvector ~M including all tuples of the form (m,mid, Dmid, p) with Dmid = 0 (in
the same order as they appear in ~M). Delete all entries in ~Mp

0 from ~M , and send ~Mp
0 to A.

– Upon receiving a message (delays, sid, (Tmidi1 ,midi1 ), . . . , (Tmidi` ,midi`)) do the following for each pair
(Tmid,mid) in this message:
1. If Tmid is a valid delay (i.e., it encodes an integer in unary notation) and mid is a message-ID

registered in the current ~M , set Dmid := max{1, Dmid + Tmid}; otherwise, ignore this tuple.
2. If the simulator knows a corresponding FStX-message-ID m̂id for mid send (delay, sid, Tmid, m̂id) to
FStX.

– Upon receiving a message (swap, sid,mid1,mid2) from the adversary do the following:
1. If mid1 and mid2 are message-IDs registered in the current ~M , then swap the corresponding tuples in

~M .
2. If the simulator knows for both mid1 and mid2 FStX-message-IDs m̂id1 and m̂id2 send

(swap, sid, m̂id1, m̂id2) to FStX.
3. Output (swap, sid) to A.

State Exchange Functionality :

– Upon receiving (submit-new, sid, ~st, ps, (p1, m̂id1), . . . , (pn, m̂idn)) from FStX where ~st = st1, . . . , stk
and {p1, . . . , pn} := Pnet proceed as follows
1. If there exist a chain C ∈ T with state ~st generate new unique message-IDs mid1, . . . ,midn, initialize

D1 := · · · := Dn = 1, set ~M ||(C,midi1, Dmid1 , p1)|| . . . ||(C,midn, Dmidn , pn), and store the message-IDs
m̂idi along the message-IDs midi.
Output (multicast, sid, C, ps, (p1,mid1), . . . , (pn,midn)) to the adversary.

2. Otherwise find a chain C′ in T with state st1, . . . , stk−1
c. Choose a random nonce n and set

Bk = (H[Bk−1], stk, n) and set H[Bk] to a uniform random value in {0, 1}κ strictly smaller than D.
Add the chain C = C′||Bk to T .
Generate new unique message-IDs mid1, . . . ,midn, initialize D1 := · · · := Dn = 1, set
~M ||(C,midi1, Dmid1 , p1)|| . . . ||(C,midn, Dmidn , pn), and store the message-IDs m̂idi along the

message-IDs midi. Output (multicast, sid, C, ps, (p1,mid1), . . . , (pn,midn)) to the adversary.

Simulator Sstx
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a This can be checked efficiently using H under the assumption that there are no collisions.
b Can be done efficiently using rejection sampling.
c Such a chain must exist as st1, . . . , stk−1 is a successfully submitted state in FStX in which case the

simulator knows a corresponding chain.

The proof works similar as the one for Lemma 5.1 in [PSS17].Denote by EXECReal,A,Z the joint view
of all parties in the execution of StateExchange-Protocol for adversary A and environment Z. Denote by
EXECIdeal,A,Z the joint view of all parties for FStX with simulator Sstx.

Define HYBA,Z the same as EXECReal,A,Z except that the random oracle aborts on collisions with
collision-error and that adversarial oracle queries are emulated as in Sstx. The only difference is thus
that in HYBA,Z we may abort with collision-error or tree-error.

Let event1 be the event that some parties query two different values v, v′ such that H[v] = H[v′],
i.e. the event that a hash-collision occurs. For any two queries the probability that they return the same
hash value is 2−κ. By a union bound over all queries we have that event1 happens with probability at
most poly(κ) · 2−κ in both worlds. Note that if event1 does not happen HYBA,Z will not abort with
collision-error.

Let event2 be the event that some party makes a query H[(s, ·, ·)] where no v exists such that H[v] = s,
but later some party makes a query v′ such that H[v′] = s. The probability that any query H[(s, ·, ·)]
a later query returns s is 2−κ in both worlds By a union bound over all queries we have that event2
happens with probability at most poly(κ) · 2−κ in both worlds.

Next, we show that the tree-error abort does not occur in HYBA,Z conditioned under event1 and
event2 not happening. Assume for contradiction that HYBA,Z aborts with tree-error with event1
and event2 not happening. Let C = B1, . . . ,Bn be the shortest valid chain created in the experiment
HYBA,Z such that B1, . . . ,Bn−1 ∈ T but B1, . . . ,Bn 6∈ T . Let Bi = (si, sti, ni). Since C is a valid
chain we have H[(sn, stnnn)] < D. But at the time Bn was added to H no valid chain existed where
the last block has hash value sn (otherwise C would be in T ). This implies that no earlier query to H
could have returned sn, since if the query was Bn−1 C would not be the shortest chain with the above
property and if the query was not Bn−1 the event event1 must have happened. This implies that event2
must have happened, which is a contradiction.

This implies that conditioned under event1 and event2 not happening HYBA,Z proceeds the same
as EXECReal,A,Z . It follows that EXECReal,A,Z and HYBA,Z are statistically close.

Now we compare HYBA,Z and EXECIdeal,A,Z . Consider the event where a honest miner queries
a block (s, st, n) and fails, i.e. where H[(s, st, n)] > D. In HYBA,Z this query is stored in the random
oracle table while the simulator in EXECIdeal,A,Z does not store the query in the random oracle table.
Under the condition that such failed queries are never queried again HYBA,Z and EXECIdeal,A,Z are
identically distributed as the network simulation in Sstx is perfect. Note that the nonce n in a ‘failed’ query
(s, st, n) is choosen uniform at random from {0, 1}κ. This implies that with probability poly(κ)·2−κ it was
never queried before. As honest miner discard ‘failed’ queries it also follows that except with probability
poly(κ) · 2−κ the query will not be queried again (by honest parties or A). By a union bound over all
failed queries we have that failed queries are never queried twice except with probability poly(κ) · 2−κ.
Thus HYBA,Z and EXECIdeal,A,Z are statistically close.

We conclude the proof for Lemma 1, by giving a game-hopping argument to show that Ledger-Protocol
UC emulates the protocol Modular-Ledger-Protocol. We start with the original Ledger-Protocol and con-
sider the protocol part below where will alter the protocol.

Initialization:
The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G).
[...]

ExtendState(st):
Cnew ← extendchainD(Cloc, st, q)
if Cnew 6= Cloc then

Update the local chain, i.e., Cloc ← Cnew.

Protocol Original Protocol Part
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end if
// Broadcast current chain
Send (multicast, sid, Cloc) to Fbc

N-MC

FetchInformation:
// Update the local state
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract valid chains C1, . . . , Ck from b.
Set both Cloc, Cexp to the longest valid chain in Cloc, Cexp, C1, . . . , Ck (to resolve ties the ordering decides).
// Fetch new transactions and add them to the buffer
. . .

The first modification of the protocol (see below) proceeds as Ledger-Protocol except (a) it stores a
history of all valid chains in a tree T and (b) in the ExtendState(st) procedure it checks that ~st||st is
a valid state and that there exists a chain in T which encodes the state ~st. We observe that the protocol
calls ExtendState(st) only with st where ~st||st is a valid state. This implies that the first check is
always satisfied. Moreover, not that the current local chain Cloc which encodes state ~st is at any time
stored in the tree T . The second check is therefore also always satisfied. Hence, the modified protocol
has the same input/output behavior has Ledger-Protocol.

Initialization:
The protocol stores a local (working) chain Cloc which initially contains the genesis block, i.e., Cloc ← (G).
[...]
The protocol additionally maintains a tree T of valid chains which initially contains the (genesis)
chain (G).

ExtendState(st):
if isvalidstate( ~st||st) = 1 then

if there exists C ∈ T which encodes ~st then
Cnew ← extendchainD(Cloc, st, q)
if Cnew 6= Cloc then

Update the local chain, i.e., Cloc ← Cnew.
Add Cloc to T

end if
// Broadcast current chain
Send (multicast, sid, C) to Fbc

N-MC
end if

end if

FetchInformation:
// Update the local state
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Set both Cloc, Cexp to the longest valid chain in Cloc, Cexp, C1, . . . , Ck (to resolve ties the ordering decides).
// Fetch new transactions and add them to the buffer
. . .

Protocol Modification 1

In Modification 2 (see below) the local state ~st is stored directly instead of being encoded in chain Cloc.
The procedures ExtendState(st) and FetchInformation are modified to accommodate this change.
Note that the Cloc is stored in T as we have seen in the first modification. This implies that the behavior
of ExtendState(st) remains the same as in the first modification.

Initialization:
The protocol manages [...] a local (working) state ~st (initially also the genesis state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains the genesis chain (G).

Protocol Modification 2
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ExtendState(st):
if isvalidstate( ~st||st) = 1 then

if there exists C ∈ T which encodes ~st then
Cnew ← extendchainD(C, st, q)
if Cnew 6= C then

Add C to T
Update the local state, i.e., ~st← ~st||st.

end if
// Broadcast current chain
Send (multicast, sid, C) to Fbc

N-MC
end if

end if

FetchInformation:
// Update the local state
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract all state ~st1, . . . , ~stk from chains C1, . . . , Ck.
Set both ~st, ~stexp to the longest state in ~st, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).
// Fetch new transactions and add them to the buffer
. . .

In Modification 3 (see below) parts of the procedures ExtendState(st) and FetchInformation are
split off into separate sub-procedures. Otherwise the protocol remains the same. As there are no changes
to the program logic the protocol still has the same behavior as the original protocol.

Initialization:
The protocol manages [...] a local (working) state ~st (initially also the genesis state).[...]
The protocol additionally maintains a tree T of valid chains which initially contains the (genesis)
chain (G).

ExtendState(st):
B ← submit-new( ~st, st)
if B = 1 then

Update the local state, i.e., ~st← ~st||st.
end if
// Broadcast current chain
Execute continue.

Procedure submit-new( ~st, st):
if isvalidstate( ~st||st) = 1 then

if there exists C′ ∈ T which encodes ~st then
Set C ← C′. // C is assumed to be a global variable
Cnew ← extendchainD(C, st, q)
if Cnew 6= C then

Add C to T
return 1

end if
return 0

end if
end if

Procedure continue:
Send (multicast, sid, C) to Fbc

N-MC

FetchInformation:
// Update the local state
( ~st1, . . . , ~stk)← fetch-new
Set both ~st, ~stexp to the longest state in ~st, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).

Protocol Modification 3
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// Fetch new transactions and add them to the buffer
. . .

Procedure fetch-new:
Send (fetch, sid) to Fbc

N-MC; denote the response from Fbc
N-MC by (fetch, sid, b).

Extract all valid chains C1, . . . , Ck from b and add them to T .
Extract states ~st1, . . . , ~sts from C1, . . . , Ck and output them.

Finally consider the part of Modular-Ledger-Protocol below which is the same as Modification 3 except
that the chain storage T and the calls to sub-procedures submit-new, continue, and fetch-new are
replaced by the calls to FStX. Lemma 3 implies that the behavior of Modification 3 and the protocol
Modular-Ledger-Protocol is the same. This concludes the game-hopping argument and the proof. ut

Initialization:
The protocol manages [...] a local (working) state ~st (initially also the genesis state). [...]

ExtendState(st):
Send (submit-new, sid, ~st, st) to FStX.
Denote the response by (success, sid, B) of FStX.
if B = 1 then

Update the local state, i.e., ~st← ~st||st.
end if
// Broadcast current state using FStX.
Send (continue, sid) to FStX

FetchInformation:
// Fetch new states and update the local state
Send (fetch-new, sid) to FStX.
Denote the response from FStX by (fetch-new, sid, ( ~st1, . . . , ~stk)).
Set ~st, ~stexp to the longest state in ~st, ~stexp, ~st1, . . . , ~stk (to resolve ties the ordering decides).
// Fetch new transactions and add them to the buffer
. . .

Protocol Modular-Ledger-Protocol Part

D.3 Proof of Theorem 1

Theorem (1). Let the functions ValidTxB, blockifyB, and ExtendPolicy be as defined above. Let p ∈ (0, 1),
integer q ≥ 1, pH = 1 − (1 − p)q, and pA = p. Let ∆ ≥ 1 be the upper bound on the network delay.
Consider Modular-Ledger-ProtocolT in the (Gclock,F∆,pH ,pAStX ,F∆N-MC)-hybrid world. If, for some λ > 1,
the relation

α · (1− 2 · (∆+ 1) · α) ≥ λ · β (1)

is satisfied in any real-world execution, where α and β are defined as above, then the protocol
Modular-Ledger-ProtocolT UC-realizes GB

ledger for any ledger parameters (which are positive and integer-
valued) in the range

windowSize = T and Delay = 4∆,

maxTimewindow ≥
2 · windowSize

(1− δ) · γ and minTimewindow ≤
2 · windowSize

(1 + δ) ·maxr Tmp(r)
,

η > (1 + δ) · windowSize · β
γ
,

where γ := α
1+∆α and δ > 0 is an arbitrary constant. In particular, the realization is perfect except with

probability R · negl(T ), where R denotes the upper bound on the number of rounds, and negl(T ) denotes
a negligible function in T .

Proof. In order to show the theorem we specify the simulator for the ideal world Sledg. Sledg is specified
below as pseudo-code. Let us explain the general structure: the simulator internally runs the round-based
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mining procedure of every honest party. Whenever a working mini-round is over, i.e., whenever the real
world parties have issued their queries to FStX, then the simulator will assemble the views of its simulated
honest miners and determine their common prefix of states, which is the longest state stored or received
by each simulated party when chopping off T blocks. The adversary will then propose a new block
candidate, i.e., a list of transactions, to the ledger to announce that the common prefix has increased
(procedure ExtendLedgerState). The ledger will apply the Blockify on this list of transactions and
add it to the state. Note that since Blockify does not depend on time, the current time of the ledger has
no influence on this output. To reflect that not all parties have the same view on this common prefix,
the simulator can adjust the state pointers accordingly (procedure AdjustView). The simulation inside
the simulator is perfect and is simply the emulation of real-world processes. What restricts a perfect
simulation is the requirement of a consistent prefix and the restrictions imposed by ExtendPolicy. In
order to show that these restrictions are not forbidding a proper simulation, we have to justify, why
the choice of the parameters in the theorem are sufficient to guarantee that (except with negligible
probability). To this end, we analyze the real-world execution to bound the corresponding bad events
that prevent a perfect simulation.

We start by analyzing the real-world execution EXECModular-Ledger-Protocol,A,Z . We follow the detailed
analysis provided by Pass, Seeman, and shelat to analyze the real-world execution. The analysis is divided
into six different claims about the real-world execution. They include properties such as a lower-bound
on the chain growth (Claim 2.), the chain quality (Claim 3.), or an upper-bound on the chain growth
(Claim 6.). For completeness, we prove the Claims 1.-6. below, which represent the core arguments (with
some slight adaptations) also in our setting. These Claims prove that our simulator can simulate the
real-world view perfectly, since the restrictions imposed by the ledger prohibit that only with negligible
probability, where the distinguishing advantage is upper bounded by R · negl(T ), where R denotes the
number of rounds the protocol is running and negl(·) denotes a negligible function in the parameter T .

By abusing a bit of notation, use the term EXECReal,A,Z to refer to the entire random experiment
defined by the UC execution of a protocol with adversary A and environment Z (instead of only to the
output of Z). We then denote by f(EXECReal,A,Z) the induced random variable where f is a function
on the entire view of an execution. For notational simplicity, for Claims 1 to 6, if we speak of honest
miners, we always mean honest and synchronized miners. In addition, recall that each round consists of
two time-ticks. Hence, if a statement is expressed with respect to a certain number r of rounds, it can
equivalently be expressed with respect to 2r clock-ticks. 28

Claim. 1. State dissemination: Let pi and pj be miners, and let r ≥ 0. Assume pi is honest in round r,
and the longest state received or stored by pj has length `. For any honest miner pj in round r + ∆, it
holds that the longest state received or stored by pj has length at least `.

Proof: By assumption, all messages, and in particular transmitted states of honest miners, are delayed
maximally by ∆ rounds. Thus, if an honest miner receives a state of length `, then any other honest
miner will receive this state within the next ∆ rounds. Additionally, if a honest miner successfully mines
a block, this new state will arrive at any honest miner at latest after ∆ rounds. By then, any honest
miner will have adopted a chain of length at least `. �

Claim. 2. Minimal number of mined blocks: Let pi be a miner, and let r ≥ 0. Assume pi is honest in
round r, and the longest state received or stored by pi in round r has length `. Then, in round r + t, it
holds that for any δ > 0, except with probability R · negl(T ), the length of the longest state (received or
stored) of any honest miner pj in that round has length at least `+ T if t ≥ T

(1−δ)·γ .

Proof: We first prove that for any real-world adversary A, there is an adversary A′ that, starting at
the given round r, maximally delays messages starting and prove that in a real-world execution with A′
the expected state length of an honest miner in round r + t, where the expectation is taken over the
randomness of the adversarial strategy, is no larger than with adversary A in round r + t.

28 The theorem statement is expressed with respect to clock ticks since the clock is the main reference point of
time. However, for the proof, it is easier to think in rounds.
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Construction of A′. Given adversary A, the adversary A′ works as follows. It internally runs A until
round r without any modifications. At round r, A′ first delays all current messages in the network to
the maximally possible delay. Also, from round r onward, whenever an honest party sends a message
containing a state, A′ sets the maximal delay ∆ for this message. Message delays defined by A for
messages that contain valid states of honest parties are ignored. The adversary further ignores any
message sent by A on behalf of corrupted parties starting from round r.

We define the function Lenri (EXECReal,A(σ),Z) to be the length of the longest chain (honest) miner
i in round r in the real world experiment. Further, let A(σ) denote the behavior of A on (internal)
randomness σ, further, denote by Real(σ′) the real-system, where the internal randomness of FStX is
fixed to σ′. We give an inductive proof to show that for any r > 0, Lenr+ti (EXECReal(σ′),A(σ),Z) ≥
Lenr+ti (EXECReal(σ′),A′(A(σ)),Z).
Base Case, t = 0: Since adversary A′ and A′ behave identical up to and including round r − 1, the
length of the longest state known or received by any party is the same. The reason is that A′ and A
play exactly the same strategy when σ is fixed. Furthermore, when the randomness σ′ of FStX is fixed,
a miner i in any round r′ is successful, if and only if it is successful in round r′ with adversary A′. Thus,
Lenri (EXECReal(σ′),A(σ),Z) < Lenri (EXECReal(σ′),A′(A(σ)),Z) only if player i receives a longer state in
round r. Since A′ additionally maximally delays messages, if any state arrives in round r in the real
execution with A′, then it arrives no later than r in the real execution with A. This concludes the base
case.
Induction Step: t→ t+ 1: By the induction hypothesis, we have

Lenr+ti (EXECReal(σ′),A(σ),Z) ≥ Lenr+ti (EXECReal(σ′),A′(A(σ)),Z).

We argue that Lenr+t+1
i (EXECReal(σ′),A(σ),Z) ≥ Lenr+t+1

i (EXECReal(σ′),A′(A(σ)),Z) holds as well.
Assume not, then, by the above reasoning, it can only be due to miner i receiving a state in round
r + t + 1 that increases Lenr+t+1

i (EXECReal(σ′),A′(A(σ)),Z) but not Lenr+t+1
i (EXECReal(σ′),A(σ),Z)

(since the success of miner i in round r + t+ 1 is fixed given σ′. By the same reasoning as above, since
A′ maximally delays delivery of new states, if any state arrives in round r in the real execution with A′,
then it arrives no later than r in the real execution with A. This concludes the induction proof. Taking
the expectation over the randomness σ and σ′, we conclude that for any round r, any c ≥ 0, for the real
UC-execution, it holds that

Pr[Lenr+ti (EXECReal,A,Z) ≤ Lenri (EXECReal,A,Z) + c]
≤ Pr[Lenr+ti (EXECReal,A′,Z) ≤ Lenri (EXECReal,A′,Z) + c].

We say a round r′ is uniform if Lenr
′

i (EXECReal,A′,Z) = Lenr
′

j (EXECReal,A′,Z) for all honest
miners i and j. Recall that adversary A′ does not broadcast adversarially generated states and any new
state is delayed by exactly ∆ rounds. The slowest progress of the overall maximal state length known to
an honest party occurs in case uniform rounds are the only successful rounds (if at all). Otherwise, the
honest miner with the longest state could be successful and broadcast a longer state at round r′, which
would be guaranteed to arrive to any other honest miner in r +∆.

Fix some round r. If in round s = r + t, the length increase of the overall longest state of an honest
miner is less than c blocks, then at most c ·∆ non-uniform rounds occurred. Hence, there were at least
t− c ·∆ uniform rounds. The probability that less than c new blocks are mined by honest miners (i.e.,
that less than c successful queries by honest miners to FStX extended the state by one block) is thus
Pr[
∑t−c∆
i=1 Xi < c], where Xi is a boolean random variable with mean α. Let X :=

∑t−c∆
i=1 Xi with mean

E[X] = α · t− a · c ·∆. To get an appropriate tail-estimate, we set c = αt
1+α∆ to obtain E[X] = c and can

apply the Chernoff bound to get

Pr[Lensi (EXECReal,A′,Z) ≤ Lenri (EXECReal,A′,Z) + (1− δ)c]
≤ Pr[Lens(EXECReal,A′,Z) ≤ Lenr(EXECReal,A′,Z) + (1− δ)c]

≤ Pr[X < (1− δ)c] = Pr[X < (1− δ)γt] ≤ exp
(−δ2

2 · γt
)
.

where we plugged-in the definition of γ.
By Claim 1 (chain dissemination), we know that if some honest party has a state in round r, then

any honest miner will have a state of at least this length in round r+∆. Hence, for realizing the ledger,
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we see that state extend happens if at least one honest miner has a new state which happens at a rate
at least γt (except with probability negl(γt) = negl(T ) by the lower bound on t).

By Claim 1, we see that if an honest miner knows some state, then within ∆ rounds, every other
honest miner will be aware of that. A similar calculation shows that the lower bound on the time to
have a state increase by T blocks by all honest parties follows the same law (and hence the perceived
ledger speed is the same). By requiring s = r + t−∆ above (such that in round r + t all honest miners
have a state that increased by at least (1 − δ)γt since round r), and letting Y :=

∑t−∆−c∆
i=1 Xi (for Xi

as above), we get

Pr[Lens(EXECReal,A′,Z) ≤ Lenr(EXECReal,A′,Z) + (1− δ)c]

≤ Pr[Y < (1− δ)γ(t−∆)] ≤ exp
(−δ2

2 · γ(t−∆)
)
. (2)

Since γt− 1 < γt− γ∆ < γt, this implies that Pr[Y < (1− δ′)γt] ≤ exp
(
−δ2

2 · γt
)

for any δ′ by choosing
a sufficiently small constant δ in Equation 2, yielding a negligible function in γt ≥ T . Finally, since α
(and thus γ) is the lower bound for any round r, taking the union bound over the polynomial number of
rounds yields Claim 2. �

The following claims use the fact that Equation 1 implies that there exists 0 < δ̂ < 1 such that 1.)
α > γ > (1 + δ̂)β, and 2.) (1− δ̂) > (∆+ 1)α. This is proven in [PSS17] (Claim 6.12).

Claim. 3. Fraction of honest blocks: Let pi be a miner, and let r ≥ 0. Assume pi is honest in round r,
and the length of the longest state received or stored is ` ≥ T . The fraction of adversarially mined blocks
within a sequence of T blocks in the state is at most min{1, (1 + δ) · βγ } except with probability R ·negl(T )
for any δ > 0.

Proof: Let us assume that at round r′, the state of miner pi is ~str′ = st0|| . . . ||stk. We show that in
any sub-sequence of T state blocks stj+1, . . . , stj+T in ~str, the fraction of adversarially mined blocks is
bounded. Without loss of generality, one can assume that the state ~st

<j := st0|| . . . ||stj as well as the
state ~st

>j+T := st0|| . . . ||stj+T+1 are mined by honest miners (unless j + T is the maximum length of
any state known to F∆StX-bd). Otherwise, one can enlarge T to meet this condition, as any state is finite
and starts with the genesis block. We further assume that ~st

<j is mined at round r, and that in round
r + t, the state ~st

>j+T appears for the first time as the state, or the prefix of a state, of at least one
honest miner. We conclude that if an adversary successfully extended the state during some round by a
new state block stj+s of the above sequence stj+1, . . . , stj+T , then this happens in a round between r
and r + t.

We now relate the number t of rounds to the number T of blocks. Since t is assumed to be the minimal
number of rounds until the first honest miner adopted a state containing stj+1, we can invoke Claim 2,
to conclude that the probability that the condition t > T

(1−δ′)γ occurs in such an execution is at most
negl(T ). We hence have t ≤ T

(1−δ′)γ with overwhelming probability in T .
On the other hand, we can lower bound the number of rounds needed to generate a state increase

by T blocks by standard Chernoff bound: using the relation of pH = 1− (1− p)q our assumed FStX, we
have Tmp(r) ≤ (q(r)

A + q · q(r)
H ) · p. Let Tmp := maxr∈[R] Tmp(r) and denote by qmax be the corresponding

upper bound on the query power. The event that during t rounds, more than T = (1 + δ) · qmax · p · t
times a successful state extension happens (via a query to FStX), occurs with probability at most exp

(
−

δ2

3 qmaxpt
)
∈ negl(T ) only (for any 0 < δ < 1). Stated differently, with overwhelming probability, for the

assumed sequence of T state blocks, the number of rounds t needed to mine the new state is at least
T

(1+δ)qmaxp
.

Additionally, we know that the upper bound on the expected number of adversarial successes to
extend a state in one round is β, and the upper bound on the expected number of successes (i.e., newly
minded state blocks) within t rounds by the adversary, denoted as the random variable N t

A, is thus
t · β by linearity of expectation. The random variable N t

A is hence the sum of q′max binary random
variables (where q′max is the maximum number of queries contributed by corrupted as well as by honest
but de-synchronized miners) each being successful with probability p. By the Chernoff bound, we get a
tail-estimate of

Pr[N t
A > (1 + δ)t · β] ≤ exp

(−δ2

3 tβ
)
,
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again for any 0 < δ < 1. By the above lower bound on t and since β is the maximum expected value
over all rounds, and recall that β is a ρ fraction of the maximum mining power Tmp of a round within
this t-round interval, we conclude that ρT

1+δ ≤ βt holds with overwhelming probability. Hence, the above
function is indeed a negligible function in T . Therefore, except with negligible probability in T , the
number of times the adversary was successful in extending the state by one block is upper bounded by

N
T

(1−δ′)γ
A ≤ 1 + δ

1− δ′ · T ·
β

γ
.

Hence, the fraction of adversarial blocks within T consecutive blocks cannot be more than f = min{1, (1+
δ′′)βγ } for any δ′′ and sufficiently small constants δ, δ′ > 0, except with negligible probability in the length
T of the sequence. By Equation 1, we even have f < 1 (for an appropriate choice of δ′′). Since β is the
maximum expected value in any round, the proof is concluded by taking the union bound over the
number of such sequences (which is in the order of number of rounds). �

Claim. 4. Withholding of adversarial block: For any round r, the event that an honest miner accepts a
new (i.e., longer) state at round r and at least one block in the extension was mined before round r−ωt,
happens with probability negl(βt), for any 0 < ω < 1.

Proof: Let us define ~str = st0|| . . . ||stk to be the longest state known to FStX at round r. Let ~str′ be
the longest prefix of ~str such that ~str′ was mined by an honest miner or it is the genesis block. This state
was known to at least one honest party by round r′ ≤ r. Now, assume that r− r′ ≥ ωt (as otherwise, by
Claim 1, the extension trivially contains a more recent block from an honest party). By the chain growth
lowerbound, we know that except with probability negl(γt), | ~str| − | ~str′ | ≥ (1− δ) · γωt. Since γt > βt,
we have that this holds except with probability negl(βt).

Analogously to the previous claim, the number of new states mined by the adversary is upper bounded
by (1+δ′)·βωt (except with probability negl(βt)). Since all | ~str|−| ~str′ | blocks are mined by the adversary
we have | ~str| − | ~str′ | ≤ (1 + δ′) · βωt. We get

(1− δ) · γωt ≤ (1 + δ′) · βωt,

which, for sufficiently small δ, δ′ implies that γ < (1 + δ′′)β for any δ′′. This contradicts Equation 1 and
the claim follows. �

Claim. 5. Consistent states: Let pi and pj be miners, and let r′ ≥ r ≥ 0. Assume pi is honest in round r,
and pj is honest in round r′. Assume that the length of the longest state received or stored by pi in round
r is ` ≥ T . Then, the `− T -prefix of that longest state of pi in round r is identical to the `− T -prefix of
the state of pj stored or received in round r′ except with probability R · negl(T ).

Proof: We again follow the exposition in [PSS17]. Since an inconsistency at round r implies an incon-
sistency at round r′ > r, if the claim is proven for the case that r ≤ r′ ≤ r + 1, then by an inductive
argument, the claim holds for any r′ ≥ r.

The protocol for the honest miners truncates the T newest blocks from the current respective state
of each miner. Thus, we need to argue that the block which is T + 1 far away from the head will be part
of any state output by any honest miner. Suppose we are at round r′ in the protocol, then the time it
takes to generate the last T blocks is at least t ≥ T

(1+δ)qmaxp
except with negligible probability as argued

in the previous claim, where qmax is the maximum number of queries per round of all registered miners
(maximum over all rounds) and any 0 < δ < 1. We can thus follow the argument by [PSS17] to conclude
that the probability that the states of two honest miners diverge at round s := r − t is a negligible
function negl(βt) and thus also a negligible function in T . The last step follows as in the previous claim
by observing that βt ≥ ρ

(1+δ)T , where β is the maximum expected value of adversarially mined blocks
(over all rounds).

In the interval between s and r′, the expected number of rounds, where at lest one honest miner is
successful, is at least αt. Thus, by a standard Chernoff bound, the probability that the number of these
successful rounds is smaller than q̄min := (1 − δ′) · αt is no more than exp

(
− δ′2

2 αt
)

in the real-world
UC random experiment. Since Equation 1 implies that there exists a δ̂ ∈ (0, 1) such that α > β · (1 + δ̂),
this probability is upper bounded by negl(βt).
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Unfortunately, the “race” between the good guys and the bad guys is not yet conclusively analyzed,
since the mere superiority of honestly mined blocks does not imply that the honest parties will reach
agreement. In particular, not all of the, in expectation, αt, blocks are equally useful to obtain a so-called
convergence opportunity. In particular, we need to know how many of the honestly mined blocks happen
in isolated, sufficiently silent intervals.

Formally, let us introduce the random variable Ri that measures the number of elapsed round between
successful round i − 1 and successful round i in the real-world UC execution, where R1 measures the
number of elapsed rounds to the first successful round. Based on Ri, the random variable Xi is defined as
follows: Xi = 1 if and only if Ri > ∆ and exactly one honest miner mines a new state (i.e., successfully
appends a new block to the state) in the ith successful round. Let Ei1 be the event that there is at least
one successful round in the interval of ∆ rounds starting after successful round i − 1 (or at the onset
of the experiment). Let Ei2 be the event that strictly more than one miner is successful in the following
successful round i.

Overall, our goal is to suitably bound the number of blocks that prevent those events of “success &
silence” (i.e., bound the probability of the event Xi = 0) in an interval of t rounds. We call these the
undesirable blocks. Clearly, since we do a worst-case analysis, all (roughly βt) adversarial blocks will
contribute to the number of undesirable blocks.

We now conduct the following thought-experiment: given the minimal set of synchronized parties
and their associated mining power α, we study their production of undesirable blocks if only they ran
the protocol alone (as in Claim 2). This thought-experiment is sound: all hash queries q(r) in a round r

either contribute to the power of the synchronized parties or the adversary, i.e., q(r) = q
(r)
H + q

(r)
A , and

each query to FStX yields an i.i.d. trial of extending a state. Now, let x be the number of queries such
that α = 1− (1−p)x holds. Since by (worst-case) definition β = maxr∈[R] ρ ·Tmp(r) = ρ ·p ·maxr∈[R] q

(r),
we can always assign the difference (q(r)

H − x) to the adversary’s budget (and the condition α > β still
holds). In particular, we have for integers x, y > 1,

αr − α = (1− (1− p)x+y)− (1− (1− p)x) = (1− p)x − (1− p)x+y

= (1− p)x · (1− (1− p)y) ≤ (1− (1− p)y) ≤ (1− (1− y · p))
= y · p,

where the last inequality is a consequence of Bernoulli’s inequality. Hence, considering the worst-case
adversary with mining power β = p · maxr∈[R] q

(r) over t rounds allows us to study the number of
undesirable blocks that the minimally honest parties produce alone according to our thought-experiment
(and think of the additive term (q(r)

H −x) ·p as being part of the adversarial mining power β that anyway
contributes to the production of undesirable blocks). In this thought experiment, we need to suitably
bound the occurrence of the above two bad events Eij in our thought experiment. By a union bound
we directly have that Pr[Xi = 0] = Pr[Ei1 ∪ Ei2] ≤ ∆α + α, hence, on the positive side, Pr[Xi = 1] ≥
1− α(∆+ 1).

Let X :=
∑q̄min
i=1 Xi, where E[X] = (1− α(∆+ 1)) · q̄min. Let us define q̄′min := (1− δ′′) · (1− α(∆+

1)) · q̄min. Since the random variables Xi defined in our thought-experiment are i.i.d., it follows that
Pr[X ≤ q̄′min] ≤ exp

(
− δ′′2

2 (1−α(∆+1))·q̄min
)

. Aside of α > β, Equation 1 implies that there exists some
0 < δ̂ < 1 such that α(∆+1) < 1− δ̂. We conclude that (1−α(∆+1)) · q̄min > δ̂(1−δ′) ·αt > δ̂(1−δ′) ·βt.
Thus, Pr[X ≤ q̄′min] ≤ exp

(
− δ′′2

2 δ̂(1 − δ′) · βt
)
∈ negl(βt). And hence, we have a (high-probability)

lower bound on the number of silent patterns.
We are actually interested in the number of times that Xi = Xi+1 = 1. This situation, as already

introduced above, means that we have a situation, in which for ∆ rounds, no honest miner is successful,
then exactly one honest miner is successful, and afterwards, we again have ∆ rounds where no honest
miner is successful. This is denoted in [PSS17] as a convergence opportunity. For example, a convergence
opportunity has the desirable property, that at the end of such an opportunity, if the adversary is unable
to provide a longer state to the honest miners during this period, all honest miners will reach an agreement
on the current longest state. Thus, in order to prevent this, an adversary needs to be successful in mining
roughly at the rate of the number of convergence opportunities within t rounds.

We have already seen that with overwhelming probability, there are at least q̄min successful rounds,
and among which (q̄min−q̄′min) could prevent convergence opportunities. Thus, the number of convergence
opportunities C can, except with probability negl(βt), be (generously) lower bounded by C ≥ q̄min −
2(q̄min − q̄′min) = 2q̄′min − q̄min > (1 − ε)(1 − 2α(∆ + 1))αt, for any constant ε (by picking δ′ and δ′′

sufficiently small).
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The final argument is a counting argument. Let us denote by Sr the set of maximal states known to
F∆StX-bd at round r′ (i.e., any path from the root to some a leaf) of length at least `+ C, where ` is the
length of the longest state known to at least one honest miner at round s. Note that S`+Cr is non-empty:
since each convergence opportunity increases the length by at least one, and before each successful round,
there is a period of ∆ rounds where no honest miner mines a new state, there has to exist at least one
state with length at least `+ C at round r′.

Assume that the number of successful state extensions made by the adversary (to F∆StX-bd) between
round s and r′ is TA < C. Then, by the pigeonhole principle, for all ~st ∈ Sr, it holds that there is at
least one block stk, such that functionality FStX is successfully queried by exactly one miner P in round
i to extend the state to length k + 1, but no query by the adversary to extend a state of length k to a
state of length k + 1 has been successful up to and including round r′. Even more, TA < C implies that
such an i has to exist that also constitutes a convergence opportunity.

After this convergence opportunity at round i, all honest miners have a state whose first k+ 1 blocks
are ~sti = st0 . . . , stk. Unless the adversary provides an alternative state with a prefix ~st

′
i of length

k + 1, such that st′l 6= stl for at least one index 0 < l ≤ k, no honest miner will ever mine on a state
whose first k + 1 blocks do not agree with ~sti.

The existence of an alternative prefix ~st
′
i of length k + 1 for any such i and for all states ~st ∈ S`+Cr

implies TA ≥ C and therefore contradicts the assumption that TA < C.
What is left to prove is that for any such interval of size t (from round s to round r′), the probability

that TA < C holds in any real-world execution except with negligible probability in βt.
First, for any ω > 0, the probability that any new state accepted by an honest miner during the period

of (t+ 1) rounds is mined before round s−ωt is at most negl(βt). Analogously to the previous claim, the
number of adversarial blocks (i.e., successful state extensions by A) generated within (1+ω)(t+1) rounds
is (except with probability negl(βt)) upper bounded by TA ≤ (1 + δ)(1 + ω)(t + 1)β ≤ (1+δ)(1+ω)

λ (t +
1)α · (1−2α · (∆+ 1)), where the last inequality follows from Equation 1. By picking the constants δ and
ω, and ε sufficiently small relative to λ, we hence get TA < C except with probability negl(βt). Since
β is the maximal value over all βr for any round, we again apply the union bound over the number of
rounds and get the desired claim. �

Claim. 6. Maximal number of mined blocks Let pi be a miner, and let r ≥ 0. Assume pi is honest in
round r, and the longest state received or stored by pi in round r has length `. Then, in round r + t, it
holds, except with probability R · negl(T ), that the length of the longest state (received or stored) of at
least one honest miner pj in that round has length at most ` + T if t ≤ T

(1+δ)·p·qmax
, where qmax is the

maximum query power in any round of this interval.

Proof: To upper bound the number of accepted blocks, we have to combine two observations made above:
we have seen that the time it takes to generate T blocks is at least t ≥ T

(1+δ)qmaxp
except with probability

negl(βt). Hence, with overwhelming probability, in t ≤ T
(1+δ)·p·qmax

, no more than T blocks are mined.
Furthermore, we have seen in Claim 4 that for any round r, the probability that a new state is accepted
by an honest miner but this state was mined before round r− ωt happens with probability negl(βt), for
any 0 < ω < 1. Thus, in the interval between r and t, for t as bound in the Claim statement, the state
can increase by at most T state blocks except with probability negl(T ), since we have again, βt ≥ ρ

(1+δ)T .
Since β is the maximum expected value of adversarially mined blocks (over all rounds), the claim follows
by taking the union bound over all rounds. �

Finally, we conclude the proof by noting that after a delay of ∆ rounds, all honest transactions are
known to all honest miners, so, as soon as an honest miner mines the next state block, he for sure puts
all these transactions into his next blocks if they are valid. In the simulation, the simulator also does it
in the ideal world and hence will never propose blocks of honest parties that do not comply with the
conditions of the defined ExtendPolicy of GB

ledger. Further, the synchronization of a party takes at most
Delay = 4∆ clock ticks: if pj joins the network, his knowledge of the longest chain and the set of valid
transactions relative to that state, which is known to at least one honest and synchronized miner is only
reliable after 2∆ rounds (4∆ clock ticks) since it takes at most ∆ rounds to multicast the initial message
that the miner has joined the network, and additional ∆ rounds until the replies are received. During this
2∆ round the new miner will also have received all messages sent at or after he joined the network, and in
particular all transactions that are more than ∆ rounds (2∆ = Delay

2 ) old and potentially valid. Finally,
setting windowSize ≥ T , follows from the arguments of Claim 4 and 5, since the adversary cannot have
mined a state that is T blocks larger than some chain from a honest and synchronized party. But this
would be a necessary condition to provoke a slackness that exceeds T . This concludes the proof. ut
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It follows the formal specification of the simulator.

Initialization:
The simulator manages internally a simulated state-exchange functionality FStX, a simulated network
FN-MC. An honest miner p registered to GB

ledger is assumed to be registered in all simulated functionalities.
Moreover, the simulator maintains the local state ~stp and the buffer of transactions bufferp of such a
party. Upon any activation, the simulator will query the current party set from the ledger (and simulate
the corresponding message they send out to the network in the first maintain-ledger activation after
registration), query all activations from honest parties ~ITH , and read the current clock value to learn the
time. In particular, the simulator knows which parties are honest and synchronized and which parties are
de-synchronized.

General Structure:
The simulator internally runs adversary A in a black-box way and simulates the interaction between A and
the (emulated) real-world hybrid functionalities. The inputs from A to the clock are simply relayed (and the
replies given back to A). The ideal world consists of the ledger functionality and the clock.

Messages from the Clock:

– Upon receiving (clock-update, sidC , p) from Gclock, if p is an honest registered party, then remember
that this party has received such a clock update (and the environment gets an activation). Otherwise,
send (clock-update, sidC , p) to A. In addition (before releasing the activation token), the simulator
checks whether the clock advances. If so, and if this was a working mini-round (and hence all maintain
commands have already been submitted by honest and synchronized parties), then execute
ExtendLedgerState before giving the activation to A.

Messages from the Ledger:

– Upon receiving (submit, BTX) from GB
ledger where BTX := (tx, txid, τ, p) forward (multicast, sid, tx) to the

simulated network FN-MC in the name of p. Output the answer of FN-MC to the adversary.
– Upon receiving (maintain-ledger, sid,minerID) from GB

ledger, extract from ~ITH the party pi that issued
this query. If pi has already done its instructions for the current mini-round, then ignore the request.
Otherwise, do:
1. Execute SimulateMining(pminerID, τ) and if this was the last maintain command in a working

mini-round and the round will advance, then execute ExtendLedgerState before giving the
activation to A.

2. In addition, remember that party pi is done with mining in the current mini-round.
– Upon any further activation of the simulator, the simulator inspects the entire sequence of inputs by

honest parties to the ledger ~ITH and does the following:
1. For any input, I = (read, sid) of party P , if the current round is an update mini-round, then execute

Step 4 of the mining procedure as below in SimulateMining
2. Remember that the update for party P is done for this round.

Simulation of the State Exchange Functionality:

– Upon receiving (submit-new, sid, ~st, st) from A on behalf of a corrupted p ∈ Pstx, then relay it to the
simulated FStX and do the following:
1. If FStX returns (success, B) give this reply to A
2. If A replies with (continue, sid), input (continue, sid) to the simulated FStX
3. If the current mini-round is an update mini-round, then execute ExtendLedgerState

– Upon receiving (fetch-new, sid) from A (on behalf of a corrupted p) forward the request to the
simulated FStX and return whatever is returned to A.

– Upon receiving (send, sid, s, p′) from A on behalf some corrupted party P , do the following:
1. Forward the request to the simulated FStX.
2. If the current mini-round is an update mini-round, then execute ExtendLedgerState
3. Return to A the return value from FStX.

– Upon receiving (swap, sid,mid,mid′) from A, forward the request to the simulated FStX and return
whatever is returned to A.

– Upon receiving (delay, sid, T,mid) from A forward the request to the simulated FStX and do the
following:
1. Query the ledger state state

Simulator Sledg
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2. Execute AdjustView(state)
3. Return to A the output of FStX

Simulation of the Network (over which transactionss are sent) :

– Upon receiving (multicast, sid, (mi1 , pi1 ), . . . , (mi` , pi`) with list of transactions from A on behalf some
corrupted P ∈ Pnet, then do the following:
1. Submit the transactions to the ledger on behalf of this corrupted party, and receive for each

transaction the transaction id txid
2. Forward the request to the internally simulated FN-MC, which replies for each message with a

message-ID mid
3. Remember the association between each mid and the corresponding txid
4. Provide A with whatever the network outputs.

– Upon receiving (an ordinary input) (multicast, sid,m) from A on behalf of some corrupted P ∈ Pnet,
then execute the corresponding steps 1. to 4. as above.

– Upon receiving (fetch, sid) from A on behalf some corrupted P ∈ Pnet forward the request to the
simulated FN-MC and return whatever is returned to A.

– Upon receiving (delays, sid, (Tmidi1 ,midi1 ), . . . , (Tmidi` ,midi`)) from A forward the request to the
simulated FN-MC and return whatever is returned to A.

– Upon receiving (swap, sid,mid,mid′) from A forward the request to the simulated FN-MC and return
whatever is returned to A.

procedure SimulateMining(P, τ)
Simulate the mining procedure of P of the protocol:
if time-tick τ corresponds to a working sub-round then

Execute Step 2 of the mining protocol. This includes:
-Define the next state block st using the transaction set TxsP
-Send (submit-new, sid, ~stP , st) to simulated functionality FStX.
-If successful, store ~stP ||st as the new ~stP
-If successful, distribute the new state via FStX.

else if time-tick τ corresponds to an update sub-round then
Execute Step 4 of the mining protocol. This means that if the new
information has not been fetched in this round already, then the
following is executed:

-Fetch transactions (tx1, . . . , txu) (on behalf of P ) from
simulated FN-MC and add them to TxsP .

-Fetch states ~st1, . . . , ~sts (on behalf of P ) from the simulated
FStX and update ~stP to the largest state among ~stP and ~sti.

end if
end procedure

procedure ExtendLedgerState
Consider all honest and synchronized players P :

- Let ~st be the longest state among all states ~stp or states contained
in a receiver buffer ~MP with delay 1 (and hence is a potential
output in the next round)

Compare ~stdT with the current state state of the ledger
if |state| > | ~stdT | then

Execute AdjustViiew(state)
end if
if state is not a prefix of ~stdT then

Abort the simulation (due to inconsistency)
end if
Define the difference diff to be the block sequence s.t. state||diff = ~stdT .
Let n← |diff|
for each block diffj , j = 1 to n do

Map each transaction tx in this block to its unique transaction ID txid
If a transaction does not yet have an txid, then submit it to the ledger

and receive the corresponding txid from GB
ledger

Let listj = (txidj,1, . . . , txidj,`j ) be the corresponding list for this block.
if coinbase txidj,1 specifies a party that was honest at block creation time then
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hFlagj ← 1
else

hFlagj ← 0
end if
Output (next-block, hFlagj , listj) to GB

ledger (receiving (next-block, ok) as an immediate answer)
end for
Execute AdjustView(state||diff)

end procedure

procedure AdjustView(state)
pointers← ε
for each honest and synchronized party pi do

Using the simulated functionality FStX do the following:
- Let ~st be the longest state among ~stpi and those contained in the
receiver buffer ~Mpi with delay 1

Determine the pointer pti s.t. ~stdT = state|pti
if such a pointer value does not exist then

Abort simulation (due to inconsistency)
end if
if Party pi has not executed step 4 of the mining protocol in this

current mini-round then
pointers← pointers||(pi, pti)

end if // As otherwise, the new state is only fetched in the next round
end for
Output (set-slack, pointers) to GB

ledger
pointers← ε
desyncStates← ε
for each honest but de-synchronized party pi do

Using the simulated functionality FStX do the following:
- Let ~st be the longest state among ~stpi and those contained in the
receiver buffer ~Mpi with delay 1

if Party pi has not executed step 4 of the mining protocol in this
current mini-round then

Set the pointer pti to be | ~stdT |
pointers← pointers||(pi, pti)
desyncStates← desyncState||(pi, ~stdT )

end if // As otherwise, the new state is only fetched in the next round
Output (set-slack, pointers) to GB

ledger

Output (desync-state, desyncStates) to GB
ledger

end for
end procedure

E Implementing a Stronger Ledger (Cont’d)

To achieve stronger guarantees than our original Bitcoin ledger, a party issues transactions relative to
an account. More abstractly speaking, a transaction contains an identifier, AccountID, which can be seen
as the abstract identity that claims ownership of the transaction. More specifically, we can represent this
situation by having transactions tx be pairs (AccountID, tx′) with the above meaning. Signatures enter
the picture at this level: an honest participant of the Bitcoin network will issue only signed transactions
on the network. In order to link verification key to the account, AccountID is the hash of the verification
keys, where we require collision resistance. More concretely, whenever a miner is supposed to submit a
transaction tx, it signs it and appends the signature and its verification key. This bundle is distributed
into the Bitcoin network. The validation consists now of three parts. First, it is verified that the public
key matches the account, second, the signature is verified, and third, its validated whether the actual
transaction (AccountID, tx′) is valid, with respect to a separate validation predicate ValidTxB on states
and transactions tx of the above format. Only if all three tests succeed, the transactions is valid.

Looking ahead, the goal of this is the following: Assume that for the validation predicate ValidTxB
it holds that if a transaction (AccountID, tx) is valid relative to a state, then the only reason why it
can get invalid is due to the presence of another transaction with the same account. If we think of
wallets, if a miner can spend his coins at current time, then only another transaction by himself can
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invalidate that (by spending the same coins, which the Bitcoin network will refuse). In combination with
the unforgeability of signatures, no adversary can ever render a valid transaction invalid. Due to the
guarantee of the liveness guarantee in Bitcoin, that guarantees that if a transaction too old, but valid
relative to the state, then it will enter the state.

We now show how to implement this account management in the GB
ledger hybrid world to achieve a

stronger ledger that formalizes account management in an ideal manner. Our protocol makes use of an
existentially unforgeable digital signatures scheme DSS := (K,S, V ).
Definition 3. A digital signature scheme DSS := (K,S, V ) for a message space M and signature space
Ω consists of a (probabilistic) key generation algorithm K that returns a key pair (sk, vk), a (possibly
probabilistic) signing algorithm S, that given a message m ∈M and the signing key sk returns a signature
s← Ssk(m), and a (possibly probabilistic, but usually deterministic) verification algorithm V , that given
a message m ∈ M, a candidate signature s′ ∈ Ω, and the verification key vk returns a bit Vvk(m, s′).
The bit 1 is interpreted as a successful verification and 0 as a failed verification. It is required that
Vvk(m,Ssk(m)) = 1 for all m and all (vk, sk) in the support of K. We call a DSS secure if it existentially
unforgeable under chosen message attacks.
Definition 4. A digital signatures scheme is existentially unforgeable under chosen message attacks if
no efficient adversary A can win the following game GEU–CMA better than with negligible probability.
GEU–CMA first chooses a key pair (sk, vk) ← K. Then it acts as a signing oracle, receiving messages
m ∈ M at its interface and responding with Ssk(m). At any point, A can undertake a forging attempt
by providing a message m′ and a candidate signature s′ to GEU–CMA. The game is won if and only if
Vvk(m′, s′) = 1 and m′ was never queried before by A.

E.1 The protocol for Account Management
Hybrid ledger functionality Let ValidTxB and blockifyB be as in the previous section but with the
following additional property: each transaction is a pair tx = (AccountID, tx′) where the first part is
bitstring of fixed length and the second part is an arbitrary transaction. In addition we require the
following property: for any state state and any transaction tx it holds that ValidTxB(tx, state) = 1
implies, for any state extension state||st′, that ValidTxB(tx, state||st′) = 1, if st′ does not contain a
transaction with the same identifier AccountID. Recall that we assume that Definition 2 is satisfied.

We assume the Bitcoin ledger functionality with the following validation predicate, which is defined
relative to a collision-resistant hash function H, and a signature scheme DSS.

function ValDSS(BTX, state, buffer)
Let BTX = (tx, txid, τL, pi)
Parse tx as ((AccountID, tx′), vk, σ) (Return 0 in case of a wrong format)
if AccountID = H(vk) and Vvk(tx, σ) = 1 then

return ValidTxB(tx, state)
else

return 0
end if

end function

Algorithm to describe the assumed validation predicate

The protocol. The protocol is straightforward: whenever the protocol is given an input of the form
(AccountID, tx) it first checks that it is the party associated with this account ID. Then, it receives the
newest state from the ledger and checks, whether this input is valid with respect to the current state. If
this is the case, the party signs the input and submits it to the ledger.

Initialization:
This protocol talks to the Gledger, but only changes the behavior of on read or submit-queries to the
ledger. Any other command is simply relayed to Gledger and the corresponding output is given to the
environment Z.
The protocol keeps a counter i and a vector submitted of inputs submitted to the ledger which are not yet
contained in the state of the ledger.

Protocol accountMgmt(p)

51



Account Management:

– Upon receiving (CreateAccount, sid), execute (sk, vk)← K, update i← i+ 1 and set
AccountIDi ← H(vk). Return (CreateAccount, sid,AccountIDi)

Ledger Read and Write:

– Upon receiving (read, sid) send (read, sid) to Gledger and receive as answer the current
state = st1|| . . . ||stn. Then do the following:

state′ ← st1 // Genesis state
for i = 2 to n do

From state block sti, extract the contents (tx1, vk1, σ1)|| . . . ||(txn, vkn, σn)
Define new block-content ~x′ ← tx1|| . . . ||txn
state′ ← state||Blockify(~x)

end for
Return (read, sid, state′)

– Upon receiving (submit, sid, tx), check that tx = (AccountID, tx′) for
AccountID ∈ {AccountID1, . . .AccountIDi}. If the check fails, ignore the input. Otherwise, do the following:
1. Read the state state from Gledger as above.
2. If ValidTxB(tx, state) = 1, then sign the input by σ ← Ssk(tx) and send (submit, sid, (tx, vk, σ))

The enhanced ledger functionality. We present an enhanced ledger functionality with a validation
predicate that enforces that an adversarial transaction cannot prevent a transaction by an honest party
to eventually make it into the stable state of the ledger. In particular, we get the following enhanced
functionality:

GB+
ledger is identical to GB

ledger except with the following additional capabilities:

Difference to standard Ledger:

– Upon receiving (CreateAccount, sid) from party pi (or the adversary on behalf of a party pi), send
(AccountReq, sid, pi) to A and upon receiving a reply (AccountReq, sid, pi,AccountID) do the
following:
1. If AccountID is not yet associated to any party, store the pair (AccountID, pi) internally and return

(CreateAccount, sid,AccountID) to pi.
2. If AccountID is already associated to a party, then output (CreateAccount, sid,Fail) to pi.

Standard Bitcoin Ledger:

– Identical to Gledger with validation predicate Valstrong and thus omitted from this description.

Functionality GB+
ledger

The following validation predicate is used within GB+
ledger.

function Valstrong(BTX, state, buffer)
Let BTX = (tx, txid, τL, pi)
if tx = (AccountID, tx′) and AccountID is associated with pi then

return Validate(tx, state)
else

return 0
end if

end function

Algorithm to define the strong validation

The stronger guarantee for honestly submitted transactions stems from two facts. First, by Definition
2, the state blocks contain transactions beyond coin-base transactions. Second, since a transaction of a
party is associated with its account, and cannot be invalidated by another transaction with a different
account, this implies that the transaction remains valid relative to state (unless the honest party itself
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issues a transaction that contradicts a previous transaction for one of its accounts, but we neglect this
here). As an example, assume an honest party submits a single transaction for one of its accounts, and
assume this transaction is valid relative to the state state. Then, by the defined enforcing mechanism
of ExtendPolicy, this transaction is guaranteed to enter the state after staying in the the buffer for long
enough, and when an honest party mines a subsequent block after this delay. This means that after that
delay has passed, the transaction has to appear within the subsequent window of windowSize blocks.

A brief worst-case calculation. Looking at the ledger abstraction, we can directly compute the following
worst-case upper bound for any miner (we neglect here the offset at the beginning of the execution
for simplicity): after submitting the transaction, the transaction will appear (relative to the view of
the submitting party) within the next 4 · windowSize blocks after submitting the transaction (except
with negligible probability). The reason is that upon submitting, (1) the view of the miner submitting
the transaction could be windowSize blocks behind the head of the state of the ledger and (2) by the
definition of ExtendPolicy (and observing that Delay

2 < minTimewindow), at most 2 · windowSize blocks can
be added to the state while the transaction is staying in the buffer before the ledger starts enforcing that
the transaction be part of the subsequent next honest state block. Recall that the ledger guarantees that
such an honest block has to appear within a window of windowSize state blocks.

Recall that in the real Bitcoin, the expected time until a transaction appears in the confirmed part of
the state, i.e., in any block which is T = 6 blocks behind the head of the state, is approximately one hour.
By composition, the correspondence of the ledger parameter windowSize with the protocol parameter
T (as proven in the previous section), our analysis suggests that four hours is a worst-case bound for
Bitcoin given that transactions are correctly signed and are not invalidated due to other transactions
with the same account.

We conclude this section by stating the following lemma:

Lemma 4. Let DSS be a secure digital signature scheme and let H be a collision resistant hash func-
tion. Then the protocol accountMgmt in the GB

ledger-hybrid world UC-realizes ledger GB+
ledger, where the

functionalities are instantiated as described above.
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