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Abstract. We present two practically efficient functional encryption schemes for a large class of
quadratic functionalities. Specifically, our constructions enable the computation of so-called bilinear
maps on encrypted vectors. This represents a practically relevant class of functions that includes, for
instance, multivariate quadratic polynomials (over the integers). Our realizations work over asymmetric
bilinear groups and are surprisingly efficient and easy to implement. For instance, in our most efficient
scheme the public key and each ciphertext consist of 2n + 1 and 4n + 2 group elements respectively,
where n is the dimension of the encrypted vectors, while secret keys are only two group elements. Our
two schemes build on similar ideas, but develop them in a different way in order to achieve distinct
goals. Our first scheme is proved (selectively) secure under standard assumptions, while our second
construction is concretely more efficient and is proved (adaptively) secure in the generic group model.

As a byproduct of our functional encryption schemes, we show new predicate encryption schemes for
degree-two polynomial evaluation, where ciphertexts consist of only O(n) group elements. This signifi-
cantly improves the O(n2) bound one would get from inner product encryption-based constructions.

1 Introduction

Traditional public key encryption allows the owner of a secret key sk to decrypt ciphertexts created
with respect to a (matching) public key mpk. At the same time, without sk, ciphertexts should not
reveal any non trivial information about encrypted messages. This all-or-nothing nature of encryp-
tion is becoming insufficient in applications where a more fine-grained access to data is required.
Functional Encryption (FE) allows to overcome this user-centric access to data of encryption in a
very elegant way. Intuitively, given Encrypt(m) and a key skf corresponding to some function f ,
the owner of skf learns f(m) and nothing else. Apart from being an interesting theoretical object,
Functional Encryption has many natural applications. Think about cloud storage scenarios where
users can rely on powerful external servers to store their data. To preserve their privacy, users might
want to store their files encrypted. At the same time, the users may wish to let the service providers
perform basic data mining operations on this data for commercial purposes, without necessarily
disclosing the whole data. Functional Encryption allows to reconcile these seemingly contradicting
needs, as service providers can get secret keys that allow them to perform the desired computations
while preserving, as much as possible, the privacy of users.

In terms of security, the standard notion for functional encryption is indistinguishability. Infor-
mally, this notion states that an adversary who is allowed to see the secret keys for functionalities
f1, . . . fn should not be able to tell apart which of the challenge messages m0 or m1 has been en-
crypted, under the restriction that fi(m0) = fi(m1), for all i. This notion was studied in [13,35]
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and shown inadequate for certain, complex, functionalities4. They also explored an alternative,
simulation-based, definition, which however cannot be satisfied, in general, without resorting to the
random oracle heuristic.

Background on Functional Encryption. The idea of functional encryption originates from
Identity Based Encryption (IBE) [37,11] and the closely related concept of Searchable Encryption
[10,1]. In IBE, the encrypted message can be interpreted as a pair (I,m), where I is a public
string and m is the actual message (often called the “payload”). More in general, the index I can be
interpreted as a set of attributes that can be either public or private. Public index schemes are often
referred to as attribute based encryption [36,27], a primitive that is by now very well understood
[25]. For private index schemes, the situation is more intricate. A first distinction is between weakly
and fully attribute hiding schemes [5]. The former notion refers to schemes where the set of secret
keys the adversary is allowed to see in the security games is significantly restricted. The adversary
is allowed to ask only keys corresponding to functions that cannot be used to decrypt the challenge
message. Examples of these schemes are Anonymous Identity based encryption [11,22], Hidden
Vector Encryption [15] and (private index) predicate encryption [28,26].

Things are less well established for the setting of private index, fully attribute hiding schemes, a
notion that turns out to be equivalent to full fledged functional encryption [13]. Indeed, all known
constructions supporting arbitrary circuits, either work for the case of bounded collusions [24,23]
or rely on powerful, but poorly understood, assumptions (e.g., [20]). Moreover, they are all terribly
inefficient from a practical point of view.

To improve efficiency, a very natural approach is to try to realize schemes using a different,
bottom up, perspective. Rather than focusing on generality, one might focus on devising efficient
realizations for specific functionalities of practical interest. In 2015, Abdalla et al. [2] addressed
this question for the case of linear functionalities. In particular, they show a construction which is
both very simple and relies on standard, well studied assumptions (such as LWE and DDH). The
construction was proved secure in the so-called selective setting where the adversary is expected to
choose the messages on which she wants to be challenged in advance, even before the public key
is set up. Not too surprisingly, this result sparkled significant interest in this bottom-up approach,
with several results proposing new schemes [6], models [9,4] and improved security [6,3].

Still, none of these results managed to efficiently support more than linear functionalities. In
particular, the technical barrier is to find FE schemes in which ciphertexts have size linear in the
number of encrypted elements, in contrast to quadratic, as it can be achieved by using a scheme
for linear functions.5 This motivates the following question:

Can we construct a practically efficient functional encryption scheme supporting more than linear
functionalities?

1.1 Our Contribution

In this paper we answer the question above in the affirmative. We build two efficient functional
encryption schemes for quadratic functions with linear-size ciphertexts. In terms of security, our

4 Here by complex we intend, for instance, functions that are supposed to have some computational hiding properties.
In particular, Boneh et al. [13] argue that, in applications where security relies on such properties, indistinguisha-
bility might become problematic.

5 Indeed, we note that a functional encryption for linear polynomials can be used to support, say, quadratic polyno-
mials, by simply encrypting all the degree-two monomials in advance. This however leads to an inefficient solution
where the size of the ciphertexts is quadratic in the number of variables.
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first scheme is proven selective-secure under standard assumptions (Matrix Decisional Diffie Hell-
man [18] and 3-party DDH [12]), whereas our second scheme is proven adaptively secure in the
generic group model, and is more efficient. In terms of functionality, to be more specific, our
schemes allows to compute bilinear maps over the integers: messages are expressed as pairs of vec-
tors (x,y) ∈ Zn × Zm, secret keys are associated with (n×m) matrices F, and decryption allows
to compute x>Fy =

∑
i,j fijxiyj . Bilinear maps represent a very general class of quadratic func-

tions that includes, for instance, multivariate quadratic polynomials. These functions have several
practical applications. For instance, a quadratic polynomial can express many statistical functions
(e.g., (weighted) mean, variance, covariance, root-mean-square), the euclidean distance between two
vectors, and the application of a linear or quadratic classifier (e.g., linear or quadratic regression).

In addition to the above applications of quadratic functions, we also show that our FE for bilinear
maps can be used to construct new Predicate Encryption schemes (PE for short) that satisfy the
fully attribute hiding property, and yield efficient solutions for interesting classes of predicates, such
as constant-depth boolean formulas and comparisons. In a nutshell, in our PE scheme ciphertexts
are associated with a set of attributes (x1, . . . , xn) and a plaintext M , secret keys are associated
with a degree-two polynomial P , and the decryption of a ciphertext Ct(x1,...,xn)∈Zn with a secret key
skP∈Z[X1,...,Xn], deg(P )≤2 recovers M if, and only if, P (x1, . . . , xn) = 1. The attribute-hiding property
refers to the fact that Ct(x1,...,xn)∈Zn leaks no information on its attribute (x1, . . . , xn), beyond what

is inherently leaked by the boolean value P (x1, . . . , xn)
?
= 1. Using our new functional encryption

schemes as underlying building blocks, we obtain PE constructions for quadratic polynomials where
ciphertexts consist of only O(n) group elements. This is in sharp contrast with the O(n2) solutions
one would get via inner product encryption schemes (e.g., [28]).

An informal description of our FE schemes. Our solutions work over asymmetric bilinear
groups G1,G2,GT and are quite efficient. They are both essentially optimal in communication size:
public key and ciphertexts are both linear in the size of the encrypted vectors; secret keys are only
two group elements. Both our schemes share similar underlying ideas. These ideas are however
developed in different ways to achieve different security and efficiency goals. Our first scheme, can
be proved (selectively) secure under standard intractability assumptions but achieves somewhat
worse performances in practice. The second construction, on the other hand, is (concretely) more
efficient but it can be proved (adaptively) secure only in the generic group model. In what follows
we will highlight some of the core ideas underlying both schemes. How these ideas are implemented
and developed in the two cases will be discussed when introducing each specific scheme.

Let us recall that the functionality provided by our FE scheme is that one encrypts pairs of
vectors x,y, functions are matrices F, and decryption allows to obtain x>Fy.

The initial idea of the construction is to encrypt the two vectors x ∈ Zn and y ∈ Zm in a sort
of “matrix” ElGamal in the two groups G1 and G2 respectively. Namely, we set

Ct(x,y) = {[ρAri + bxi]1}i=1,...,n, [σBsj + ayj ]2}j=1,...,m

where: ρ, σ are randomly chosen, {Ari,Bsj}i,j are in the public key, and are constructed from two
random matrices A and B and a collection of random vectors {ri, sj}i,j , and a, b are more carefully
chosen vectors (see below) 6. Towards finding a decryption method, we first observe that, given

6 Here we adopt the, by now standard, implicit representation [x]s = gx ∈ Gs. This notion can be easily extended
to vectors and matrices (see [18]).
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Ct(x,y) and a function F, one can use the bilinear map to compute

U = [(ρσ)
∑
ij

fijr
>
i A>Bsj + ρ

∑
ij

fijr
>
i A>ayj + σ

∑
ij

fijs
>
j B>bxi + (b>a) · x>Fy]T .

Moreover, if we let [
∑

ij fijr
>
i A>Bsj ]1 be the secret key for function F and include [ρσ]2 in the

ciphertext, one can remove the first term in U .

Our two schemes then extend this basic blueprint with additional (but different!) structure so as
to enable the extraction from U of the value [x>Fy]T . From this, in turn, the function’s result can
be obtained via a brute force discrete log computation7. At a very intuitive level (and deliberately
ignoring many important details) a key difference between the two schemes lies in the way A, B,
a and b are constructed.

In our first scheme, A and B are carefully sampled so that to be able to prove (selective) security
under standard intractability assumptions (e.g. Matrix Decisional Diffie-Hellman). Moreover a and
b are chosen such that A>a = B>b = 0 and b>a = 1. This ensures that the intermediate values
ρ
∑

ij fijr
>
i A>ayj , σ

∑
ij fijs

>
j B>bxi cancel out at decryption time.

In our second scheme, on the other hand, the public key values Ari and Bsj are simple scalars,
and the “canceling” is performed via an appropriate choice of vectors a, b and simple algebraic
manipulations. This makes the resulting construction (concretely) more efficient. At the same time,
we lose the possibility to rely on (general) matrix assumptions and we are able to prove (adaptive)
security in the generic group model. To this end, as a contribution that can be of independent
interest, we state and prove a master theorem that shows hardness in the generic bilinear group
model for a broad family of interactive decisional problems (notably, a family that includes our FE
scheme), extending some of the tools and results of the generic group framework recently developed
by Barthe et al. [8].

Concurrent and Independent work. In concurrent and independent work, Lin [31], and Ananth
and Sahai [7] present constructions of private-key functional encryption schemes for degree-D poly-
nomials based on D-linear maps. As a special case for D = 2, these schemes support quadratic
polynomials from bilinear maps, as ours. Also, in terms of security, the construction of Lin is
proven selectively secure based on the SXDH assumption, while the scheme of Ananth and Sahai
is selectively secure based on ad-hoc assumptions that are justified in the multilinear group model.
In comparison to these works, our schemes have the advantage of working in the (arguably more
challenging) public key setting.

2 Preliminaries

Notation. We denote with λ ∈ N a security parameter. A probabilistic polynomial time (PPT)
algorithm A is a randomized algorithm for which there exists a polynomial p(·) such that for every
input x the running time of A(x) is bounded by p(|x|). We say that a function ε : N → R+

is negligible if for every positive polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0:
ε(λ) < 1/p(λ). If S is a set, x ←r S denotes the process of selecting x uniformly at random in S.
If A is a probabilistic algorithm, y ←r A(·) denotes the process of running A on some appropriate
input and assigning its output to y. For a positive integer n, we denote by [n] the set {1, . . . , n}.
7 This means that in our scheme messages and functions coefficients are assumed to be sufficiently small integers.
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We denote vectors x = (xi) and matrices A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp.
|x|) denotes its cardinality (resp. number of entries). For any prime p and any matrix A ∈ Zn×mp

with n ≥ m, we denote by orth(A) := {a⊥ ∈ Znp : A>a⊥ = 0}. For all square matrices A ∈ Zn×np ,
we denote by det(A) the determinant of A. For any n ∈ N∗, we denote by GLn the general linear
group of degree n, that is, the set of all n× n invertible matrices over Zp.

Bilinear Groups. Let G(1λ) be an algorithm (that we call a bilinear group generator) which
takes as input the security parameter and outputs the description of a bilinear group setting bgp =
(p,G1,G2,GT , e, g1, g2), where G1, G2 and GT are groups of the same prime order p > 2λ, g1 ∈ G1

and g2 ∈ G2 are two generators, and e : G1×G2 → GT is an efficiently computable, non-degenerate,
bilinear map. We define gT = e(g1, g2) as the canonical generator of GT . In the case G1 = G2, the
groups are said symmetric, else they are said asymmetric. In this paper we work with asymmetric
bilinear groups in which there is no efficiently computable isomorphisms between G1 and G2 (these
are also known as Type-III groups [19]).

We use implicit representation of group elements as introduced in [18]. For s ∈ {1, 2, T} and
x ∈ Zp, we let [x]s = gxs ∈ Gs. This notation is extended to matrices (and vectors) as follows. For
any A = (ai,j) ∈ Zm×np we define

[A]s =

ga1,1s . . . g
a1,n
s

g
am,1
s . . . g

am,n
s

 ∈ Gm×n
s

Note that from an element [x]s ∈ Gs and a scalar a it is possible to efficiently compute [ax] ∈ Gs.
Also, given group elements [a]1 ∈ G1 and [b]2 ∈ G2, one can efficiently compute [ab]T = e([a]1, [b]2).
Furthermore, given a matrix of scalars F = (fi,j) ∈ Zn×np and two n-dimensional vectors of group
elements [a]1, [b]2, one can efficiently compute

[a>F b]T =

 ∑
i,j∈[n]

fi,j · ai · bj


T

=
∑
i,j∈[n]

fi,j · e([ai]1, [bj ]2)

As above, for an easier and more compact presentation, in our work we slightly abuse notation and
treat all groups G1,G2,GT as additive groups.

2.1 Complexity assumptions

We recall the definitions of the Matrix Decision Diffie-Hellman (mddh) Assumption [18].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs

in polynomial time matrices in Z(k+1)×k
p of full rank k, and satisfying the following property,

Property 1.

Pr[orth(A) ⊆ span(B)] =
1

Ω(p)
,

where A,B←r Dk.

Without loss of generality, we assume the first k rows of A←r Dk form an invertible matrix. Note
that the basis property is not explicit in [18], but, as noted in [16, Lemma 1 (basis lemma)], all
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examples of matrix distribution presented in [18, Section 3.4], namely Uk, Lk, SCk, Ck and ILk,
satisfy this property.

The Dk-Matrix Diffie-Hellman problem in Gs for s ∈ {1, 2, T} is to distinguish the two distri-
butions ([A]s, [Aw]s) and ([A]s, [u]s) where A←r Dk, w ←r Zkp and u←r Zk+1

p .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-mddh). Let Dk be a matrix dis-
tribution. The Dk-Matrix Diffie-Hellman (Dk-mddh) Assumption holds relative to G in Gs, for
s ∈ {1, 2, T}, if for all PPT adversaries A,

AdvDk-mddh
G,A (λ) := |Pr[A(bgp, [A]s, [Aw]s) = 1]− Pr[A(bgp, [A]s, [u]s) = 1]| = negl(λ),

where probabilities are over bgp←r G(1λ), A←r Dk,w ←r Zkp,u←r Zk+1
p .

For each k ≥ 1, [18] specifies distributions (Uk, Lk, SCk, Ck and ILk) over Z(k+1)×k
p such that the

corresponding Dk-mddh assumptions are generically secure in bilinear groups and form a hierarchy
of increasingly weaker assumptions. Lk-mddh is the well known k-Linear Assumption k-Lin with
1-Lin = DDH.

We also recall the definition of 3-party Decision Diffie-Hellman (3-pddh) Assumption introduced
in [12]. We give a variant in the asymmetric-pairing setting.

Definition 3 (3-party Decision Diffie-Hellman Assumption 3-pddh). We say that the 3-
party Decision Diffie-Hellman Assumption (3-pddh) Assumption holds relative to G if for all PPT
adversaries A,

Adv3−pddh
G,A (λ) := |Pr[A(bgp, [a]1, [b]2, [c]1, [c]2, [abc]1) = 1]

− Pr[A(bgp, [a]1, [b]2, [c]1, [c]2, [d]1) = 1]| = negl(λ)

where the probability is taken over bgp←r G(1λ), a, b, c, d←r Zp.

2.2 Functional Encryption

We recall the definitions of Functional Encryption as given by Boneh, Sahai and Waters [13].

Definition 4 (Functionality). A functionality F defined over (K,M) is a function F : K×M→
Y ∪ {⊥} where K is a key space, M is a message space and Y is an output space which does not
contain the special symbol ⊥.

Definition 5 (Functional Encryption). A functional encryption scheme FE for a functionality
F is defined by a tuple of algorithms FE = (Setup,KeyGen,Encrypt,Decrypt) that work as follows.

Setup(1λ, F ) takes as input a security parameter 1λ, the functionality F : K×M→ Y, and outputs
a master secret key msk and a master public key mpk.

KeyGen(msk,K) takes as input the master secret key and a key K ∈ K of the functionality (i.e., a
function), and outputs a secret key skK .

Encrypt(mpk, msk ,M) takes as input the master public key mpk and a message M ∈ M, and
outputs a ciphertext Ct. It can take as an additional input the master secret key, in which case,
we talk about private-key functional encryption. By opposition, when msk is not an input of
the encryption, algorithm, we say that FE is public-key.
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Decrypt(skK ,Ct) takes as input a secret key skK and a ciphertext Ct, and returns an output Y ∈
Y ∪ {⊥}.

For correctness, it is required that for all (mpk,msk) ←r Setup(1λ), all keys K ∈ K and all mes-
sages M ∈ M, if skK ←r KeyGen(msk,K) and Ct ←r Encrypt(mpk, msk ,M), then it holds with
overwhelming probability that Decrypt(skK ,Ct) = F (K,M) whenever F (K,M) 6= ⊥.

Indistinguishability-Based Security. For a functional encryption scheme FE for a functionality
F over (K,M), security against chosen-plaintext attacks (IND-FE-CPA, for short) is defined via

the following experiment, denoted Expind-fe-cpa-β
FE,A (λ), which is parametrized by an adversary A, a

bit β ∈ {0, 1}, and a security parameter λ.

Setup: run (mpk,msk)←r Setup(1λ) and give mpk to A.
Query: A adaptively makes secret key queries. At each query, A specifies a key K and obtains

skK ←r KeyGen(msk,K) from the challenger.
Challenge: A chooses a pair of messages M0,M1 ∈M such that F (K,M0) = F (K,M1) holds for

all keys K queried in the previous phase. The challenger computes Ct∗ ←r Encrypt(mpk,Mβ)
and returns Ct∗ to A.

Query: A makes more secret key queries. At each query A can adaptively choose a key K ∈ K,
but under the requirement that F (K,M0) = F (K,M1).

Guess: A eventually outputs a bit β′ ∈ {0, 1}, and the experiment outputs the same bit.

For any stateful adversary A, any functional encryption scheme FE for a functionality F over
(K,M), any bit β ∈ {0, 1}, and any security parameter λ, we give a compact description of exper-

iment Expind-pe-cpa-β
PE,A (λ), and its selective version Expsel-ind-pe-cpa-β

PE,A (λ), in Figure 1.

Expind-fe-cpa-β
FE,A (λ) , Expsel-ind-fe-cpa-β

FE,A (λ) :

(M0,M1)← A(1λ)

(mpk,msk)←r Setup(1λ)

Ct := EncO(M0,M1)

β′ ← A(mpk, Ct )
KeyGenO(·), EncO(·, ·)

Return β′.

EncO(M0,M1):

Return Ct? := Encrypt(mpk, msk ,Mβ)

KeyGenO(K ∈ K):
Return skK := KeyGen(msk,K)

Fig. 1. Experiments Expind-fe-cpa-β
FE,A (λ) and Expsel-ind-fe-cpa-β

FE,A (λ) for b ∈ {0, 1}, used to define adaptive, and selective
security of FE, respectively. In each procedure, the components inside a solid (dotted) frame are only present in the

games marked by a solid (dotted) frame, and the components inside a gray frame only appears for private-key FE

schemes. In both games, the oracle EncO(·, ·) is queries at most once (by A or the game itself), on M0,M1, such
that for all queries K to KeyGenO(·), we have: F (K,M0) = F (K,M1). Note that in the case of private-key FE, this
corresponds to single-ciphertext security (which does not imply many-ciphertext security).

We define the advantage of A for adaptive security as:

Advind-fe-cpa
FE,A (λ) :=

∣∣∣Pr[Expind-fe-cpa-0
FE,A (λ) = 1]− Pr[Expind-fe-cpa-1

FE,A (λ) = 1]
∣∣∣

=

∣∣∣∣∣1− 2 Pr

[
β′ = β :

β ←r {0, 1}
Expind-fe-cpa-β

FE,A (λ) = β′

]∣∣∣∣∣
7



We define the advantage Advsel-ind-fe-cpa
FE,A (λ) for selective security similarly, with respect to

experiments Expsel-ind-fe-cpa-β
FE,A (λ) for β ∈ {0, 1}.

Definition 6 (Indistinguishability-Based Security). A functional encryption scheme FE is
adaptively secure (resp. selectively secure) against chosen-plaintext attacks if for every PPT algo-

rithm A, Advind-fe-cpa
FE,A (λ) (resp. Advsel-ind-fe-cpa

FE,A (λ)) is negligible.

2.3 Bilinear Maps Functionality

In this work we consider functional encryption schemes for the following bilinear map functionality.
Let bgp = (p,G1,G2, g1, g2,GT , e) ←r G(1λ) be a bilinear group setting, and let n,m ∈ N+ be
positive integers. We let the message space M := Znp × Zmp – every message M is a pair of vectors
(x,y) – the key space K := Zn×mp consists of matrices – every key K ∈ K is a matrix F = (fi,j) –
and the output space is Y := GT . The functionality F (K,M) is the one that computes the value
[x>Fy]T ∈ GT . As we discuss below, this functionality allows for interesting appliations.

Bilinear maps over the integers. We note that for appropriate choices ofM⊂ Znp ×Zmp and
K ⊂ Zn×mp , the output space of F (K,M) can be made of size polynomial in the security parameter.

In this case, there exist efficient methods to extract x>Fy ∈ Zp from [x>Fy]T ∈ GT .
For example, one can fix integers Bx, By, Bf ∈ N, and defineM := {0, . . . , Bx}n×{0, . . . , By}m,

K := {0, . . . , Bf}n×m. Then the quantity B = mnBxByBf < p must be small enough to allow for
efficient discrete logarithm computation.

Multivariate quadratic polynomials. We also note that bilinear maps over the integers
capture an interesting class of quadratic functions, such multivariate quadratic polynomials:

p(m) = p0 +
∑
i

pi ·mi +
∑
i,j

pi,j ·mi ·mj .

This can be captured by setting x = y = (1,m) ∈ Zn+1
p and by encoding p’s coefficients in an

upper triangular matrix F = (fi,j) ∈ Z(n+1)×(n+1)
p where: f1,1 = p0, f1,i = pi−1 for all i ∈ [2, n+ 1],

fi,j = 0 for all i > j, and fi,j = pi−1,j−1 for all i ∈ [2, n+ 1] and j ≥ i.

2.4 Predicate Encryption

We recall the definition of predicate encryption, as originally defined in [28,29].

Definition 7 (Predicate). A predicate P defined over (X ,Y) is a boolean function: P : X ×Y →
{0, 1}.

Definition 8 (Predicate Encryption). A predicate encryption (PE) scheme for a predicate P :
X × Y → {0, 1} consists of four algorithms (Setup,Encrypt, KeyGen,Decrypt):

Setup(1λ,P,M) → (mpk,msk). The setup algorithm gets as input the security parameter λ, the
predicate P : X ×Y → {0, 1}, the message space M and outputs the public parameter mpk, and
the master key msk.

Encrypt(mpk, x,M) → Ctx. The encryption algorithm gets as input mpk, an attribute x ∈ X and
a message M ∈M. It outputs a ciphertext Ctx.
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KeyGen(mpk,msk, y) → sky. The key generation algorithm gets as input msk and a value y ∈ Y,
and outputs a secret key sky. Note that y is public in sky.

Decrypt(mpk, sky,Ctx) → M . The decryption algorithm gets as input sky and Ctx such that
P(x, y) = 1. It outputs a message M .

For correctness, it is requires that for all (x, y) ∈ X × Y such that P(x, y) = 1 and all M ∈M,

Pr[Decrypt(mpk, sky,Encrypt(mpk, x,M)) = M ] = 1,

where the probability is taken over (mpk,msk) ← Setup(1λ,X ,Y,M), sky ← KeyGen(mpk,msk, y),
and the coins of Encrypt.

Fully Attribute-Hiding Security. We recall the notion of fully attribute-hiding security for
predicate encryption as defined in [28]. The fully attribute hiding property refers to the fact that
an adversary cannot distinguish a ciphertext for attribute x(0) from a ciphertext for x(1), as long
as it only queries keys sky where P(x(0), y) = P(x(1), y). This is stronger than the so-called weakly
attribute hiding property, which requires the adversary to only query keys sky where P(x(0), y) =
P(x(1), y) = 0.

Fully attribute hiding security is essentially the specialization of the indistinguishability based
security notion for functional encryption, for the functionality FP(y, (x,M)) that outputs M if
P(x, y) = 1 and ⊥ otherwise.

For any stateful adversary A, any predicate encryption scheme PE, any bit β ∈ {0, 1}, and

any security parameter λ, we define the experiments Expind-pe-cpa-β
PE,A (λ) and Expsel-ind-pe-cpa-β

PE,A (λ) in
Figure 2. We define the advantage of A for adaptive security as:

Advind-pe-cpa
FE,A (λ) :=

∣∣∣Pr[Expind-pe-cpa-0
FE,A (λ) = 1]− Pr[Expind-pe-cpa-1

FE,A (λ) = 1]
∣∣∣

=

∣∣∣∣∣1− 2 Pr

[
β′ = β :

β ←r {0, 1}
Expind-pe-cpa-β

FE,A (λ) = β′

]∣∣∣∣∣
We define the advantage Advsel-ind-pe-cpa

FE,A (λ) for selective security similarly, with respect to

experiments Expsel-ind-pe-cpa-β
FE,A (λ) for β ∈ {0, 1}.

Definition 9 (Fully Attribute-Hiding Security). A predicate encryption scheme PE is fully
attribute hiding, adaptively secure (resp. selectively secure) against chosen-plaintext attacks if for

every PPT algorithm A, Advind-pe-cpa
PE,A (λ) (resp. Advsel-ind-pe-cpa

PE,A (λ)) is negligible.

3 Our Functional Encryption for Bilinear Maps from MDDH

In this Section we present a functional encryption scheme that supports the bilinear maps func-
tionality described in Section 2.3, and is proven selectively secure under standard assumptions.

To begin with, in Section 3.1 we describe a simple FE scheme that works in the private-key
setting, is only single-ciphertext secure, and supports the bilinear maps functionality F : K×M→
Y, where M⊂ Znp × Zmp and K ⊂ Zn×mp are such that for for all (x,y) ∈M, F ∈ K,

F (F, (x,y)) = x>Fy ∈ {0, 1}.

This private-key scheme is used as a building block in the security proof of our main public-key
FE scheme that we present in Section 3.2. We stress that our public-key FE scheme supports the
bilinear map functionality without the restriction on boolean outputs as above.
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Expind-pe-cpa-β
PE,A (λ) , Expsel-ind-pe-cpa-β

PE,A (λ) :

(x(0),M0, x
(1),M1)← A(1λ)

(mpk,msk)←r Setup(1λ)

Ct := EncO(x(0),M0, x
(1),M1)

β′ ← A(mpk, Ct )
KeyGenO(·), EncO(·, ·, ·, ·)

Return β′.

EncO(x(0),M0, x
(1),M1):

Return Ct? := Encrypt(mpk, x(β),Mβ)

KeyGenO(y ∈ Y):
Return skK := KeyGen(msk, y)

Fig. 2. Experiments Expind-pe-cpa-β
PE,A (λ) and Expsel-ind-pe-cpa-β

PE,A (λ) for b ∈ {0, 1}, used to define adaptive, and selective
security of PE, respectively. In each procedure, the components inside a solid (dotted) frame are only present in the
games marked by a solid (dotted) frame. In both games, the oracle EncO(·, ·, ·, ·) is queried at most once (by A or
the game itself), on x(0),M0, x

(1),M1, such that for all queries y to KeyGenO(·), we have: P(x(0), y) = P (x(1), y).
Moreover, if P(x(0), y) for some query y to KeyGenO(·), then M0 = M1.

3.1 Private-key, single-ciphertext secure FE for bilinear maps with boolean ouput

In this section, we present a family of private-key, single-ciphertext secure functional encryption
schemes for bilinear maps with boolean outputs, parametrized by an integer k ≥ 1 and a matrix
distribution Dk (see Definition 1). That is, for each k ∈ N, and each matrix distribution Dk,
the scheme FEone(k,Dk), presented in Figure 3, is single-ciphertext, selectively secure under the
Dk-mddh assumption, on asymmetric pairings.

Technical overview. Before describing the scheme in full detail in Figure 3, we give an informal
exposition of our techniques. The basic idea in our private-key, single ciphertext secure FE is to
create the ciphertext and the secret keys of the form:

Ct(x,y) := {[Ari + b⊥xi]1}i∈[n], {[Bsj + a⊥yj ]2}j∈[m], skF := [
∑
i,j

fi,jr
>
iA
>Bsj ]T ,

where A,B ←r Dk, and (A|b⊥), (B|a⊥) are bases of Zk+1
p such that a⊥ ∈ orth(A) and b⊥ ∈

orth(B), à la [16]. The vectors [Ari]1 and [Bsj ]2 for i ∈ [n], j ∈ [m], a⊥ and b⊥ are part of a
master secret key, used to (deterministically) generate Ctx,y and skF. Correctness follows from the
orthogonal property: decryption computes

∑
i,j fi,je([Ari+b

⊥xi]
>
1, [Bsj+a

⊥yj ]2) = skF+(a⊥)>b⊥ ·
[F (F, (x,y))]T which is equal to skF if, and only if, F (F, (x,y)) = 0. Security relies on the Dk-mddh
Assumption [18], which stipulates that given [A]1, [B]2 drawn from a matrix distribution Dk over

Z(k+1)×k
p ,

[Ar]1 ≈c [u]1 ≈c [Ar + b⊥]1 and [Bs]2 ≈c [v]2 ≈c [Bs+ a⊥]2,

where r, s←r Zkp, and u,v ←r Zk+1
p . This allows to change Ct(x(0),y(0)) into Ct(x(1),y(1)), but creates

an extra term
[
x(1)>Fy(1) − x(0)>Fy(0)

]
T

in the secret keys skF. We conclude the proof using the

fact that for all F queried to KeyGen, F (F, (x(0),y(0))) = F (F, (x(1),y(1))), as required by the
security definition for FE (see Section 2.2 for the definition of FE), which cancels out the extra
term in all secret keys.

In the following theorem we prove the correctness of the scheme FEone.

Theorem 1 (Correctness). For any k ∈ N∗ and any matrix distribution Dk, the functional
encryption scheme FEone(k,Dk) defined in Figure 3 has perfect correctness.

10



Setup(1λ, F ):

bgp←r G(1λ), A,B←r Dk;
a⊥ ∈ orth(A), b⊥ ∈ orth(B) s.t. (b⊥)>a⊥ = 1
For i ∈ [n], j ∈ [m], ri, sj ←r Zkp, r, s←r Zp.
Return mpk := bgp and

msk :=
(
A,a⊥,B, b⊥, {ri, sj , r, s}i∈[n],j∈[m]

)
KeyGen(msk,F ∈ Zn×mp ):

K := [
∑
i∈[n],j∈[m] fi,jr

>
iA

>Bsj ]1 − [u]1, K̂ := [u]2, where
u←r Zp
Return skF := (K, K̂) ∈ G1 ×G2

Encrypt(mpk,msk, (x,y) ∈ Znp × Zmp ):

For i ∈ [n]: ci := Ari + b⊥rxi,
For j ∈ [m]: ĉj := Bsj + a⊥syj ,
Ct(x,y) := {[ci]1, [ĉj ]2}i∈[n],j∈[m]

Return Ct(x,y) ∈ Gn(k+1)
1 ×Gm(k+1)

2

Decrypt(mpk,Ct(x,y), skF):

Return the boolean:
∑
i∈[n],j∈[m] fi,j ·e([c

>
i ]1, [ĉj ]2)

?
=

e(K, [1]2) + e([1]1, K̂).

Fig. 3. FEone(k,Dk), a family of private-key, functional encryption schemes parametrized by k ∈ N∗ and a matrix
distribution Dk, single-ciphertext, selectively secure under the Dk-mddh assumption on asymmetric pairings.

Proof of Theorem 1. To prove correctness, we first use the fact that for any matrix distribution Dk,
by Property 1 of Definition 1, with probability 1− 1

Ω(p) over the choices of A,B←r Dk, we have:

orth(A) * span(B). Thus, there exist vectors a⊥ ∈ orth(A), b⊥ ∈ orth(B) such that (b⊥)>a⊥ = 1.

Note that we can sample these vectors efficiently given A,B ∈ Z(k+1)×k
p .

Then, we use the fact that for all i ∈ [n], j ∈ [m],

e([c>i ]1, [ĉj ]2) = [r>iA
>Bsj + (a⊥)>b⊥︸ ︷︷ ︸

=1

rsxiyj ]T ,

since A>a⊥ = B>b⊥ = 0. Therefore, the decryption gets

[
∑
i,j

fi,jr
>
iA
>Bsj + rs ·

∑
i,j

fi,jxiyj ]T = e(K, [1]2)− e([1]1, K̂) + rs[
∑
i,j

fi,jxiyj ]T ,

which allows to check if
∑

i,j fi,jxiyj is 0. ut

Next, we show that FEone is selective-secure, for adversaries that make a single challenge en-
cryption query, under the MDDH assumption.

Theorem 2 (Security). For any k ∈ N∗ and any matrix distribution Dk, if the Dk-mddh assump-
tions hold in G1 and G2, then the functional encryption scheme FEone(k,Dk) defined in Figure 3 is
selectively secure, in a single-ciphertext setting (see Definition 6). Namely, for any PPT adversary
A, there exists a PPT adversary B such that:

Advsel-ind-fe-cpa
FEone,A (λ) ≤ 6 ·AdvDk-mddh

G,B (λ) +
2

p
.

Proof of Theorem 2. We prove the security of FEone(k,Dk) via a series of games that is compactly
presented in Figure 4. Before going to the details of the proof and proving the indistinguishability
of each consecutive pair of games, we provide below a high level view of the game transitions:

Game G0 is the selective security experiment for scheme FEone.

11



G0, G1 , G2,G3, , G4 :

(x(0),y(0)), (x(1),y(1))
)
← A(1λ)

mpk := bgp←r G(1λ); A,B←r Dk; β ←r {0, 1};
a⊥ ∈ orth(A), b⊥ ∈ orth(B) s.t. (b⊥)>a⊥ = 1
For i ∈ [n], j ∈ [m]: ri ←r Zkp, sj ←r Zkp, h←r Zk+1

p , r, s←r Zp, w ←r Zp

ci := Ari + rx
(β)
i b⊥; ci := Ari + x

(β)
i h ; ci := Ari

ĉj := Bsj + sy
(β)
j a⊥; ĉj := Bsj

Ct? := {[ci]1, [ĉj ]1}i∈[n],j∈[m]

β′ ← AKeyGenO(·)(mpk,Ct(x(β),y(β))

)
Return 1 if β′ = β, 0 otherwise.

KeyGenO(F ∈ Zn×mp ): G0,G1,G2, G3,G4

K := [u]1 ←r G1; K̂ := [
∑
i,j fi,jc

>
i ĉj ]2 − [u]2 − (rs+ w ) · [

∑
i,j fi,jx

(β)
i y

(β)
j ]2

Return skF := (K, K̂)

Fig. 4. Games Gi, for i = 0, . . . , 4 for the proof of selective security of FEone(k,Dk) in Figure 3. In each procedure,
the components inside a solid (dotted, gray) frame are only present in the games marked by a solid (dotted, gray)
frame.

Game G1 is the same as game G0 except that in the ci ciphertext components we replace the
vector r · b⊥ with a fresh vector h←r Zk+1

p . In Lemma 1 we show that G0 is computationally
indistinguishable from G1 under the MDDH assumption.

Game G2 is the same as game G1 except that the ci ciphertext components encrypt 0. In Lemma
2 we show that G1 is computationally indistinguishable from G2 under the MDDH assumption.

Game G3 is the same as game G2 except that in the secret keys we switch the value rs used for

computing K̂ := [
∑

i,j fi,jc
>
i ĉj − rs

∑
i,j fi,jx

(β)
i y

(β)
j − u]2 into rs + w, for a fresh w ←r Zp. In

Lemma 3 we use a statistical argument to show that G2 is negligibly close to G3.
Game G4 : here we change the ĉj ciphertext components so that they encrypt 0 instead of y(β). In

Lemma 4 we use the MDDH assumption to show that G4 is computationally indistinguishable
from G3. Finally, in Lemma 5 we argue that the adversary’s view in this game is independent
of the bit β, and thus the adversary’s advantage in this game is zero.

More formally, in what follows we use Advi to denote the advantage of A in game Gi, that is
Advi := |1− 2 Pr[Gi returns 1]|. Note that G0 is defined as:

G0 :

β ←r {0, 1}
β′ ← Expsel-ind-fe-cpa-β

FEone,A (λ)

Return 1 if β′ = β, 0 otherwise.

Where Expsel-ind-fe-cpa-β
FEone,A (λ) is the experiment used in Definition 6 of

indistinguishability-based security for functional encryption. In particular, we have

Adv0 = Advsel-ind-fe-cpa
FEone,A (λ).

Lemma 1 (G0 to G1). There exists a PPT adversary B0 such that:

|Adv0 − Adv1| ≤ 2 ·AdvDk-mddh
G,B0 (λ).
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Proof of Lemma 1. Here, we use the mddh assumption on [A]1 to change the distribution of the
challenge ciphertext, after arguing that one can simulate the game without knowing a⊥ or [A]2.

Namely, we build a PPT adversary B0 as described in Figure 5, and we prove that |Adv0−Adv1| ≤
AdvDk-mddh

G,B0 (λ).

B0

(
bgp, [A]1, [h]1

)
:(

(x(0),y(0)), (x(1),y(1))
)
← A(1λ)

mpk := bgp, B←r Dk; β ←r {0, 1}; b⊥ ←r orth(B)
For i ∈ [n], j ∈ [m]: ri ←r Zkp, sj ←r Zkp, z ←r Zk+1

p , r ←r Zp
ci := Ari + x

(β)
i h + rx

(β)
i b⊥

ĉj := Bsj + y
(β)
j z;

Ct? := {[ci]1, [ĉj ]2}i∈[n],j∈[m]

β′ ← AKeyGenO(·)(mpk,Ct?)
Return 1 if β = β′, 0 otherwise.

KeyGenO(F ∈ Zn×mp ):

u←r Zp, K̂ := [u]2;

K := [
∑
i,j fi,jc

>
i ĉj −

∑
i,j fi,jx

(β)
i r(b⊥)>ĉj ]1 − [u]1

Return skF := (K, K̂)

Fig. 5. Adversary B0 against the Dk-MDDH assumption, for the proof of Lemma 1.

First, assume that B0 is given a real mddh challenge, that is, [h]1 := [Ar]1 for r ←r Zkp. We
show that in that case, B0 simulates G0.

-Simulation of Ct?: First, we use the fact that for all x
(β)
i ∈ Zp, r ∈ Zkp, the following distributions

are equal: {ri}i∈[n] and {ri + x
(β)
i r}i∈[n], where ri ←r Zkp. Therefore, we can argue that {ci :=

A(ri + x
(β)
i r) + rx

(β)
i b⊥]1}i∈[n], is identically distributed to {ci := Ari + rx

(β)
i b⊥}i∈[n] as in G0.

Note that here, we are relying on the fact the games are single-ciphertext, and challenge (x0i , x
1
i ) is

independent from the vectors {ri}i∈[n], since the games here are selective.

Then, we use the fact that z ←r Zk+1
p is identically distributed to Bt + sa⊥, where t ←r Zkp

and s ←r Zp, since (B|a⊥) is a basis of Zk+1
p (this is implied by the fact that (b⊥)>a⊥ 6= 0, for

b⊥ ∈ orth(B)). This allows to write {ĉj := B(sj + y
(β)
j t) + sy

(β)
j a⊥}j∈[m], which is identically

distributed to {ĉj := Bsj + sy
(β)
j a⊥}j∈[m] as in G0.

-Simulation of KeyGenO(F ∈ Zn×mp ): As we argued previously, {ci, ĉj}i∈[n],j∈[m] simulated by B0
are identically distributed to those in G0. Therefore, we have:

K := [
∑
i,j

fi,jc
>
i ĉj −

∑
i,j

fi,jx
(β)
i r(b⊥)>ĉj ]1 − [u]1

= [
∑
i,j

fi,jc
>
i ĉj −

∑
i,j

fi,jx
(β)
i r(b⊥)>(Bsj + sy

(β)
j a⊥)]1 − [u]1

= [
∑
i,j

fi,jc
>
i ĉj − rs

∑
i,j

fi,jx
(β)
i y

(β)
j ]1 − [u]1,
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and K̂ := [u]2, which is distributed exactly as in G0.
Now, assume that B0 is given a uniform challenge, that is, [h]1 ←r Gk+1

1 . We show that in that
case, B0 simulates G1.

-Simulation of Ct?: First, we use the fact that for all b⊥ ∈ Zk+1
p , the following distributions are

equal: h + b⊥ and z, where h, z ←r Zk+1
p . Therefore, we can argue that {ci := Ari + x

(β)
i z}i∈[n],

as in G1.
Then, since the vectors {ĉj}j∈[m] are identically distributed in G0 and G1, we can argue exactly

as before (for the case where B0 is given a real mddh challenge), that the {ĉj}j∈[m] are distributed
as in G1.

-Simulation of KeyGenO(F ∈ Zn×mp ): As we argued previously for the case where B0 is given a real

mddh challenge, the key computed by B0 is of the form: K := [
∑

i,j fi,jc
>
i ĉj−rs

∑
i,j fi,jx

(β)
i y

(β)
j ]1−

[u]1, as in G1. ut

Lemma 2 (G1 to G2). There exists a PPT adversary B1 such that:

|Adv1 − Adv2| ≤ 2 ·AdvDk-mddh
G,B1 (λ).

Proof of Lemma 2. Here, we use the mddh assumption on [A]1 to change the distribution of the
challenge ciphertext, after arguing that one can simulate the game without knowing a⊥ or [A]2, as
for the previous transition.

Namely, we build a PPT adversary B1 as described in Figure 6, and we prove that |Adv1−Adv2| ≤
AdvDk-mddh

G,B1 (λ).

B1

(
bgp, [A]1, [h]1

)
:(

(x(0),y(0)), (x(1),y(1))
)
← A(1λ)

mpk := bgp, B←r Dk; β ←r {0, 1}; b⊥ ←r orth(B)
For i ∈ [n], j ∈ [m]: ri ←r Zkp, sj ←r Zkp, z ←r Zk+1

p , r ←r Zp
ci := Ari + x

(β)
i h

ĉj := Bsj + y
(β)
j z;

Ct? := {[ci]1, [ĉj ]2}i∈[n],j∈[m]

β′ ← AKeyGenO(·)(mpk,Ct?)
Return 1 if β = β′, 0 otherwise.

KeyGenO(F ∈ Zn×mp ):

u←r Zp, K̂ := [u]2;

K := [
∑
i,j fi,jc

>
i ĉj −

∑
i,j fi,jx

(β)
i r(b⊥)>ĉj ]1 − [u]1

Return skF := (K, K̂)

Fig. 6. Adversary B1 against the Dk-MDDH assumption, for the proof of Lemma 2.

First, assume that B1 is given a real mddh challenge, that is, [h]1 := [Ar]1 for r ←r Zkp. We
show that in that case, B1 simulates G2.

-Simulation of Ct?: First, we use the fact that for all x
(β)
i ∈ Zp, r ∈ Zkp, the following distributions

are equal: {ri}i∈[n] and {ri + x
(β)
i r}i∈[n], where ri ←r Zkp. Therefore, we can argue that {ci :=
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A(ri + x
(β)
i r)]1}i∈[n], is identically distributed to {ci := Ari}i∈[n] as in G2. Note that here, we are

relying on the fact the the games are single-ciphertext, and the challenge (x0i , x
1
i ) is independent

from the vectors {ri}i∈[n], since the games here are selective.
Then, since the vectors {ĉj}j∈[m] are identically distributed in G1 and G2, we can argue exactly

as before (for the transition from G0 to G1, see Lemma 1), that the {ĉj}j∈[m] are distributed as in
G2.

-Simulation of KeyGenO(F ∈ Zn×mp ): The key K is exactly as in G2, namely, of the form:

K := [
∑
i,j

fi,jc
>
i ĉj −

∑
i,j

fi,jx
(β)
i r(b⊥)>ĉj ]1 − [u]1

= [
∑
i,j

fi,jc
>
i ĉj −

∑
i,j

fi,jx
(β)
i r(b⊥)>(Bsj + sy

(β)
j a⊥)]1 − [u]1

= [
∑
i,j

fi,jc
>
i ĉj − rs

∑
i,j

fi,jx
(β)
i y

(β)
j ]1 − [u]1,

where the {ci}i∈[n] are distributed as in G2.

Now, assume that B1 is given a uniform challenge, that is, [h]1 ←r Gk+1
1 . In that case, it is

clear that B1 simulates G1. ut

Lemma 3 (G2 to G3). |Adv2 − Adv3| ≤ 2
p .

Proof of Lemma 3. Here, we change the distribution of the keys computed by KeyGenO, using a
statistical argument.

Namely, we use the fact that the following distributions are 1
p -close: (s, rs) and (s, rs + w),

where r, s, w ←r Zp. This allows to switch the value rs used when computing K̂ := [
∑

i,j fi,jc
>
i ĉj −

rs
∑

i,j fi,jx
(β)
i y

(β)
j ]2 − [u]2 to rs+ w, where w ←r Zp. ut

Lemma 4 (G3 to G4). There exists a PPT adversary B3 such that:

|Adv3 − Adv4| ≤ 2 ·AdvDk-mddh
G,B3 (λ).

Proof of Lemma 4. Here, we use the mddh assumption on [B]2 to change the distribution of the
challenge ciphertext, after arguing that one can simulate the game without knowing b⊥ or [B]1.

Namely, we build a PPT adversary B3 as described in Figure 7, and we prove that |Adv3−Adv4| ≤
AdvDk-mddh

G,B3 (λ).

First, assume that B3 is given a real mddh challenge, that is, [h]2 := [Bs]2 for s ←r Zkp. We
show that in that case, B3 simulates G4.

-Simulation of Ct?: We have {ci := Ari, ĉj := Bsj}i∈[n],j∈[m], as in G4.

-Simulation of KeyGenO(F ∈ Zn×mp ): Using the fact that the following distributions are equal:

(s, rs + w), and (s, v), where r, s, v, w ←r Zp, we can argue that the key K̂ := [
∑

i,j fi,jc
>
i ĉj −

v
∑

i,j fi,jx
(β)
i y

(β)
j ]1 − [u]1 is identically distributed than in G4.

Now, assume that B3 is given a uniform challenge, that is, [h]2 ←r Gk+1
2 . We show that in that

case, B3 simulates G3.
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B3

(
bgp, [B]2, [h]2

)
:(

(x(0),y(0)), (x(1),y(1))
)
← A(1λ)

mpk := bgp, A←r Dk; β ←r {0, 1}
For i ∈ [n], j ∈ [m]: ri ←r Zkp, sj ←r Zkp, v ←r Zp
ci := Ari
ĉj := Bsj + y

(b)
j h;

Ct? := {[ci]1, [ĉj ]2}i∈[n],j∈[m]

β′ ← AKeyGenO(·)(mpk,Ct?)
Return 1 if β = β′, 0 otherwise.

KeyGenO(F ∈ Zn×mp ):

u←r Zp, K := [u]1;

K̂ := [
∑
i,j fi,jc

>
i ĉj − v

∑
i,j fi,jx

(b)
i y

(b)
j ]2 − [u]2

Return skF := (K, K̂)

Fig. 7. Adversary B3 against the Dk-MDDH assumption, for the proof of Lemma 4.

-Simulation of Ct?: We use the fact that z ←r Zk+1
p is identically distributed to Bt + sa⊥,

where t ←r Zkp, s ←r Zp, and a⊥ ∈ orth(A) such that a⊥ /∈ span(B) (such a vector exists by

Property 1 in Definition 1), since in this case, (B|a⊥) is a basis of Zk+1
p . This allows to write

{ĉj := B(sj +y
(β)
j t) + sy

(β)
j a⊥}j∈[m], which is identically distributed to {ĉj := Bsj + sy

(β)
j a⊥}j∈[m]

as in G3.

-Simulation of KeyGenO(F ∈ Zn×mp ): As we argued previously for the case where B3 is given

a real mddh challenge, the key computed by B3 is of the form: K := [u]1 ←r G1, and K̂ :=

[
∑

i,j fi,jc
>
i ĉj − v

∑
i,j fi,jx

(β)
i y

(β)
j ]2 − [u]2, as in G3.

ut

Lemma 5 (G4). Adv4 = 0.

Proof of Lemma 5. In this game, the random bit β ←r {0, 1} sampled by SetupO only shows up in∑
i,j fi,jx

(β)
i y

(β)
j in the secret keys. However, recall that the challenge messages (x(0),y(0)), (x(1),y(1))

and the functions F ∈ Zn×mp queried to KeyGenO are such that∑
i,j

fi,jx
(0)
i y

(0)
j =

∑
i,j

fi,jx
(1)
i y

(1)
j ,

by definition of the security game. Therefore, the adversary’s view in G4 does not depend on β. ut

Combining Lemma 1-5 gives Theorem 2. ut

3.2 Public-key FE for Bilinear Maps

In this section, we propose a family of public-key functional encryption schemes for the bilinear map
functionality, that is F : K×M→ Y, where K := Zn×mp ,M := Znp ×Zmp , and Y := GT . The family
of schemes is parametrized by an integer k ≥ 1 and a matrix distribution Dk (see Definition 1) so
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that, for each k ∈ N, and each matrix distribution Dk, the scheme FE(k,Dk), presented in Figure 8,
is selectively secure under the Dk-mddh and the 3-pddh assumptions, on asymmetric pairings.

Technical overview. We first give a high level view of our techniques. Our public-key FE builds
on the private-key, single ciphertext secure FE presented in Section 3.1, but differs from it in the
following essential way.

– In the public-key setting, for the encryption to compute [Ari + rb⊥xi] and [Bsj + sa⊥yj ] for
i ∈ [n], j ∈ [m] and any x ∈ Znp ,y ∈ Zmp , the vectors [a⊥]2 and [b⊥]1 would need to be part of
the public key, which is incompatible with the mddh assumption on [A]1 or [B]2. To solve this

problem, we add an extra dimension, namely, we use bases

(
A|b⊥ 0

0 1

)
and

(
B|a⊥ 0

0 1

)
where

the extra dimension will be used for correctness, while (A|b⊥) and (B|a⊥) will be used for
security (using the mddh assumption, since a⊥ and b⊥ are not part of the public key anymore).

– To avoid mix and match attacks, the encryption randomizes the bases(
A|b⊥ 0

0 1

)
and

(
B|a⊥ 0

0 1

)
into

W−1
(

A|b⊥ 0

0 1

)
and W>

(
B|a⊥ 0

0 1

)
for W←r GLk+2 a random invertible matrix. This “glues” the components of a ciphertext that
are in G1 to those that are in G2.

– We randomize the ciphertexts so as to contain [Ari · γ]1 and [Bsj · σ]2, where γ, σ ←r Zp are
the same for all i ∈ [n], and j ∈ [m], but fresh for each ciphertext. The ciphertexts also contain
[γ · σ]1, for correctness.

Discussion on the Techniques. We note that the techniques used here share some similarities
with Dual Pairing Vector Space constructions (e.g., [33,34,30,17]). In particular, our produced
ciphertexts and private keys are distributed as in their corresponding counterparts in [33]. The
similarities end here though. These previous constructions all rely on the Dual System Encryption
paradigm [40], where the security proof uses a hybrid argument over all secret keys, leaving the
distribution of the public key untouched. Our approach, on the other hand, manages to avoid this
inherent security loss by changing the distributions of both the secret and public keys. Our approach
also differs from [12] and follow-up works [14,21] in that they focus on the comparison predicate (see
Section 6), a function that can be expressed via a quadratic function that is significantly simpler
than those considered here. Indeed, for the case of comparisons predicates it is enough to consider
vectors of the form: [Ari + xib

⊥]1, [Bsj + yja
⊥]2, where xi and yj are either 0, or some random

value (fixed at setup time, and identical for all ciphertexts and secret keys), or are just random
garbage.

In the following theorem we show that the scheme satisfies correctness.

Theorem 3 (Correctness). For any k ∈ N∗ and any matrix distribution Dk, the functional
encryption scheme FE(k,Dk) defined in Figure 8 has perfect correctness.

Proof of Theorem 3. Correctness follows from the facts that for all i ∈ [n], j ∈ [m]:

e([ci]1, [ĉj ]2) = [γr>iA
>Bsj + xiyj ]T and e([cn+i]1, [ĉm+j ]2) = [γr>n+iA

>Bsm+j ]T .
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Setup(1λ, F ):

bgp←r G(1λ), A,B←r Dk;
For i ∈ [2n], j ∈ [2m], ri, sj ←r Zkp.
Return mpk := {[Ari]1, [Bsj ]2}i∈[2n],j∈[2m]

and msk :=
(
A,B, {ri, sj}i∈[2n],j∈[2m]

)
KeyGen(msk,F ∈ Zn×mp ):

K := [
∑
i∈[n],j∈[m] fi,j

(
r>iA

>Bsj + r>i+nA
>Bsj+m

)
]1 − [u]1 ∈ G1

K̂ := [u]2 ∈ G2, where u←r Zp.
Return skF := (K, K̂) ∈ G1 ×G2

Encrypt(mpk, (x,y) ∈ Znp × Zmp ):

W,V←r GLk+2, γ ←r Zp; c0 = ĉ0 := γ; for all i ∈ [n], j ∈ [m]:

ci :=

(
γ ·Ari
xi

)>

W−1, cn+i :=

(
γ ·Arn+i

0

)>

V−1,

ĉj := W

(
Bsj
yj

)
, ĉm+j := V

(
Bsm+j

0

)
Ct(x,y) := {[c0]1, [ĉ0]2, [ci]1, [ĉj ]2}i∈[2n],j∈[2m] ∈ G2n(k+2)+1

1 ×G2m(k+2)+1
2

Decrypt(mpk,Ct(x,y), skF):

Return
∑
i∈[n],j∈[m] fi,j

(
e([ci]1, [ĉj ]2) + e([cn+i]1, [ĉm+j ]2)

)
− e([c0]1, K̂)− e(K, [ĉ0]2).

Fig. 8. FE(k,Dk), a family of functional encryption schemes parametrized by k ∈ N∗ and a matrix distribution Dk,
selectively secure under the Dk-mddh and 3-pddh assumptions.

Therefore, the decryption gets

[
∑

i∈[n],j∈[m]

fi,jγ
(
r>iA

>Bsj + r>n+iA
>Bsm+j

)
]T

+ [
∑

i∈[n],j∈[m]

fi,jxiyj ]T − e([c0]1, K̂)− e(K, [ĉ0]2)

= [
∑

i∈[n],j∈[m]

fi,jxiyj ]T .

ut
Next, in the following theorem we prove that the scheme satisfies indistinguishability based

security in a selective sense.

Theorem 4 (Security). For any k ∈ N∗ and any matrix distribution Dk, if the Dk-mddh and the
3-pddh assumptions hold relative to G, then the functional encryption scheme FE(k,Dk) defined in
Figure 8 is selectively secure. Precisely, for any PPT adversary A, there exists PPT adversaries B
and B′ such that:

Advsel-ind-fe-cpa
FE,A (λ) ≤ 24 ·AdvDk-mddh

G,B (λ) + 4 ·Adv3−pddh
G,B′ (λ) + 2−Ω(λ).

Proof of Theorem 4. We prove the security of FE(k,Dk) via a series of games that are compactly
presented in Figure 9. Before going to the details of the proof and proving the indistinguishability of
each consecutive pair of games, we give below a more intuitive description of each game transition:
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G0, G1, G2, G3 , G4 , G5 :(
(x(0),y(0)), (x(1),y(1))

)
← A(1λ)

bgp←r G(1λ); A,B←r Dk; β ←r {0, 1}; a⊥ ←r orth(A), b⊥ ←r orth(B) s.t. (b⊥)>a⊥ = 1.

For i ∈ [2n], j ∈ [2m]: ri ←r Zkp, sj ←r Zkp, r, s←r Zp

mpk :=
{[

Ari + rx
(β)
i b⊥

]
1

,

[
Arn+i − rx

(0)
i b⊥

]
1

,

[
Bsj + sy

(β)
j a⊥

]
2[

Bsm+j + sy
(0)
j a⊥

]
2

}
i∈[n],j∈[m]

W←r GLk+2, γ ←r Zp; v ←r Zp ; c0 = ĉ0 := γ

ci :=

γAri + γrx
(β)
i b⊥ + vx

(β)
i b⊥

x
(β)
i − x

(β)
i

>

W−1 ; cn+i :=

γArn+i − γrx
(0)
i b⊥ − vx

(0)
i b⊥

0 + x
(0)
i

>

V−1

ĉj := W

Bsj + sy
(β)
j a⊥

y
(β)
j − y

(β)
j

; ĉm+j := V

Bsm+j + sy
(0)
j a⊥

0 + y
(0)
j


Ct? := {[c0]1, [ĉ0]2, [ci]1, [ĉj ]2}i∈[2n],j∈[2m]

β′ ← AKeyGenO(·)(mpk,Ct?)
Return 1 if β′ = β, 0 otherwise.

KeyGenO(F ∈ Zn×mp ):

K := [
∑
i∈[n],j∈[m] fi,j

(
r>iA

>Bsj + r>n+iA
>Bsm+j

)
]1 − [u]1 ∈ G1

K̂ := [u]2 ∈ G2, where u←r Zp.
Return skF := (K, K̂) ∈ G1 ×G2

Fig. 9. Games Gi, i = 0, . . . , 5 for the proof of selective security of FE(k,Dk) in Figure 8. In each procedure, the
components inside a solid (dotted, gray) frame are only present in the games marked by a solid (dotted, gray) frame.
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Game G0 is the selective security experiment for scheme FE. For the sake of the proof, we look
at the public key elements {[Ari]1, [Bsj ]2}i∈[2n],j∈[2m] as a ciphertext of the FEone scheme en-
crypting vectors (0,0) ∈ Z2n

p × Z2m
p .

Game G1: with the above observation in mind, in this game we change the distribution of the
public key elements so as to be interpreted as an FEone ciphertext encrypting the vectors

(x̃, ỹ) =

((
x(β)

−x(0)

)
,

(
y(β)

y(0)

))
∈ Z2n

p × Z2m
p

In Lemma 6 we show how to argue the indistinguishability of G1 from G0 based on the selective,
single-ciphertext security of FEone (that in turn reduces to Dk-mddh).

Game G2: in this game we change the distribution of the ci components of the challenge ciphertext.
We switch from using {γAri+x̃i ·γrb⊥}i∈[2n] to {γAri+x̃i ·(γr+v)b⊥}i∈[2n], for a random v ←r

Zp. In Lemma 7 we argue the indistinguishability of this change under the 3-pddh assumption.
Game G3 : by using a statistical argument we show that in this game the challenge ciphertexts

can be rewritten as

ci :=

(
γAri + (γr + v)x

(β)
i b⊥

0

)>
W−1; cn+i :=

(
γArn+i − (γr + v)x

(0)
i b

⊥x
(0)
i

)>
V−1;

ĉj := W

(
Bsj + sy

(β)
j a⊥

0

)
; ĉm+j := V

(
Bsm+j + sy

(0)
j a

⊥

y
(0)
j

)
.

This step essentially shows that the change in game G2 made the ciphertexts less dependent on
the bit β.

Game G4: in this game we change again the distribution of the challenge ciphertext components
ci switching from using {γAri+ x̃i · (γr+v)b⊥}i∈[2n] to {γAri+ x̃i ·γrb⊥}i∈[2n]. This change is
analogous to that introduced in game G2, and its indistinguishability follows from the 3-pddh
assumption.
The crucial observation is that the public key in this game can be seen as an FEone ciphertext
encrypting vector (x̃, ỹ), while the challenge ciphertext of game G4 can be seen as an encryption
of vectors ((

0

x(0)

)
,

(
0

y(0)

))
∈ Z2n

p × Z2m
p

using such public key. At a high level, the idea is that we moved to a game in which the
dependence on the challenge messages (x(β),y(β)) is only in the public key.

Game G5: in this game we change back the distribution of the public key elements so as to be
interpreted as an FEone ciphertext encrypting vectors (0,0). The indistinguishability of this
game from game G4 can be argued based on the selective, single-ciphertext security of the
FEone scheme.
The proof is concluded by arguing that in this game the view of the adversary is independent
of the bit β.

In what follows we use Advi to denote the advantage of A in game Gi, that is Advi := |1 −
2 Pr[Gi returns 1]|. G0 is defined as:

G0 :

β ←r {0, 1}
β′ ← Expsel-ind-fe-cpa-β

FE,A (λ)

Return 1 if β′ = β, 0 otherwise.
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Where Expsel-ind-fe-cpa-β
FE,A (λ) is the experiment used in Definition 6 of

indistinguishability-based security for functional encryption. In particular, we have

Adv0 = Advsel-ind-fe-cpa
FE,A (λ).

Lemma 6 (G0 to G1). There exists a PPT adversary B0:

|Adv0 − Adv1| ≤ 12 ·AdvDk-mddh
G,B0 (λ) +

4

p
.

Proof of Lemma 6. Using the selective, single-ciphertext security of the underlying private-key
scheme (which is exactly the scheme in Figure 3), we can change the distribution of the public key
elements from {[Ari]1, [Bsj ]2}i∈[2n],j∈[2m] to{

[Ari + rx
(β)
i b⊥]1, [Arn+i − rx(0)i b

⊥]1, [Bsj + sy
(β)
j a⊥]2, [Bsm+j + sy

(0)
j a

⊥]2

}
i∈[n],j∈[m]

.

In order to apply Theorem 2 we rely on the fact that the FE public key can be seen as an FEone

encryption of longer vectors

x̃(0) = 0 ∈ Z2n
p and ỹ(0) = 0 ∈ Z2m

p in G0,

x̃(1) = (x(β)|| − x(0)) ∈ Z2n
p and ỹ(1) = (y(β)||y(0)) ∈ Z2m

p in G1.

Also, secret keys in FE can be seen as FEone secret keys corresponding to matrices

F̃ =

(
F 0

0 F

)
∈ Z2n×2m

p

With this observation in mind, it can be seen that the restriction

x(1)>Fy(1) = x(0)>Fy(0)

in the queries made by A translates into legitimate queries by B0 since x(β)>Fy(β)−x(0)>Fy(0) = 0
and x̃(0)> F̃ ỹ(0) = x̃(1)> F̃ ỹ(1) = 0. Thus, by Theorem 2 (security of the single-ciphertext secure
scheme), we obtain the lemma. ut

Lemma 7 (G1 to G2). There exists a PPT adversary B1 such that:

|Adv1 − Adv2| ≤ 2 ·Adv3−pddh
G,B1 (λ) +

2

p
.

Here, we change the distribution of the challenge ciphertexts, using the 3-pddh assumption.
Proof of Lemma 7. Upon receiving a 3-pddh challenge (bgp, [a]1, [b]2, [c]1, [c]2, [z]1) (see Definition 3),
and the challenge messages (x(0),y(0)), (x(1),y(1)), B1 simulates the output of the Setup phase by
picking A,B←r Dk; β ←r {0, 1}; a⊥ ←r orth(A), b⊥ ←r orth(B) s.t. (b⊥)>a⊥ = 1, and setting:

[r]1 := [a]1, [s]2 := [b]2, [γ]1 := [c]1 and [γ]2 := [c]2.

Then, for i ∈ [2n], j ∈ [2m], B1 picks ri ←r Zkp, sj ←r Zkp and computes

mpk :=
{[

Ari + rx
(β)
i b⊥

]
1
,
[
Arn+i − rx(0)i b

⊥
]
1
,
[
Bsj + sy

(β)
j a⊥

]
2
,
[
Bsm+j + sy

(0)
j a

⊥
]
2

}
i∈[n],j∈[m]

.
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It picks W̃, Ṽ←r GLk+2 and implicitly sets

W := W̃

(
B|s · a⊥ 0

0 1

)−1
and V := Ṽ

(
B|s · a⊥ 0

0 1

)−1
.

Here we use the fact that (B|a⊥) is full rank since a⊥ /∈ span(B) (this is implied by the fact that
(b⊥)>a⊥ 6= 0, with b⊥ ∈ orth(B)), and that with probability 1 − 1

p over the choices of s ←r Zp,
s 6= 0.

Then, for i ∈ [n], j ∈ [m], it computes

[ci]1 :=


 γri

z · x(β)i

x
(β)
i


>


A>B 0 0

0 (b⊥)>a⊥︸ ︷︷ ︸
=1

0

0 0 1

W̃−1


1

and [ĉj ]2 :=

W̃

 sj

y
(β)
j

y
(β)
j



2

[cn+i]1 :=


 γrn+i

−z · x(0)i
0

>A>B 0 0

0 1 0

0 0 1

 Ṽ−1


1

and [ĉm+j ]2 :=

Ṽ

sm+j

y
(0)
j

0



2

.

B1 computes [c0]1 := [γ]1, [ĉ0]2 := [γ]2, and simulates KeyGenO as in G2 (see Figure 9). Finally,
if A outputs β′, B1 outputs 1 if β′ = β, and 0 otherwise.

It can be seen that when [z]1 is a real 3-pddh challenge, i.e., [z]1 = [abc]1, then B1 simulates G1;
whereas it simulates G2 when [z]1 ←r G1. In particular, while this is easy to see for the elements
of the public key and for ciphertexts [ĉj ]2, [ĉm+j ]2, for the ciphertext elements [ci]1, [cn+i]1 we
observe that they can be written as

ci :=

γB>Ari

z · x(β)i

x
(β)
i


>(

B|s · a⊥ 0

0 1

)−1
W−1 =

(
γAri + zs−1 · x(β)i

x
(β)
i

)>
W−1

cn+i :=

γB>Arn+i

−z · x(0)i
0

>(B|s · a⊥ 0

0 1

)−1
V−1 =

(
γArn+i + zs−1 · x(0)i

0

)>
V−1.

So, if z = abc, then zs−1 = rγ and the ciphertexts are distributed as in G1; otherwise if z is random
zs−1 is identically distributed to (rγ+v) as in G2. This proves |Adv1−Adv2| ≤ 2·Adv3−pddh

G,B1 (λ)+ 2
p .

ut

Lemma 8 (G2 to G3). |Adv2 − Adv3| ≤ 12
p .

Here, we change the distribution of the challenge ciphertexts, using a statistical argument.
Proof of Lemma 8. First, we use the fact that for all r, γ ∈ Zp, the following are identically dis-
tributed: (r, γ, v) and (r, γ, v+γr), where v ←r Zp. Therefore, we can write the challenge ciphertexts

as follows. For all i∈ [n], j ∈ [m]: ci :=

(
γAri + vx

(β)
i b⊥

x
(β)
i

)>
W−1; cn+i :=

(
γArn+i − vx(0)i b⊥

0

)>
V−1.

Then, we use the facts that:
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– (s, v) where s, v ←r Zp and (s, v) where s ←r Z∗p and v ←r Zp such that sv + 1 6= 0 are

statistically 2
p -close distributions.

– W←r GLk+2 and W̃ ·
(

B|a⊥ 0

0 1

)
·

 Idk×k 0 0

0 1− 1
sv+1

s
sv+1

0 1
sv+1

−s
sv+1

·(B|a⊥ 0

0 1

)−1
, where W̃←r GLk+2,

s←r Z∗p,and v ←r Zp such that sv+ 1 6= 0, are identically distributed, since (B|a⊥) is full rank

(this is implied by the fact that a⊥ /∈ span(B), since (b⊥)>a⊥ 6= 0), and det

(
1− 1

sv+1
s

sv+1
1

sv+1
−s
sv+1

)
=

1
sv+1 6= 0.

Therefore, we can change the distribution of {ci, ĉj}i∈[n],j∈[m] as follows:

ĉj = W̃ ·
(

B|a⊥ 0

0 1

)
·

 Idk×k 0 0

0 1− 1
sv+1

s
sv+1

0 1
sv+1

−s
sv+1


 sj

sy
(β)
j

y
(β)
j


= W̃ ·

(
B|a⊥ 0

0 1

)
·

 sj

sy
(β)
j

0


= W̃ ·

(
Bsj + sy

(β)
j a⊥

0

)
and

ci =

 γri

vx
(β)
i

x
(β)
i


>A>B 0 0

0 1 0

0 0 1

 ·
 Idk×k 0 0

0 1− 1
sv+1

s
sv+1

0 1
sv+1

−s
sv+1

−1 · (B|a⊥ 0

0 1

)−1
· W̃−1

=

 γri

v · x(β)i

x
(β)
i


>A>B 0 0

0 1 1

0 1
s −v

 · (B|a⊥ 0

0 1

)−1
· W̃−1

=

 γri

(v + 1
s ) · x(β)i

0

> ·
A>B 0 0

0 1 0

0 0 1

 · (B|a⊥ 0

0 1

)−1
· W̃−1

=

(
γAri + (v + 1

s ) · x(β)i b⊥

0

)>
· W̃−1

Then, we use the facts that:

– (s, v) where s ←r Z∗p and v ←r Zp such that sv + 1 6= 0 is statistically 1
p -close to(s, v) where

s←r Z∗p and v ←r Z∗p such that sv + 1 6= 0.

– V ←r GLk+2 and Ṽ ·
(

B|a⊥ 0

0 1

)
·

 Idk×k 0 0

0 1 1
v

0 1
s 1 + 1

sv

 · (B|a⊥ 0

0 1

)−1
, where Ṽ ←r GLk+2,

s ←r Z∗p,and v ←r Z∗p such that sv + 1 6= 0, are identically distributed, since (B|a⊥) is full

rank, and det

(
1 1

v
1
s 1 + 1

sv

)
= 1.
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Therefore, we can change the distribution of {cn+i, ĉm+j}i∈[n],j∈[m] as follows:

ĉm+j = Ṽ ·
(

B|a⊥ 0

0 1

)
·

 Idk×k 0 0

0 1 1
v

0 1
s 1 + 1

sv


 sj

sy
(0)
j

0


= Ṽ ·

(
B|a⊥ 0

0 1

)
·

 sj

sy
(0)
j

y
(0)
j


= Ṽ ·

(
Bsj + sy

(0)
j a

⊥

y
(0)
j

)

and

cn+i =

 γrn+i

−vx(0)i
0

>A>B 0 0

0 1 0

0 0 1

 ·
 Idk×k 0 0

0 1 1
v

0 1
s 1 + 1

sv

−1 · (B|a⊥ 0

0 1

)−1
· Ṽ−1

=

 γrn+i

−(v + 1
s )x

(0)
i

x
(0)
i


>A>B 0 0

0 1 0

0 0 1

 · (B|a⊥ 0

0 1

)−1
· Ṽ−1

=

(
γArn+i − (v + 1

s )x
(0)
i b

⊥

x
(0)
i

)>
· Ṽ−1

Finally, we use the fact that for all γ ∈ Zp, the distributions: (v+ 1
s , s) where s, v ←r Z∗p such that

sv+ 1 6= 0, and (v+ γ, s) where s, v ←r Zp, are statistically 3
p -close. Thus, we obtain, for all i ∈ [n]

and j ∈ [m]: ci :=

(
γAri + (v + γ)x

(β)
i b⊥

0

)>
W̃−1, cn+i :=

(
γArn+i − (v + γ)x

(0)
i b

⊥

x
(0)
i

)>
Ṽ−1,

ĉj := W̃

(
γBsj + y

(β)
j a⊥

0

)
, ĉm+j := Ṽ

(
γBsj + y

(0)
j a

⊥

y
(0)
j

)
, as in G3.

This proves |Adv2 − Adv3| ≤ 12
p . ut

Lemma 9 (G3 to G4). There exists an adversary B3 such that

|Adv3 − Adv4| ≤ 2 ·Adv3−pddh
G,B2 (λ) +

2

p
.

Here, we change the distribution of the challenge ciphertext, using the 3-pddh assumption, as
for Lemma 7.
Proof of Lemma 9. Upon receiving a 3-pddh challenge (bgp, [a]1, [b]2, [c]1, [c]2, [z]1) (see Definition 3),
and the challenge messages (x(0),y(0)), (x(1),y(1)), B1 simulates the output of the Setup phase by
picking A,B←r Dk; β ←r {0, 1}; a⊥ ←r orth(A), b⊥ ←r orth(B) s.t. (b⊥)>a⊥ = 1, and setting:

[r]1 := [a]1, [s]2 := [b]2, [γ]1 := [c]1 and [γ]2 := [c]2.
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Then, for i ∈ [2n], j ∈ [2m], B1 picks ri ←r Zkp, sj ←r Zkp and computes

mpk :=
{[

Ari + rx
(β)
i b⊥

]
1
,
[
Arn+i − rx(0)i b

⊥
]
1
,
[
Bsj + sy

(β)
j a⊥

]
2
,
[
Bsm+j + sy

(0)
j a

⊥
]
2

}
i∈[n],j∈[m]

.

It picks W̃, Ṽ←r GLk+2 and implicitly sets

W := W̃

(
B|s · a⊥ 0

0 1

)−1
and V := Ṽ

(
B|s · a⊥ 0

0 1

)−1
.

Here we use the fact that (B|a⊥) is full rank since a⊥ /∈ span(B) (this is implied by the fact that
(b⊥)>a⊥ 6= 0, with b⊥ ∈ orth(B)), and that with probability 1 − 1

p over the choices of s ←r Zp,
s 6= 0.

Then, for i ∈ [n], j ∈ [m], it computes

[ci]1 :=


 γri

z · x(β)i

0

>


A>B 0 0

0 (b⊥)>a⊥︸ ︷︷ ︸
=1

0

0 0 1

W̃−1


1

and [ĉj ]2 :=

W̃

 sj

y
(β)
j

0



2

[cn+i]1 :=


 γrn+i

−z · x(0)i
x
(0)
i


>A>B 0 0

0 1 0

0 0 1

 Ṽ−1


1

and [ĉm+j ]2 :=

Ṽ

sm+j

y
(0)
j

y
(0)
j



2

.

Finally, B1 computes [c0]1 := [γ]1, [ĉ0]2 := [γ]2, and simulates KeyGenO as in G3 (see Figure 9).
Note that when [z]1 is a real 3-pddh challenge, i.e [z]1 = [abc]1, then B1 simulates G3; whereas it

simulates G4 when [z]1 ←r G1. This proves |Adv3 − Adv4| ≤ 2 ·Adv3−pddh
G,B1 (λ) + 2

p . ut

Lemma 10 (G4 to G5). There exists an adversary B4 such that

|Adv4 − Adv5| ≤ 12 ·AdvDk-mddh
G,B4 (λ) +

4

p
.

Proof of Lemma 10. This transition is symmetric to that between G0 and G1: we use the selec-
tive, single-ciphertext security of the underlying private-key scheme (in Figure 3), to switch: {[Ari+
rx

(β)
i b⊥]1, [Arn+i−rx(0)i b⊥]1, [Bsj+sy

(β)
j a⊥]2, [Bsm+j+sy

(0)
j a

⊥]2}i∈[n],j∈[m] to {[Ari]1, [Bsj ]2}i∈[2n],j∈[2m],

since x
(β)>
i Fy

(β)
j −x

(0)>
i Fy

(0)
j = 0, by definition of the security game. Thus, by Theorem 2 (security

of the single-ciphertext secure scheme), we obtain the lemma. ut

Theorem 4 follows from Lemmas 6-10, and the fact that G5 is independent from the bit β ←r

{0, 1}. ut

4 Our Efficient Functional Encryption for Bilinear Maps in the GGM

In this section, we present a functional encryption scheme, FEGGM, that supports the bilinear map
functionality, and is proven secure against adaptive adversaries in the generic group model. In
addition to be proven adaptive secure, this scheme enjoys a simpler structure, and is more efficient,
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as it admits shorter ciphertexts that comprise 2(n+m+1) group elements (as opposed to 6n+6m+2
in the SXDH instantiation of the scheme of Section 3.2). For ease of exposition, the scheme is
presented for the case in which the functions act over vectors of the same dimension n. It is easy
to see that the case in which (x,y) ∈ Znp × Zmp with n > m can be captured by padding y with
zero entries.8

Technical Overview. We first provide a high-level view of the techniques used in this con-
struction. The initial idea of the construction is to encrypt the two vectors x and y à la ElGa-
mal in the two groups G1 and G2 respectively, i.e., the ciphertext includes c = [r · a + x]1 and
d = [s · b+ y]2 where r, s are randomly chosen and the vectors ([a]1, [b]2) are in the public key. At
this point, we observe that, given c,d and a function F, one can use the bilinear map to compute
U = [(r · a + x)>F(s · b + y)]T . This basic idea is similar to that of the scheme of Section 3.2.
However, here we develop a different technique to enable decryption.

The basic scheme presented above is extended as follows. First, we let the secret key for function
F be the element [a>Fb]1. Now, if in the ciphertext we include the element [rs]2, one can extract

[sx>Fb+ ra>Fy + x>Fy]T = U · e([a>Fb]1, [rs]2)
−1.

Above the function’s result is still “blinded” by cross terms s(x>Fb) + r(a>Fy). Our second idea,
to solve this issue and enable full decryption, is to add to the ciphertext the ElGamal encryptions
of the vectors s · x and r · y. Namely, we add to the ciphertext the elements ĉ = [t · a+ s · x]1 and
d̂ = [z · b + r · y]2 for random t, z, and the element [rs − t − z]2 (instead of [rs]2). With all this
information, one can compute the value U in the same way as above, and then use the public key
([a]1, [b]2) and the ciphertext components ĉ, d̂ to compute

U ′ = [(t · a+ s · x)>Fb+ a>F(z · b+ r · y)]T .

By a simple calculation, the function’s result can be finally computed as

[x>Fy]T = U · U ′−1 · e([a>Fb]1, [rs− z − t]2)−1.

As a final note, in the full scheme secret keys are slightly different, we randomize them in order to
achieve collusion resistance.

Below we present our second FE scheme in detail.

Setup(1λ, n) runs the bilinear group generator bgp ←r G(1λ) to obtain parameters bgp = (p,G1,
G2,GT , g1, g2, e). Next, the algorithm samples a scalar w ←r Zp and two vectors a, b ←r Znp
uniformly at random. The message space is M ⊆ Znp × Znp and the key space is the set of
matrices K ⊆ Zn×np . It returns the master secret key msk := (w,a, b), and the master public
key mpk := (bgp, [a]1, [b]2, [w]2).

KeyGen(msk,F) takes as input the master secret key msk and a matrix F ∈ K and it returns a
secret key skF := (S1, S2,F) ∈ G2

1 × K where S1, S2 are computed as follows. It samples a
random γ ←r Zp and computes

(S1, S2) := ([a>F b+ γ · w]1, [γ]1).

8 Furthermore, with a close look one can see that the last n −m components of the vectors [b]2, d and d̂ would
become useless and thus can be discarded.
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Encrypt(mpk, (x,y)) takes as input the master public key and a message consisting of two vectors
x,y ∈M, and returns a ciphertext Ct := (c, ĉ,d, d̂, E, Ê) computed as follows.
Choose r, s, t, z ∈ Zp uniformly at random and compute

c := [r · a+ x]1, ĉ := [t · a+ s · x]1

d := [s · b+ y]2, d̂ := [z · b+ r · y]2

E := [rs− z − t]2 Ê := [w(rs− z − t)]2

Decrypt(skF,Ct) parsing skF := (S1, S2,F) and Ct := (c, ĉ,d, d̂, E, Ê), it computes and outputs

V := c>Fd− [a]1
>F d̂− ĉ>F [b]2 − e(S1, E) + e(S2, Ê) ∈ GT .

4.1 Correctness

To see the correctness of our scheme, let

A = c>Fd = [r · a+ x]>1 F [s · b+ y]2

= [(rs) · a>F b+ r · a>Fy + s · x>F b+ x>Fy]T

B = [a]1
>F d̂+ ĉ>F [b]2 = [a]>1 F [z · b+ r · y]2 + [t · a+ s · x]>1 F [b]2

= [z · a>F b+ r · a>Fy + t · a>F b+ s · x>F b]T

and note that

A−B = [(rs− t− z) · a>F b+ x>Fy]T = e(S1 − [w · γ]1, E) + [x>Fy]T

= e(S1, E)− e(S2, Ê) + [x>Fy]T

Since V = A−B − e(S1, E) + e(S2, Ê) it is easy to see that V = [x>Fy]T .

5 Proof of Security of FEGGM

In this section we state and prove the security of the functional encryption scheme FEGGM of Section
4 in the generic group model.

Theorem 5. The functional encryption scheme FEGGM described in Section 4 satisfies security
against chosen-plaintext attacks (i.e., indistinguishability-based security) in the generic bilinear
group model. Precisely, for every adversary A which makes at most Q key derivation oracle queries
and Q̃ generic group oracle queries its advantage is

Advind-fe-cpa
FEGGM,A (λ) ≤ 5(6n+ 6 + Q̃+ 2Q)2

p

The proof consists of two main steps. We first state and prove a master theorem that shows
hardness in the generic bilinear group model for a broad family of interactive decisional problems,
notably a family which includes the indistinguishability-based experiment for our functional encryp-
tion scheme. Slightly more in detail, our master theorem states that these problems are generically
hard under a certain algebraic side condition on the distribution of the elements received by the ad-
versary. Then, following the guidelines of our master theorem, the second step of the proof consists
in showing that the scheme FEGGM meets the algebraic side condition of our master theorem.
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State: Lists L1, L2, LT over G1,G2,GT respectively.

Initialization: Lists L1, L2, LT sampled according to distribution D.

Oracles: The oracles provide black-box access to the group operations, the bilinear map and equalities:

– For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and returns its handle (s, |Ls|).
– For all s ∈ {1, 2, T}: negs(h) appends −Ls[h] to Ls and returns its handle (s, |Ls|).
– mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle (T, |LT |).
– For all s ∈ {1, 2, T}: eqs(h1, h2) returns 1 if Ls[h1] = Ls[h2] and 0 otherwise.

All queries return ⊥ when given invalid indices.

Fig. 10. Generic group model GGMbgp
D for bilinear group setting bgp = (p,G1,G2,GT , e, g1, g2) and distribution

D.

5.1 Generic Bilinear Group Model for Interactive Problems

In this section we introduce the generic group model framework that we use to prove the security
of our functional encryption scheme. We adopt the framework of Barthe et al. [8] for analyzing
assumptions in generic k-linear groups, and specialize their definitions to our case of interest,
that are asymmetric (Type-III) bilinear groups. In addition, since the results in [8] for interactive
assumptions can only model computational problems, we provide extensions that allow us to deal
with interactive decisional problems.

Generic Bilinear Group Model. Let bgp = (p,G1,G2,GT , e, g1, g2) be a bilinear group setting,
L1, L2, LT be lists of group elements in G1,G2 and GT respectively, and let D be a distribution over
L1, L2, LT . The generic model for a bilinear group setting bgp and a distribution D is described
compactly in Figure 5.1. In this model, the challenger first initializes the lists L1, L2, LT by sampling
the group elements according to D, and the adversary receives handles for the elements in the lists.
For s ∈ {1, 2, T}, Ls[h] denotes the h-th element in the list Ls. The handle to this element is simply
the pair (s, h). An adversary running in the generic bilinear group model can apply group operations
and bilinear maps to the elements in the lists. To do this, the adversary has to call the appropriate
oracle specifying handles for the input elements. The challenger computes the result of a query,
stores it in the corresponding list, and returns to the adversary its (newly created) handle. Handles
are not unique (i.e., the same group element may appear more than once in a list under different
handles), but the adversary is provided with an equality oracle to check if two handles refer to the
same group element. This generic group model follows closely that of Maurer [32] (which slightly
differs in presentation, although it is equivalent, to that of Shoup [39]) in that the adversary has
access to the state of the challenger via handles, and equality queries have “free” cost in the sense
that they are not counted for measuring the adversary’s computational complexity.

Below we recall a specific class of distributions on lists of group elements that is used in our work.
Intuitively, it considers group elements that are generated by sampling random values x1, . . . , xn ←r

Zp and by computing [p(x1, . . . , xn)]s ∈ Gs for some multivariate polynomial p.

Definition 10 (Polynomially Induced Distributions [8]). Let P = (P1, P2, PT ) be three lists
of polynomials in Zp[X1, . . . , Xn] such that each list contains the constant polynomial 1. We define
the distribution DP as follows: uniformly sample a vector x ←r Znp and return three lists L =
(L1, L2, LT ) where, for every s ∈ {1, 2, T}, Ls = {[p1(x)]s, . . . , [p|Ps|(x)]s} with pj(X) being the
j-th polynomial in the list Ps. We compactly denote this process as L ← DP . A distribution D is
called polynomially induced if D = DP for some P .
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To give an example, the input to an adversary for the computational Diffie-Hellman assumption
(in G1) can be described as a polynomially induced distribution where P1 = (1, X1, X2) contains
three polynomials in Zp[X1, X2].

Definition 11 (Completion). Given lists of polynomials P = (P1, P2, PT ), we define their com-
pletion C(P ) as

C(P ) := PT ∪ {p1,i(X) · p2,j(X) : ∀p1,i ∈ P1, p2,j ∈ P2}

Intuitively speaking, for lists of polynomials P their completion represents the list of all polynomials
that can be computed by the adversary by applying bilinear maps (i.e., multiplications) to the
polynomials in P . Our definition given above is a specialization (which gets somewhat simplified)
of the completion definition for k-linear groups given in [8].

To give an example, if P = (P1, P2, PT ) with P1 = {1, X1, X2}, P2 = {1, X2}, PT = {1}, then
its completion is the list {1, X1, X2, X1X2, X

2
2}.

Symbolic Group Model. The symbolic group model for a bilinear group setting bgp and a
polynomially induced distribution DP , denoted as SGMbgp

DP
, gives to the adversary the same interface

as the corresponding generic group model, except that internally the challenger stores lists of
polynomials in Zp[X1, . . . , Xn] instead of lists of group elements. The oracles adds, negs, map and
eqs compute addition, negation, multiplication, and equality in the polynomial ring. For any event
E in the generic group model, we define a symbolic version of it, S(E), where equalities over group
elements are replaced by equalities over polynomials. In the case where E is an event which does not
involve equality tests on group elements (e.g., in decisional problems where the finalization event

can be a simple check β
?
= 1 on the adversary’s output bit) it holds S(E) = E .

Generic and Symbolic Group Model for Simple Interactive Problems. The definitions
given so far work for adversaries that receive statically defined lists at the beginning of the game,
and then can interact through the oracles to compute group operations and bilinear maps over
them. In what follows we generalize the generic and symbolic group models in order to capture a
family of interactive decisional problems which includes the indistinguishability security experiment
of our functional encryption scheme. The difference in modeling interactive problems in the generic
(and symbolic) group model is that the adversary is provided with access to additional oracles that
compute further operations on the elements stored in the lists maintained by the challenger in its
state. To formalize this setting, we build on the notion of oracles given by Barthe et al. [8] to model
interactive assumptions. One difference, though, is that in our work we consider oracles that do not
take as inputs group elements (i.e., handles to elements in the challenger’s lists) from the adversary
– we call these problems “simple interactive problems”. In other words, we consider oracles that
take as inputs scalar parameters in Zp and return handles to group elements that are computed
from these scalar parameters, values randomly sampled by DP and other Zp values freshly sampled
by the oracle itself. This restriction on the type of oracles simplifies the presentation, and allows
us to state a master theorem which deals with interactive decisional problems, whereas the master
theorem for interactive assumptions given in [8] can only deal with computational problems.

We begin by defining the notion of an oracle in the generic bilinear group model.

Definition 12 (Oracles in the generic bilinear group model). An oracle is a tuple O =
(Q′, `,m,p,v) where:

– Q′ is the number of oracle queries that are allowed;
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– ` is the number of variables δ1, . . . , δ` in Zp that are taken as scalar parameters;
– m is the number of values ω1, . . . , ωm randomly sampled by the oracle in Zp;
– p = (p1, . . . , pc) is a vector of polynomials in Zp[X1, . . . , Xn, ∆1, . . . ,∆`, Ω1, . . . , Ωm] that de-

scribes the c values returned by the oracle;
– v = (v1, . . . , vc) is a vector of indices such that every vi ∈ {1, 2, T} describes in which group the

polynomial pi belongs to.

Basically, in the generic bilinear group model, the oracle takes as input a vector δ ∈ Z`p from
the adversary and returns handles to group elements [p1(x, δ,ω)]v1 , . . . , [pc(x, δ,ω)]vc computed by
sampling ω ←r Zmp . In the symbolic group model the oracle has the same interface, except that:
instead of sampling new values ωi, it creates new formal variables Ωi; instead of returning handle
to group elements, it returns handles to formal polynomials in the polynomial ring augmented with
the newly created formal variables, i.e., pj(X, δ,Ω) ∈ Zp[X,Ω].

As an example, the reader may consider the key derivation oracle corresponding to the functional
encryption scheme FEGGM. It takes as input ` = n2 values {fi,j}i,j∈[n] which are the coefficients of
the bilinear form F; it samples m = 1 random value ω1 = γ; returns c = 2 elements of G1 which
can be described by polynomials A>FB +Ω1W and Ω1 in Zp[A,B,W,F, Ω1].

Now we state and prove a theorem which shows that one can switch from a generic group
model experiment to a corresponding symbolic group model experiment. This theorem extends to
interactive problems of Theorem 1 in [8].

Theorem 6 (From Generic to Symbol Group Model with Oracles). Let bgp be a bilinear
group setting, where p is prime, DP a polynomially induced distribution, O = (Q′, `,m,p,v) an
oracle such that c = |p|, A an adversary performing at most Q generic group oracle queries, and
E an event without group equality tests. If d is an upper bound on the degree of the polynomials
occurring in the internal state of SGMbgp

DP
, and N = |P1| + |P2| + |PT | is the sum of the lists

cardinalities, then∣∣∣Pr[GGMbgp
DP ,O(A) : E ]− Pr[SGMbgp

DP ,O(A) : S(E)]
∣∣∣ ≤ d · (N +Q+ c ·Q′)2

2p

where the probability is taken over the coins of GGMbgp
DP

and A.

Proof. The proof of this theorem is essentially the same as that of Theorem 1 in [8], which however
does not consider oracles. Given the similarity to [8], we only provide an intuition here. The basic
idea is that the adversary, who only sees handles and the outcome of equality queries, can notice
a difference between the two games only if an equality query would be answered differently. For
a single equality check, the probability of seeing a difference (that occurs when two polynomials
f1 6= f2 are different in SGM, but f1(x̃) = f2(x̃) for a random x̃ in GGM) is bounded using the
Schwartz-Zippel lemma, and is ≤ d/p. The final bound is then obtained by a union bound on
the maximum number of equality checks between group elements (resp. polynomials) in the lists.
This number is upper bounded by T 2/2, where T is the maximal length of the lists, which is
T = N + Q + c · Q′ for an adversary that makes at most Q queries to the generic group oracles,
and has additional access to O which can be queried at most Q′ times, each time returning c
polynomials. ut

Looking ahead to defining our master theorem for simple interactive decisional problems, we
introduce a notion of parametric completion which works in this interactive setting where the
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adversary gets access to more polynomials in addition to those statically defined in the initial lists
P .

Definition 13 (Parametric Completion). Given lists of polynomials P = (P1, P2, PT ) and an
oracle O = (Q′, `,m,p,v), we define their parametric completion CO(P ) as follows. Assuming that
the c polynomials in p are in Zp[X,∆,Ω], we define an extended set of formal variables

∆̂ = {∆i,j}i∈[`],j∈[Q′], Ω̂ = {Ωi,j}i∈[m],j∈[Q′]

The parametric completion CO(P ) consists of polynomials in Zp[X, ∆̂, Ω̂], and is computed as
follows:

1. P ′ := P

2. foreach i ∈ [Q′]:

3. foreach j ∈ [c]:

4. p′j := pj(∆1 := ∆1,i, . . . ,∆` := ∆`,i, Ω1 := Ω1,i, . . . , Ωm := Ωm,i)

5. P ′vj := P ′vj ∪ {p
′
j}

6. CO(P ) := C(P ′)

Basically, for every query and every polynomial which is to be returned by the oracle, line 4 redefines
the polynomial by making a change of variables (so that the newly introduced variables are unique in
the game instead of being only locally unique in the query), while line 5 simply adds this polynomial
to the corresponding list (i.e., group) according to the index vj . Finally, the parametric completion
is just a completion (as per Definition 11) computed on the lists of polynomials P ′ which include
the initial lists P plus all the polynomials returned by the oracle. We also note that the notion
extends naturally to be parametrized by more than one oracle.

5.2 A Master Theorem for Simple Interactive Decisional Problems

Equipped with the framework and the tools introduced in the previous section, we are now ready
to state our master theorem. First, we define what we call simple interactive decisional problems.

Definition 14 (Simple Interactive Decisional Problems). A simple interactive decisional
problem in the generic and symbolic bilinear group model for oracles O = (Q′, `,m,p,v), Och =
(1, `∗,m∗,f ,v∗), and O′ch = (1, `∗,m∗,f ′,v∗), and a legitimacy predicate H is an experiment where:

– The adversary A gets the same input and the same oracles as in Figure 5.1.
– A can interact with two more oracles, either O and Och, or O and O′ch, such that Och (resp.
O′ch) can be queried only once.

– A can make (adaptive) queries to its oracles under the restriction that A is “legitimate”, where
legitimacy is defined by some predicate H over its oracle queries. Specifically, if δ̂∗ ∈ Z`∗p is A’s

query to oracle Och (or O′ch), and δ̂ = (δ̂1, . . . , δ̂Q′) ∈ Z`·Q
′

p are the Q′ queries of A to oracle

O, then H is defined as a predicate H(δ̂, δ̂∗) ∈ {0, 1}.
– A returns a bit β, and the finalization event E is “β

?
= 1”.

Note that the two oracles Och, O′ch differ only in their output polynomials. Namely, it can be f 6= f ′

(while their length is clearly the same).
Below we state and prove our master theorem whose goal is to bound the difference between

the probabilities of the winning event E in the two executions of the experiment, provided that a
certain algebraic condition on the parametric completions is met.
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Theorem 7 (Master Theorem for Simple Interactive Decisional Problems). Let bgp be
a bilinear group setting, DP be a polynomially-induced distribution, and O = (Q′, `,m,p,v) be an
oracle. Furthermore, let Och = (1, `∗,m∗,f ,v∗) and O′ch = (1, `∗,m∗,f ′,v∗) be two other oracles.
Let N = |P1| + |P2| + |PT |, c = |p|, c∗ = |f | = |f ′|, r = |CO,Och(P )|, and let d denote an
upper bound on the total degrees of the polynomials in the parametric completions. If for all vectors

δ̂ ∈ Z`Q
′

p , δ̂∗ ∈ Z`∗p such that H(δ̂, δ̂∗) = 1 it holds

{k ∈ Zrp | k · C = 0} = {k ∈ Zrp | k · C ′ = 0}, (1)

where C = CO,Och(P )(∆̂ = δ̂, ∆̂∗ = δ̂∗) and C ′ = CO,O′ch(P )(∆̂ = δ̂, ∆̂∗ = δ̂∗), then∣∣∣Pr[GGMbgp
DP ,O,Och(A) : E ]− Pr[GGMbgp

DP ,O,O′ch
(A) : E ]

∣∣∣ ≤ (N +Q+ cQ′ + c∗)2 · d
p

holds for all legitimate adversaries A that perform at most Q group operations.

Proof. To prove the theorem we first apply Theorem 6 in order to switch the two experiments from
the generic to the symbolic group model.∣∣∣Pr[GGMbgp

DP ,O,Och(A) : E ]− Pr[SGMbgp
DP ,O,Och(A) : S(E)]

∣∣∣ ≤ (N +Q+ cQ′ + c∗)2 · d
2p∣∣∣Pr[SGMbgp

DP ,O,O′ch
(A) : S(E)]− Pr[GGMbgp

DP ,O,O′ch
(A) : E ]

∣∣∣ ≤ (N +Q+ cQ′ + c∗)2 · d
2p

To complete the proof we claim that∣∣∣Pr[SGMbgp
DP ,O,Och(A) : S(E)]− Pr[SGMbgp

DP ,O,O′ch
(A) : S(E)]

∣∣∣ = 0

Since we are quantifying over legitimate adversaries, we take for granted that A’s queries are such
that H(δ̂, δ̂∗) = 1. A’s view in the symbolic game depends only on the outcome of the equality
checks which are performed on the polynomials appearing in the lists stored by the challenger. At
this point, the key observation is that the parametric completion C = CO,Och(P )(∆̂ = δ̂, ∆̂∗ =
δ̂∗) can be viewed as the generating set of a vector space V which describes all the polynomials
computable by the adversary starting from the polynomials in P and the polynomials returned by
the oracles. So, every polynomial v ∈ V can be expressed as a linear combination of polynomials
in C (i.e., v = λ · C for some λ) and K = {k ∈ Zrp | k · C = 0} is the kernel of this linear map.
Moreover, since the lists P1, P2 are assumed to contain the constant polynomial 1, we note that the
parametric completion C in the target group is sufficient to express all polynomials in V . Therefore,
the side condition on the equality of the kernels of the two linear maps (i.e. condition 1) means
that the adversary sees exactly the same equalities in the two experiments. To see this, consider
an execution of the SGM experiment where the adversary has two handles h1, h2, and assume that
these point to polynomials v1, v2 in the left game (i.e., with oracle Och) and v′1, v

′
2 in the right game

(i.e., with oracle O′ch), such that v1 = v2 (i.e., eqs(h1, h2) = 1 in the left game) and v′1 6= v′2 (i.e.,
eqs(h1, h2) = 0 in the right game). Notice that in both experiments the polynomial vl (resp. v′l)
can be expressed using the same linear combination of elements in the respective completion, i.e.,
for l = 1, 2, in the left game we have vl = λl · C whereas in the right game we have v′l = λl · C ′.
However, this means that (λ1 − λ2) ·C = 0 whereas (λ1 − λ2) ·C ′ 6= 0, which contradicts our side
condition. ut
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5.3 Security of the Functional Encryption Scheme FEGGM

In this section we use the generic group framework presented in the previous section to prove
Theorem 5. We proceed as follows. First, we show that the indistinguishability security game for
the scheme FEGGM is a simple interactive decisional problem as per Definition 14, and thus it fits
our Theorem 7. Next, we give the core part of the proof which is to show that the scheme is
symbolically hard, in the sense that it satisfies the side condition of equation (1) in Theorem 7.

Indistinguishability Security is a Simple Interactive Decisional Problem. Let us consider
the indistinguishability security experiment for our scheme FEGGM in the generic bilinear group
model. At the beginning the adversary is given handles for the following lists

L1 = {[1]1, [a1]1, . . . , [an]1}
L2 = {[1]2, [w]2, [b1]2, . . . , [bn]2}
LT = {[1]T }

which can be seen as output of the polynomially induced distribution (L1, L2, LT )← DP , where

P1 = {1, A1, . . . , An}, P2 = {1,W,B1, . . . , Bn}, PT = {1}

are lists of polynomials over Zp[A,B,W ].

The adversary is also given access to the key derivation oracle that we can write as O =
(·, n2, 1, (p1, p2), (1, 1)) since it can be queried an unbounded number of times, it takes as input the
description of a quadratic form which is an (n×n)-dimensional matrix F = (fi,j), samples a single
value γ, and outputs two elements of G1 which can be described with polynomials

p1 =
∑
i,j∈[n]

fi,j ·AiBj + Γ ·W, p2 = Γ ∈ Zp[A,B,W,F, Γ ].

Also, A can query the challenge oracle that is either Och(1, 4n, 4,p∗,v∗) or O′ch(1, 4n, 4,p∗′,v∗).
To see the definition of these oracles, note that they can be queried only once, they take as input
two challenge messages (x,y), (x′,y′), sample four random values r, s, t, z, and output polynomials
corresponding to the ciphertexts, that are either:

p∗ = ( {RAi +Xi}ni=1, {TAi + SXi}ni=1,

{SBi + Yi}ni=1, {ZBi +RYi}ni=1,

RS − Z − T, W (RS − Z − T ) )

or

p∗′ = ( {RAi +X ′i}ni=1, {TAi + SX ′i}ni=1,

{SBi + Y ′i }ni=1, {ZBi +RY ′i }ni=1,

RS − Z − T, W (RS − Z − T ) )

over Zp[A,B,W,X,Y ,X ′,Y ′, R, S, T, Z].

Moreover, for an adversary A that makes Q queries F1, . . . ,FQ ∈ Zn×np to the key derivation
oracle, one query x,y,x′,y′ ∈ Znp to the challenge oracle, and returns a bit β, then by the security
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definition we have that A is legitimate if “H(F1, . . . ,FQ,x,y,x
′,y′) = 1”, where the predicate H

is true iff x>Fiy = x′>Fiy
′ for all i = 1 to Q.

It is easy to see that the indistinguishability security experiment for the FE scheme FEGGM is a
simple interactive decisional problem as per Definition 14. In order to obtain a proof of Theorem
5, then we invoke our master Theorem 7.

Instantiating the master theorem. Before focusing on the main part of the proof, which is to
show the satisfaction of the side condition, we briefly show how the bound of Theorem 5 is obtained.
This follows by observing that: the sum of lists cardinalities is 2(n+ 1) + 2, the key derivation and
challenge oracles give 2Q and 4n+ 2 polynomials respectively, and, as we shall see a bit later, the
maximal total degree of polynomials in the parametric completions is d = 5.

Satisfaction of the master theorem side condition. The remaining part of the proof focuses
on showing that the interactive decisional problem corresponding to the security of the functional
encryption scheme FEGGM satisfies the side condition of equation (1). To this end, our first step is to
compute the parametric completions CO,Och(P ) and CO,O′ch(P ). In the completions computation we
consider directly the adversary’s queries as scalars instead of formal variables. Namely, we consider
the polynomials in the parametric completions evaluated at X = x,Y = y,X ′ = x′,Y ′ = y′ and
F̂ k = f (k), ∀k ∈ [Q]; this is indeed what we need for analyzing the side condition of equation (1).

Notation. In the rest of the proof, for presentation’s convenience we use the following vector
notation to express a bilinear map:

〈f ,x⊗ y〉 =
∑
i,j∈[n]

fi,jxiyj

Above, f is the n2-dimensional vector obtained by concatenating all the rows of F, i.e., f =
(f1,1, f1,2, . . . , f1,n, f2,1, . . . , fn,n−1, fn,n) For any n-dimensional vectors x,y, we denote by x ⊗ y
their tensor product that we write as an n2-dimensional vector (xiyj)i,j where the entries i, j are
ordered lexicographically, e.g., x⊗ y = (x1y1, x1y2, . . . , xnyn−1, xnyn).

Parametric Completions. Consider an adversary A which queries x,y,x′,y′ to the challenge
oracle Och, and f (1), . . . ,f (Q) to the key derivation oracle. The computation of the parametric
completion CO,Och(P ) (evaluated at X = x,Y = y,X ′ = x′,X ′ = y′ and F̂ k = f (k), ∀k ∈ [Q])
first builds the following lists:

P ′1 = {1} ∪ {Ai, RAi + xi, TAi + xiS}i∈[n] ∪ {〈f (k),A⊗B〉+ ΓkW, Γk}k∈[Q]

P ′2 = {1, W, RS − Z − T, W (RS − Z − T )} ∪ {Bi, SBi + yi, ZBi + yiR}i∈[n],
P ′T = {1}
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The last step of the parametric completion computation, C(P ′), then yields:

C = {1, W, RS − Z − T, W (RS − Z − T )} ∪
{Ai, Bi, WAi, RSAi − ZAi − TAi, RSWAi − ZWAi − TWAi}i∈[n] ∪
{AiBj}i,j∈[n] ∪
{Γk, ΓkW,RSΓk − ZΓk − TΓk, RSWΓk − ZWΓk − TWΓk}k∈[Q] ∪

{〈f (k),A⊗B〉+ ΓkW, 〈f (k),W (A⊗B)〉+ ΓkW
2}k∈[Q] ∪

{〈f (k), (RS − Z − T )(A⊗B)〉+ (RS − Z − T )WΓk}k∈[Q] ∪

{〈f (k), (RS − Z − T )W (A⊗B)〉+ (RS − Z − T )W 2Γk}k∈[Q] ∪

{〈f (k), Bj(A⊗B)〉+BjΓkW, BjΓk}j∈[n],k∈[Q] ∪
{RAi + xi, TAi + xi · S, SBi + yi, ZBi + yi ·R}i∈[n],∪
{RWAi + xi ·W, TWAi + xi · SW}i∈[n],∪
{R2SAi −RZAi −RTAi + xi · (RS − Z − T )}i∈[n] ∪
{R2SWAi −RWZAi −RTWAi + xi · (RS − Z − T )W}i∈[n],∪
{RSTAi − TZAi − T 2Ai + xi · (RS2 − SZ − ST )}i∈[n] ∪
{RSTWAi − TWZAi − T 2WAi + xi · (RS2 − SZ − ST )W}i∈[n],∪
{SAiBj + yj ·Ai, ZAiBj + yj ·RAi, RAiBj + xi ·Bj , TAiBj + xi · SBj}i,j∈[n] ∪
{RSAiBj + xiyj + yj ·RAi + xi · SBj}i,j∈[n] ∪
{RZAiBj + xiyj ·R+ yj ·R2Ai + xi · ZBj}i,j∈[n] ∪
{STAiBj + xiyj · S + yj · TAi + xi · S2Bj}i,j∈[n] ∪
{TZAiBj + xiyj ·RS + yj ·RTAi + xi · SZBj}i,j∈[n] ∪

{〈f (k), (SBj + yj)(A⊗B)〉+ SWBjΓk + yj ·WΓk}j∈[n],k∈[Q] ∪

{〈f (k), (ZBj + yj ·R)(A⊗B)〉+ ZWBjΓk + yj ·RWΓk}j∈[n],k∈[Q] ∪
{SBjΓk + yj · Γk, ZBjΓk + yj ·RΓk}j∈[n],k∈[Q]

The completion C ′ = CO,O′ch(P ) is the same as C except for replacing coefficients xi with
x′i and yj with y′j , for all i, j ∈ [n]. In total, both completions consist of r = |C| = |C ′| =

4+15n+9n2+8Q+6nQ polynomials in the ring Zp[A1, . . . , An, B1, . . . , Bn,W, Γ1, . . . , ΓQ, R, S, T, Z].
Also it is possible to see by inspection that the maximal total degree of the polynomials in C and
C ′ is d = 5 (this is the degree of the monomials R2SWAi).

Towards showing equality of the two kernels. Let us recall that the goal of the proof is
to show that

K = {k ∈ Zrp | k · C = 0} = {k ∈ Zrp | k · C ′ = 0} = K ′ (2)

under the condition that 〈f (k),x ⊗ y〉 = 〈f (k),x′ ⊗ y′〉 for all k = 1 to Q. One way to show this
equality is to compute bases for both kernels K and K ′, and show that these bases generate the
same space (or that they are actually the same). This is what we eventually do. However, instead of
proceeding straight to computing bases for the two kernels, we first show that showing the equality
in (2) is equivalent to showing a similar equality for a much simpler (smaller) vector space.
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Lemma 11. Let C and C ′ be the parametric completions computed above. There exist two sets of
polynomials C̃ ⊂ C and C̃ ′ ⊂ C ′, both of cardinality r̃, such that if

K̃ = {k ∈ Zr̃p | k · C̃ = 0} = {k ∈ Zr̃p | k · C̃ ′ = 0} = K̃ ′ (3)

is satisfied then equation (2) is satisfied as well.

Proof. As a first step, we show the existence of a set of indices S ⊆ [r] and a corresponding vector
subspace U = {k ∈ Zrp : ki = 0,∀i ∈ S} ⊂ Zrp such that both K and K ′ are contained in U , i.e.,
K ⊂ U and K ′ ⊂ U . This fact implies that the equality of equation (2) is the same as

K = {k ∈ U | k · C = 0} = {k ∈ U | k · C ′ = 0} = K ′ (4)

We show the existence of this set S by observing the specific shapes of the polynomials in C and
C ′. S is the set of indices i ∈ [r] such that the i-th polynomial in both C and C ′ contains a unique
monomial, i.e., a monomial which appears only in that polynomial. For every polynomial pi (resp.
p′i) such that i ∈ S it holds that any vector k ∈ K (resp. K ′) must have ki = 0.

By inspection, the set of such unique monomials (which implicitly determines S) is

{WAi, RSAi, ZAi, RSTAi, RSTWAi, RSWAi, ZWAi, R
2SAi, RZAi}i∈[n] ∪

{R2SWAi, RZWAi, RTWAi, RWAi, TZAi, T
2Ai, TZWAi, T

2WAi}i∈[n] ∪
{STAiBj , TZAiBj , RZAiBj , SAiBj}i,j∈[n] ∪
{RSΓk, ZΓk, TΓk,W 2Γk, RSW

2Γk, ZW
2Γk, TW

2Γk}k∈[Q] ∪
{BjΓk, SBjΓk,WBjΓk, ZBjΓk, SWBjΓk, ZWBjΓk}j∈[n],k∈[Q]

Then we define C̃ (resp. C̃ ′) as the subset of C (resp. C ′) including all those polynomials whose
index i is not in S, i.e., C̃ = {pi ∈ C | i /∈ S} and C̃ ′ = {pi ∈ C ′ | i /∈ S}. Let r̃ = |C̃| = |C̃ ′|.

By the definitions of U , C̃ and C̃ ′ given above, it is easy to see that if the following equality

K̃ = {k ∈ Zr̃p | k · C̃ = 0} = {k ∈ Zr̃p | k · C̃ ′ = 0} = K̃ ′

is satisfied, so is the equality of equation (4), and thus that of equation (2). This completes the
proof of the lemma.

For convenience, we show explicitly the simplified completion C̃:

C̃ = {1, W, RS − Z − T, W (RS − Z − T )} ∪
{Ai, Bi}i∈[n] ∪
{AiBj}i,j∈[n] ∪
{Γk, ΓkW,RSWΓk − ZWΓk − TWΓk}k∈[Q] ∪

{〈f (k),A⊗B〉+ ΓkW}k∈[Q] ∪

{〈f (k), (RS − Z − T )(A⊗B)〉+ (RS − Z − T )WΓk}k∈[Q] ∪
{RAi + xi, TAi + xi · S, SBi + yi, ZBi + yi ·R}i∈[n],∪
{TWAi + xi · SW}i∈[n],∪
{RAiBj + xi ·Bj , ZAiBj + yj ·RAi, TAiBj + xi · SBj}i,j∈[n] ∪
{RSAiBj + xiyj + yj ·RAi + xi · SBj}i,j∈[n]
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C̃ ′ is the same except for having coefficients x′i, y
′
i instead of xi, yi. ut

By using the result of Lemma 11, we are left with showing the equality of equation (3). To this
end, we apply below an analogous simplification.

Lemma 12. Let C̃ and C̃ ′ be the sets of polynomials as defined in Lemma 11. There exist two sets
of polynomials Ĉ ⊂ C̃ and Ĉ ′ ⊂ C̃ ′, both of cardinality N , such that if

K̂ = {k ∈ ZNp | k · Ĉ = 0} = {k ∈ ZNp | k · Ĉ ′ = 0} = K̂ ′ (5)

is satisfied then equation (3) is satisfied as well.

Proof. The proof of this Lemma is quite similar to that of Lemma 11. As a first step, we show the
existence of a set of indices S̃ ⊆ [r̃] and a corresponding vector subspace Ũ = {k ∈ Zr̃p : ki = 0,∀i ∈
S̃} ⊂ Zr̃p such that both K̃ and K̃ ′ are contained in Ũ , i.e., K̃ ⊂ Ũ and K̃ ′ ⊂ Ũ . This fact implies
that the equality of equation (3) is the same as

K̃ = {k ∈ Ũ | k · C̃ = 0} = {k ∈ Ũ | k · C̃ ′ = 0} = K̃ ′ (6)

To see the existence of this set S̃ we again look at the specific shapes of the polynomials in C̃ and
C̃ ′. S̃ is the set of indices i ∈ [r̃] such that the i-th polynomial in both C̃ and C̃ ′ contains a unique
monomial, i.e., a monomial which appears only in that polynomial. For every such polynomial pi
(resp. p′i) it holds that any vector k ∈ K̃ (resp. K̃ ′) must have the corresponding i-th coefficient
ki = 0.

By inspection, the set of such unique monomials is

{W,RS,Z, T,RSW,WZ, TW} ∪ {Γk}k∈[Q] ∪ {Ai, Bi, TAi, TWAi, ZBi}i∈[n] ∪ {RAiBj}i,j∈[n]

Similarly to the previous lemma, we define Ĉ (resp. Ĉ ′) as the subset of C̃ (resp. C̃ ′) including all
those polynomials whose index i is not in S̃, i.e., Ĉ = {pi ∈ C̃ | i /∈ S̃}, Ĉ ′ = {pi ∈ C̃ ′ | i /∈ S̃}.
Let N = |Ĉ| = |Ĉ ′|.

By the definitions of Ũ , Ĉ and Ĉ ′, it is easy to see that if the following equality

K̂ = {k ∈ ZNp | k · Ĉ = 0} = {k ∈ ZNp | k · Ĉ ′ = 0} = K̂ ′

is satisfied, so is the equality of equation (6), and thus that of equation (3). This completes the
proof of the lemma.
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For convenience, we show the simplified completion Ĉ:

Ĉ0 = {1}
Ĉ1,i = {RAi + xi}i∈[n],

Ĉ2,i = {SBi + yi}i∈[n]
Ĉ3,i,j = {AiBj}i,j∈[n]
Ĉ4,i,j = {RSAiBj + xiyj + yj ·RAi + xi · SBj}i,j∈[n]
Ĉ5,i,j = {TAiBj + xi · SBj}i,j∈[n]
Ĉ6,i,j = {ZAiBj + yj ·RAi}i,j∈[n]
Ĉ7,k = {WΓk}k∈[Q]

Ĉ8,k = {RSWΓk − ZWΓk − TWΓk}k∈[Q]

Ĉ9,k = {〈f (k),A⊗B〉+WΓk}k∈[Q]

Ĉ10,k = {〈f (k), (RS − Z − T )(A⊗B)〉+ (RS − Z − T )WΓk}k∈[Q]

Ĉ ′ is defined analogously, except for having values x′i and y′i instead of xi and yi respectively. ut

By using the result of Lemma 12, we are left with showing the equality of equation (5) that we
recall below

K̂ = {k ∈ ZNp | k · Ĉ = 0} = {k ∈ ZNp | k · Ĉ ′ = 0} = K̂ ′

All the polynomials in the completions Ĉ and Ĉ ′ can be seen as linear combinations of the
following set of monomials, that we call the monomials basis

H0 = 1 {H1,i = RAi}i∈[n] {H2,i = SBi}i∈[n]
{H3,i,j = AiBj}i,j∈[n] {H4,i,j = RSAiBj}i,j∈[n] {H5,i,j = TAiBj}i,j∈[n] {H6,i,j = ZAiBj}i,j∈[n]
{H7,k = WΓk}k∈[Q] {H8,k = RSWΓk}k∈[Q] {H9,k = TWΓk}k∈[Q] {H10,k = ZWΓk}k∈[Q]

Let us write the above monomials basis as a vector H of N entries. Then, H is a monomial basis
in the sense that for every polynomial p ∈ Ĉ (resp. p′ ∈ Ĉ ′) there exists a vector v ∈ ZNp (resp.
v′) such that p = 〈v,H〉 (resp. p′ = 〈v′,H〉). (Precisely, v has coefficients in {0, 1} ∪ {xi, yi}i∈[n] ∪
{xiyj}i,j∈[n] ∪ {f

(k)
i,j }i,j∈[n],k∈[Q] while v′ has coefficients in {0, 1} ∪ {x′i, y′i}i∈[n] ∪ {x′iy′j}i,j∈[n] ∪

{f (k)i,j }i,j∈[n],k∈[Q].)

Let M ∈ ZN×Np be the matrix obtained by concatenating, row after row, all these vectors

v1, . . .vN , i.e., such that all polynomials in the completion can be compactly expressed as Ĉ =
M ·H. And let us define analogously M′ such that Ĉ ′ = M′ ·H.

Using this representation in the monomial basis, then showing the equality in (5) is the same
as showing

{k ∈ ZNp : k> ·M = 0} = {k ∈ ZNp : k> ·M′ = 0}

namely that M and M′ have the same left kernel.

We finalize the proof of Theorem 5 by proving the following lemma.
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Lemma 13. Let M and M′ be the matrices defined above. Then ker(M>) = ker(M′>).

Proof. We prove the lemma by computing bases for the kernels of both transposed matrices M>

and M′>. Below we write the matrix M> using a “block representation” that we explain slightly
below:

M> =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 1 x y 0 x⊗ y 0 0 0 0 0 0
H1 RA 0 I 0 0 I⊗ y 0 I⊗ y 0 0 0 0
H2 SB 0 0 I 0 x⊗ I x⊗ I 0 0 0 0 0

H3 A⊗B 0 0 0 I 0 0 0 0 0 F 0
H4 RS(A⊗B) 0 0 0 0 I 0 0 0 0 0 F
H5 T (A⊗B) 0 0 0 0 0 I 0 0 0 0 −F
H6 Z(A⊗B) 0 0 0 0 0 0 I 0 0 0 −F

H7 WΓ 0 0 0 0 0 0 0 I 0 I 0
H8 RSWΓ 0 0 0 0 0 0 0 0 I 0 I
H9 TWΓ 0 0 0 0 0 0 0 0 −I 0 −I

H10 ZWΓ 0 0 0 0 0 0 0 0 −I 0 −I

Above, the elements on the left and above the double rules || are intended as labels for the rows
and columns of the matrix.

In our “block representation” we have that:

– Ĉ0 is a single column, Ĉ1, Ĉ2 consist of n columns each, Ĉ3, . . . , Ĉ6 have n2 columns each, and
Ĉ7, . . . , Ĉ10 have Q columns each.

– Similarly to above, H0 is a single row, H1,H2 consist of n rows each, H3, . . . ,H6 have n2 rows
each, and H7, . . . ,H10 have Q rows each.

– x,y are n-dimensional row vectors.

– I is the identity matrix of dimension n× n, or n2 × n2 or Q×Q.

– 0 denotes a vector or a matrix of zeros whose dimension is easily extrapolated from its position.

– F is the (n2 × Q)-dimensional matrix F =
[
f (1) | · · · | f (Q)

]
, which essentially represents a

concatenation, column after column, of all the queried functions, each represented as a column
vector.

– Tensoring notation: For any vectors x,y of dimension n, we denote by x ⊗ y their tensor
product that we write as an n2-dimensional row vector (xiyj)i,j where the entries i, j are ordered
lexicographically, e.g., x⊗ y := (x1y1, x1y2, . . . , xnyn−1, xnyn). Clearly, ⊗ is not commutative.

Moreover, abusing notation, we define the tensor product between an (`×n)-dimensional matrix
A and an n-dimensional vector y as the component-wise tensor product of every row of A with
y, i.e., letting Ai be the i-th row of A, we define

A⊗ y :=

A1 ⊗ y
...

A` ⊗ y

 and similarly y ⊗A :=

y ⊗A1
...

y ⊗A`
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As an example, using the just introduced notation, one can take a block-column such as Ĉ1 ∈ ZN×np

in M>, and compactly write

Ĉ1 ⊗ y =


x⊗ y
I⊗ y

0
...
0

 ∈ ZN×n
2

p

This block representation of M> is convenient as it allows us to perform gaussian elimination on M>

by expressing multiple column operations with single block-of-columns operations (i.e., intuitively
treating every block as if being of constant size). Namely, we will express operations using blocks
and observe that these get easily translated into corresponding column operations as follows:

– swap of column-blocks is translated into component-wise swapping of columns,

– addition/subtraction of two column-blocks becomes a component-wise addition/subtraction of
the corresponding columns,

– tensoring of a column-block by a vector is translated into (simultaneously) multiplying several
columns by field constants.

Now we proceed to computing a basis for the kernel of M>. To this end, we first extend below
M> with the identity matrix. This gives us the following matrix T1:

T1 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 x y 0 x⊗ y 0 0 0 0 0 0
H1 0 I 0 0 I⊗ y 0 I⊗ y 0 0 0 0
H2 0 0 I 0 x⊗ I x⊗ I 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 0 I 0 0 0 0 −F
H6 0 0 0 0 0 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I

H10 0 0 0 0 0 0 0 0 −I 0 −I

1 0 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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In what follows we perform gaussian elimination on the above matrix via a series of column
transformations until the upper matrix gets in column echelon form. In order, we apply the following
column transformations (expressed in block notation):

1. Ĉ1 = Ĉ1 − x⊗ Ĉ0 and Ĉ2 = Ĉ2 − y ⊗ Ĉ0; this yields matrix T2.

2. Ĉ4 = Ĉ4 − (x⊗ y)⊗ Ĉ0 − Ĉ5 − Ĉ6; this yields matrix T3.

3. Ĉ5 = Ĉ5 − x⊗ Ĉ2 and Ĉ6 = Ĉ6 − Ĉ1 ⊗ y; this yields matrix T4.

4. Ĉ9 = Ĉ9 − Ĉ3 · F− Ĉ7 and Ĉ10 = Ĉ10 − Ĉ4 · F; this yields matrix T5.

5. Ĉ10 = Ĉ10 − Ĉ8 and Ĉ4 = Ĉ4 + Ĉ5 + Ĉ6; this yields matrix T6.

The matrices T1–T6 appear in the following.

T2 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 x⊗ y 0 0 0 0 0 0
H1 0 I 0 0 I⊗ y 0 I⊗ y 0 0 0 0
H2 0 0 I 0 x⊗ I x⊗ I 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 0 I 0 0 0 0 −F
H6 0 0 0 0 0 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I

H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −x −y 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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T3 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 I⊗ y 0 0 0 0
H2 0 0 I 0 0 x⊗ I 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 −I I 0 0 0 0 −F
H6 0 0 0 0 −I 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I

H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −x −y 0 −x⊗ y 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 −I I 0 0 0 0 0
0 0 0 0 −I 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I

42



T4 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 0 0 0 0 0
H2 0 0 I 0 0 0 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 F 0
H4 0 0 0 0 I 0 0 0 0 0 F
H5 0 0 0 0 −I I 0 0 0 0 −F
H6 0 0 0 0 −I 0 I 0 0 0 −F

H7 0 0 0 0 0 0 0 I 0 I 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I

H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −x −y 0 −x⊗ y x⊗ y x⊗ y 0 0 0 0
0 I 0 0 0 0 −I⊗ y 0 0 0 0
0 0 I 0 0 −x⊗ I 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 −I I 0 0 0 0 0
0 0 0 0 −I 0 I 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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T5 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 0 0 0 0 0
H2 0 0 I 0 0 0 0 0 0 0 0

H3 0 0 0 I 0 0 0 0 0 0 0
H4 0 0 0 0 I 0 0 0 0 0 0
H5 0 0 0 0 −I I 0 0 0 0 0
H6 0 0 0 0 −I 0 I 0 0 0 0

H7 0 0 0 0 0 0 0 I 0 0 0
H8 0 0 0 0 0 0 0 0 I 0 I
H9 0 0 0 0 0 0 0 0 −I 0 −I

H10 0 0 0 0 0 0 0 0 −I 0 −I

1 −x −y 0 −x⊗ y x⊗ y x⊗ y 0 0 0 (x⊗ y)F
0 I 0 0 0 0 −I⊗ y 0 0 0 0
0 0 I 0 0 −x⊗ I 0 0 0 0 0
0 0 0 I 0 0 0 0 0 −F 0
0 0 0 0 I 0 0 0 0 0 −F
0 0 0 0 −I I 0 0 0 0 F
0 0 0 0 −I 0 I 0 0 0 F
0 0 0 0 0 0 0 I 0 −I 0
0 0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I
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T6 =

Ĉ0 Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6 Ĉ7 Ĉ8 Ĉ9 Ĉ10

H0 1 0 0 0 0 0 0 0 0 0 0
H1 0 I 0 0 0 0 0 0 0 0 0
H2 0 0 I 0 0 0 0 0 0 0 0
H3 0 0 0 I 0 0 0 0 0 0 0
H4 0 0 0 0 I 0 0 0 0 0 0
H5 0 0 0 0 0 I 0 0 0 0 0
H6 0 0 0 0 0 0 I 0 0 0 0
H7 0 0 0 0 0 0 0 I 0 0 0
H8 0 0 0 0 0 0 0 0 I 0 0
H9 0 0 0 0 0 0 0 0 −I 0 0

H10 0 0 0 0 0 0 0 0 −I 0 0

1 −x −y 0 x⊗ y x⊗ y x⊗ y 0 0 0 (x⊗ y)F
0 I 0 0 −I⊗ y 0 −I⊗ y 0 0 0 0
0 0 I 0 −x⊗ I −x⊗ I 0 0 0 0 0
0 0 0 I 0 0 0 0 0 −F 0
0 0 0 0 I 0 0 0 0 0 −F
0 0 0 0 0 I 0 0 0 0 F
0 0 0 0 0 0 I 0 0 0 F
0 0 0 0 0 0 0 I 0 −I 0
0 0 0 0 0 0 0 0 I 0 −I
0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 I

As one can see, in the above matrix T6 the upper part is in column echelon form. Hence, the
basis K of the kernel of M> is represented by the two rightmost block-columns of the lower matrix.
These columns are a collection of 2Q N -dimensional vectors as follows

K =





0
0
0
−F
0
0
0
−I
0
I
0



,



(x⊗ y)F
0
0
0
−F
F
F
0
−I
0
I





∈ ZN×2Qp

It is easy to see that when applying the analogous set of transformations on M′> (where x and
y are replaced by x′ and y′ respectively) one obtains the same basis K. Precisely, the analogous
transformations lead to the same vectors of the kernel except for having (x′ ⊗ y′)F instead of
(x⊗y)F. However, by the legitimacy condition of the security game it holds (x⊗y)F = (x′⊗y′)F.
Hence, M and M′ have the same basis for their left kernels, which completes the proof. ut
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6 Predicate Encryption for Bilinear Maps Evaluation

Here we show how to use our functional encryption schemes to build a Predicate Encryption (PE)
scheme for the evaluation of bilinear maps over attributes. Specifically, we give a scheme for the
predicate P : X × Y → {0, 1} where X ⊂ Znp × Zmp , Y ⊂ Zn×mp , and for all (x,y) ∈ X and F ∈ Y:

x>Fy ∈ {0, 1} and P((x,y),F) = 1 iff x>Fy = 1.

In Figure 11, we present a generic construction of PE for P from any functional encryption scheme
FE for the bilinear maps functionality F : K ×M′ → Y ′, where M′ := Znp × Zmp , K := Zn×mp ,
Y ′ := GT and for all (x,y) ∈M′, F ∈ K

F (F, (x,y)) = [x>Fy]T .

The PE scheme can be instantiated by using one of our FE constructions presented in Sections 3
and 4.

Setup(1λ,P,M := GT ):

Return (mpk,msk)←r SetupFE(1λ, F )

KeyGen(msk,F ∈ Y):

Return skF := KeyGenFE(msk,F)

Encrypt(mpk, (x,y) ∈ X ,M ∈ GT ):

w ←r Zp; C0 := [w]T +M
C1 := EncryptFE(mpk, (w · x,y))
Return Ct(x,y) := (C0, C1)

Decrypt(mpk,Ct(x,y) := (C0, C1), skF):

K := DecryptFE(mpk, C1, skF)
Return C0 −K.

Fig. 11. PE, a predicate encryption scheme, selectively (resp. adaptively) secure if the underlying FE scheme
(SetupFE,KeyGenFE,EncryptFE,DecryptFE) is selectively (resp. adaptively) secure.

Theorem 8 (Correctness). If FE := (SetupFE,KeyGenFE,EncryptFE,DecryptFE) is a perfectly cor-
rect functional encryption scheme for functionality F , then so is the predicate encryption scheme
PE defined in Figure 11.

Proof of Theorem 8. By correctness of FE, we have for all (x,y) ∈ X , w ∈ Zp, F ∈ Y:

F (F, (w · x,y)) = [w · x>Fy]T = [w · P((x,y),F)]T .

Thus, when P((x,y),F) = 1, decryption recovers the encapsulation key [w]T . ut

Theorem 9 (Security). If FE := (SetupFE,KeyGenFE,EncryptFE,DecryptFE) is an adaptively (resp.
selectively) secure encryption scheme for F , then so is the predicate encryption scheme PE defined
in Figure 11. Namely, for any PPT adversary A, there exists a PPT adversary B such that:

Advind-fe-cpa
PE,A (λ) ≤ 4 ·Advind-fe-cpa

PE,B (λ).

Similarly, in the selective case, for any PPT adversary A, there exists a PPT adversary B such
that:

Advsel-ind-fe-cpa
PE,A (λ) ≤ 4 ·Advsel-ind-fe-cpa

PE,B (λ).
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G0, G1, G2 :

β ←r {0, 1}, (mpk,msk)←r SetupFE(1λ, F )
β′ ← AKeyGenO(·),EncO(·,·,·,·)(mpk)
Return 1 if β′ = β, 0 otherwise.

EncO((x(0),y(0)),M0, (x
(1),y(1)),M1):

w ←r Zp, C0 := [w]T +Mβ , C1 := EncryptFE(mpk, (w · x(β),y(β)))

If M0 6= M1, C1 := EncryptFE(mpk, (0,0))

If M0 = M1, C1 := EncryptFE(mpk, (w · x(0),y(0)))

Return Ct := (C0, C1)

KeyGenO(F ∈ Zn×mp ):

Return skF := KeyGenFE(msk,F)

Fig. 12. Games Gi, for i = 0, 1, 2 for the proof of adaptive security of PE in Figure 11. In each procedure, the
components inside a solid (dotted) frame are only present in the games marked by a solid (dotted) frame.

Proof of Theorem 9, adaptive security. We prove the adaptive security of PE via a series of games
described in Figure 12 and we use Advi to denote the advantage of A in game Gi, that is Advi :=
|1− 2 Pr[Gi returns 1]|. G0 is defined as:

G0 :

β ←r {0, 1}
β′ ← Expind-pe-cpa-β

PE,A (λ)

Return 1 if β′ = β, 0 otherwise.

Where Expind-pe-cpa-β
PE,A (λ) is the experiment used in Definition 9 of fully attribute-hiding security

for predicate encryption. In particular, we have Adv0 = Advind-pe-cpa
PE,A (λ). We explain in Remark 1

how to obtain the same results for selective security.

Lemma 14 (G0 to G1). There exists a PPT adversary B0:

|Adv0 − Adv1| ≤ 2 ·Advind-fe-cpa
PE,B0 (λ).

Proof of Lemma 14. By definition of the security game, we know that if M0 6= M1, then it must
be that for all queries F to KeyGenO(·), x(β)>Fy(β) = 0 (i.e., the predicate over the challenge
attributes is false). Therefore, using the adaptive security of the underlying FE scheme, we can
switch: Encrypt(mpk, (w · x(β),y(β))), computed by EncO when M0 6= M1, to Encrypt(mpk, (0,0)).
ut

Lemma 15 (G1 to G2). There exists a PPT adversary B1:

|Adv1 − Adv2| ≤ 2 ·Advind-fe-cpa
PE,B1 (λ).

Proof of Lemma 15. By definition of the security game, we know that for all queries F to KeyGenO(·),
P
(
(x(0),y(0)),F

)
= P

(
(x(1),y(1)),F

)
. Together with the fact that for all (x,y) ∈ X and F ∈ Y:
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x>Fy ∈ {0, 1}, we obtain that: x(0)>Fy(0) = x(1)>Fy(1). Therefore, using the adaptive security of
the underlying FE scheme, we can switch: Encrypt(mpk, (w · x(β),y(β))), computed by EncO when
M0 = M1, to Encrypt(mpk, (w · x(0),y(0))). ut

Lemma 16 (G2). Adv2 = 0.

Proof of Lemma 16. We show that the A’s view is independent of β ←r {0, 1} in this game. If
M0 6= M1, the challenge ciphertext is of the form (C0, C1) where C0 := [w]T + Mβ for w ←r Zp,
and C1 is independent of w and β. Thus, the message Mβ is completely hidden by the one-time
pad [w]T , and the ciphertext is independent of β.

If M0 = M1, the challenge ciphertext is of the form (C0, C1) where C0 := [w]T+Mβ for w ←r Zp,
which is independent of β since M0 = M1; and C1 := Encrypt(mpk, (w · x(0),y(0))), which is also
independent of β. ut

Theorem 9 follows readily from Lemmas 14, 15, and 16. ut

Remark 1 (Selective FE ⇒ selective PE). We can adapt straightforwardly the proof of Theorem 9,
to the selective setting, simply by constructing PPT adversaries B0 and B1 against the selective
security of the underlying FE, exactly as those in Lemmas 14 and 15, except that those adversaries
first receive a challenge (x(0),y(0)), (x(1),y(1)) from the adversary A, playing against the selective
security of the PE, upon which they sample w ←r Zp, and send (w ·x(0),y(0)), (w ·x(1),y(1)) as their
selective challenge. Finally, we use the statistical argument from Lemma 16, which works exactly
in the same way for the selective setting.

6.1 Applications of PE for Bilinear Maps Evaluation

In this section, we discuss two applications of our fully attribute-hiding PE scheme supporting
bilinear maps evaluation.

PE for constant depth boolean formulas. As a first application, we can use the PE scheme
in Figure 11 to handle boolean functions of constant degree d in n variables. This yields a solution
where ciphertexts comprise O(nd/2) group elements, in contrast to O(nd) group elements in [28]
(the asymptotic is taken for large n, constant d).

The idea is to encode a predicate for boolean formulas into a predicate for bilinear maps eval-
uation. This can be done as follows. Consider the following predicate P : X × Y → {0, 1}, with
X := Zn2 and Y := {T ∈ Z2[X1, . . . , Xn],deg(T ) ≤ d}, such that for all x ∈ X , T ∈ X , P(x, T ) = 1

iff T (x) = 1. Below we describe how to encode x ∈ X and T ∈ Y into a vector x̃ and a matrix T̃
such that P(x, T ) = 1 iff x̃>T̃x̃ = 1.

To see this, assume for simplicity that d is even, and let us consider the setting where n ≥ d
2 .

First, we map every x ∈ X to x̃ := (M1(x), . . . ,M
d̃
(x)) ∈ Zd̃2, where d̃ :=

∑ d
2
i=0

(
n
i

)
, and for all

j ∈
[(n

d
2

)]
, Mj is the j-th monomial of degree at most d

2 on n variables (there are exactly d̃ such

monomials, which we order arbitrarily). Second, we write every T ∈ Y as
∑

i,j∈[d̃] Ti,jMiMj , where

for all i, j ∈ [d̃], Ti,j ∈ Z2, and we map T ∈ Y to T̃ ∈ Zd̃×d̃2 such that for all i, j ∈ [d̃], T̃i,j := Ti,j .

This way, for all x ∈ X and T ∈ Y, we have P(x, T ) = 1 iff x̃>T̃x̃ = T (x) = 1.
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Therefore, using the PE which supports bilinear maps evaluation presented in Section 6, we
obtain a PE for boolean formulas with ciphertexts of size O(d̃). Using a similar encoding to the PE
from [28] that support linear maps evaluation yields a solution with ciphertexts of dimension O(d̂)
where d̂ :=

∑d
i=0

(
n
i

)
. When considering asymptotic for large n, constant d, our ciphertext size is

O(nd/2), against O(nd) for [28].
Finally, we note that boolean formulas can be arithmetized into a polynomial over Z2, à la

[38]. Namely, for boolean variables x, y ∈ Z2, AND(x, y) is encoded as x · y, OR(x, y) is encoded as
x+ y − xy, and NOT(x) = 1− x.

PE for comparison. Let us consider the comparison predicate P≤ : [N ] × [N ] → {0, 1} that for
all x, y ∈ [N ] is defined by

P≤(x, y) = 1 iff x ≤ y.

We can reduce this predicate to a polynomial of degree two, as done (implicitly) in [12], as follows.
First, any integer x ∈ [N ] is canonically mapped to the lexicographically ordered pair (x1, x2) ∈
[
√
N ] × [

√
N ] (we assume

√
N is an integer for simplicity). Then x1 is mapped to vectors x̃ :=(

0x1

1
√
N−x1

)
∈ {0, 1}

√
N where 1`, 0` denote the all-one and all-zero vectors in {0, 1}`, respectively;

and x̂ := ex1 ∈ {0, 1}
√
N , where for all i ∈ [

√
N ], ei denotes the i’th vector of the canonical basis of

Z
√
N

p . Finally, x2 ∈ [
√
N ] is mapped to x̄ :=

(
0x2−1

1
√
N−x2+1

)
. For all (x1, x2), (y1, y2) ∈ [

√
N ]× [

√
N ]:

P≤((x1, x2), (y1, y2)) = 1 iff x̃y1 + x̂y1 · x̄y2 = 1,

where for any vector z ∈ Z
√
N

p , and any i ∈ [
√
N ], we denote by zi ∈ Zp the i-th coordinate of z.

This means that by using the above encoding, for an integer attribute x ∈ [N ] one can use a
PE for bilinear maps evaluation to encrypt the pair of vectors((

x̃
x̂

)
,

(
1
x̄

))
∈ Z2

√
N

p × Z1+
√
N

p

This gives a PE for comparison with ciphertexts of O(
√
N) group elements, as in [12,21]. More

precisely, by instantiating our PE scheme with the FE of Section 3.2, we obtain a PE for comparison
with ciphertext size (12

√
N + 1) · |G1|+ (6

√
N + 7) · |G2|, and secret-key size |G1|+ |G2|, compared

to ciphertext size 5
√
N · |G1| + 4

√
N · |G2| + |GT | and secret-key size |G2| for [21], where both

schemes are selectively-secure based on SXDH. When using our FE of Section 4, we obtain a PE
for comparisons that is adaptive secure in the generic group model and that has shorter ciphertexts
of size (4

√
N + 1) · |G1|+ (2

√
N + 3) · |G2|.

References

1. M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and
H. Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. In
V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 205–222. Springer, Aug. 2005.

2. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner products.
In PKC 2015, LNCS, pages 733–751. Springer, 2015.

3. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Better security for functional encryption for inner
product evaluations. Cryptology ePrint Archive, Report 2016/011, 2016. http://eprint.iacr.org/2016/011.

49

http://eprint.iacr.org/2016/011


4. M. Abdalla, M. Raykova, and H. Wee. Multi-input inner-product functional encryption from pairings. IACR
Cryptology ePrint Archive, 2016:425, 2016.

5. S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional encryption for inner product predicates from
learning with errors. In D. H. Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 21–40.
Springer, Dec. 2011.
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