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Abstract. We address the problem of substring searchable encryption. A single user produces a
big stream of data and later on wants to learn the positions in the string that some patterns occur.
Although current techniques exploit auxiliary data structures to achieve efficient substring search
on the server side, the cost at the user side may be prohibitive. We revisit the work of substring
searchable encryption in order to reduce the storage cost of auxiliary data structures. Our solution
entails suffix array which allows optimal storage cost O(n) with small hidden factor at the size of
the string n. On top of that we build an encrypted index that allows the server to answer substring
queries without learning neither the query nor the result. We identify the leakages of the scheme
following the work of Curtmola et al. [CCS06] and we analyze the security of the protocol in the real
ideal framework. Moreover, we implemented our scheme and the state of the art protocol Chase
and Shen [POPETS15] to demonstrate the performance advantage of our solution with precise
benchmark results. We improved the storage overhead of the encrypted index by a factor of 1.8
and the computation time thereof 4 times on 106 character data streams.

1 Introduction

Nowadays, there is a flourish of protocols delegated to run by an untrusted coalition of servers, systems,
services, called hereafter the cloud. Due to the untrusted nature of the cloud, users seek to protect
the privacy and security of their data with cryptographic primitives. The cloud on the other hand
offers an economy of scale with the impressive resources it acquires, ranging from software to hardware.
Uploading encrypted data however, renders operations on it infeasible. Downloading, decrypting and
running the operation on plaintext data, cancels the advantages, that the cloud offers for large storage
and computational efficiency. Usually users need to perform a search on their data. Tailored protocols
for secure searchable encryption have been proposed in the literature, whereby single or multiple users
upload encrypted documents, with some auxiliary data structure called an index, allowing the cloud
to correctly return documents containing a single, multiple or a boolean function of keywords, without
compromising index, query, and documents privacy. Apart from their theoretical consideration in the
literature, quite a few companies adopt this model to offer searchable encryption schemes over encrypted
data [3, 10, 11, 20, 27, 29, 31].

While keyword based search protocols are quite common in a large range of applications, they cannot
efficiently address all the possible queries a user submits to the cloud. Substring based queries have come
to the forefront due to the ubiquitousness of devices and the progress in storage technology. Devices
produce a big stream of data, which needs to be queried later on with substring based queries. Namely a
substring query for a stream of data, consists of a substring of the stream and the result is the position
of the substring in the big stream, or/and the number of occurrences of multiple substrings.

The variety of applications for substring based queries spans in health-care analysis [13] and logging
systems. In a health-care application, data enclaves which hold giant stream of medical information
such as DNA sequencing are asked to answer substring queries by medical labs. The possible position
of a substring in the whole DNA sequence of a single person gives information about predisposition to
diseases. As such, it is treated as personal sensitive information and should be protected. Nowadays, the
sequencing process is possible thanks to the progress of computers. Online services offer DNA sequencing
to institutions and individuals. In the logging systems scenario, companies, institutions and organizations
produce log data of giant size. The logs are recorded and uploaded in a cloud infrastructure to take
advantage of the of the cheap storage space. Log data are often searched to identify malicious substring
patterns. The position of the suspicious searched string token will act as a bookmark to further download
the logs data, which proceed and succeed that position for further investigation. The vast amount of
information renders substring queries a real challenge and reducing the storage cost of the encrypted
index would increase the performance of such services.



Protecting the privacy of the data stream and the substring query, while allowing an untrusted
cloud to correctly answer substring matching pattern efficiently and securely is not trivial. Following the
searchable encryption approach, separating the data itself from the index, results in a prohibitive storage
index cost O(n2), where n is the size of the stream. The index would consist of all the possible substrings
of a stream of data of size n and the encrypted data would be the positions of the substring. Recently
Chase et al. [9] proposed a solution that asymptotically achieves O(n) storage costs by exploiting the
auxiliary data structure of the suffix tree. However the asymptotic costs of O(n) hide a constant factor
that can be roughly up to 20 [1, 5, 19, 25] for the construction of the suffix tree due to the complexity
of the tree and the extra pointers to traverse a tree. Moreover the suffix tree based approach leaks
unnecessary information that eventually can reveal all the encrypted positions of the substrings.

Our observation, which launches our research is the increased size of index which has to be computed
once and be kept at the cloud during the entire lifetime of the protocol: Can we significantly reduce the
expected storage cost of an encrypted index tailored for substring queries without sacrificing search time
and privacy? Even a small improvement would have big impact as the data to be indexed for substring
queries span to million of elements. Moreover apart from the cloud side cost cuts the client will also be
positively affected as the smaller the size of the index it is outsource the less the charges client commits
to the cloud.

Idea. After encrypting the suffix tree of Chase et al. scheme [9], the encrypted structure leaks a
lot information concerning the internal structure of the tree as number of leaves, children and double
“touched” branches. The authors suggested a dummy node policy in order to hide as much information
as possible. After constructing the suffix tree with N nodes, the suffix tree is filled up with 2n − N
internal nodes nodes. To each node with less than σ children, where σ is the size of the vocabulary, up
to σ dummy nodes are appended. Encrypting all these dummy blocks drastically increases the storage
overhead and subsequently the communication cost of the protocol for index construction.

Our core idea lies at the properties of a suffix array based indexing. A suffix array contains information
about the position of each suffix of a string and has constant size n for a string of n size. In contrast,
the data structure of the suffix tree has no constant size and can acquire up to 2n nodes, with each
node storing information about its edges, parent and children nodes, thus increasing the storage need.
By choosing the suffix array we decrease the storage need for the construction of the index. The second
factor which lends us to less storage and subsequently communication efficiency is the dummy blocks
policy which is used to hide the structure of the suffix tree in [9]. Our dummy node policy to obscure the
encrypted suffix array rests only on the frequency of the most the most frequent character. Namely, we
fill up the original string with characters such that the frequency of each character is the same. However
this approach raises a shortcoming when applied to data sets with skewed frequency distributions such
as text based data sets. We overcome that limitation with a bucketization technique. Instead of building
the index on a single character approach we explore the idea of grouping together characters consisting a
bucket. Surprisingly our experimental evaluation showed that the skewed frequencies are diminished and
the final storage overhead for the index is considerably smaller by a factor of 1.8 for text based datasets.

In this paper we design and analyze a storage efficient Substring Searchable Symmetric Encryption
(S3E) protocol with minimal leakage and variable size of substrings. We follow a different approach from
existing techniques that allows us to achieve the efficiency, functional and security goals we want. In
our technique we exploit a self-indexed data structure, which allows the cloud to search for substring
queries. Its form resembles the suffix arrays with some additional extra steps, thus we are taking its
computational cost for “free”, after building the suffix array. The main contributions in the paper are
summarized as follows:

Contributions:

– Storage efficient Substring Searchable Symmetric Encryption (S3E): Thanks to the employment of
the suffix array, which achieves a small hidden factor (≈ 4) in the O(n) asymptotic complexity,
compared to the bigger (≈ 20) hidden factor of the suffix tree, our design presents a storage efficient
substring searchable symmetric encryption protocol.

– Variable substring query length: Our solution allows a dynamic issue of substring queries of variable
size without the need of defining a fixed query size beforehand.

– Provably secure. Our scheme is provably secure in the real-ideal simulation paradigm, which leaks
less than the scheme in [9], thanks to the suffix array construction.

– Prototype implementation: We implemented our protocol and the state of the art work in [9]. We
performed a real world comparison of both schemes based on computation time and communication
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overhead to build the index and query for a substring. Our results show a performance advantage of
1.8 storage overhead on text based datasets as the enron email one.

Outline. In section 2 we introduce the problem this paper addresses. Afterwards, in section 3 we
review similar cryptographic protocols for substring searchable symmetric encryption. We continue in
section 4 with the core idea of our solution and the basic building blocks. In section 5 we illustrate in
more details the design components of our protocol. The full protocol description is presented in section
6. We then investigate the security and the costs of the proposed scheme for storage efficient substring
searchable symmetric encryption. In section 7 we present our prototype implementation results. Finally,
we conclude in section 8.

2 Problem Statement

In this section we formalize first the problem of string matching. We first start with the functional
requirements of substring matching and afterwards we present the security requirements of the protocol.

2.1 Functional Requirements

Herewith pattern matching, string matching and substring matching are used interchangeably in this
paper. We assume that a string S is modeled as an one dimension array S[1...n]. A substring is another
array T [1...m]. The elements of each array are drawn from some finite alphanumerical alphabet Σ of size
σ = |Σ|. We say that a substring T occurs in S if there exists s : 1 ≤ s ≤ n−m and S[s+ 1...s+m] =
T [1...m], meaning that S[s+ j] = T [j], 1 ≤ j ≤ m (cf figure 1).

l a l a k i sS

T l a k
s=3

Fig. 1: Pattern matching

Naive algorithms for pattern matching achieve O(n) on search time and 0 cost on preprocessing. The
algorithm simply scans all the positions i, 1 ≤ i ≤ n − m of the string S until it finds m consecutive
matches at a position j, 1 ≤ j ≤ n − m + 1. Trading preprocessing efficiency for better search costs,
Robin Karp algorithm [22] achieves O(n−m+1) search time and Θ(m) preprocessing amortized cost. In
a similar trajectory Knuth-Moris-Pratt [23] has Θ(n) search complexity and Θ(m) preprocessing time.
Boyer-Moore pattern matching technique [4] increases the preprocessing cost at Θ(m + σ) in order to
have worst case search complexity O(n). Following a different trajectory substring matching techniques
achieve O(m) search time by leveraging a more sophisticated preprocessing step, in which the suffixes
of all substring are computed along with their positions in the string S, be it suffix tree[26, 30, 32] or
suffix array [25]. Suffix tree though has a more expensive space efficiency due to the extra information
the suffix tree has to keep [1, 5, 19, 25]. This cost is translated to a constant factor that approximates
≈ 20, which is hidden in the O(n) asymptotic storage cost of the suffix tree construction. As a first step
to relax this storage extra hidden cost we choose to build upon the suffix array string matching approach
which has a much simpler storage cost which approximates 4n [1].

We redraw upon the queryable encryption syntactical definition of [9], since we believe it follows
a deceptive abstraction. Namely, the functional definition claims to capture a generic framework for
searchable encryption, in the sense that a query F can be any function keyword query, or substring
query. However, an encrypted searchable encryption scheme is a more generic protocol, since it can be
used to solve the substring searchable encryption problem with the encrypted inverted index technique as
shown in the introduction. As such, searchable and substring encryption schemes cannot be addressed by
the same definitional framework. Furthermore, the nature of the problem and the solution for substring
queries drastically varies from keyword searchable encryption, since the index contains the data and there
are not two separate objects, meaning that the index for substring queries is self-indexed, since from the
index you can recover the underlying data structure. In contrast in encrypted searchable encryption,
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there is a clear distinction between the index, and the data structure that holds the data (files with
keywords). For these reasons we rewrite the functional definitional framework for substring searchable
encryption.

Definition 1. A Substring Searchable Symmetric Encryption scheme (S3E) is a collection of four poly-
nomial time algorithms (KeyGen,PreProcess,SrchToken,Search) defined as follows:

– k ← KeyGen(1λ): It is a probabilistic algorithm that takes as input the security parameter in the
unary form 1λ and outputs the secret substring search key k.

– SES ← PreProcess(k, S): This algorithm takes as inputs the stream S and the secret key k and outputs
the substring encrypted data structure SES.

– tkT,S ← SrchToken(k, T [1...m]): It is a probabilistic algorithm that takes as input the secret substring
search key k, a string T [1...m] and outputs a trapdoor to search for the string T on data stream S,
through SES.

– (s,⊥)← Search(tkT,S , SES): It is a deterministic algorithm which takes as input a trapdoor tkT,S and
an substring encrypted structure SES and outputs the positions s in S that substring T occurs, or ⊥
otherwise.

A S3E is correct if ∀λ ∈ N,∀S ∈ Σ,∀k ← KeyGen(1λ),∀SES ← PreProcess(k, S),∀tkT,S ←
SrchToken(k, T [1...m]),Search(tkT,S , SES) always returns the correct positions s in the string S or ⊥
otherwise.

2.2 Security Model

Intuitively the security guarantee we ask for is 1) given a probabilistic polynomial time adversary A
with access to a substring encrypted structure SES, A cannot gain more partial information about the
underlying stream of data S and 2) given a set of trapdoor tokens for an adaptive generated set of queries
q = (q1, q2, q3, . . . , qo) associated with set of tokens t = (tk1, tk2, tk3, . . . , tko) A cannot learn anything
for q and t. Following the symmetric searchable encryption paradigm we know it is impossible to achieve
those two security guarantees without leaking some extra information as the observed in [7, 8, 12].

We express the security guarantees of the protocol in terms of simutability [24]. First a leakage
function L is defined, which expresses the leakage of a S3E scheme to an adversary A, through the

transcripts of the protocol. The simulation framework assumes two games. The RealS3E
A(λ) game, in which

adversaries can corrupt the parties they want and the IdealS3E
A,S(λ) one in which there is only benign

behavior of each party. The security analysis narrows down to the design of a simulator S, who tries to

simulate the malicious behavior in the IdealS3E
A,S(λ) game, only through access to the leakage function

L. We say that a protocol is secure if S simulates indistinguishable views of the adversary A in the

IdealS3E
A,S(λ) game.

Definition 2. A leakage function L for a S3E scheme comprises the following three leakage functions:

– PreProcess Leakage: L1 includes the padded size of the data stream n′ >= |S|.
– SrchToken Leakage: The SrchToken Leakage L2 reveals the length of the token |tk|, how many common

characters reside in it and similarity patterns between different tokens.
– Search Leakage: L3 leaks how many times a substring token tk exists in the padded string S with

dummy blocks.

The adversary A plays the role of a semi-honest cloud and during the two games we assume a
challenger C who interacts with A. We describe the two games in algorithmic details in what is follows:

RealS3E
A(λ) game:

– C runs KeyGen(1λ) to obtain k.
– A chooses a string S ∈ Σ, sends it to C and C replies with SES ← PreProcess(k, S) to A.
– A issues a polynomial number of adaptively chosen queries q = (q1, q2, q3, . . . , qo) and receives from
C a set of tokens t = (tk1, tk2, tk3, . . . , tko).

– Finally A outputs v = (SES, t).

IdealS3E
A,S(λ) game:
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– A outputs a string stream S.
– The simulator S through the leakage L generates SES and forwards it to A.
– A issues a polynomial number of queries q = (q1, q2, q3, . . . , qo). S replies to each of the queries

through the leakage function L with t = (tk1, tk2, tk3, . . . , tko).
– Finally A outputs v = (SES, t).

Definition 3. A S3E scheme is adaptively L-semantically secure against a probabilistic polynomial time
adversary A if there is exists a polynomial Simulator S such that for all polynomial time distinguishers
D:

|Pr[D(v) = 1 : v ← RealS3E
A(λ)]−

Pr[D(v) = 1 : v ← IdealS3E
A,S(λ)]| ≤ neg(λ)

3 Related work

Tailored substring searchable encryptions schemes have been proposed in the literature [9], [15], [14]. Here
we present a detailed analysis of the state of the art in substring searchable encryption protocols. Chase
et al. [9] leverage the auxiliary data structure of the suffix tree. A suffix tree is a compressed suffix trie,
can be computed in time O(n) and allows for substring search in O(m) time on a substring of size m. Its
amortized storage cost O(n) hinders a big constant factor, which can goes up to 20 [1, 5, 19, 25]. In [14]
the authors extended the efficient SSE scheme for boolean queries from [6] in order to support substring
matching. The idea is to build an index of overlapping k-grams, to prepend its relevant position and
encrypt it. When a user needs to perform a substring query, the cloud performs a conjunctive keyword
search for all the k-grams of the substring and returns the position. The disadvantage of the scheme
comes at the need of storing all the overlapping k-grams at the cloud, which will represent substrings.

In [15] the authors follow a different approach. Instead of taking the index-then-encrypt approach
with fast symmetric cryptographic primitives, they modify the subset sum problem, which is used to
build public key encryption schemes, in a means such that the cloud can solve it. This contradicts the
security definition of subset sum problem, which asks for impossibility of an adversary to find a solution
to a specific instance. More specifically the user uploads a special instance T of a subset sum problem
such that given a trapdoor Ri associated with a substring, the solution can be solved in time O(m) by the
cloud; with the special property that the integers which sum to T, parametrized by Ri are the positions
of the substring in the string. This technique hides also the search pattern but comes at the cost of fixed
size substrings, that must be defined in the beginning of the protocol. Moreover the substring should
be substantially small with respect to the big stream. Our solution in contrast allows variable size of
substring of any size.

Recently, Blass and Moataz [28] strengthen the security requirements by hiding the search and access
patterns, following the ORAM approach. By leveraging the Path ORAM technique and the suffix array
construction for substring queries, the authors manage to reduce the bandwidth, with a binary recursive
tree above the position map. Each node in the tree represents a Path ORAM of the binary search tree
for the suffix array. However, in order the cloud to be able to perform an oblivious binary search has to
keep track of all the suffixes, which blows up the storage cost for the server. Furthermore the need for
storing the suffixes cancels out the suffix array storage advantage over suffix tree. Finally, due to the Path
ORAM technique the user has to store a state logarithmic on the length of the string–for the position
map. The extra security guarantees of the tailored ORAM scheme do not allow for efficient storage cost
both at the client and the cloud side, which is the goal for our work.

4 General Idea

In order to reduce the storage cost for our Substring Searchable Symmetric encryption scheme (S3E) we
first substitute the storage expensive suffix tree of the state of art work in [9] with a suffix array SA. A
suffix array for a string S of size n constitutes of an integer array of size n, which has at each position
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a pointer to the start of the matched suffix T [1...m] in the string S. SA is lexicographically sorted with
respect to all the possible suffixes and can be computed in linear time on the size of the string S. In order
to look for the position of a substring, a binary search in SA is performed, which is used as an index to
the original string. Thus, the running time for a substring search is O(m+ logn). Let us now consider a
concrete example to uncover its details. Suppose S=lalakis. The algorithm for the suffix array proceeds
as follows:

1. Compute all the suffixes starting from the right-most position: s, is, kis, akis, lakis, alakis, lalakis.
2. Lexicographically sort the suffixes: akis, alakis, is, kis, lakis, lalakis, s.
3. Find the position in S of each suffix from step 2 and store them in an array SA = [4, 2, 6, 5, 3, 1]
4. Output SA.

However, plugging the SA for a substring searchable symmetric encryption scheme raises some difficulties.
We assume that the suffix array is encrypted under a secret key of the user. In order for the cloud to
retrieve the right encrypted index position from SA ought to run a binary search obliviously without
learning the underlying string S, query substring T , or any of the suffixes. A solution to the problem is
to use the technique presented by Gentry et al. [17], which allows for a single ORAM query in order to
perform a binary search over encrypted data. However, in order to adapt this approach it is required from
the server apart from the encrypted suffix array, to store the tree of the encrypted data, which would be
an extra burden for its storage complexity, plus there should be one extra round of communication due
to the ORAM protocol in order to rebuild the specific path.

In this paper we are taking a different approach, which achieves storage efficiency. We take advantage
of the self-indexed data structure Ferragina-Manzini index, called hereafter FM index [16]. Namely, from
FM index the untrusted cloud can answer substring queries by leveraging the suffix array SA, without
the need for an ORAM query. The neat property of the FM index is that it can reconstruct the original
string S with some extra auxiliary data structures, thanks to its instantiation from the Burrows-Wheeler
Transformation algorithm (BWT) [5]. For the reconstruction it employs the LF mapping technique, thus
there is no need to store the encrypted stream S. The FM index can be derived from SA, as such its
computational overhead is almost for free, after the computation of the suffix array. We describe the core
building blocks of the FM index in what it follows.

4.1 Pattern matching

In this section we describe the compressed index FM, that will be used for the construction of our Secure
Pattern Matching (S3E) protocol. The design lies heavily on the BWT transformation for compression
of bit-strings and on a special LF mapping for the reconstruction of the original string from BWT. The
BWT, along with the LF mapping technique and some auxiliary information are the basic blocks of the
compressed index for substring queries.

BWT Transformation The Burrows-Wheeler Transformation (BWT) transforms a stream of data by
leveraging the entropy of each character. In a nutshell, the data stream S is transformed to an encoding
W such that compression algorithms provide high rate of compression. However, for the construction of
S3E we only need a compressed version of the intermediate steps and not the final string W . For ease
of completeness we show the steps to transform an original stream S to W with BWT in algorithm 1.
First, the algorithm appends the terminating symbol $ to the input string S. Then, it builds the matrix
W by permuting the symbol $. At each iteration the permutation is appended as a new row to the
matrix W. Finally the rows of W are sorted lexicographically in an ascending way. A real world example
is shown in figure 2 for string S = lalakis. The upper table of the figure shows the permutations and
the final shorted matrix W is shown at the bottom matrix. The transformation is the first step towards
compression with the LF mapping that is shown next.

LF Mapping The LF Mapping technique takes the first F and last L columns from the BWT transfor-
mation and through an iterative process as described in algorithm 2 reconstructs the original string S.
Starting from the first elements of each column from F and L, the algorithm employees L as an index to
the F column. Each time the element of the L column is appended to a LIFO stack. The value at the
current position will be used as an index for the F column for the next loop. An example is presented
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Algorithm 1: BWT transformation

Input: String S
Output: BWT(S) = W
l=length(S)+1;
S.append($);
i=0;
while i¡l do

ri=rotate(s,$) // The rotate algorithm permutes the characters of the original string and returns the
permuted string ;

W.addrow(ri) // It adds the permuted row from the previous step to the matrix W ;
i + +;

end
return Sorted.W;

l a l a k i s $
a l a k i s $ l
l a k i s $ l a
a k i s $ l a l
k i s $ l a l a
i s $ l a l a k
s $ l a l a k i
$ l a l a k i s

$ l a l a k i s
a k i s $ l a l
a l a k i s $ l
i s $ l a l a k
k i s $ l a l a
l a k i s $ l a
l a l a k i s $
s $ l a l a k i

Fig. 2: BWT Transformation. The upper table shows the cyclic permutations for the string S=lalakis. As a first
step for the construction of the BWT matrix the end symbol $ is appended at the end of S, which lexicographically
precedes all alphabetical symbols. Then at each row a permutation of $ around the string is shown. The result
is matrix BWM[length(S)+1][length(S)+1]. As a second step the rows are sorted lexicographically at the second
bottom table of the figure starting from the first character of each string. The light gray first column shows the
order of the characters after sorting and the last column is the result of the transformation BWT(S)=sllkaa$s.

in figure 3. At the first iteration the pointer indicates the first position in both columns F, L. For the
next iteration the L character ’s’ indicates the index for the first column F, which can be found at its
last position with F[7] =s. The current character at the L column is appended to a stack D. For a next
iteration the current character at the L column indicates the next index for the F column. The character
i is pushed to the stack D. The procedure halts when the position at L is $. Then the algorithm pops all
elements from D and the initial string S is fetched.

F L F L F L F L F L F L F L F L

$ s $ s $ s $ s $ s $ s $ s $ s
a l a l a l a l a l a l a l a l
a l a l a l a l a l a l a l a l
i k i k i k i k i k i k i k i k
k a k a k a k a k a k a k a k a
l a l a l a l a l a l a l a l a
l $ l $ l $ l $ l $ l $ l $ l $
s i s i s i s i s i s i s i s i

Fig. 3: The LF mapping process is used to reconstruct the original string S from the transformed one after applying
the BWT operation. Starting with the $ sign from the F column, the mapping progressively reconstructs the entire
string S. The last column L is used as a “ladder step” to find the next ith index in the F column, which in turn
maps to the ith entry in the L column. The entire procedure halts when L[i]==$

FM Index Suffix array vanilla construction has O(n2logn) asymptotic computational cost. This stems
from the fact that we need to first sort the n suffices by performing O(nlogn) comparisons and each
comparison has cost n. Linear time algorithms have be achieved by first constructing a suffix tree and then
traversing with a depth first edges with lexicographical order. However, our goal is to be storage efficient,
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Algorithm 2: LF Mapping

Input: First (F), Last column (L) from BWT
Output: S
D=0 // Initialize the stack D;
l=length.(F) // the length of F equals the length of L;
i=0;
while L[i]! = $ do

D.push(L[i]);
i=find.F[L[i]]// find.[] denotes the index number in array [] that the element is. For instance
find.F[’s’]=7 ;

while D! = \′0′ do
S=S+D.pop;

return S;

meaning we want to eliminate the storage cost of a suffix tree which practically approximates a constant
factor of 20n [1, 5, 19, 25]. We pick up the skew algorithm [21] which is a divide and conquer based
algorithm and achieves linear time construction. The approach of the skew algorithm is to recursively
divide the suffixes in three groups depending on the position pos of all suffices: pos mod h, h ∈ {1, 2, 3}
and then merge the result.

The FM consists of three column arrays. The first one is the F column from the LF mapping, the second
one is the L column which corresponds to the BWT(S) and the last one corresponds to the suffix array SA.
SA contains at each row i, the position in the original string S of the substring which corresponds to the
ith row of the W matrix obtained after applying the BWT transformation. L = BWT(S) can be computed
with the formula BWT(S)[i] = S[SA[i] − 1] from the suffix array. Furthermore for the traversal of the
LF mapping the unique ranking of each character in each F, L needs to be stored in rF, rL accordingly.
Finally FM = {F[i], L[i], rF[i], rL[i], SA[i]}ni=1.

The entire challenge is on how a user encrypts FM in such a way that a untrusted cloud can correctly
reply with the encrypted position on substring queries. We give an intuition of our approach in the next
section, we also highlight some shortcoming thereof and we demonstrate our solution to alleviate it.

5 Intuition

In this section we provide some intuition about S3E protocol before delving into its precise description
in the follow up section. First we start with showing how the client encrypts the index to allow the cloud
process fast encrypted substring queries. Our solution is based on the FM index described in the previous
section. The FM index consists of three arrays, which keep track of the F, L columns and the encrypted SA
suffix array with positions of substrings and not all the suffixes as in [28]. To recap, the user computes
the suffix-array SA and the F, L columns through the BWT transformation.

5.1 First Approach

We give an overview of our first approach. The protocol can be described in two phases: The encrypted
index phase and the search phase.

Encrypted Index To facilitate the reader we split the encrypted index process in two steps (cf. figure
4): 1) the linked list, which bootstraps the search procedure on the FM index by the cloud and 2) FM

index itself. The notation used for the protocol is given in table 1. For the security of the scheme
the user employs lightweight cryptographic primitives: a pseudorandom function F(·), a pseudorandom
permutation Π(·) respectively and a symmetric encryption scheme SKE = {Gen,Enc,Dec}. The untrusted
cloud, thanks to the LF mapping and the FM index computation does not need to store all the suffixes
of a stream S (cf. figure 4).
Linked List The crux of the design is on how to allow fast indexing through a hash table, which means
that there should be unique keys derived from the string with repetitive characters. We employ the
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σ Vocabulary size
Σ Vocabulary
S Original stream
T Substring query
c character
b bucket
n Size of S
m Size of T

win window size

SA Suffix array
F First Column of LF mapping
L Last Column of LF mapping

LLSet Hash map
LL Linked List

cFj , bFj
jth character,bucket from F column

cLj , bLj
jth character,bucket from L column

rci , rbi
Ranking of ith character,bucket in the string S

rFj Ranking of jth character from F column

rLj Ranking ofjth character from L column

cw wth character, bucket from the alphabet, (1 ≤ w ≤ σ)

bz zth bucket,(1 ≤ z ≤ n− win + 1)

λ Security parameter
F(·) Pseudorandom function (PRF)
Π(·) Psudorandom permutation (PRP)

SKE = {Gen, Enc,Dec} Symmetric encryption
kf PRF key
kl PRF key

kπ1,2,3
PRP keys

Table 1: Notations

ranking information rc of each character along with the character itself. However, when a user is looking
for a substring, it does not know the ranking of each character in the substring T [1...m]. We mitigate
this deficiency by building a linked list LLc for each character.

The user computes a hash table of linked lists LLSet, where each position LLSet[Fkf
(cw)], 1 ≤ w ≤ σ

maps to the linked list LLcw . The number of linked lists equals the number of distinct elements c, denoted
as σ in the data stream S, where each symbol cw, 1 ≤ w ≤ σ comes from an alphabet Σ. The hash table
is used to fetch all the positions of a character in the stream S from the linked lists LLcw . Each linked
list LLcw stores information concerning the retrieval of the position of c from S. More specifically each
node in the list stores the following tuple: 〈nptr, addr〉, nptr is a pointer to the next node of the current
list and addr is the address of the element c in the FM index.

The first node of each linked list is stored in the LLSet hash table. In order to prevent frequency attacks
we encrypt each key Fkf

(cw) in the LLSet hash map with another key kl as follows: Fkf
(cw) ⊕ Fkl

(cw).
Thus the cloud cannot perform a frequency attack offline without observing any token. The key of the
hash map LLSet at Fkf

(cw)⊕ Fkl
(cw) maps to the first element of the linked list LLc, which is encrypted

as 〈nptr, addr〉 ⊕ Fkl
(cw)1. As such, the frequency of each character before a search query is hidden.

However, once the cloud receives queries, it can learn the frequency of encrypted characters in the
linked list which represent characters of the string. In order to obfuscate frequency analysis on the
encrypted index from substring search queries, we pad the data stream with dummy blocks. These
dummy blocks make all linked lists to appear with the same size. The core idea for padding is to produce
dummy blocks from the vocabulary Σ depending on proportional to the ranking of the most frequent
character. E.g: Original stream=abbcd and Σ=abcd, then the dummy blocks equal dc={ a, c, d}. Finally

the user chooses uniformly at random dpos
$←{|dc|} and appends the original string S at position dpos

of dc. Following the previous example; if dpos=1 then S′=aacdbbcd. The cloud responds in the final
round with the encrypted position pos. User accepts the result as correct if dpos ≤ pos ≤ n− dpos and
pos+m < dpos+ n.
FM Index Encryption (figure 4). The second difficulty comes when the cloud tries to traverse
the FM index through the LF mapping technique. The encrypted FM index contains unique digests
of characters, while the cloud should identify matches from the token tkT,S , that encodes repetitive

1 Notice that even if we use a one time pad with the same key for two different elements: a = 〈nptr, addr〉, b =
Fkf (c

w) an adversary by xoring the two ciphertexts encrypted under the same key Fkl (c
w), learns ab =

〈nptr, addr〉 ⊕ Fkf (c
w), which is a one time pad encryption of 〈nptr, addr〉 with key Fkf (c

w).
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LLSet LL

Fkf (c
1)⊕ Fkl(c

1)

l1c1 = 〈nptr, addr〉

Fkf (c
2)⊕ Fkl(c

2)

Fkf (c
3)⊕ Fkl(c

3)

b

b

b

Fkf (c
w)⊕ Fkl(c

w)

l1c1 ⊕ Fkl(c
1)

l1c2 ⊕ Fkl(c
2)

l1c3 ⊕ Fkl(c
3)

l1cw ⊕ Fkl(c
w)

l2c2

l2c3

l2cw l3cw l4cw

l3c2

FM

Fkf (cFj )⊕ Fkf (rFj ||cFj )
Fkf (cLj )⊕ Fkf (rFj )||Fkf (rLj )||Enc(ke, SA[i])

FM.SA=SKE.Enckπ(pos.c)

SALF

l3c3

LinkedListPart

Fig. 4: The encrypted FM index construction.

characters deterministically. In order to allow the cloud traverse the encrypted FM index, we encrypt
the FM as a key value hash table where the key consists of Fkf

(cFj ) ⊕ Fkf
(rFj ||cFj ) and the value is

Fkf
(cLj )⊕ Fkf

(rFj ||cFj )||Fkf
(rLcj ||cLj ),E(posj). Finally the user permutes all the tuples with a secure per-

mutation: Πkπ (tj).

Search During the Search phase on a substring query tkT,S = Fkf
(T [1...m]) =

Fkf
(T [1]),Fkf

(T [2]), . . .Fkf
(T [m]),Fkl

(T [m]) the cloud proceeds as follows:
Bootstrap. First it needs to bootstrap the search by finding the correct candidate positions in the
encrypted FM table through the linked list, which correspond to all positions in the string S where the
last character of the query possibly exists. From the LLSet hash table it looks for the value with key
Fkf

(T [m]) ⊕ Fkl
(T [m]). This value maps to a linked list LLc, in which each node maps to the encrypted

FM tuple tj = t0j , t
1
j , t

2
j =

〈Fkf
(cFj )⊕ Fkf

(rFj ||cFj )︸ ︷︷ ︸
F

,

Fkf
(cLj )⊕ Fkf

(rFj ||cFj )||Fkf
(rLcj ||cLj )︸ ︷︷ ︸

L

,E(posj)︸ ︷︷ ︸
SA

〉nj=1.

In order to decrypt the first element of the linked list the cloud uses Fkl
(T [m]) as a key to decrypt

〈nptr, addr〉 ⊕ Fkl
(cw), in order to learn 〈nptr, addr〉 . The cloud uses Fkf

(T [m]) and applies a xor
operation on the F column at the ranges that it retrieved from the linked list of the cm character LLc
and learns Fkf

(rFj ||cFj ).
Iteration. The cloud uses Fkf

(rFj ||cFj ) as a key to decrypt the first part of the L column element
Fkf

(cLj ) ⊕ Fkf
(rFj ||cFj ) and reveals Fkf

(cLj ). It then fetches the encrypted L column as k = Fkf
(cLj ), b =

Fkf
(rLj ||cLj ) in which Fkf

(cLj ) = Fkf
(T [m−1]) and for all nodes from the linked list computes k⊕b, which

is used as a key for the F column. The procedure terminates when the processed substring character is
the first one Fkf

(T [1]).
At this point the cloud returns to the user all the encrypted E(posj) for the substrings. The user

decrypts and accepts the result as long as the decrypted position is in the range of the size of original
stream without padding.
Second round. From the per-character one way function Fkf

evaluation of the substring query: tkT,S =
C[1], C[2], · · · , C[m]← Fkf

(T [1...m]) and the LF mapping the protocol leaks to the cloud in cleartext the
exact differences of the positions of two encrypted substring in the stream S. More specifically, the number
of iterations in the LF mapping traversal (algorithm 2), reveals how many positions two substrings they
differ, as long as there is match in S. Eventually, an untrusted cloud can decrypt the entire encrypted SA

array, which contains encrypted positions of all substrings in S, since it knows its addresses. To circumvent
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the leakage we first use two different permutations to permute the tuples tj : Πkπ1
(t0j , t

1
j ) = π0,1

j ,Πkπ2
(t2j ) =

π2
j . As such after the permutation Fkf

(cFj )⊕ Fkf
(rFj ||cFj )︸ ︷︷ ︸

F

,Fkf
(cLj )⊕ Fkf

(rFj ||cFj )||Fkf
(rLj ||cLj )︸ ︷︷ ︸

L

are stored

in position π0,1
j at the FM array and E(posj)︸ ︷︷ ︸

SA

at position π2
j . The cloud as traverses the token returns

the permuted encrypted position of the substring token, the client applies the inverse permutation and
fetches the correct cell from the FM array. By doing so the cloud cannot learn on its own, the encrypted
position of a substring. The second permutation prevents him to learn this information by stopping the
traversal of the index at any substring of the original query at its choice. To perform that it needs the
contribution of the user.

5.2 Improved scheme

Shortcoming Recall that during the encryption of the index, the user adds dummy blocks at the linked
lists in order to alleviate frequency attacks. Namely after issuing a query token tkT,S the client reveals
to the cloud the key Fkl

(T [m]) in order to locate the head of the list which corresponds to the key
Fkf

(T [m]) ⊕ Fkl
(T [m]). The cardinality of the list corresponds to the frequency of that character in the

original string S. In our first approach we address this problem by adding dummy blocks in all linked
lists in order their size to equal the size of the longest one.

The aforementioned technique protects the client from frequency attacks on the original string and
imposes low overhead in case of a string drawn from a distribution with homogeneous frequency char-
acters. However in a more skewed dataset with characters having broad frequencies, then the technique
of dummy characters can drastically affect the efficiency of the system. More specifically the dummy
characters may double the size of the final size of the index, thus degrading the storage overhead and
the computational efficiency of the client.

Bucketization of characters In order to tackle the problem of increased storage due to the need of a
large number of dummy characters to make the list of equally size, we flatten the frequencies as follows:
we group together the characters into buckets of equal size and we build index on top of the buckets. By
doing so the frequencies of buckets composed of consecutive characters of the string are close together
and thus few dummy buckets are in need. User starts by organizing the string in buckets: It selects the
size win of a window that traverses the string S. At each iteration z it extracts win consecutive characters,
puts them in the bucket b and shifts the window one character forward at the left. Finally a set of buckets
{bz}n−win+1

z=1 is extracted.
Index. The entire procedure is similar to the first approach but instead of operating on single characters
everything operates on buckets. Now the F and L column arrays correspond to buckets and the input
to the Fkf

is not a single character c but a bucket b. We use the same notation conventions with the
first approach but instead of operating on characters we operate on buckets, i.e: we denote by b1 the
first bucket of string, bFj is the jth bucket of the F column, etc. The LLSet hashmap stores for each key
Fkf

(bz) ⊕ Fkl
(bz), the head of lists, which correspond to buckets of the stream. The entire procedure to

encrypt the index is identical with our basic approach and we omit a repetitive overview thereof.
Search. During the search phase if the size of the token, which consists of possible consecutive buckets of
the original string S, is a multiple of the windows size win then the protocol protocol proceeds identically
as with the per-character previous version of the search procedure.

However when the size of the token is not multiple length of win then there will be always a faulty
mismatch. The possible match of the last bucket of the token will be inside the last non-matched bucket
from the index. Recall that from the LF traversal on the FM index, the search starts from the last character-
bucket and proceeds up to the first character-bucket of the search token. As such the cloud during the
search phase it will always misfire a mismatch. We alleviate the correctness problem as follows. The cloud
starts the search not from the last bucket of the token Fkf

(T [m]) but for the previous one Fkf
(T [m− 1]).

If there is a match for all m−1 blocks of the token then the client needs to decrypt the mth bucket in the
string to verify matching of the first e = n mod win remaining characters which correspond to the last
bucket of the query token. To do so the client has to encrypt and upload the stream S similarly with [9]
in a per bucket fashion resulting to an array of encrypted buckets B. To avoid the reveal of the position
the client permutes the buckets with a pseudorandom permutation Π, keyed by kπ3 : B′[j] = B[Πkπ3

(j)]

11



and instead of querying for the mth bucket it forwards a request for bucket number B[Πkπ3
(m)]. It

then decrypts the bucket and compares it with the last bucket from the query to identify a matching
happening at position m.

6 Protocol

6.1 S3E Description

We are now ready to give the full details of our substring searchable symmetric encryption protocol, which
alleviates the storage overhead shortcoming of the first approach with our bucketization technique:

– k ← KeyGen(1λ): This algorithm runs by the user takes as input the security parameter 1λ and
generates random keys k = (kf , kl, kπ1,2,3 , ke,c) for a PRF Fkf

: {0, 1}λ × {0, 1}ν → {0, 1}µ, a PRP
Πkπ : {0, 1}λ × {0, 1}ν → {0, 1}ν and a symmetric encryption algorithm SKE = {Gen,Enc,Dec}.
Finally it outputs k to the user. For the generation of the keys we assume a source of randomness R
and a pseudorandom generator G seeded with

sf
$←R, sl

$←R, sπ1,2,3

$←R, se
$←R :

(kf , kl, kπ1,2,3 , ke,c)← G(sf),G(sl),G(sπ1),G(sπ2),G(se)

– SES ← PreProcess(k, S): User owns a stream S, which contains characters c ∈ Σ. S has n characters.
Let maxb be the cardinality of most frequent bucket and fbi the frequency of bucket bi. User:
1. Parses the string S as buckets: {bz}n−win+1

z=1 , each of size win characters and k in total distinct
buckets:
for z = 1; z + +; z = n− win

bz = (z + win ≤ |S|)?S[z...z + win] : S[z...n− z]
2. Chooses dummy buckets dc =

∑k
j=1 maxb − fbi that constitute a dummy stream. The user

chooses uniformly at random dpos
$←{|dc|} and appends the original string S at position dpos

of dc
3. Computes the suffix array SA and the F, L columns on input the buckets B and stores them as

the FM index: FM = F||L, SA.
4. Encrypts all buckest B = SKE.E(kc, bz), 1 ≤ z ≤ n+ k − win + 1
5. Permutes B′[j] = B[Πkπ3

(j)]
6. Encrypts elements of SA array with SKE.E(ke, SA[i]), 1 ≤ i ≤ +k − win + 1.
7. Applies the PRF to each element of F as follows:

F[i] = Fkf
(bFi)⊕ Fkf

(rFi ||bFi)

8. Computes
L[i] = Fkf

(bLi)⊕ Fkf
(rFi ||bFi)||Fkf

(rLi ||bLi)
9. Applies a pseudorandom permutation Πkπ to the tuples:

t0 = Fkf
(bFi)⊕ Fkf

(rFi ||bFi), t1 = SA[i]),

t1 = Fkf
(bLi)⊕ Fkf

(rFi ||bFi)||Fkf
(rLi ||bLi)

using kπ1 and with kπ2 user permutes E(ke, SA[i]), for i = 1, ..., n + k − win + 1 : Πkπ1
(t0i , t

1
i ) =

π0,1
i ,Πkπ2

(t2i ) = π2
i = FM′.

10. For every distinct bucket in F[i] = Fkf
(bFi)⊕ Fkf

(rFi ||bFi) the user initiates a linked list LLc and
at each node stores LLc.nptr for the next node of the list and LLc.addr which points to the
tuple ti with a matching Fkf

(bFi). Finally it encrypts the first element of each linked list LLc with
Fkl

(bi) : 〈nptr, addr〉 ⊕ Fkl
(bi).

11. Stores the head pointers of the collections of all linked lists in a hash table LLSet with key
k = Fkf

(bi) ⊕ Fkl
(bi) and value v a pointer to the head of the list LLc, which stores information

about the Fkf
(bi) character, meaning all its positions to the encrypted FM index.

12. Finally outputs SES = (LLSet, LLc, FM
′, B′) and keeps only the keys k = (kf , kl, kπ1,2,3 , ke,c).
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– tkT,S ← SrchToken(k, T [1...m]): This algorithm takes as input the secret substring search key k, a
string T [1...m] and outputs a trapdoor to search for the string T on data stream S, through SES:
1. Parse T [1...m] to buckets Tb = {T ib}m−win

i=1 of size win:
for i = 1; i+ +; i = m− win
T ib = (i+ win ≤ |S|)?T [i...i+ win] : T [i...m− i]

2. User with his secret PRF key kf computes tkT,S = C[1], C[2], · · · , C[m − win] ← Fkf
(Tb =

{T ib}m−win−1
i=1 ),Fkl(T

m−win
b ) and forwards tkT,S to the cloud.

– (s,⊥)← Search(tkT,S , SES): The cloud parses the token query tkT,S = C[1], C[2], · · · , C[m−win] and
searches the position in S from the encrypted index SES as follows:
1. if |tkT,S | mod win == 0

x = m− win, flag = 0
else
x = m−win−1, flag = 1 // Search for the last equal size bucket pattern before the last

one.

2. u = find(LLSet, C[x])//find in dictionary LLSet the value u with key C[x].u is a pointer

to the head of a list LL, which stores pointers to all buckets T [m] in S

3. if u ==⊥ return ⊥
4. while u 6=⊥ do

K = K ∪ u.addr //traverse the list and store in the set K the addresses of the

characters.

u = u.nptr
5. for p = x− 1; p > 1; p = p− 2

for i = 1; i < size(K); i+ +
if SES.L[K[i])(1) == C[p − 1]//Store in the set KEY S only the elements from the F

column, whose associated L element equals the next bucket from C in a backword order.

SES.L[K[i]](1) maps to Fkf (bLi)⊕ Fkf (rFi ||bFi) and SES.L[K[i]](2) to Fkf (rLi).

KEY S = KEY S ∪ SES.L[K[i]]
else K = K −K[i] //Remove all the non matched elements from the key set K.

if K ==⊥ return ⊥
for i = 1; i < size(KEY S); i+ +
rFi = C[p]⊕KEY S(1)[i]
z = rFi ⊕KEY S(2)[i] //Compute the key from the L column as KEY S(1)[i] ⊕KEY S(2)[i],

which corresponds to Fkf (bFi)⊕ Fkf (rFi ||bFi) in the F column of the SES object.

if SES.F[z] 6=⊥
continue

else KEY S = KEY S −KEY S[i] //Remove all the non matched elements from the key

set KEY S.

K = KEY S
6. if K ==⊥ return ⊥
7. The cloud sends to the user SES.FM′[K]. The client runs the inverse permutation Ππ2 to the K

indexes and gets back {i′} and asks the cloud for SES.FM′[{i′}]. After getting back the results the
client decrypts pos = E(ke, SA[{i′}]) with ke and learns the position pos of the asked substring
T in S. In case flag == 0 user accepts the result as correct if dpos ≤ pos ≤ n − dpos and
pos +m < dpos+ n.

8. if flag == 1 recap that the LF traversal on the FM index starts at the last character and proceeds
invertly. Notice that we excluded at step 1 during the else branch the remaining the last bucket
as it will always be a mismatch even if the first characters match the user search pattern. So the
cloud returns also B’[pos]. The client runs the permutation pos′ = Πkπ3

(pos) and asks the cloud
to return the bucket bpos′ . Then client checks if the first m mod win characters of the decrypred
bucket equals the last m mod win characters of the search pattern and accepts the pos as valid
otherwise discards the result.

6.2 Security Analysis

We illustrate the security of the scheme pertaining to definition 3. More specifically, we show the existence
of a simulator S who has access to the leakage function L = (L1,L2,L3), and produces indistinguishable
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views to an adversary A. Conceptually the proof demonstrates that an adversary A, who can be a
semi-honest cloud cannot learn more information from what it can be leaked in an ideal work without
malicious behaviors.

Theorem 1. Let Fkf
,Πkπ ,SKE = {Gen,Enc,Dec} be a pseudorandom function, a pseudorandom permu-

tation, a semantically secure symmetric encryption scheme respectively, then our substring searchable
symmetric encryption scheme S3E is adaptively L-semantically secure.

The proof is omitted to Appendix B.

6.3 Comparison

Protocol Search Index [PS—CS] Query [FR—LR] VLS Rounds SL

CS[9] O(m+ k) 20n 4(n+Σ
2n−(2+N)
i=1 σ − child(i))

m(m+1)
2θ m+k 3 3 SP+QPP+IIP+LIP

FJKNRS[14] O(n) - m 0 3 1 SP
FHV[15] O(n−m) - m 0 7 1 7

S3E O(m+ k) 4n 4(n+
∑k
j=1 maxb − fbi

) m 1 3 2, 3 SP+QPP+IIP

Table 2: Comparison of existing substring searchable encryption protocols. Index space is further categorized in plaintext space
index storage space (PS) and ciphertext space (CS). The overhead of [14] and [15] is undefined as the schemes do not take advantage
of any auxiliary data structure for efficient substring search. For the query complexity we analyzed its size in terms of two separated
phases: at the first round (FR) of the protocol and the last one (LR), in case of multiple rounds protocols. VLS denotes variable
length substring search and SP the search patternleakage: QPP: Query prefix pattern, IIP: Index intersection pattern, LIP: Leaf
intersection pattern.

We perform a comparison of our S3E with existing solutions (cf. table 5). We analyzed the search
running time in asymptotic complexity, index space requirements both in the plaintext and in the ci-
phertext space, query size, variable length capability, rounds of communication and search leakage. Since
our scheme competes mostly with [9] here we further elaborate its cost analysis from table 5.
Search. Thanks to the usage of encrypted dictionary the cost of searching a m length string is O(m+k),
where k denotes the number of occurrences. However, due to the extra dummy blocks the search cost is
increased to O(m+k+

∑k
j=1 (maxb − fbi)), where maxb is the most frequent bucket and fbi the frequency

of bucket bi.
Index. For the index space complexity, we analyzed the space requirement in the plaintext space and
in the ciphertext space. For the plaintext space analysis we assume, that a pointer or integer requires
4 bytes. Recall that a suffix tree has n leaves, at most n − 1 internal nodes and at most 2n − 2 edges.
Thus, for a naive suffix tree implementation we need 2 pointers for each leaf: one for the parent node
and one for its position to the original stream, resulting in 8n bytes. Four pointers for each internal
node: one for the parent node, one for each leftmost child, one for the right sibling and one pointer for
the suffix link, which reduces the search time during a substring query. The total storage cost for the
internal nodes is 4 ∗ 4n = 16n. For each edge, suffix trees allocate one pointer for the beginning position
of the substring in the stream and one for the end position of the substring in the stream increasing
the space cost to 24n + 4 ∗ 2 ∗ 2n = 40n. The space cost of the solution based on suffix trees [9] can be
further reduced to 20n by eliminating the need to store suffix links and parent pointers. However, the
extra dummy blocks further augment the storage overhead. Assuming a suffix tree with N internal, each
node is further padded with dummy children nodes so as to each node has σ children, where σ is the size
of the vocabulary. Furthermore, the internal nodes are padded with up to 2n − 2 nodes where n is the

size of the string. Finally the size of the extra dummy nodes in [9] is: Σ
2n−(2+N)
i=1 (σ − child(i)), where

child(i) equals the number of children for internal node i in the suffix tree. In contrast, in S3E we replace
the space expensive suffix trees with suffix arrays and as such the index space cost is reduced from 20n
bytes to 4n bytes.

For the storage space computation during the encryption of the index, be it suffix tree or suffix array,
we exclude a per byte comparison and we assume a ciphertext comparison. The encryption of the index
is based on the translation of the suffix tree to an encrypted dictionary. Thus, all the extra pointers of
the suffix tree are excluded. Following the protocol from [9], the user encrypts 2n substrings which equal
to the number of edges of the suffix tree, n leaves and n characters of the original stream, resulting in
4n encryptions. In our solution thanks to the FM mapping the user sends the encrypted suffix array, plus

14



two more n size arrays for the FM index construction; one for the F column of the index and one for the
L column. In the end it uploads 4(n+

∑k
j=1 maxb − fbi) encrypted values to the cloud, in total.

Query. For the query size, we assume a block cipher of size θ and a substring query of size m. In [9]
the substring is encrypted incrementally: for the substring “abc” user encrypts separately E(a), E(ab),
E(abc). As such, for big substring queries as in DNA queries, the number of ciphertexts exceeds the

number of the substring m. The total number of encryptions equals 1
θ + 2

θ + · · · + m
θ = m(m+1)

2θ during
the first round. At the last round the user asks for the positions of each character separately augmented
by a factor of m the substring size. In S3E the substring query has only per character encryptions of each
character in the first round plus a ciphertext for the last round. Our solutions also allows variable size
substring queries, since the size of the substring query is decoupled from the scheme and can be defined
online during the query phase as in [9].

Rounds. For the rounds of communications, S3E can return the substring search results in 2 rounds of
communication or in 3 in case of a query size not a multiple of the bucket size win. During the first round,
the client sends an encrypted substring query and the cloud responds with encrypted addresses of the
corresponding suffix array positions. At the second round the client decrypts the permuted position of
the suffix tree and queries the cloud for the unpermuted encrypted position. A third round is performed
in case of a query not a multuple of the size of the bucket, whereby the client verifies the correctness of
the possible match.

Security Leakage. Concerning the search leakage, Chase et al. [9] scheme leaks the search pattern,
meaning an untrusted could can identify similarities between two or more substring search queries.
Moreover, the scheme reveals the query prefix pattern, which leaks whether a node has been visited for a
previous substring in the suffix tree, the index intersection pattern which allows the cloud to learn if the
returned index position has already been asked and finally, the leaf index leaks when any of the returned
positions of the tree leaves have been previously queried. Since in S3E we avoid the use of a suffix tree,
S3E does not leak the leaf pattern. We inherit though, the index intersection pattern, which reveals if
any returned index has been returned in a previous query. As in [9] our scheme reveals also the cloud
differences of the indexes when a user asks for substrings that they do differ in one position and there
is only a single position in the original stream S. Both schemes employ a padding policy to add dummy
blocks in order to obfuscate the structure of the index and the stream. S3E is also adaptively secure
under the real-ideal simulation paradigm. We also use an authenticated encryption scheme in order to
assure the integrity of the messages.

7 Performance

In this section we present our implementation results. We demonstrate the practicality of S3E with
benchmark experiments, comparing our results with the scheme of Chase et al. [9], in order to validate
the claims of our performance improvements. To accomplish the comparison we also implemented the
suffix tree based construction of [9] called hereafter ST.

7.1 Implementation

For the benchmark experiments we used a machine running Ubuntu 14.04 with kernel version 3.19.0-29.
The machine has 8GB RAM memory and is equipped with an INTEL Intel(R) Core(TM) i5-5200U
CPU @ 2.20GHz processor with 4 cores. We instantiated the PRF, PRP using Poly1305 + Salsa20,
BLAKE2b [2], which outperform their competitors in computational efficiency. The most computational
heavy operation on the client side is the computation of the index, which becomes the bottleneck of the
total performance. In our benchmarks, since the code will vary in different machines, we choose to isolate
the code in different modules in order to evaluate their relevant performance. Thus, the first module
consists of operations that take place in cleartext data, the second module entails the cryptographic
primitives used to encrypt the FM index and the third module consists also of all I/O operations in order
to serialize the encrypted FM index. For our benchmarks we used two real datasets: one DNA sequence
from https://www.ncbi.nlm.nih.gov/ and randomly extracted emails from the enron email data set
https://www.cs.cmu.edu/~./enron/. We varied in either cases the size of the corpus in order to observe
the feasibility results in these variations.
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Our comparison is based on two metrics: a)storage overhead for the encryption of the index and
the computation of a substring query as an encrypted token, b)computation time of each operation.
The reported computation times for each experiment are taken as the average of 100 trials. As we
implemented both schemes on the same machine, which simulates both the client and the server, we
can derive accurate and fare observations about the performance of the protocols on real metrics. In the
real world the server can be implemented in a more powerful machine, however this does not change the
storage overhead or the computation performance fraction of both schemes.

Thanks to our encrypted suffix array construction, we achieve a storage improvement by a factor of
1.71 for the DNA sequence data stream and 1.57 for the enron email data. This occurs first because of
the extra information a node of the suffix tree should keep (leaf nodes, parent nodes, auxiliary information
for the substring of the path in the tree) and due to the dummy nodes policy, which increases the size
of the tree. Subsequently that affects the computation time for the computation of the encrypted index
with a ≈ 4x blowup on average for data sets of size 106. The blowup on the computation time is not
only due to the large number of extra dummy blocks but mostly by the way the encrypted suffix tree is
encrypted in [9]: iterating the tree through its internal and leaf nodes, then for each node 2 PRF and 2
block cipher evaluations are required. In contrast, in S3E the iteration of the index comes per character
in the suffix array, which asks for 1 PRF and 2 block cipher invocations.

7.2 Benchmarks

Index In tables 3,4, we depict the storage and computational overhead incurred by the computation of
the encrypted index using the suffix array in S3E using different window sizes for the buckets and the
suffix tree in ST scheme of [9].

Dataset #Characters

102 103 104 105 106

Storage Time Storage Time Storage Time Storage Time Storage Time
DNA 60KB 0.44s 567KB 1.07s 6.4MB 9.66s 63MB 89.50s 589MB 1382s
Enron 57KB 0.42s 562KB 0.97s 6.3MB 9.07s 62MB 85.74s 579MB 1268s

Table 3: [9] Index storage and computational overhead for variable size data sets.

Dataset #Characters

102 103 104 105 106

Storage Time Storage Time Storage Time Storage Time Storage Time
DNA
win = 2 37KB 0.26s 410KB 49s 4.2MB 3.50s 42MB 29.90s 456MB 728s
win = 23 38KB 0.15s 401KB 48s 4.1MB 3.46s 40MB 29.78s 410MB 683s
win = 25 29KB 0.11s 371KB 43s 3.7MB 2.34s 37MB 26.12s 373MB 640s
Enron
win = 2 40KB 0.29s 402KB 50s 4.1MB 3.69s 41MB 30.65s 471MB 702s
win = 23 38KB 0.17s 396KB 46s 4MB 3.42s 40MB 29.23s 401MB 678s
win = 25 29KB 0.10s 385KB 42s 3.7MB 2.56s 37MB 27.50s 372MB 630s

Table 4: S3E Index storage and computational overhead for variable size data sets and buckets window size.

We observed an increased overhead in the size of the encrypted index for the ST scheme [9], compared
with ours as expected. On average, over all the the data sizes, for different data sets the gain of S3E
over ST approximates a factor of 1.64. However, for realistic big data streams consisting of 106 the
gain reaches a factor of 2. Even though the computation of the encrypted index happens only once, the
storage overhead incurred by its encryption is of more crucial importance than its computation time.
A limited storage device is not capable of computing the encrypted index if that comes at an increased
communication overhead.

We also measured the computation time of the encrypted index in both schemes in tables 3, 4. The
S3E index construction time outperforms ST. Apart from the extra dummy blocks and the increased size
of the suffix tree compared with that of a suffix array, the increased computation cost stems from the
way ST encrypts the suffix tree.
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Query Encryption We run experiments in order to compute the storage overhead during the SrchToken
phase. The token consists of a sequence of buckets from a vocabulary: be it characters from emails
or characters from DNA sequence. As the query encryption is not affected by the distribution of the
underlying characters and for compactness we choose to present results only from the DNA sequence.
We also observed tiny differences at the query encryption time and the size of the bucket. We observe
a reasonable increase in both the size of the encrypted query (figures 5,6) and its computation time
as the query size increases. S3E outmatches in query computation time due to the way the query is
encrypted in ST scheme: Namely for each character 2 PRF, and one block cipher is invoked, while
in S3E only one PRF is invoked. The storage overhead of ST also outgrows faster since the substring
is encrypted recursively and not by character. That is, the token: T [1], T [2], ..., T [m] is encrypted as
ct1 = PRF1(T [1]), k1 = PRF2(T [1]), ct2 = PRF1(T [1]T [2]), k2 = PRF2(T [1]T [2]) and so on. Finally the
client forwards to the cloud: {Encki(cti)}mi=1.
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Fig. 5: Token storage overhead for both schemes in DNA streams. As the window size affects very epidemically
the encryption of our query we use a fixed window size: win = 25
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Fig. 6: Token computation time for both schemes in DNA streams. As the window size affects very epidemic the
encryption of our query we use a fixed window size: win = 25

We defer in Apendix section C benchmark results concerning the response overhead.

8 Conclusion

We designed and analyzed a substring searchable symmetric encryption protocol S3E, which achieves
better storage performance and variable substring size than state of the art work [9]. The idea of our
protocol is to leverage the self-indexing mechanism of FM index, which stores only n integer positions of its
substrings. Our protocol is provably secure under the real-ideal indistinguishable simulation paradigm.
We also implemented our protocol and compared it with the state of the art work [9], showing its notable
performance improvement in terms of storage overhead and computation time.
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A Cryptographic Primitives

A.1 Pseudorandom functions (PRF)

Let the family of all functions in the universe from a domain X to a range Y to be Func[X,Y ]. A truly

random function f
$← Func[X,Y ] is chosen randomly from the set of Func. The set of all these functions

is |Y ||X| (gigantic number). It is true that for any random function f with range size L chosen randomly
from Func[X,Y ], Pr[f(x) = y] = 2−L. The randomness is not parametrized neither by the size of X and
Y nor by the size of the domain. We define a pseudorandom function fk : X → Y as a function from the
set of all functions from X to Y as soon as a particular key k is fixed.

Definition 4. Let Func={F : X → Y } be a function family for all functions F that map elements from

the domain X to the range R. Then a PRF = {fk : X ′ → Y ′} ⊆ Func for k
$←K, where K is the key

space.

The security of a PRF is modeled with a game which is known as real or random security game[18].
Intuitively, an adversary A is given access to an oracle that on input x from a domain X, flips a coin

b
$←{0, 1} and if b = 0 then it outputs y = f(x), for f ∈ Func[X,Y ], otherwise it outputs y = fk(x).

A issues queries to the oracle polynomially many times on input of the security parameter λ. Finally A
outputs a guess b′ for the bit b.

The advantage of a probabilistic polynomial time algorithm A in the PRF game is

AdvPRFA = Pr[b
$←{0, 1}; b′ ← A(y) : b′ = b]

Definition 5. A PRF is computationally secure if all probabilistic polynomially time algorithms A have
advantage in the PRF game: 1

2 + ε(λ), for a negligible function ε on the security parameter λ.

A.2 Pseudorandom permutations (PRP)

A permutation is a bijective function where the domain and the range are equal. Similarly with the
random functions, let Perm[X] to be the set of all permutations for the domain X. Then a pseudorandom
permutation (PRP ) is a randomly chosen permutation from the set Perm[X], keyed under a secret key
k.

The advantage of a probabilistic polynomial time algorithm A in the PRP game is

AdvPRPA = Pr[b
$←{0, 1}; b′ ← A(y) : b′ = b]
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Definition 6. A PRP is computationally secure if all probabilistic polynomially time algorithms A have
advantage in the PRP game: 1

2 + ε(λ), for a negligible function ε on the security parameter λ.

A.3 Symmetric Key Encryption

A symmetric key encryption scheme SKE = {Gen,Enc,Dec} consists of three algorithms. Gen takes
as input a security parameter λ and outputs the secret key sk. The probabilistic encryption algo-
rithm E takes as input the secret key sk and a plaintext x form the plaintext space P and outputs
the ciphertext c. The decryption algorithm SKE.Dec takes as input a ciphertect form the cipher-
text space C and the secret decryption key sk and outputs the plaintext x ∈ P. Correctness follows
⇐⇒ ∀sk ← Gen(1λ),SKE.Dec((E(sk, x))) = x, ∀x ∈ P. Security is modeled with the standard game
based indistinguishability experiment for polynomial probabilistic time adversary A.

PrivKA,SKE(λ):

– A has access to the security parameter 1λ.
– A key sk← Gen(1λ) is generated and A can learn encryptions of x of its choice x ∈ S ⊂ P.

– Eventually A outputs x0, x1 where |x0| = |x1|. b $← and E(xb, sk) is returned to A.
– A outputs its guess for b, b′.

If b′ = b A succeeds and the experiment PrivKA,SKE(λ) = 1.

Definition 7. A symmetric encryption scheme SEK has indistinguishable encryptions if the probabilities
Pr[PrivKA,SKE(λ) = 1] 6 1

2 + neg(λ).

A.4 Comparison

Protocol Search Index [PS—CS] Query [FR—LR] VLS Rounds SL

CS[9] O(m+ k) 20n 4(n+Σ
2n−(2+N)
i=1 σ − child(i))

m(m+1)
2θ m+k 3 3 SP+QPP+IIP+LIP

FJKNRS[14] O(n) - m 0 3 1 SP
FHV[15] O(n−m) - m 0 7 1 7

S3E O(m+ k) 4n 4(n+
∑k
j=1 maxb − fbi

) m 1 3 2, 3 SP+QPP+IIP

Table 5: Comparison of existing substring searchable encryption protocols. Index space is further categorized in plaintext space
index storage space (PS) and ciphertext space (CS). The overhead of [14] and [15] is undefined as the schemes do not take advantage
of any auxiliary data structure for efficient substring search. For the query complexity we analyzed its size in terms of two separated
phases: at the first round (FR) of the protocol and the last one (LR), in case of multiple rounds protocols. VLS denotes variable
length substring search and SP the search patternleakage: QPP: Query prefix pattern, IIP: Index intersection pattern, LIP: Leaf
intersection pattern.

We perform a comparison of our S3E with existing solutions (cf. table 5). We analyzed the search
running time in asymptotic complexity, index space requirements both in the plaintext and in the ci-
phertext space, query size, variable length capability, rounds of communication and search leakage. Since
our scheme competes mostly with [9] here we further elaborate its cost analysis from table 5.
Search. Thanks to the usage of encrypted dictionary the cost of searching a m length string is O(m+k),
where k denotes the number of occurrences. However, due to the extra dummy blocks the search cost is
increased to O(m+k+

∑k
j=1 (maxb − fbi)), where maxb is the most frequent bucket and fbi the frequency

of bucket bi.
Index. For the index space complexity, we analyzed the space requirement in the plaintext space and
in the ciphertext space. For the plaintext space analysis we assume, that a pointer or integer requires
4 bytes. Recall that a suffix tree has n leaves, at most n − 1 internal nodes and at most 2n − 2 edges.
Thus, for a naive suffix tree implementation we need 2 pointers for each leaf: one for the parent node
and one for its position to the original stream, resulting in 8n bytes. Four pointers for each internal
node: one for the parent node, one for each leftmost child, one for the right sibling and one pointer for
the suffix link, which reduces the search time during a substring query. The total storage cost for the
internal nodes is 4 ∗ 4n = 16n. For each edge, suffix trees allocate one pointer for the beginning position
of the substring in the stream and one for the end position of the substring in the stream increasing
the space cost to 24n + 4 ∗ 2 ∗ 2n = 40n. The space cost of the solution based on suffix trees [9] can be

20



further reduced to 20n by eliminating the need to store suffix links and parent pointers. However, the
extra dummy blocks further augment the storage overhead. Assuming a suffix tree with N internal, each
node is further padded with dummy children nodes so as to each node has σ children, where σ is the size
of the vocabulary. Furthermore, the internal nodes are padded with up to 2n − 2 nodes where n is the

size of the string. Finally the size of the extra dummy nodes in [9] is: Σ
2n−(2+N)
i=1 (σ − child(i)), where

child(i) equals the number of children for internal node i in the suffix tree. In contrast, in S3E we replace
the space expensive suffix trees with suffix arrays and as such the index space cost is reduced from 20n
bytes to 4n bytes.

For the storage space computation during the encryption of the index, be it suffix tree or suffix array,
we exclude a per byte comparison and we assume a ciphertext comparison. The encryption of the index
is based on the translation of the suffix tree to an encrypted dictionary. Thus, all the extra pointers of
the suffix tree are excluded. Following the protocol from [9], the user encrypts 2n substrings which equal
to the number of edges of the suffix tree, n leaves and n characters of the original stream, resulting in
4n encryptions. In our solution thanks to the FM mapping the user sends the encrypted suffix array, plus
two more n size arrays for the FM index construction; one for the F column of the index and one for the
L column. In the end it uploads 4(n+

∑k
j=1 maxb − fbi) encrypted values to the cloud, in total.

Query. For the query size, we assume a block cipher of size θ and a substring query of size m. In [9]
the substring is encrypted incrementally: for the substring “abc” user encrypts separately E(a), E(ab),
E(abc). As such, for big substring queries as in DNA queries, the number of ciphertexts exceeds the

number of the substring m. The total number of encryptions equals 1
θ + 2

θ + · · · + m
θ = m(m+1)

2θ during
the first round. At the last round the user asks for the positions of each character separately augmented
by a factor of m the substring size. In S3E the substring query has only per character encryptions of each
character in the first round plus a ciphertext for the last round. Our solutions also allows variable size
substring queries, since the size of the substring query is decoupled from the scheme and can be defined
online during the query phase as in [9].
Rounds. For the rounds of communications, S3E can return the substring search results in 2 rounds of
communication or in 3 in case of a query size not a multiple of the bucket size win. During the first round,
the client sends an encrypted substring query and the cloud responds with encrypted addresses of the
corresponding suffix array positions. At the second round the client decrypts the permuted position of
the suffix tree and queries the cloud for the unpermuted encrypted position. A third round is performed
in case of a query not a multuple of the size of the bucket, whereby the client verifies the correctness of
the possible match.
Security Leakage. Concerning the search leakage, Chase et al. [9] scheme leaks the search pattern,
meaning an untrusted could can identify similarities between two or more substring search queries.
Moreover, the scheme reveals the query prefix pattern, which leaks whether a node has been visited for a
previous substring in the suffix tree, the index intersection pattern which allows the cloud to learn if the
returned index position has already been asked and finally, the leaf index leaks when any of the returned
positions of the tree leaves have been previously queried. Since in S3E we avoid the use of a suffix tree,
S3E does not leak the leaf pattern. We inherit though, the index intersection pattern, which reveals if
any returned index has been returned in a previous query. As in [9] our scheme reveals also the cloud
differences of the indexes when a user asks for substrings that they do differ in one position and there
is only a single position in the original stream S. Both schemes employ a padding policy to add dummy
blocks in order to obfuscate the structure of the index and the stream. S3E is also adaptively secure
under the real-ideal simulation paradigm. We also use an authenticated encryption scheme in order to
assure the integrity of the messages.

B Security Analysis

Theorem 2. Let Fkf
,Πkπ ,SKE = {Gen,Enc,Dec} be a pseudorandom function, a pseudorandom permu-

tation and a semantically secure symmetric encryption scheme respectively, then our substring searchable
symmetric encryption scheme S3E is adaptively L-semantically secure.

Proof. In the RealS3E
A(λ) game the adversary plays the role of the cloud and the challenger the role of

the client. In the beginning the Challenger selects the size of the buckets win and uniformly at random
keys k = (kf , kl, kπ1,2,3 , ke,c) for a PRF Fk : {0, 1}λ × {0, 1}ν → {0, 1}µ, a PRP Πkπ : {0, 1}λ × {0, 1}ν →
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Game Change Indistinguishability Argument

Game0 Game0 = RealS3E
A(λ) By definition

Game1 Replace Fkf
, Fkl

Pseudorandomness of Fkf
Game2 Replace Πkπ1,2,3,

Pseudorandomness of Πkπ

Game3 Replace SKE = {Gen, Enc,Dec} Semantically secure SKE = {Gen, Enc,Dec}
Game4 Game4 = IdealS3E

A,S(λ) By definition

Table 6: Hybrid games

{0, 1}ν and a symmetric encryption algorithm SKE = {Gen,Enc,Dec}. Upon receipt of a stream S
of size n, the Challenger employs the SES ← PreProcess(k, S) as presented in section 6 and forwards
SES to A. We distinguish between matching qm and non-matching queries qnm : q =

⋃
qnmqm. Upon

receiving the substring queries q, the Challenger with Fkf
computes tkT,S = C[1], C[2], · · · , C[m] ←

Fkf
(T [1...m]),Fr(T [m]). We assume for the ease of readability that adversary issues only matching queries

qm. Finally A receives t = (tk1, tk2, tk3, . . . , tko) for each substring query.

Within a sequence of hybrid games we show the indistinguishable transformation of RealS3E
A(λ) game

to eventually the IdealS3E
A,S(λ) game, which concludes the proof. The simulator S computes the simulated

encrypted index SES∗ = (LLSet∗, LL∗c , FM
′∗) as follows:

– Game0: This game is equivalent with the RealS3E
A(λ) game.

– Game1: This game behaves as the RealS3E
A(λ) game with the difference that S does not have access to

S. The simulator through the L1 leakage function builds the substring encrypted structure SES as
follows: We assume the existence of an algorithm S ← Build(n′, str), which takes as input n′ ∈ N and
the structure str = {b}n′i=1, b ∈ Σ∗ and outputs a bitstring of length n′, from a vocabulary Σ∗. Notice
that as in the real game the valid length of the original stream is nor revealed and only the length
of the string after the padding n′ is leaked. S selects uniformly at random keys k = (kf , r, kπ, ke) for
a PRF Fkf

: {0, 1}λ × {0, 1}ν → {0, 1}µ, a PRP Πkπ : {0, 1}λ × {0, 1}ν → {0, 1}ν and a symmetric
encryption algorithm SKE = {Gen,Enc,Dec} and runs SES← PreProcess(k,Build(L1)). S uses Fkf

to
evaluate bit strings of length cn L2(q) = cn, str.

– Game2: This game behaves similarly with Game1, but we replace the Fkf
with a real random function

which is evaluated through access to an oracle ORF(λ, µ, ν).
– Game3: This game behaves similarly with Game2, but we replace the Πkπ with a real random permu-

tation which is evaluated through access to an oracle ORΠ(λ, ν).
– Game4: In Game4 we replace the semantically secure SKE = {Gen,Enc,Dec} with real random values

by querying an oracle ORE(λ).

We write Gamei ≈ Gamej to denote that the view of probabilistic polynomial time adversary A is

indistinguishable between the output of Gamei and Gamej . Game0 = RealS3E
A(λ) by definition, Game1 ≈

Game0 as long as no collisions happen to the evaluation of Fkf
, Πkπ , SKE = {Gen,Enc,Dec} or E,

Game2 ≈ Game1 as long as Fkf
is indistinguishable from real random function, Game3 ≈ Game2 thanks

to the indistinguishable output of Πkπ from real random permutations, Game4 ≈ Game3 because of the

semantically secure SKE = {Gen,Enc,Dec} and finally Game5 = IdealS3E
A,S(λ) by definition.

C Response Overhead

In figures 7, 8 we discern a slight outperformance of S3E compared with ST in terms of substring response
time. For the experiments we computed tokens of various lengths and perform a search on DNA streams
of different sizes. The client computes and encrypts the index and uploads it to the cloud. The cloud
simulated in the same machine runs the search algorithm, and we computed the total search time. We
perceived in both schemes, that for considerable smaller than 106 elements the running time tends to be
independent on the size of the substring token. For a one million data stream there is a notable increased
response time compared with the smaller data sets and there is a proportional increment in time with
respect to the size of the token. In exact times, S3E surmounts ST [9] for the computation of the response
at the cloud side. This outperformance is due to the increased size of the encrypted index in [9] with
dummy blocks, based on a suffix tree data structure.
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Fig. 7: Response time for S3E scheme in a DNA stream. Time is measured as the average over different bucket
sizes: 2, 23, 25
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Fig. 8: Response time for ST [9] scheme
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