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Abstract

Algebraic manipulation detection codes are a class of error detecting codes which
have found numerous applications in cryptography. In this paper we extend these codes
to defeat general algebraic attacks - we call such codes general algebraic manipulation
detection (GAMD) codes. Positive results are shown for the existence of GAMDs
for the families of tampering functions corresponding to point additions and affine
functions over a finite field. Compared to non-malleable codes, we demonstrate both
positive and negative results regarding the existence of GAMDs for arbitrary families
of tampering functions.

1 Introduction

Fault injection attacks are a class of attacks involve the deliberate introduction of errors into
the circuity or memory modules of a cryptographic device in attempt to deduce some secret
state. Algebraic manipulation detection codes [CDF+08] are a class of error detecting codes
that can thwart such attacks when the class of induced faults corresponds to additions on
code-words over a finite space. More precisely let s be a message supplied by an adversary,
and suppose c, an element of an abelian group G, is the corresponding code-word. If any
∆ ∈ G it holds that c + ∆ decodes to s′ for any s′ 6= s, with probability bounded by ε, the
scheme is said to be an AMD code with error probability ε.

Even though AMD codes provide an elegant, keyless alternative to the widely used mes-
sage authentication codes for robust transmission over an error-prone channel, they cannot
defeat some types of powerful adversaries. Suppose that an AMD code is used to pro-
tect the output of a one time pad scheme. Let E(K ⊕ M) be the output on ciphertext
c = K ⊕ M . If it happens that E possesses a linear homomorphism φ, then we have
∆M ◦φ c = ∆M ◦φ E(K ⊕M) = E(K ⊕ (M ⊕∆M)) = E(K ⊕M ′), where M ′ is the message
to be substituted. It is therefore desirable to consider a more powerful adversarial model in
which an attacker can choose, in addition to the source message, a tampering function F
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from a rich class of tampering functions F . In this work, we consider precisely this model,
when the class F corresponds to algebraic functions over some finite field Fq corresponding
to the co-domain of the AMD code. We call such a code a generalised algebraic manipulation
detection code (GAMD code). Following previous works on algebraic manipulation detec-
tion, we distinguish the case when the source message is assumed to be uniformly distributed
over the message space, from the usual (which provides tampering detection with bounded
error probability for any message). These are called weak generalised algebraic manipula-
tion detection (weak GAMD) and generalised algebraic manipulation detection (GAMD)
respectively.

1.1 Our Contributions

We formally introduce the model of generalised algebraic manipulation detection, in which
tamperings corresponding to algebraic functions over the ambient field of the encoding func-
tion. In this model we review the previous constructions for manipulation detection against
point additions. We show that such constructions translate directly to our new model, lead-
ing to direct instantiations of weak GAMDs and GAMDs for this class. Additionally we
present a new construction for weak GAMDs in the case of encoding over F2 based upon the
probabilistic method, leading to the following result (we actually construct a GAMD for a
more general class of tampering functions, this is discussed in Section 3.1.1)

Claim 1. Let n be a power of two. There exists a nc−1-GAMD against the class of point
additions on Fn with rate c− o(1), for any constant 0 < c < 1.

We also consider attacks corresponding to the class of affine functions. Such attacks have
been considered in the context of non-malleable cryptography by [ADL14, KLT16]. We show
that exact constructions imply corresponding weak GAMD codes with constant rate and low
error-probability. We present a black-box transformation of any weak GAMD to a GAMD.
This construction is quite efficient, implying in view of the above results, the existence of
GAMDs with constant rate and low error probability for the classes of point additions and
affine functions respectively. Compared to the celebrated non-malleable codes [DPW10] we
also establish some separations. Our first result is negative and states that there exists a
class of tampering functions for which non-malleable codes but not GAMD codes exist. This
may be summarised by

Claim 2. There exists a family of tampering functions for which non-malleable codes exist
with constant rate and negligible simulation error but ε-GAMD codes with constant rate do
not exist, for any choice of non-negligible ε.

Our second result is a positive one and states that for any non-malleable code there exists
a class of tampering functions which violates malleability, but for which an efficient GAMD
code exists, leading to

Claim 3. For any non-malleable code C there exists a family of tampering functions such
that C is non-malleable with respect to this family but there exists a GAMD for this family
with constant rate and negligible error probability.
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2 Preliminaries

We describe the preliminary tools and definitions to be used throughout this paper. We
begin firstly by reviewing non-malleable codes [DPW10], secondly by stating some combi-
natorial results and finally, in Section 2.3, by stating our generalisation of classical algebraic
manipulation detection codes [CPS02, DKRS06, CDF+08].

2.1 Non-Malleable Codes

We recall the notion of non-malleable codes for a class of tampering functions. Informally a
non-malleable code is one which guarantees that after decoding either the original message
is recovered or the message that is recovered is completely “unrelated” to the original.

Definition 1 (Non-Malleable Code [DPW10]). Let F be a family of tampering functions.
For each F ∈ F and s ∈ {0, 1}k, define the tampering experiment

TamperFs =:

{
c← Enc(s), c̃← F (c), s̃ = Dec(c)

Output s̃.

}
defining a random variable over the randomness of the encoding function Enc. Say that
a coding scheme (Enc,Dec) is non-malleable w.r.t. F if for each F ∈ F , there exists a
distribution DF over {0, 1}k ∪ {⊥, same∗}, such that, for all s ∈ {0, 1}k, we have:

TamperFs ≈
{

s̃← DF

Output s if s̃ = same∗, and s̃ otherwise.

}
and Df is efficiently samplable given oracle access to F (·).

Let Fbit be the family of tampering functions that tamper every bit of a code-word of
length n independently. Formally, Fbit contains all functions f : {0, 1}n → {0, 1}n defined
by n functions fi : {0, 1} → {0, 1}, namely f(c1, . . . , cn) = f1(c1), . . . , f(cn). Each fi is an
affine function on Z2. We require the following proposition proved by [DPW10], concerning
the existence of non-malleable codes against the family of bit-wise independent tampering
functions with constant rate and negligible simulation error.

Lemma 4 (Theorem 4.2 [DPW10]). For any δ > 0 and n ∈ N there exist non-malleable codes
w.r.t the family Fbit, with block length n, message size k ≥ (.811− δ)n and simulation error
2−Ω(n). Moreover there is an efficient procedure which, given k and n, outputs a description
of such a code with probability 1− 2−Ω(n).

2.2 Combinatorial Tools

We describe some combinatorial tools used in our constructions of GAMDs.
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Definition 2 (Trace [CDN15]). Let K and L be fields. Suppose that L is separable over K
and n := [L : K] > ∞. Fix some algebraic closure L̄ of L. Let σ1, . . . , σn be the distinct
K-embeddings of L into L̄. The trace map TrL/K for each x ∈ L is:

TrL/K(x) =
n∑
i=1

σi(x) ∈ K

Definition 3 (Difference Set [CD06]). Let (G,+) be an additive abelian group of order v. A
subset D ⊆ G is a (v, c, λ)-external difference set if |D| = c and every non-zero element of G
has exactly λ representations as a difference d− d′ for d, d′ ∈ D. If every non-zero element
of G has at most λ representations d− d′, say that D is a (v, c, λ)-bounded difference set.

Definition 4 (Authentication Code [Sti90]). Let S be a set of source states, K a set of
authentication keys and A be a mapping A : S ×K → T where T is a set of tags. Let Π be a
probability distribution on K. The probability of a successful substitution attack, with respect
to family of substitution functions F , is

psub
F =: max

F∈F ,s 6=s′∈S
Pr
K←Π

[F (A(s,K)) = A(s′, K)].

Lemma 5 (Schwartz-Zippel). Let K be a field and let P ∈ K[x1, . . . , xn] where (xi)1≤i≤n
are indeterminates. Let S ⊆ K be a finite set and let (ui)1≤i≤n be selected independently and
uniformly at random in S. Then

Pr[P (u1, . . . , un) = 0] ≤ deg(P )

|S|

2.3 Generalised Algebraic Manipulation Detection Codes

In this section we define a code which is a generalisation of the classical algebraic manipu-
lation detection coding schemes. The main difference is simply that we allow manipulation
functions be general algebraic functions over a field, rather than the restriction to point
additions on its group considered by [CPS02, CDF+08].

Definition 5. Let K be a field with associated metric d : K2 → R+ ∪ {0}. Take G = K
and let F be a family of algebraic tampering functions on G.1 Let S be a set of symbols. Let
E : S → G be a probabilistic encoding and D : G → S ∪ {⊥} be a deterministic decoding
procedure such that PrE [D(E(s)) = s] = 1 for all s ∈ S.

• The tuple (E ,D) is an ε-generalised algebraic manipulation detection (GAMD) code if
∀s ∈ S,∀F ∈ F PrE [D(F (E(s))) 6∈ {s,⊥}] ≤ ε.

1Recall that a function in n variables is algebraic iff it is the root of a polynomial equation in n+1
variables.
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• The tuple (E ,D) is a weak ε-generalised algebraic manipulation detection code if ∀F ∈
F PrE,s∈RS [D(F (E(s))) 6∈ {s,⊥}] ≤ ε.

The (information) rate of a GAMD code is defined as r = log2 |S|
log2 |G|

.

2.3.1 Families of Tampering Functions

In this paper we consider two classes of tampering functions on a GAMD (E ,D) with co-
domain G = Fpn for some prime p and positive integer n.

• Point Additions: let Fadd = {F∆}∆∈G where F∆ := x 7→ x+ ∆ over G.

• Affine Functions: let Faff = {F(a,b)}a,b∈G where F(a,b) := x 7→ ax+ b over G.

2.4 Notation

Write f = o(g) if limn→∞
f(n)
g(n)

= 0. Write f = Ω(n) if ∃ c > 0 and N0 > 0 such that for all

n > N0, f(n) ≥ c ·g(n). Let e(·) denote the real-valued exponential function. For probability
distributions P0 and P1 let D(P0‖P1) denote the KL-divergence. Pinsker’s inequality states
that D(P0‖P1) ≥ 2∆2 where ∆ is the statistical distance between P0 and P1. For discrete
probability distributions with outcome space X , ∆(P0, P1) = 1

2

∑
x∈X |P0(x) − P1(x)|. Say

that random variables X1, . . . , Xn are k-wise independent if Pr[Xi1 = a1, . . . .Xik = ak] =∏k
j=1 Pr[Xij = aj] for all {i1, . . . , ik} ⊆ [1, n].

2.4.1 Tail Bounds on Sums of Dependent Variables

Lemma 6 (Multiplicative Chernoff Bound). Let {Xi}1≤i≤n be a sequence of independent
random variables such that 0 ≤ Xi ≤ 1, E[Xi] = p for 1 ≤ i ≤ n. Let X =

∑n
i=1Xi and

µ = E[X] = np. Fix 0 < δ < 1. Then

Pr[X < µ(1− δ)] ≤ e(−δ
2µ

2
)

Pr[X > µ(1 + δ)] ≤ e(−δ
2µ

3
)

Lemma 7 (Theorem 1.12 [PR15]). Let {Xi}1≤i≤n be a sequence of k-wise independent ran-
dom variables such that 0 ≤ Xi ≤ 1, E[Xi] = p for 1 ≤ i ≤ n. Let X =

∑n
i=1Xi and

µ = E[X] = np. Fix δ > 0. Then

Pr[X > µ(1 + δ)] ≤ 1

(p− p2)n−k
e(−nD(p(1 + δ)‖p))
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3 Constructions

In this section we review some constructions for GAMD codes against the class of tampering
functions corresponding to point additions and also affine functions. Our results show that
efficient GAMDs (i.e, one ones with constant rate and low error probability) exist for these
classes. Specifically for the class of point additions, we present two constructions of GAMDs
based upon difference sets. Our first can be seen as a specific instantiation of the AMD codes
implicit in Section 4.1 [CPS02]. Our second which is based upon the probabilistic method,
achieves only slightly worse parameters, while allowing the construction of GAMDs for a
considerably broader class of functions.

3.1 Point Additions

We begin with some auxiliary lemmas, our objective is to explicitly construct a difference set
via the template described in Section 4.1 [CPS02], which involved constructing a difference
set in Fqn × Fqr from any surjective map φ : Fqn → Fqr . Our specific construction, which
involves using the Trace function (Definition 1) for φ, is described in Lemma 10. Using
this construction we can build a weak-GAMD with rate 1 − o(1) and arbitrarily low error
probability, described in Lemma 11.

Proposition 8. Suppose that p is a prime and l and k are positive integers such that k|l.
Then TrF

pl
/F

pk
(α) =

∑ l
k
−1

i=0 αp
ki

.

Proof. See Appendix.

Corollary 9. Suppose that p is a prime and l and k are positive integers such that k|l. Then
TrF

pl
/F

pk
(α) is a surjective, Fpk-linear map.

Proof. See Appendix.

Lemma 10. Let p be an odd prime and l and k be positive integers such that k|l. Let (G,+)
be the product of groups, Fpl × Fpk under addition. Define

D = {(α,TrF
pl
/F

pk
(α2) : α ∈ Fpl} ⊆ G

Then D is a (pl+k, pl, pl−k)-external difference set.

Proof. See Appendix.

Lemma 11. For a prime p and positive integer n let G = Fnp . Then there exists a determin-
istic weak (p−1)-GAMD code with respect to the family of point additions, Fadd, on G, with
efficient encoding and decoding procedure and rate 1− o(1).

Proof. Note G ∼ (Fpn ,+). By Lemma 10 we know that for any n > 1 there exists a
(pn, pn−1, pn−2)-external difference set D ⊆ G. Let E(S) = D and consider the quantity
p∆ := Prs∈RS[F∆(E(s)) 6∈ {s,⊥}]. Since E is deterministic, and s is chosen uniformly at

random, p∆ = #{s′∈S:E(s′)−E(s)=∆}
|S| . Thus for each ∆ ∈ G, since E(S) is a (pn, pn−1, pn−2)-

difference set, p∆ ≤ pn−2

pn−1 = 1
p
. The rate of E is log |D|

log |G| = 1− n−1 = 1− o(1), as required.
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3.1.1 A New Construction

We note that so far the constructions of GAMD codes against the class of point additions have
followed a similar recipe to the constructions of AMD codes presented in [CPS02, CDF+08].
In this section we present a new construction for this class based upon the probabilistic
method.

Definition 6. For even integer n denote by In, the subset of permutations on n objects
consisting of involutions with no fixed points.

Lemma 12. Let G be an abelian group of order n where n is even. Let 0 ≤ c < 1 be
arbitrary. Let I ′n ⊂ In be of polynomial size. Then there exists a subset S ⊂ G and maps
E : [|S|]→ G and D : G → [|S|] which define a weak nc−1-GAMD with respect to the set I ′n.
The rate is c− o(1).

Proof. We show that, by analogy to the affine-evasive set case (see Section 3.2 following) for
any positive constants 0 ≤ γ < ν < 1, there exists a set S ⊂ G for which |S| ≈ γ|G| and
|S ∩ F (S)| ≤ ν|S| hold for any F ∈ I ′n. Taking S = [|S|], ν = nc−1, γ = n(c−1)−o(1) and E
and D as in the statement of the lemma, yields a code with error probability nc−1 and rate
log γn
logn

= c − o(1) (see also Lemma 15, Section 3.2). We will demonstrate the existence of S
via a probabilistic argument.

Consider the set S defined by sampling each element of G independently with probability
γ. Clearly the size of S, N0, has a Binomial distribution with parameters (n, γ). We now
analyse the size of the intersection S ∩ F (S), where F ∈ I ′n is arbitrary. Observe that
each such F induces a matching on G given by (x, F (x)) : x < F (x). Moreover, since
F contains no fixed points, each such pair occurs independently with probability γ2. Thus
N1 := |S∩F (S)|/2 follows a Binomial distribution, with parameters (n

2
, γ2). Now by applying

Lemma 6, if ε is such that ν
γ
> 1− ε then

Pr[N0 ≤ nγ(1− ε)] ≤ e(
−nγε2

2
)

Pr[N1 ≥
νnγ(1− ε)

2
] ≤ e(

−n(ν(1− ε)− γ)2

6
)

Secondly, applying a union bound over all F ∈ I ′n, we have PrS[|S| ≥ nγ(1 − ε) ∩ |S ∩
F (S)| ≤ νnγ(1−ε) for all F ∈ I ′n] ≥ 1−e(−nγε2

2
)−|I ′n|e(−

n(ν(1−ε)−γ)2

6
). As |I ′n| is polynomial

in n, for large enough n this probability is strictly greater than 0. Thus S exists for which
|S| < nγ(1− ε) and |S ∩ F (S)| ≤ ν|S| for all F ∈ I ′n.

Corollary 13. Let G = (Fn,+) where n = 2k. Then there exists a weak (n−1/2)-GAMD
with respect to the family Fadd, with rate 1

2
− o(1).

Proof. The family Fadd defines a subset of In of order n. Thus S ⊆ G exists with the
properties of Lemma 12, taking c = 1/2 yields a n−1/2-GAMD with rate 1/2− o(1). In fact,
S defines an (n,

√
n, 1)-bounded difference set.
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3.2 Affine Functions

In this section we review known results about non-malleable codes resistant to the class of
affine functions [ADL14, Agg15] in the GAMD setting.

Definition 7. [ADL14] A non-empty set S ⊆ Fp is said to be (γ, ν)-affine-evasive if |S| ≤ γp,
and for any (a, b) ∈ F2

p\{(1, 0)}, we have

|S ∩ ((aS + b) (mod p))| ≤ ν|S|

Theorem 14. [Agg15] For any sufficiently large prime p, there exists a set S ⊂ Zp that
is (Θ(p−3/4/ log p),Θ(p−1/4 log p))-affine-evasive. Moreover the ith element of S, Si, is sam-
plable in polynomial time.

Lemma 15. Let p be a large prime. Let S = [|S|], where S is the set defined in Theorem 14.
Let G = Fp. Then the map E : S → G given by E(i) = Si together with the map D : G → S
given by

D(x) =

{
i if x ∈ Si for some i

⊥ if x ∈ Fp\{S}

defines a weak ε-GAMD with respect to the class of non-trivial affine functions F∗aff . Here
ε = p−1/4 log p and the rate is 1

4
− o(1).

Proof. Let E(S) = S ⊆ Fp. The map E is efficient, since the ith element of S is samplable
in polynomial time. For F ∈ F∗aff , define pF := Prs∈RS [F (E(s)) 6∈ {s,⊥}]. Since E is

deterministic and s is uniformly distributed over S, pF = #{s,s′∈S aE(s)+b=E(s′)}
|S| . Then for

each F ≡ x 7→ ax + b we have pF ≤ ν|S|
S ≤ ν = p−1/4 log p, by Theorem 14. The rate is

log2 |S|
log2 p

= log(p1/4/ log p)
log p

= 1/4− o(1), as required.

3.3 A Weak GAMD to GAMD Transformation

In this section we present a sufficient result for transforming any weak GAMD to a GAMD
following a similar idea to that presented in Section 4 [CDF+08]. Our main result here is
Lemma 17, which states that if the classes of tampering functions can be represented by
a set of polynomials in one or more variable of bounded degree d � |K|, then any weak
GAMD for this family can transformed to a GAMD.

Proposition 16. Suppose that (E ′,D′) is a weak ε′-GAMD with respect the a family of
algebraic tampering functions F where E ′ : S ′ → G ′. Let A : S × S ′ → T be a message
authentication code according to Definition 4. Let G = S × G ′ × T . Define E : S → G
by E(s) = (s, E ′(k),A(s, k)), where k ∈R S ′. Define D : G → S ∪ {⊥} by D(s, c′, τ) = s
iff D′(c′) 6=⊥ and τ = A(s,D′(c′)). Then (E ,D) is an ε-GAMD with respect to F where
ε = ε′ + psub

F .
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Proof. Suppose that c = (s̃, c̃′, τ̃) is a received code-word for source symbol s under key k.
Suppose that s 6= s̃. Then Pr[D′(c̃′) 6= {k,⊥}] ≤ ε′ since (E ′,D′) is a weak ε′-GAMD and k
is chosen uniformly at random in K. Moreover, Pr[A(s̃, k) = τ̃ ] ≤ psub

F since s 6= s̃. Thus the
event D(c) = s̃ occurs with probability at most ε′ + psub

F . The claim follows.

Lemma 17. Let K be a field and d and l be positive integers. Let P≤d be the space of all
polynomials of total degree at most d over K. Let K ⊆ K2 be a finite set and A : S×K → T
be the message authentication code defined by A((s1, . . . , sl), (x, y)) =

∑l
i=1 six

i + y. Then
psub
P≤d
≤ ld
|K| .

Proof. Let F be a fixed polynomial in P≤d. Let s 6= s′ ∈ S. Consider the polynomial

P (x, y) = F (
∑l

i=1 six
i+y)−(

∑d
i=1 s

′
ix
i+y) inK[x, y]. We argue this is a non-zero polynomial

as follows. First observe that if P ≡ 0, then deg(F ) = 1, since otherwise P (x, y) contains a
non-trivial power of y. So let F (u) = a0u + a1. Then a0 = 1 by a similar argument. Thus
P =

∑l
i=1(si−s′i)xi+a0, which is a contradiction since s 6= s′ implies there exists i for which

si 6= s′i. On the other hand the degree of P is at most deg(F ) · l ≤ ld. Thus by Lemma 5,
as k = (x, y) is chosen uniformly in K, the event P = 0 occurs with probability at most ld

|K| .

Finally, P = 0⇔ F (A(s, k)) = A(s′, k), concluding the proof.

Corollary 18. For any n ∈ N there exists a ε-GAMD with of block length n, with respect to
the family Fadd where ε = 2−Ω(n). The rate is 1− o(1).

Proof. Pick prime p so that p > 2n. By Lemma 10 we can construct E ′ so that E ′ : F2
p → F3

p

has error probability 1
p
. Let A : Fn−4

p × F2
p → Fp as in Lemma 17. Then as deg(F ) = 1 for

all F ∈ Fadd, we have psub
Fadd
≤ n−4

p
by Lemma 17. The rate of E is n−4

n
= 1− o(1). The error

probability is bounded by ε = psub
Fadd

+ p−1 ≤ n−3
p

= 2−Ω(n).

We can prove an even stronger result, assuming a mixed alphabet K 6= F2
p.

Corollary 19. For any n ∈ N there exists a ε-GAMD with of block length n, with respect to
the family Faff with ε = 2−Ω(n). The rate is 1− o(1).

Proof. Pick primes p, p′ so that p > 2n and p2

2
< p′ < p2, by Bertrand’s postulate. By

Lemma 15 we can construct E ′ so that E ′ : K → Fp′ , K ⊆ [p′] with error probability

ε′ = p′−1/4 log2 p
′ < p−1/2+δ for any δ > 0. Let A : Fn−3

p × F2
p → Fp as in Lemma 17.

Then as deg(F ) = 1 for all F ∈ Faff , by Lemma 17 we have psub
Faff
≤ n−3

p
. The rate of E is

n−3
n

= 1− o(1). The error probability is bounded by ε = psub
Faff

+ 1
p′
≤ p−3/7 + n−3

p
= 2−Ω(n).

4 Separations

In this section we describe some separations regarding non-malleable codes and GAMDs.
Although non-malleable codes have already proved a valuable digression from the classical
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notion of error correction and detection, here we provide evidence that GAMD codes provide
a strengthening of classical algebraic manipulation detection distinct to that provided by
non-malleable cryptography. Specifically we are able to prove (Theorem 21) that any non-
malleable code can be broken by some tampering family for which a GAMD with high rate
and low error probability exists. This family actually corresponds to a re-coding functionality
in which a code-word is decoded, one is added to the message which is then again encoded,
so is a natural candidate for this task. On the negative side, however, we show that for at
least one family of tampering functions, non-malleable codes exist but GAMDs do not.

Theorem 20. There exists a family of tampering functions F for which for any n ∈ N,
non-malleable codes of block length n exist with constant rate and simulation error 2−Ω(n),
but ε-GAMD codes with constant rate do not exist, for any choice of non-negligible (in block-
length) ε.

Proof. Let F = Fbit be the family of bit-wise independent tampering functions (see Section
2.1). By Lemma 4 we know that for any n there exists a non-malleable code (Enc,Dec) with
block size n, simulation error 2−Ω(n) and rate ≈ .811. Now suppose that an ε-GAMD (E ,D)
exists for Fbit where E : S → Fn2 . Since |S| > 1 we know that there exists distinct code-words
c = Enc(s), c′ = Enc(s′) : c 6= c′. The the function Fc′(x) = c′ is contained in Fbit and is not
detectable except with probability at most 1

|S| . By assumption (E ,D) is constant rate, so

ε ≤ 1
|S| = 2−Ω(n).

Theorem 21. For any non-malleable code C of block length n there exists a family F of
tampering functions F such that C is non-malleable with respect to F but there exists an
(2−Ω(n))-GAMD code C ′ with respect to F with rate r − o(1), where r is the rate of C.

Proof. Let (Enc,Dec) be a non-malleable code where Enc : Fkp → Fnp . We construct GAMD
code (E ,D) and family of tampering functions F , as follows. Let 1 = (0, . . . , 0, 1) ∈ Fkp and
let F be the function

F (c) =

{
Enc(Dec(c) + 1) if Dec(c) 6= ⊥
c otherwise

and F = {F}. Note that F being a polynomial in n variables, is indeed an algebraic
function. Let (E ′,D′) with E ′ : S → Fkp be an ε′-GAMD with respect to the family Fadd of
point addition functions on Fkp. Define E : S → Fkp and D : Fkp → S by

E(s) = Enc(E ′(s))

D(c) =

{
D′(Dec(c)) if Dec(c) 6= ⊥
⊥ otherwise
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We claim that (E ,D) is an ε′-GAMD for F as follows. We have

Pr
Enc, E ′

[D(E(s)) = s]

= Pr
Enc, E ′

[D(Enc(E ′(s))) = s]

= Pr
Enc, E ′

[D′(Dec(Enc(E ′(s)))) = s]

= Pr
Enc, E ′

[D′(E ′(s))) = s] = 1

by the correctness of non-malleable (Enc,Dec) and ε′-GAMD (E ′,D′) respectively. On the
other hand for any s 6= s′ in S,

Pr
Enc, E ′

[D(F (E(s))) = s′]

≤ Pr
Enc, E ′

[D′(Dec(F (E(s)))) = s′]

≤ Pr
Enc, E ′

[D′(Dec(Enc((E(s) + 1)))) = s′]

≤ Pr
Enc, E ′

[D′((E(s) + 1)) = s′] ≤ ε′

as (E ′,D′) detects tampering by point additions on Fkp with probability at least 1− ε′. The
rate of (E ,D) is

log |S|
log |C|

=
log pk

log |C|
· log |S|

log |G ′|
= r · (1− o(1)) = r − o(1)

since Lemma 6 implies we can choose (E ′,D′) such that G ′ ⊆ Fkp with rate 1− o(1).
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A Proof of Auxiliary Results

Proof of Proposition 6

Proof. It suffices to show that the pk-power map φpk : α→ αp
k

on Fpl generates Gal(Fpl/Fpk).

First note that by Lagrange’s theorem, xp
k

= x for all x ∈ Fpk , so φpk : Fpl → Fpl fixes Fpk
point-wise. Also φpk is a field homomorphism and therefore injective. Since Fpl is finite,
it follows that φpk is also surjective. Therefore φpk ∈ Gal(Fpl/Fpk). Now suppose that the

order of φpk is t ≥ 1. Then (φpk)t = id. hence q(x) = xp
tk − x has at least |Fpl | = pl

roots. Since q(x) is of degree ptk, we have ptk ≥ pl, so t ≥ l/k. On the other hand
|Gal(Fpl/Fpk)| = [Fpl : Fpk ] = l/k. It follows that φpk has order exactly l/k, i.e. it generates
Gal(Fpl/Fpk), completing the proof.
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Proof of Corollary 7

Proof. For any c ∈ Fpk , we have cp
k

= c. Therefore TrF
pl
/F

pk
(cα) =

∑ l
k
−1

i=0 (cα)p
ki

=∑ l
k
−1

i=0 cp
ki
αp

ki
=
∑ l

k
−1

i=0 (c)αp
ki

= c
∑ l

k
−1

i=0 αp
ki

= cTrF
pl
/F

pk
(α), thus TrF

pl
/F

pk
is Fpk-linear.

By Fpk-linearity, surjectivity follows if TrF
pl
/F

pk
is not identically zero. On the other hand,

there exists some element α ∈ Fpl , whose minimal polynomial fα(x) over Fpk has degree
[Fpl : Fpk ] = l/k. Since deg(TrF

pl
/F

pk
) = l/k − 1, it must be TrF

pl
/F

pk
(α) 6= 0, so surjectivity

follows.

Proof of Lemma 8

Proof. Fix g = (ε1, ε2) ∈ G. Suppose d, d′ ∈ D satisfy d − d′ = g. Since ε1 = 0 implies
that d and d′ are the same, WLOG ε1 6= 0. Write d = (x,TrF

pl
/F

pk
(x2)). Then d′ =

(x − ε1,TrF
pl
/F

pk
(x2)) − ε2). It follows that ε2 = TrF

pl
/F

pk
(x2)) − TrF

pl
/F

pk
((x − ε2)2)). Fpk-

linearity then implies TrF
pl
/F

pk
(ε1(2x− ε1)) = ε2. Since ε1 6= 0, Corollary 7 implies there are

exactly pl/pk = pl−k solutions for x, whence pl−k possibilities for (d, d′) : d − d′ = g. Since
|D| = pl, it follows that D is a (pl+k, pl, λ = pl−k)-external difference set.

B Degree Zero Algebraic Extension

In this section we define a GAMD on the set of rationals modulo one equipped with the
Euclidean metric. Our main observation uses the fact that there exists an infinite sequence
of integers whose asymptotic density in any interval [0, ε) is at least ε0.41−o(1) [Rus98].

Theorem 22. Let T = Q/Z and G = (T,+). Then there exists a randomised weak o(1)-
GAMD with respect to the class Fadd over G. The rate is 0.21− o(1).

C Shifted Polynomial Collections with Bounded Root

Set Size

Definition 8. Let K be a finite field and I = {Fi}1≤i≤m be a collection of polynomials
in K[x1, . . . , xm]. For a ∈ Km let Ia = {Fi − ai}1≤i≤m where a = (a1, . . . , am). Define
s(I) = maxa |{x ∈ Km | F (x) = 0 ∀F ∈ Ia}|.

Theorem 23. Let I be as in Definition 8. Consider the map ϕI : Km → Km given by
ϕI(x) = (F1(x), . . . , Fm(x)). Fix an integer c > 0. Let Fc,I = {ϕI | s(I) ≤ c}. Then
assuming that logn |Fc,I | < n

4 lnn
− 2(c2 + c + 1), there exists a weak 2−Ω(n)-GAMD against

the class Fc,I with rate 1− o(1).

Proof. Analogous to Lemma 12, consider the set S defined by sampling each element of
Km with probability γ. For each x ∈ Km let βx be an indicator variable which is equal
to 1 iff the events x ∈ S and ϕI(x) ∈ S both occur. We claim that the random variables
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{βx}x∈Km are (n − k)-wise independent with k = c2 + c + 1. To see this, note that βx
is independent of βy unless one of i) y = ϕI(x) ii) ϕI(y) = ϕI(x) iii) ϕ2

I(y) = ϕI(x)
occurs. As ϕI is well-defined, clearly there is at most one solution to the first case. For
the second case, suppose for contradiction that there are c+ 1 values y,x1, . . . ,xc such that
ϕI(y) = ϕI(x1) = . . . = ϕI(xc). This means that Iϕ(y) has c+1 solutions y,x1, . . . ,xc, which
by the definition of s(·) is impossible. A similar argument shows that there are at most c2

solutions to the third case. Let N0 and N1 be the sizes of the sets S and S ∩ ϕI(S) for a
fixed ϕI ∈ Fc,I . Let 0 < δ < 1 be a parameter to be determined. Applying Lemma 6 and
Lemma 7 we have

Pr[N0 ∈ (−∞, µ0(1− δ)] ∪ [µ0(1 + δ),∞)] ≤ e(−δ
2µ0

3
) + e(−δ

2µ0

2
)

Pr[N1 ∈ [µ1(1 + δ),∞)] ≤ 1

(γ2 − γ4)c2+c+1
· e(−nγ4δ2)

Choosing γ so that γ2 − γ4 ≥ n−2 we have that an ε-GAMD exists provided that ε =
e(−nγδ2

3
)+e(−nγδ2

2
)+|Fc,I |·n2(c2+c+1) ·e(−nγ4δ2) < 1. Choosing δ so that min{γδ2, γ4δ2} > 1

2

we have ε = 2−Ω(n) provided that n2(c2+c+1) · |Fc,I | < e(nγ
4δ2

2
) < e(n

4
), yielding logn |Fc,I | <

n
4 lnn
− 2(c2 + c+ 1). The rate is log2 γn

log2 n
, which for constant γ is 1− o(1).
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