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Abstract

Algebraic manipulation detection codes are a class of error detecting codes which
have found numerous applications in cryptography. In this paper we extend these codes
to defeat general algebraic attacks - we call such codes general algebraic manipulation
detection (GAMD) codes. Positive results are shown for the existence of GAMDs for
the families of tampering functions corresponding to point additions and polynomial
functions over a finite field. Compared to non-malleable codes, we demonstrate both
positive and negative results regarding the existence of GAMDs for arbitrary families
of tampering functions.

1 Introduction

Fault injection attacks are a class of attacks involve the deliberate introduction of errors into
the circuity or memory modules of a cryptographic device in attempt to deduce some secret
state. Algebraic manipulation detection codes [CDF+08] are a class of error detecting codes
that can thwart such attacks when the class of induced faults corresponds to additions on
code-words over a finite space. More precisely let s be a message supplied by an adversary,
and suppose c, an element of an abelian group G, is the corresponding code-word. If for any
∆ ∈ G it holds that c + ∆ decodes to s′ for any s′ 6= s, with probability bounded by ε, the
scheme is said to be an AMD code with error probability ε.

Even though AMD codes provide an elegant, keyless alternative to the widely used mes-
sage authentication codes for robust transmission over an error-prone channel, they cannot
defeat some types of powerful adversaries. Suppose that an AMD code is used to pro-
tect the output of a one time pad scheme. Let E(K ⊕ M) be the output on ciphertext
c = K ⊕ M . If it happens that E possesses a linear homomorphism φ, then we have
∆M ◦φ E(c) = ∆M ◦φ E(K ⊕M) = E(K ⊕ (M ⊕ ∆M)) = E(K ⊕M ′), where M ′ is the
message to be substituted. It is therefore desirable to consider a more powerful adversar-
ial model in which an attacker can choose, in addition to the source message, a tampering

1



function F from a rich class of tampering functions F . In this work, we consider precisely
this model, when the class F corresponds to algebraic functions over some finite field or
the rationals corresponding to the co-domain of the AMD code. We call such a code a
generalised algebraic manipulation detection code (GAMD code). Following previous works
on algebraic manipulation detection, we distinguish the case when the source message is
assumed to be uniformly distributed over the message space, from the usual (which provides
tampering detection with bounded error probability for any message). These are called
weak generalised algebraic manipulation detection (weak GAMD) and generalised algebraic
manipulation detection (GAMD) respectively.

1.1 Our Contributions

We formally introduce the model of generalised algebraic manipulation detection, in which
tamperings corresponding to algebraic functions over the ambient field of the encoding func-
tion. In this model we review the previous constructions for manipulation detection against
point additions. We show that such constructions translate directly to our new model, lead-
ing to direct instantiations of weak GAMDs and GAMDs for this class. Additionally we
present a new construction for weak GAMDs in the case of encoding over F2 based upon the
probabilistic method, leading to the following result (we actually construct a GAMD for a
more general class of tampering functions, this is discussed in Section 3.1.1)

Theorem 1 (Probabilistic construction of addition evasive GAMDs - Informal). Let n be
a power of two. There exists a nc−1-GAMD against the class of point additions on Fn with
rate c− o(1), for any constant 0 < c < 1.

We also consider attacks corresponding to the class of polynomial functions. Such attacks
in the affine case have been considered in the context of non-malleable cryptography by
[ADL14, KLT16]. We demonstrate an explicit construction of a GAMD secure against the
class of polynomial functions of bounded degree.

Theorem 2 (Construction of GAMDS for bounded degree polynomials - Informal). Fix
a positive integer d. There exists an explicit weak ε-GAMD secure against the class of

polynomials of degree bounded by d of rate 2/Θ(d2) and error probability O(k)
d
· 2−

k
Θ(d2) where

k is the prime bit-length.

We show that exact constructions imply corresponding weak GAMD codes with inverse
polynomial rate and low error-probability. We present a black-box transformation of any
weak GAMD to a GAMD. This construction is quite efficient, implying in view of the above
results, the existence of GAMDs with constant rate and low error probability for the classes
of point additions and polynomial functions respectively. Compared to the celebrated non-
malleable codes [DPW10] we also establish some separations. Our first result is negative and
states that there exists a class of tampering functions for which non-malleable codes but not
GAMD codes exist. This may be summarised by
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Theorem 3 (Non-existence of GAMDs for all functions - Informal). There exists a family
of tampering functions for which non-malleable codes exist with constant rate and negligible
simulation error but ε-GAMD codes with constant rate do not exist, for any choice of non-
negligible ε.

Our second result is a positive one and states that for any non-malleable code there exists
a class of tampering functions which violates non-malleability, but for which an efficient
GAMD code exists, leading to

Theorem 4 (Existence of GAMDs breaking non-malleability - Informal). For any non-
malleable code C there exists a family of tampering functions such that C is malleable with
respect to this family but there exists a GAMD for this family with constant rate and negligible
error probability.

We also show how to extend the construction of non-malleable codes for the class of
bounded degree polynomials to super non-malleable codes in the split-state model [DPW10].
The core observation behind this construction is that super non-malleable codes of Faust
et al. [FMVW14] can be de-randomised by embedding t-wise independent hash functions
inside a plain non-malleable code which is appended to the resulting codeword.

Theorem 5 (Super non-malleability in two-state model - Informal). In the two-state model
there exists, for any 0 < ε < 1, an explicit ε-super non malleable code for the class of
polynomials of degree bounded by d. The rate is 1

Θ(d2)
.

A significant limitation of our results is that they only apply for tampering functions in
one variable, while achieving corresponding deterministic results for multi-variate tampering
classes seems considerably more challenging.

1.2 Related Work

Cabello et al. constructed AMD codes in the context of robust secret sharing [CPS02]. The
notion was made explicit by the works of [DKRS06, CDF+08] and some further applications
provided including robust fuzzy extraction and message authentication codes with key ma-
nipulation security. In the former one wishes to guarantee recovery of a uniformly random
key from biometric or other noisy data with the property that correctness is maintained under
addition of errors up to some prior fixed bound even if the public parameters are compro-
mised. In a similar vein the goal of the latter is to prevent forgery of message authentication
tags even in the case that the adversary has algebraic manipulation access to the device
storing the key. Other applications include robust information dispersal and anonymous
message transmission [CDF+08]. Dziembowksi et al. introduced the notion of non-malleable
coding schemes and gave existential constructions for arbitrary tampering classes as well
as efficient constructions in the random oracle [DPW10]. Liu et al. constructed compu-
tationally secure non-malleable codes for split-state tampering in the CRS model [LL12].
Dziembowksi et al. initiated the study of non-malleable codes from two-source extractors
[DKO13]. Aggarwal et al. [ADL14] and Chattopadhyay et al. [CZ14] constructed explicit
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efficient non-malleable codes in the split-state model. Faust et al. constructed asymptoti-
cally optimal non-malleable codes for sufficiently small tampering classes in the CRS model
[FMVW14]. Faust et al. constructed non-malleable codes secure against continual leakage
[FMNV14].

Although non-malleable cryptography is not the major focus of this work we show how to
construct non-malleable codes from polynomial evasive GAMDs as well super non-malleable
codes [FMVW14] for this class in the two-state model.

2 Preliminaries

We describe the preliminary tools and definitions to be used throughout this paper. We
begin firstly by reviewing non-malleable codes [DPW10], secondly by stating some combi-
natorial results and finally, in Section 2.3, by stating our generalisation of classical algebraic
manipulation detection codes [CPS02, DKRS06, CDF+08].

2.1 Non-Malleable Codes

We recall the notion of non-malleable codes for a class of tampering functions. Informally a
non-malleable code is one which guarantees that after decoding either the original message
is recovered or the message that is recovered is completely “unrelated” to the original.

Definition 1 (Non-Malleable Code [DPW10]). Let F be a family of tampering functions.
For each F ∈ F and s ∈ {0, 1}k, define the tampering experiment

TamperFs =:

{
c← Enc(s), c̃← F (c), s̃ = Dec(c)

Output s̃.

}
defining a random variable over the randomness of the encoding function Enc. Say that
a coding scheme (Enc,Dec) is non-malleable w.r.t. F if for each F ∈ F , there exists a
distribution DF over {0, 1}k ∪ {⊥, same∗}, such that, for all s ∈ {0, 1}k, we have:

TamperFs ≈
{

s̃← DF

Output s if s̃ = same∗, and s̃ otherwise.

}
and DF is efficiently samplable given oracle access to F (·).

Let Fbit be the family of tampering functions that tamper every bit of a code-word of
length n independently. Formally, Fbit contains all functions f : {0, 1}n → {0, 1}n defined
by n functions fi : {0, 1} → {0, 1}, namely f(c1, . . . , cn) = (f1(c1), . . . , fn(cn)). Each fi is an
affine function on Z2. We require the following proposition proved by [DPW10], concerning
the existence of non-malleable codes against the family of bit-wise independent tampering
functions with constant rate and negligible simulation error.
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Lemma 6 (Theorem 4.2 [DPW10]). For any δ > 0 and n ∈ N there exist non-malleable codes
w.r.t the family Fbit, with block length n, message size k ≥ (.18 − δ)n and simulation error
2−Ω(n). Moreover there is an efficient procedure which, given k and n, outputs a description
of such a code with probability 1− 2−Ω(n).

We will also use the notion of super non-malleability [FMVW14] in the split-state model
[DPW10].

Definition 2 (Super Non-Malleability [FMVW14]). Let Enc : {0, 1}k → {0, 1}n, Dec :
{0, 1}n → {0, 1}k be a coding scheme and F be a family of functions f : {0, 1}n → {0, 1}n.
We say that the scheme is (F , ε)-super non-malleable if for any m0,m1 ∈ {0, 1}k and any
f ∈ F , we have Tamperfm0

≈ε Tamperfm1
where:

Tamperfm :=


c← Enc(x), c′ = f(c)

Output same∗ if c′ = c, output ⊥ if Dec(c′) =⊥
and else output c′.

Theorem 7 ([FMVW14]). Let H1 = {h1} and H2 = {h2} be t-wise independent hashing
families where h1 : {0, 1}v1 → {0, 1}k and h2 : {0, 1}k+v1 → {0, 1}v2. Then for any function
family F , consisting of functions f : {0, 1}n → {0, 1}n there exists an (F , ε)-super non-
malleable code with probability 1− p provided that

t ≥ O(log |F|+ n+ log(1/p))

v1 > 3 log(1/ε) + 3 log t+O(1)

v2 > v1 + 3.

2.2 Combinatorial Tools

We describe some combinatorial tools used in our constructions of GAMDs.

Definition 3 (Balanced Block Design [CD06]). Let v, c, λ be a positive integers. For point
set V a balanced block design is a multiset B of blocks of points such that

1. |V | = v
2. |P | = c for each P ∈ B
3. Each pair of points is a subset of exactly λ blocks

if |B| = v say that the (v, c, λ)-balanced block design is symmetric.

Definition 4 (Trace [CDN15]). Let K and L be fields. Suppose that L is separable over K
and n := [L : K] > ∞. Fix some algebraic closure L̄ of L. Let σ1, . . . , σn be the distinct
K-embeddings of L into L̄. The trace map TrL/K for each x ∈ L is:

TrL/K(x) =
n∑
i=1

σi(x) ∈ K
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Definition 5 (Difference Set [CD06]). Let (G,+) be an additive abelian group of order v. A
subset D ⊆ G is a (v, c, λ)-external difference set if |D| = c and every non-zero element of G
has exactly λ representations as a difference d− d′ for d, d′ ∈ D. If every non-zero element
of G has at most λ representations d− d′, say that D is a (v, c, λ)-bounded difference set.

Definition 6 (Authentication Code [Sti90, Sti94]). Let S be a set of source states, K a set
of authentication keys and A be a mapping A : S × K → T where T is a set of tags. Let
Π be a probability distribution on K. The probability of a successful substitution attack, with
respect to family of substitution functions F , is

psubF =: max
F∈F ,s 6=s′∈S

Pr
K←Π

[F (A(s,K)) = A(s′, K)].

Lemma 8 (Schwartz-Zippel). Let K be a field and let P ∈ K[x1, . . . , xn] where (xi)1≤i≤n
are indeterminates. Let S ⊆ K be a finite set and let (ui)1≤i≤n be selected independently and
uniformly at random in S. Then

Pr[P (u1, . . . , un) = 0] ≤ deg(P )

|S|

Lemma 9 (Prime Number Theorem [Ros94]). Let π(x) denote the number of primes p which
satisfy 2 ≤ p ≤ x. Then

lim
x→∞

π(x) · ln(x)

x
= 1

.

2.3 Generalised Algebraic Manipulation Detection Codes

In this section we define a code which is a generalisation of the classical algebraic manipu-
lation detection coding schemes. The main difference is simply that we allow manipulation
functions be general algebraic functions over a field, rather than the restriction to point
additions on its group considered by [CPS02, CDF+08]. In this paper K will always be a
finite field or number field (finite extension of the rationals), however below we allow K to
be arbitrary for completeness.

Definition 7. Let K be a field with associated metric d : K2 → R+ ∪ {0}. Let G := K
and let F be a family of algebraic tampering functions on G. Let S be a set of symbols. Let
E : S → G be a probabilistic encoding and D : G → S ∪ {⊥} be a deterministic decoding
procedure such that PrE [D(E(s)) = s] = 1 for all s ∈ S.

• The tuple (E ,D) is an ε-generalised algebraic manipulation detection (GAMD) code if
∀s ∈ S,∀F ∈ F PrE [D(F (E(s))) 6∈ {s,⊥}] ≤ ε.

• The tuple (E ,D) is a weak ε-generalised algebraic manipulation detection code if ∀F ∈
F PrE,s∈RS [D(F (E(s))) 6∈ {s,⊥}] ≤ ε.

Let Bd(0, δ) be the set of points at distance at most δ from 0G. The (information) rate

of a GAMD code is defined as r = limδ→∞
log2 |E(S)∩Bd(0,δ)|

log2 |G∩Bd(0,δ)| .
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2.3.1 Families of Tampering Functions

In this paper we consider two classes of tampering functions on a GAMD (E ,D) with co-
domain G = Fpn for some prime p and positive integer n.

• Point Additions: let Fadd = {F∆}∆∈G where F∆ := x 7→ x+ ∆ over G.

• Polynomial Functions: let FP≤d = {F(~a)}~a∈Gd+1 where F(~a) := x 7→
∑d

i=0 aix
i over

G.

2.4 Notation

Write f = o(g) if limn→∞
f(n)
g(n)

= 0. Write f = Ω(n) if ∃ c > 0 and N0 > 0 such that for all

n > N0, f(n) ≥ c · g(n). Let e(·) denote the real-valued exponential function. Let SD(, ·, )
denote the statistical distance. For discrete probability distributions with outcome space X ,
SD(P0, P1) = 1

2

∑
x∈X |P0(x)− P1(x)|. For probability distributions P0 and P1 let D(P0‖P1)

denote the KL-divergence. Pinsker’s inequality states that D(P0‖P1) ≥ 2SD(P0‖P1)2. Say
that random variables X1, . . . , Xn are k-wise independent if Pr[Xi1 = a1, . . . , Xik = ak] =∏k

j=1 Pr[Xij = aj] for all {i1, . . . , ik} ⊆ [1, n]. A function is algebraic iff it is the root of
a polynomial equation. Let Q be the set of rationals. For field K, let P≤d be the space
of univariate polynomials of degree at most d over K. For even integer n denote by In,
the subset of permutations on n objects consisting of involutions with no fixed points. The
independence number of a finite graph G is the size of the largest complete graph in the edge
complement of G.

2.5 Tail Bounds on Sums of Dependent Variables

Lemma 10 (Multiplicative Chernoff Bound). Let {Xi}1≤i≤n be a sequence of independent
random variables such that 0 ≤ Xi ≤ 1, E[Xi] = p for 1 ≤ i ≤ n. Let X =

∑n
i=1Xi and

µ = E[X] = np. Fix 0 < δ < 1. Then

Pr[X < µ(1− δ)] ≤ e(−δ
2µ

2
)

Pr[X > µ(1 + δ)] ≤ e(−δ
2µ

3
)

Lemma 11 (Theorem 1.12 [PR15]). Let {Xi}1≤i≤n be a sequence of k-wise independent
random variables such that 0 ≤ Xi ≤ 1, E[Xi] = p for 1 ≤ i ≤ n. Let X =

∑n
i=1Xi and

µ = E[X] = np. Fix δ > 0. Then

Pr[X > µ(1 + δ)] ≤ 1

(p− p2)n−k
e (−nD(p(1 + δ)‖p))

Lemma 12 (Theorem 1.14 [PR15]). Let G = (V,E) be a finite graph with vertices v1, . . . , vn
and let α be its independence number. To each vi, i = 1, . . . , n we associate a Bernoulli
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0/1 random variable Bi, such that Pr[Bi = 1] = p. Suppose that each random variable
Bi, i = 1, . . . , n is independent of the set {Bj : (vi, vj) 6∈ E}. Let 0 < δ < 1 be a constant
and t = np(1 + δ). Then

Pr[
n∑
i=1

Bi ≥ t] ≤ pα · e(−δ
2n

2
) · 2n

3 Constructions

In this section we review some constructions for GAMD codes against the class of tampering
functions corresponding to point additions and also polynomial functions. Our results show
that efficient GAMDs (i.e, one ones with constant rate and low error probability) exist for
the former class, while for the latter, the rate degrades quadratically in the degree of the
function. For the class of point additions, we present two constructions of GAMDs based
upon difference sets. Our first can be seen as a specific instantiation of the AMD codes in
Section 4.1 [CPS02]. Our second which is based upon the probabilistic method allows the
construction of GAMDs for a broader class of functions.

3.1 Point Additions

Cabello et al. [CPS02] constructed a difference set in Fpl × Fpk from any surjective map
φ : Fpl → Fpk . An efficient instantiation of φ for arbitrary p can be found using the field
trace (Definition 4). Using this construction we can build a weak-GAMD with rate 1− o(1)
and arbitrarily low error probability, described in Lemma 14.

Lemma 13. [CPS02] Let p be an odd prime and l and k be positive integers such that l ≡ 0
(mod k). Let (G,+) be the product of groups, Fpl × Fpk under addition. Define

Dk,l = {(α, φF
pl
/F
pk

(α2)) : α ∈ Fpl} ⊆ G

Then Dl,k is a (pl+k, pl, pl−k)-external difference set.

Lemma 14. For a prime p and positive integer n let G = Fnp . Then there exists a explicit
weak (p−1)-GAMD code with respect to the family of point additions, Fadd, on G, with efficient
encoding and decoding procedure and rate 1− o(1).

Proof. Note G ∼ (Fpn ,+). By Lemma 13 we know that for any n > 1 there exists a
(pn, pn−1, pn−2)-external difference set D1,n−1 ⊆ G. Let E(S) = D1,n−1 and consider the
quantity p∆ := Prs∈RS[F∆(E(s)) 6∈ {s,⊥}]. Since E is deterministic, and s is chosen uniformly
at random, p∆ = #{s′ ∈ S : E(s′)− E(s) = ∆}/|S|. Thus for each ∆ ∈ G, since E(S) is a

(pn, pn−1, pn−2)-difference set, p∆ ≤ pn−2/pn−1 = p−1. The rate of E is log |D1,n−1|
log |G| = 1−n−1 =

1− o(1), as required.
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3.1.1 A New Construction

We note that so far the constructions of GAMD codes against the class of point additions have
followed a similar recipe to the constructions of AMD codes presented in [CPS02, CDF+08].
In this section we present a new construction for this class based upon the probabilistic
method.

Lemma 15. Let G be an abelian group of order n where n is even. Let 0 ≤ c < 1 be
arbitrary. Let I ′n ⊂ In be of polynomial size. Then there exists a subset S ⊂ G and maps
E : [|S|]→ G and D : G → [|S|] which define a weak nc−1-GAMD with respect to the set I ′n.
The rate is ρ is c− o(1). The sampling error is e(−1

4
nρ) + |I ′n| · e(−2n2ρ−1).

Proof. We show that, by analogy to the polynomial-evasive set case (see Section 3.2 fol-
lowing) for any positive constants 0 ≤ γ < ν < 1, there exists a set S ⊂ G for which
|S| ∈ γ|G|(1 ± ε) and |S ∩ F (S)| ≤ ν|S| hold for any F ∈ I ′n. Taking S = [|S|], ν = nc−1,
γ = n(c−1)−o(1) and E and D as in the statement of the lemma, yields a code with error
probability nc−1 and rate log γn

logn
= c − o(1) (see also Theorem 29, Appendix C). We will

demonstrate the existence of S via a probabilistic argument. Consider the set S defined by
sampling each element of G independently with probability γ. Clearly the size of S, N0, has
a Binomial distribution with parameters (n, γ). We now analyse the size of the intersection
S∩F (S), where F ∈ I ′n is arbitrary. Observe that each such F induces a matching on G given
by (x, F (x)) : x < F (x). Moreover, since F contains no fixed points, each such pair occurs
independently with probability γ2. Thus N1 := |S∩F (S)|/2 follows a Binomial distribution,
with parameters (n

2
, γ2). Now by applying Lemma 10, if ε is such that γ < ν(1 − ε) < 2γ

then

Pr[N0 ≤ nγ(1− ε)] ≤ e(
−nγε2

2
) (1)

Pr[N1 ≥
νnγ(1− ε)

2
] ≤ e(

−n(ν(1− ε)− γ)2

6
) (2)

Secondly, applying a union bound over all F ∈ I ′n, we have PrS[|S| ≥ nγ(1 − ε) ∩
|S ∩ F (S)| ≤ νnγ(1 − ε) for all F ∈ I ′n] ≥ 1 − e(−nγε2

2
) − |I ′n|e(−

n(ν(1−ε)−γ)2

6
). As |I ′n| is

polynomial in n, for large enough n this probability is strictly greater than 0. Let k > 1
and ν = εk−1, γ = εk. Then the function g(·) = (εk−1(1 − ε) − εk)2 is maximised on the

interval (0, 1) by ε0 = k−1
2k

. In particular for ε = ε0, ρ ≥ log2(n·2−(k+1))
log2 n

and Equation 1 implies

Pr[N0 ≤ nγ(1− ε0)] ≤ e(
−nεk+2

0

2
) ≤ e(−n · (1

2
)k+3) ≤ e(−nρ

4
). Equation 2 on the other hand

implies Pr[N1 ≥ νnγ(1−ε0)
2

] ≤ e(−nε2k−1
0 (1−2ε0)2

6
) ≤ e(−n · (1

2
)2k+1) ≤ e(−2n2ρ−1). Thus the

sampling error is e(−n
ρ

4
) + |I ′n| · e(−2n2ρ−1).

Corollary 16. Let G = (Fn,+) where n is an arbitrary power of two. Then there exists a
weak (n−1/2)-GAMD with respect to the family Fadd, with rate 1

2
− o(1). The sampling error

is e(−1
4
n1/2) + n−0.1.
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Proof. The family Fadd defines a subset of In of order n. Thus S ⊆ G exists with the
properties of Lemma 15, taking c = 1/2 yields a n−1/2-GAMD with rate 1/2 − o(1). Let

ρ = (1−ln 2+ln(1.1 lnn))
2

. Then the sampling error is e(−nρ

4
) + n · e(−2n2ρ−1) ≤ e(−n1/2

4
) + n ·

e(− ln(1.1 · n)). S defines an (n,
√
n, 1)-bounded difference set.

We remark that the parameters achieved by Lemma 15 are essentially optimal - matching
those of classical parameter sets modulo two [CD06]. In Appendix A we also prove the
following result concerning the class Fadd over the cartesian power of a field K corresponding
to the finite extensions of K under addition.

Lemma 17. Let (E ′,D′) be a weak γ-GAMD over field (K,+) for the class Fadd with rate
ρ′. Then there exists (E ,D), a weak γ-GAMD for Fadd over (Km,+), with rate ρ := ρ′ and
γ = 1− (1− γ′)m.

3.2 Polynomial Functions

In this section we show to construct explicit GAMDs secure against the class of all poly-
nomials of finite degree modulo a prime, extending the constructions in [ADL14, Agg15].
We first present an informal overview of our construction, while the construction itself is
described in section 3.2.1.

Our Construction In A Nutshell Aggarwal [Agg15] constructed codes secure against
affine functions by constructing affine-evasive sets modulo a prime. The construction uses
the reciprocals of all primes less than some inverse power in the underlying modulus. Fix an
affine function F and let the reciprocal primes in its domain be denoted ai and the primes in
its range be denoted bi. In that case an explicit bi-variate quartic relation is derived on the
ai and bi [Agg15]. We follow this principle but instead use Lagrange interpolation to derive a
(cyclically) symmetric relation on the ai and bi. Unfortunately the setting d > 1 necessitates
some changes. Firstly there is no longer symmetry between the ai and bi which appears to
be unique to the affine setting only. This implies divisibility relations appear possible only
from the bi (primes in the range of the polynomial). We are able to utilise these at slight
expense (roughly O(log log k) in bit-length) by an additive combinatorics-like construction
of a set of primes with the property that no difference of elements of the set is divisible by
another element. We believe this construction, which Lemma 18 is devoted to, may be of
independent interest.

3.2.1 Construction of Polynomial Evasive GAMDs

Lemma 18. For any positive integer N there exists a positive integer B, so that N primes
lie in the interval [0, B] and such that no prime divides the difference of two others for
B = O(N ln1+o(1)N).

Proof. By Lemma 9 we can find Θ( B
lnB

) primes qi in the interval (B/2, B]. Suppose qi | qj−qk
for some qi 6= qj 6= qk. Then B/2 < qi ≤ |qj − qk| ≤ B/2 which is a contradiction.

10



For positive integer N , denote the above set DN .

Theorem 19. Let p a prime of k bits. There exists an explicit weak ε-GAMD secure against

the class FP≤d modulo p of rate 2/Θ(d2) and error probability ε = O(k)
d
· 2−

k
Θ(d2) for any

positive integer d.

Proof. As mentioned above, define N(p) = d2p2/(d2+3d−2)/4 ln1.1 p so that q ∈ DN(p) satisfies

q < (1− d−1.9) · p2/(d2+3d−2). Let

Pd := {q−1| q prime, q ∈ DN(p)}

Fix ~a = (a0, . . . , ad−1) ∈ Fp and define F~a(x) =
∑d−1

i=0 aix
i. We will prove that |S ∩ F~a(S)| ≤

d. Suppose to the contrary that there exist distinct (xi)
d+1
i=1 and (yi)

d+1
i=1 in Fp such that

F~a(xi) = yi. Let Lj be the jth Lagrange basis polynomial in the interpolation of (xi, yi)
d+1
i=1 .

In that case one has

L(x) =
d+1∑
j=1

Lj(x) =
d+1∑
j=1

yj

∏
k 6=j(x− xk)∏
k 6=j(xj − xk)

Observe that F~a(x) =
∑d−1

i=0 aix
i is of degree d − 1, while L(x) is nominally of degree d. It

follows that the leading coefficient of L(·) is zero and hence that

d+1∑
j=1

yj∏
k 6=j(xj − xk)

≡ 0 mod p (3)

Write xj = a−1
j and yj = b−1

j . WLOG a1 6= b1, since for any non-trivial F~a the polynomial
F~a(x)− x has at most d− 1 roots. Therefore

d+1∑
j=1

adj
∏

k 6=j ak

bj ·
∏

k 6=j(aj − ak)
≡ 0 mod p

Multiplying out and clearing common terms

d+1∑
j=1

((−1)jad−1
j ·

∏
k 6=j

bk ·
∏

l>k,k 6=j

(al − ak)) ≡ 0 mod p (4)

Since aj, bj < (1− d−1.9) · p2/(d2+3d−2) and |al− ak| < max{ak, al} for every k < l, Equation 4
holds over the integers. In particular, since b1 appears in every summand except the first

b1 | ad−1
1 ·

d+1∏
k=2

bk ·
∏

l>k,k≥2

(al − ak) (5)

We now derive a contradiction as follows. By assumption b1 is distinct from and hence
coprime to a1 and (bi)i≥2. Then b1 | (al − ak) for some l > k which by our construction of
Pd is impossible.

11



In Appendix A we also prove

Theorem 20. Let p be a prime. There exists some constant c so that for any 0 < ε < 1
there exists a ε-non-malleable code (Enc,Dec) for the class FP≤d where Enc : ZT → Fp and
Dec : Fp → ZT whenever p > (T

ε
)c·d

2
.

We remark that Theorem 19 extends to all finite centred Laurent expansions, i.e., two-
sided polynomial expressions about zero, as well as to finite fields with similar parameters.

4 A Weak GAMD to GAMD Transformation

In this section we present a sufficient result for transforming any weak GAMD to a GAMD
following a similar idea to that presented in Section 4 [CDF+08]. Our main result here is
Lemma 22 which states that if the classes of tampering functions can be represented by a set
of polynomials in one or more variable of bounded degree d� |K| then any weak GAMD for
this family can transformed to a GAMD. In particular this implies asymptotically efficient
GAMDs for the class of polynomial functions with negligible error probability.

Proposition 21. Suppose that (E ′,D′) is a weak ε′-GAMD with respect to F where E ′ : S ′ →
G ′. Let A : S × S ′ → T be an authentication code. Let G = S × G ′ × T . Define E : S → G
by E(s) = (s, E ′(k),A(s, k)), where k ∈R S ′. Define D : G → S ∪ {⊥} by D(s, c′, τ) = s
iff D′(c′) 6=⊥ and τ = A(s,D′(c′)). Then (E ,D) is an ε-GAMD with respect to F where
ε = ε′ + psubF .

Proof. Suppose that c = (s̃, c̃′, τ̃) is a received code-word for source symbol s under key k.
Suppose that s 6= s̃. Then Pr[D′(c̃′) 6= {k,⊥}] ≤ ε′ since (E ′,D′) is a weak ε′-GAMD and k
is chosen uniformly at random in K. Moreover, Pr[A(s̃, k) = τ̃ ] ≤ psubF since s 6= s̃. Thus the
event D(c) = s̃ occurs with probability at most ε′ + psubF . The result follows.

Lemma 22. Let ` be an arbitrary positive integer and K be a field. Let K ⊆ K2 be a finite
set and A : S×K → T be the message authentication code defined by A((s1, . . . , s`), (x, y)) =∑`

i=1 six
i + y. Then psubFP≤d

≤ `d
|K| .

Proof. Let F be a fixed polynomial in FP≤d . Let s 6= s′ ∈ S. Consider the polynomial

P (x, y) = F (
∑`

i=1 six
i+y)−(

∑`
i=1 s

′
ix
i+y) inK[x, y]. We argue this is a non-zero polynomial

as follows. First observe that if P ≡ 0, then deg(F ) = 1, since otherwise P (x, y) contains a
non-trivial power of y. So let F (u) = a0u + a1. Then a0 = 1 by a similar argument. Thus
P =

∑`
i=1(si−s′i)xi+a1, which is a contradiction since s 6= s′ implies there exists i for which

si 6= s′i. On the other hand the degree of P is at most deg(F ) · ` ≤ `d. Thus by Lemma 8,
as k = (x, y) is chosen uniformly in K, the event P = 0 occurs with probability at most `d

|K| .

Finally, P = 0 occurs iff F (A(s, k)) = A(s′, k), concluding the proof.

Corollary 23. For any n ∈ N and large enough prime p there exists an ε-GAMD of block
length n with respect to the family FP≤d over Fp where ε = 2−n/Θ(d2). The rate is 1− o(1).
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Proof. Pick prime p so that p > 2n. By Theorem 19 we can construct E ′ over Fp2 so that

ε′ ≤ O(log p)
d

p−1/Θ(d2). Let A : Fn−3
p × F2

p → Fp be as in Lemma 22. Then as deg(F ) ≤ d for

all F ∈ FP≤d, we have psubFP≤d ≤
(n−3)d
p2 by Lemma 22. The rate of E is n−3

n
= 1 − o(1). The

error probability is bounded by ε = psubFP≤d + ε′ ≤ n
d
· 2−n/Θ(d2) + 2−Ω(n) = 2−n/Θ(d2).

5 Separations

We describe some separations regarding non-malleable codes and GAMDs generalising sepa-
rations noted in previous works [DPW10, DKO13, FMVW14]. Although non-malleable codes
have already proved a valuable digression from the classical notion of error correction and
detection, here we provide evidence that GAMD codes provide a strengthening of classical
algebraic manipulation detection distinct to that provided by non-malleable cryptography.
Specifically we are able to prove (Theorem 25) that any non-malleable code can be broken
by some tampering family for which a GAMD with high rate and low error probability ex-
ists. This family actually corresponds to a re-coding functionality in which a code-word is
decoded, one is added to the message which is then again encoded, so is a natural candidate
for this task. On the negative side, however, we show that for at least one family of tam-
pering functions, non-malleable codes exist but GAMDs do not. We also prove that in the
two-state model super non-malleable codes exist for arbitrary ε agains the class FP≤d with
inverse polynomial rate.

Theorem 24. Some family of tampering functions F exists for which for any n ∈ N, non-
malleable codes of block length n exist with constant rate and simulation error 2−Ω(n), but
ε-GAMD codes with constant rate do not exist, for any choice of non-negligible (in block-
length) ε.

Proof. Let F = Fbit be the family of bit-wise independent tampering functions (see Section
2.1). By Lemma 4 we know that for any n there exists a non-malleable code (Enc,Dec)
with block size n, constant rate and simulation error 2−Ω(n). Now suppose that an ε-GAMD
(E ,D) exists for Fbit where E : S → G where G = Fn2 . There exists distinct code-words
c = Enc(s), c′ = Enc(s′) : c 6= c′. Then the function Fc′(x) = c′ is contained in Fbit and is
not detectable except with probability at most 1

|S| . By assumption (E ,D) is constant rate,

so ε ≤ 1
|S| = 2−Ω(n). The theorem follows.

Theorem 25. For any non-malleable code C of block length n there exists a family of tamper-
ing functions FC such that C is malleable with respect to FC but there exists a (2−Ω(n))-GAMD
code C ′ with respect to FC with rate r ·O(1)− o(1), where r is the rate of C.

Proof. Let (E,D) be a non-malleable code where E : Kk → Kn. We construct GAMD code
(E ,D) and family of tampering functions FC as follows. Let 1 = 0k−1‖1 ∈ Kk and let
FE,D be the function FE,D(c) = E(D(c) + 1) if D(c) 6=⊥ otherwise c. Define FC = {FE,D}
and let (E ′,D′) with E ′ : S → Kk be an ε′-GAMD with respect to the family Fadd of
point addition functions on Kk. Define E : S → Kk, D : Kk → S by E(s) = E(E ′(s)),

13



D(c) = D′(D(c)) if D(c) 6=⊥ otherwise ⊥. We claim that (E ,D) is an ε′-GAMD for FC. We
have

Pr
E,E ′

[D(E(s)) = s] = Pr
E,E ′

[D′(E ′(s))) = s] = 1

by the correctness of non-malleable (E,D) and ε′-GAMD (E ′,D′) respectively. On the other
hand for any s 6= s′ in S, PrE,E ′ [D(F (E(s))) = s′] = PrE,E ′ [D′(D(F (E(s)))) = s′] ≤
PrE,E ′ [D′(D(E((E(s) + 1)))) = s′] ≤ PrE,E ′ [D′((E(s) + 1)) = s′] ≤ ε′ as (E ′,D′) detects
tampering by point additions on Kk with probability at least 1 − ε′. The rate of (E ,D) is
r · (O(1))− o(1) in view of Lemma 14 and Theorem 27.

Theorem 26. In the two-state model there exists, for any 0 < ε < 1, an explicit ε-super non
malleable code for the class FP≤d with negligible sampling error. The rate is 1

Θ(d2)
.

Proof. Consider ε1-non-malleable (E1,D1) mapping k1 bits to n1 bits and ε2 super non-
malleable (E2,D2) mapping k2 bits to n2 bits using t-wise independent hash functions. Let
(Enc,Dec) be given by Enc(s) = (E1(h1‖h2),E2(s;h1, h2)) where h1 ∈R H1, h2 ∈R H2 and
Dec(c1, c2) = D2(c2,D1(c1)) if D1(c1) 6=⊥ otherwise ⊥. Let ε = ε1 + ε2. Then ε-super non-
malleability will follow if we can prove that for any non-trivial f1, the probability, over a
random choice of h1, h2 that f1 mauls c1 to an equivalent but distinct codeword c′1 is at most
ε1. Let m = h1‖h2. We have

Pr[Dec(c′1) = Dec(c1) ∧ c′1 6= c1 |c1 ← Enc(m)]

= Pr[f1(c1) ∈ Sm ∧ f1(c1) 6= c1 |c1 ∈ Sm]

=
∑
m

pm ·
|{c1 |c1 ∈ Sm, f1(c1) ∈ Sm, c1 6= f1(c1)}|

|Sm|

≤
∑
m

pm ·
|Sm ∩ f1(Sm)|

|Sm|
≤
∑
m

pm · ε1 ≤ ε1

We now analyse the rate of Enc. We have |FP≤d| = pd = 2nd. So by letting t > n(d +
1) + O(1), v1 > 3 log2 n + O(1), v2 = v1 + O(1), we have k2 = n2 − 6 log2 n2 − O(1). The
hash functions h1, h2 require t(v1 + v2) bits hence k1 ≥ 6n2(d + 1) log2 n2. Therefore n1 >

6κd2n1(d+ 1) log2 n2 for some constant κ. We have ρ = k1+k2

n1+n2
= Θ(n2d)

Θ(n2d3)
= 1

Θ(d2)
.

6 Conclusion

We have defined a generalisation of algebraic manipulation detection codes to facilitate
detection of tampering by algebraic functions over a field. We have demonstrated explicit
constructions of these codes for the families of point additions and polynomial functions and
randomised constructions for some broader classes over finite fields. In future work it would
be interesting to extend these constructions as well as to investigate applications of these
codes.
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Proof. Since γ ≤ 1 − (1 − γ′)m it suffices to prove that limδ→∞
|S∩F (S)∩Bd(0,δ)|

|S| ≤ (1 − γ′)m
for each choice of F ∈ Fadd over Km. Therefore we need to show that for each ε > 0 there
exists δε > 0 so that for all F ∈ Fadd,

|S ∩ F (S) ∩Bd(0, δ)| ∈ |S ∩Bd(0, δ)| · ((1− γ′)m ± ε). (6)

Decompose F as
∏m

i=1 Fi where Fi ∈ Fadd acts on the ith copy of K in Km. Let ε′ = (1 −
γ′) ln(1+ε)m−1. Let δ′ε′ be such that ∀δ′ > δ′ε′ , |S ′∩Fi(S ′)∩Bd′(0, δ

′)| ∈ |S∩Bd′(0, δ
′)| ·((1−

γ′)±ε′). Then
∏m

i=1 |S ′∩Fi(S ′)∩Bd′(0, δ
′)| ∈

∏m
i=1(|S ′∩Bd′(0, δ)|·((1−γ′)±ε′)). Let S = S ′m

and d = d′m be the supremum metric on Km. Then (
∏m

i=1 |S ′ ∩Bd′(0, δ
′)| · (1− γ′ + ε′)m) ≤

|
∏m

i=1 S
′ ∩
∏m

i=1 Fi(S
′)∩

∏m
i=1Bd′(0, δ

′)| ≤ (
∏m

i=1 |S ′ ∩Bd′(0, δ
′))| · (1− γ′+ ε′)m). Now ((1−

γ′)−ε′)m = (1−γ′)m(1−ε′(1−γ′)−1)m ≥ (1−γ′)me−mε′/(1−γ′) ≥ (1−γ′)m(1+ε)−1. Similarly
one can prove (1− γ′ + ε′)m ≤ (1− γ′)m(1 + ε). Thus taking δε = δ′ε′ shows that Equation 6
holds for each choice of ε and F in Fadd over Km. To complete the proof, observe that the rate

of E is limδ→∞
log2 |S∩Bd(0,δ)|

log2 |Bd(0,δ)| = limδ→∞
log2(

∏m
i=1 |S′∩Bd′ (0,δ)|)

log2(
∏m
i=1 |S′∩Bd′ (0,δ)|)

≤ limδ→∞
log2 |S′∩Bd′ (0,δ)|

log2 |Bd′ (0,δ)
= ρ′.

Proof of Theorem 20

Proof. By Theorem 19 we know that there exists a set S ⊂ Fp with the property that

|S| ≤ (log p · p
2

d2+5d+2
−1

) · p and |S ∩ F (S)| ≤ log p·p
−2

d2+5d+2

2d
· |S| for all F ∈ FP≤d. Consider

partitioning S into sets (Sm)m of equal size |S|
T

. Define Enc : ZT → Fp by Enc(m) = c :

c ∈R Zm and Dec(c) = m : c ∈ Sm. Fix F ∈ FP≤d and define simulation experiment SimF
m

as in Figure 1. Note that distribution DF satisfies Pr[DF = same∗] = Prc∈RFp [F (c) = c]
and Pr[DF = m] = Prc∈RFp [F (c) 6= c ∩ Dec(F (c)) = m] : m ∈ ZT ∪ {⊥}. We claim

that SD(SimF
m,TamperFm) ≤ ε where TamperFm is the tampering experiment of Definition 1.

First suppose that F (x) ≡ x. In that case Pr[TamperFm = m] = Pr[SimF
m = m] = 1 so

that SD(SimF
m,TamperFm) = 0. Suppose F (x) ≡ a where a is a constant in Fp. Then

Pr[TamperFm = Dec(a)] = Pr[SimF
m = Dec(a)] = 1 so again SD(SimF

m,TamperFm) = 0. If
F 6∈ {id.,Fp}, then Prc∈RFp [F (c) = c] occurs with probability at most d

p
by Lemma 8. Thus

SD(SimF
m,Dec(F (c)) : c ∈R Fp) ≤ d

p
. Now

SD(TamperFm,Dec(F (c)) : c ∈R Fp)

=
∑
m′

|Pr[Dec(F (c)) = m′ : c← Enc(m)]− Pr[Dec(F ((c)) = m′ : c ∈R Fp]|

≤
∑
m′

|Pr[Dec(F (c)) = m′ : c← Enc(m)]|+
∑
m

|Pr[Dec(F (c)) = m′ : c ∈R Fp]|

≤ Pr[F (c) ∈
⋃

m′∈ZT

Sm′ : c ∈R Sm] + Pr[F (c) ∈
⋃

m′∈ZT

Sm′ : c ∈R Fp]

≤ |S ∩ F (Sm)|
|Sm|

+
|S ∩ Fp|
|Fp|

≤ ε (7)

To satisfy Equation 7 we need log p · p
1

Θ(d2) · ( T
Θ(d)

+ 1
p
) + d

p
< ε so that for some constant c it

holds p > (T
ε
)c·d

2
yielding the result.
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SimF
m :

1. Pick c ∈R Fp |c ∈ Sm.
2. Output same∗ if F (c) = c else Dec(F (c)).

Figure 1: Tampering simulation experiment.

B Degree-k Algebraic Extension

Rusza proved that there exists an infinite sequence of integers whose asymptotic density in
any interval [0, ε) is at least ε0.41−o(1) [Rus98]. To construct a GAMD for the class of point
additions over the rationals we will only need the weaker result that for any prime power M
there exists a Sidon set (integer 1-difference set) of size M + 1 inside Zq = {1, . . . , q} where
q = M2 +M + 1 [Sin38]. We denote this set DM and consider q(·) as function in M .

Theorem 27. There exists an explicit weak ε-GAMD over the rationals against the class of
point additions with rate 0.75− o(1) and negligible error probability ε.

Proof. Let N > 0 be an arbitrary integer. Let r(N) be the largest prime such that r2+r+1 ≤
N . Let S ⊂ Q be given by

S := {a
p
| p prime, a ∈ Dr(b p

2
c)} (8)

We prove that for any element F ∈ Fadd, |S ∩ F (S)| ≤ 1. Suppose for contradiction that
there exist v1, v2, v3, v4 ∈ S such that v1 − v2 = v3 − v4. Let v1 = a

p
, v2 = b

q
, v3 = c

r
, v4 = d

s

where a < p
2
, b < q

2
, c < r

2
, d < s

2
.

Case 1: p 6= q 6= r 6= s. We have (aq−bp)rs = (cs−dr)pq. Then pq|(aq−bp) and aq−bp 6= 0
as a < p. One the other hand |aq − bp| < max{aq, bp} < pq

2
which is a contradiction.

Case 2: At least two, not all p, q, r, s distinct. WLOG p 6= r and q 6= s. Then either
p = s or q = r. If p = s, a

p
− b

q
= c

r
− d

p
so that (a + d)rq = p(br + cq). Then r | cpq.

As p 6= r and c < r, q = r. Thus p | a + d which contradicts a, d < p
2
. The case q = r

is similar.
Case 3: p = q = r = s. In this case a− b = c− d with a 6= c and b 6= d, which contradicts

Dr(p) being a 1-difference set.

We now analyse the rate of E . We have ρ = limN→∞
log2 #{x∈S:x= a

N
:a≤N}

log2 #{x∈Q:x= a
N

:a≤N} . By Lemma 9 for

sufficiently large N there are at least N
lnN
− 1.5 (N/2)

ln(N/2)
primes in the interval [N/2, N ]. We

may also choose prime M so that q(M) ≈ b (N/2)
2
c. Thus S contains at least

√
(bN

4
c) · ( N

lnN
−

3N
4 ln(N/2)

) = O(N
3/2

lnN
) elements whose denominator is at mostN . Thus ρ = limN→∞

1.5 lnN−ln lnN
ln(N2/2)

=
0.75.
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Combining Theorem 27, Lemma 17 and Lemma 22 we have

Corollary 28. Let K be a number field of index k := [K : Q]. Then there exists a ε-GAMD
for the class Fadd over K with rate 1 − o(1) and negligible ε for any choice of k at most
polynomial in the message length.

C Shifted Polynomial Collections with Bounded Root

Set Size

Definition 8. Let K be a finite field and I = {Fi}1≤i≤m be a collection of polynomials
in K[x1, . . . , xm]. For a ∈ Km let Ia = {Fi − ai}1≤i≤m where a = (a1, . . . , am). Define
s(I) = maxa |{x ∈ Km | F (x) = 0 ∀F ∈ Ia}|.

Theorem 29. Let I be a collection of ideals for which each I ∈ I is as in Definition 8.
Consider the map ϕI : Km → Km given by ϕI(x) = (F1(x), . . . , Fm(x)). Let c be a positive
integer and let Fc,I = {ϕI |I ∈ I, s(I) ≤ c}. Suppose that |Fc,I | < nτ , τ > 0. Then there
exists a weak 2e(−(c+ 1))-GAMD for the class Fc,I with rate 1− o(1). The sampling error
is e(−Ω(|K|)).

Proof. Analogous to Lemma 15, consider the set S defined by sampling each element of Km

with probability γ. For each x ∈ Km let βx be an indicator variable which is equal to 1 iff
the events x ∈ S and ϕI(x) ∈ S both occur. We claim that the dependency graph associated
with {βx}x satisfies α(G) > n

2(c+1)
. To see this, note that βx is independent of βy unless one

of i) y = ϕI(x) ii) ϕI(x) = ϕI(y) iii) x = ϕI(y) occurs. As ϕI is well-defined, clearly there
is at most one solution to the first case. For the second case, suppose for contradiction that
there are c + 1 values y,x1, . . . ,xc such that ϕI(y) = ϕI(x1) = . . . = ϕI(xc). This means
that Iϕ(y) has c + 1 solutions y,x1, . . . ,xc, which by the definition of s(·) is impossible. A
similar argument shows that there are at most c solutions to the third case. Thus V (G)
can be partitioned into distinct sets V1, . . . , Vn′ such that |Vi| = 2(c + 1) and Vi possesses a
representative yi such that βyi is independent of βyj : i 6= j. Let N0 and N1 be the sizes
of the sets S and S ∩ ϕI(S) for a fixed ϕI ∈ Fc,I . Let 0 < ε < 1 be a parameter satisfying
γ < ν(1− ε) < 2γ. Applying Lemma 10 and Lemma 12 we have

Pr[N0 ∈ (−∞, µ0(1− ε)] ∪ [µ0(1 + ε),∞)] ≤ e(−ε
2µ0

3
) + e(−ε

2µ0

2
)

Pr[N1 ∈ [µ1(1 + ε),∞)] ≤ (γ2)α · e(−n(ν(1− ε)− γ)2

2γ2
) · 2n

Let γ ≤ e(−(c + 1)) so that γ2α < e(−n) and ν(1 − ε) = 3γ
2

. Then a ν-GAMD exists for

ν = 3
2
e(−(c+1)−o(c)) for some ε = e(o(c)). The sampling error is e(− ε2nγ

6
)+e(− ε2nγ

4
)+nτ ·

(γ2α) · e(−n
8
) · e(n ln 2) = e(−Ω(|K|)). The rate is log2 γn

log2 n
, which for approximately constant

γ is 1− o(1).
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As a consequence we have the following randomised analogue to Theorem 19.

Corollary 30. There exists a weak 2e(−(d+ 1))-GAMD for the class FP≤d with asymptoti-
cally optimal rate and negligible error probability.
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