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Abstract. In this work we show the existence of special sets of inputs for which the
sum of the images under SHA3 exhibits a symmetric property. We develop an analytical
framework which accounts for the existence of these sets. The framework constitutes
identification of a generic property of iterated SPN based functions pertaining to
the round-constant addition and combining it with the notion of m−fold vectorial
derivatives for differentiation over specially selected subspaces. Based on this we
propose a new distinguisher called SymSum for the SHA3 family which penetrates up to
9 rounds and outperforms the ZeroSum distinguisher by a factor of four. Interestingly,
the current work is the first analysis of SHA3/Keccak that relies on round-constants
but is independent of their Hamming-weights.

Keywords: distinguisher · Keccak · SHA3 · hash functions · cryptanalysis · zero-sums
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1 Introduction
Keccak, the winner of the SHA3 competition [oST], has been formally standardized in
August 2015 and published in FIPS 202 [Nat15]. In course of the SHA3 competition,
there have been a lot of cryptanalytic results on both the internal permutation Keccak-f
(denoted as Keccak-p in FIPS 202) of Keccak and also over the complete hash-function.
While the main findings over Keccak concentrated on pre-images and collisions, Keccak-f
received considerable attention from what is known as distinguishing attacks. These
attacks, which aim at exhibiting non-random behavior by targeting the hermetic sponge
strategy [BDPA07], employ various techniques like constrained-input contrained-output
(CICO)[AK09], rotational symmetry [MPS12], self-symmetry [KSPC14], ZeroSum [AM09],
[DL12, BC10a, BC10b], rebound [DGPW12], cube-tester [DMP+14] and recently reported
internal differential boomerang [JN15]. However, among these, only the ZeroSum distin-
guisher is able to distinguish all 24-rounds of Keccak-f . It was first reported by Aumasson
and Meier [AM09] as the zero-sum distinguishing property1 for public permutations. For
a given function F , the basic aim of the ZeroSum distinguisher is to show the existence of
sets of input states which sum up to zero and whose images under F also sum up to zero.
The generation of many such sets of inputs with an effort less than the generic complexity
can be interpreted as a distinguishing property of F .

1It is also argued to be a generalization of the integral property
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In their initial result at CHES 2009 rump session, Aumasson and Meier reported
[AK09] that using the inside-out technique for a public permutation, zero-sums could
be constructed starting from the middle. This enabled them to devise distinguishers
reaching up to 16 rounds. The basic idea is of computing higher order derivatives of both
forward and inverse rounds of Keccak-f and is hence directly related to the algebraic
degree. Thus better estimates for the degree of a function (and its inverse) after several
rounds can lead to smaller zero-sum partitions. However, doing so precisely is believed to
be a hard problem. Hence, all follow up results on ZeroSum distinguishers have tried to
provide tighter bounds on the degree thereby reaching higher number of rounds and/or
reducing the size of the zero-sums. The first improvement [BC10a] was shown by Boura
and Canteaut who extended it to 18 rounds. Their main contribution was the analysis of
the Walsh spectrum of the non-linear part (χ) leading to better bounds on degree of the
rounds. In addition to that they also presented an elegant idea of one-round extension by
bypassing a round in the middle by specifying input subspaces which remain same after a
non-linear layer of the internal permutation. The authors call this property as multi-set
property. In SAC 2010, the same authors extended their previous work to obtain multi-set
property for two consecutive rounds [BC10b] that helped them penetrate up to 20 rounds
of Keccak-f . In FSE 2011, Boura et al. presented new upper bounds [BCC11] on the
algebraic degree of iterated permutations thereby reaching full 24-rounds of Keccak-f with
a complexity of 21590. Their main result consisted of the observation that the algebraic
degree, for larger number of rounds, does not increase exponentially with the number of
rounds. Finally, Duan and Lai [DL11] identified that the product of any two output bits of
inverse of χ, whose algebraic degree is 3, also has a degree 3. This gives the best estimates
on the degree of Keccak-f inverse resulting in construction of ZeroSum structure for full
Keccak in 21575 calls to the permutation. An important aspect of the above results is that
they do not translate into a distinguisher on the Keccak/SHA3 hash function due the
constraints imposed by the SPONGE mode of operation. Consequently, there have been
only a few works on distinguishers that target the Keccak hash function. New strategies
have been developed in [NRM11] to construct low weight differential path. Based on this
path, distinguisher on Keccak reduced to 4 rounds have been devised which works with
complexity 224. In [DM14], the authors study the propagation of difference in Keccak
and looks for biased output bits to devise a distinguisher for Keccak reduced to 6 rounds
with a complexity 252. On a final note, ZeroSum, though still applicable on Keccak/SHA3,
looses the number of penetrable rounds since the inside-out trick is invalidated.

While discussing higher order differential cryptanalysis, it is worth mentioning the
closely related area of algebraic attacks like Cube Attacks which exploit the low algebraic
degree of the round function and have been applied [Lat09] in the context of hash functions.
In Eurocrypt 2015 Dinur et al. [DMP+15] augmented cube attacks with related algebraic
techniques using structural properties of Keccak-f to measure the security of keyed-SPONGE.
In comparison to the classical cube attack, the modified approach (with the inversion of
last χ layer when the output is sufficiently large) leads to a key recovery attack on larger
number of rounds. Further one more round is penetrated by setting the cube variables in
the column parity kernel in order to control the effect of θ such that the cube variables do
not get multiplied in the subsequent χ layer. MAC forgery for 9 rounds also have been
mounted with the help of cube tester which distinguishes the output instead of recovering
underlying the key. In order to reduce the cube dimension further, some conditions have
been derived in [HWX+16] by proposing conditional cube tester. While the previous
attacks focused on the minimization of algebraic degree by controlling only the first round,
it tries to control the propagation of cube variables for first 2 rounds by adoption of bit
conditions. The paper reports key-recovery attacks on 5,6 and 7 round Keccak-MAC with
time complexity 224, 240 and 272 respectively.



Dhiman Saha1, Sukhendu Kuila2, Dipanwita Roy Chowdhury1 3

In this work, we formulate an experiment on SHA3 using messages encoded in a way
that maintains a certain kind of symmetry. We first show that the XOR of the digests of
SHA3 over appropriate number of such messages posses a symmetric property. The work
evolves around the justification of the results of this experiment. We first formalize the
experiment by using a mathematical operator for higher order Boolean derivatives over
special subspaces. Next, we establish a generic property related to round-constants and the
algebraic degree of any SPN based round function. Later, we combine the arguments and
adapt them in the context of members of SHA3 family. Finally, we justify the results of the
experiment and propose a new distinguisher for SHA3 referred to as SymSum. Interestingly,
SymSum can perform better than ZeroSum by a constant factor.

The rest of paper is organized as follows. Notations used in the work are introduced in
Section 2. Section 3 illustrates an interesting experiment on SHA3. The concept of m−fold
vectorial derivatives is proposed in relation to the previous experiment in Section 4. A
property of SPN based round function is identified and justified in Section 5 which points
in the direction of getting round-constant independent functions. The proposed SymSum
distinguisher is devised in Section 6 which also gives a comparative study with the classical
ZeroSum technique. The concluding remarks are furnished in Section 7.

2 Notations
The preliminaries on SHA3 as defined in FIPS 202 are furnished in Appendix A. The
value of rate of SPONGE for a particular SHA3 variant is denoted by r while the capacity is
represented by c. Since, for SHA3, the size of the permutation is always b = 1600, we use
the following notation to refer to q rounds of Keccak-p permutation:

Kq ≡ Keccak-p[1600, q]

The internal state of Kq, denoted by S, is visualized as a collection of 64 ordered slices2,
64 being the lane-size. We next introduce concept of a substate which divides a state into
two equal halves.

Definition 1 (Substate). A Substate (σ) is a collection of either the first or the last 32
slices of a state. Thus any state has two sub-states.

S = σ1||σ2, where σi ∈ {0, 1}25×32

Definition 2 (Self-Symmetry). If S# be the set of all states such that σ1 = σ2, then every
member of S# is called Self-Symmetric.

S ∈ S# when σ1 = σ2

It follows from Definition 1 and 2 that |S#| = 2800. Table 1 presents an example of a
Self-Symmetric state.

Table 1: A Self-Symmetric state. σ1 is highligted.
62C05E2462C05E24 0934258C0934258C 49DA0D3D49DA0D3D 2923A54B2923A54B 8817062C8817062C
B6C808B2B6C808B2 24B83B0524B83B05 2026890020268900 738E1141738E1141 3886D76A3886D76A
94BA023194BA0231 74F1384174F13841 ADE17841ADE17841 411E023D411E023D 98C34C6798C34C67
64010A3264010A32 8030F1308030F130 E383F57AE383F57A 35388C8235388C82 61F7231161F72311
68DD183C68DD183C 36FB572A36FB572A 120A313A120A313A 1C6E105D1C6E105D B50D7CA2B50D7CA2

2The definition of a slice is consistent with the Keccak submission document and is defined as a 5× 5
matrix of bits.
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Definition 3 (β-prefix). The β-prefix (sβ) of a string s ∈ {0, 1}∗ is the prefix of length3

|sβ | = |s| − (|s| mod β).

sβ = (b1b2 · · · bβ)||(bβ+1bβ+2 · · · b2β)|| · · · ||(b(n−1)β+1b(n−1)β+2 · · · bnβ)
= B1||B2|| · · · ||Bn

To be precise, if (|s| mod β) = 0, then sβ = s.

Definition 4. The β-prefix (sβ) of a string (s) is said to be symmetric (s#
β ) if the internal

difference of all its β-bit substrings is zero.

∀Bi ∈ sβ → [b(i−1)β+1 · · · b(i−1)β+32]⊕ [b(i−1)β+33 · · · biβ ] = 0

An example of the symmetric 64-prefix of a string is given below in HEX format:

s =9af8dfef9af8dfeffe1135ebfe1135eb3b0a9daf3b0a9daf23d3a55823d3a558

dcb229fedcb229feb724c696b724c696cf032a7c

s#
64 =9af8dfef9af8dfeffe1135ebfe1135eb3b0a9daf3b0a9daf23d3a55823d3a558

dcb229fedcb229feb724c696b724c696

3 An Experiment on Round-Reduced SHA3

Here we illustrate an experiment on SHA3 by manipulating single block messages such
that the input state of Keccak-p is Self-Symmetric. We assume that we are dealing with
SHA3-512 but the experiment can be mounted on any member of the SHA3 family. The
experiment is briefed below. A visual illustration is depicted in Figure 1 while the actual
results of experiment on SHA3-512 are furnished next.

• MsgSet Formation: The messages in the MsgSet have the following properties. The
details of constructing such sets of messages are given in Appendix B.

∀Msg ∈ MsgSet,
[
Pad(AddSuffix(Msg))||0c

]
∈ S#

⊕
Msg∈MsgSet

Msg = 0

• Output-Sum Computation: The second step in the experiment is to use these mes-
sages in the MsgSet and run SHA3-512 with reduced-round Keccak-p on them to
produce the respective hash values4. These values constitute the HashSet. The next
step is to compute the symmetric-difference over the HashSet.

Output-Sum =
⊕

Msg∈MsgSet

SHA3-512(Msg, #Rounds)

• Self-Symmetry Verification: The last step is to verify if the 64-prefix of the
Output-Sum is symmetric.

Output-Sum64
Verify−−−−→ Output-Sum#

64

3It is understood that |s| ≥ β
4This step is similar for any SHA3 fixed length variant. For, the XOFs we truncate the hash value to r

if desired hash-length > r
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Figure 1: A generic view of the proposed experiment

3.1 Results on 4-Round SHA3-512

Based on the strategy described in the previous section MsgSet of various sizes were
created (For details refer to Appendix C) and the Output-Sum was computed after running
SHA3-512 (Source code from [Bau]) on every Msg of each such MsgSet. Table 2 captures
the results which exhibits that the Output-Sum has some interesting phenomena.

Table 2: Output-Sum exhibiting self-symmetric property
|MsgSet| Output-Sum Remark

217
000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000
00000000000000000000000000000000

Zero-Sum

216
000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000
00000000000000000000000000000000

Zero-Sum

215
000001000000010000000000000000000000200000002000
000000000000000000000000000000000000000000000000
00000000000000000000004000000040

Symmetric-Sum

214
243f4942243f4942528c98d5528c98d57300b0d17300b0d1
c0585999c0585999147b20a3147b20a3083a3900083a3900
09225588092255886302671c6302671c

Symmetric-Sum

213
81ed3fca81ed3dca15553dac15553dec25858e1125858e11
11c9af8b11c9af8b509927bf5099273f9276901992679019
ca92a3d5ca9223d54ffce7974ffc6797

Not Symmetric

212
78f523d01479a153802f16a4c8bbb67116d502ea0495823a
71057dfbf18b25f22bba947d0ba094fd1240ee380a42df38
99eaa56698fa64e6a21ac1328138c126

Not Symmetric

3.2 Interpretation of the Results

Zero-Sum: It can be seen that for 217 and 216 the Output-Sum is all zeros. This points
us in the direction of the classical ZeroSum property which is related to degree of a
function and is based on finding higher-order Boolean derivatives. However, the way we
are generating symmetric inputs differs from the way a classical ZeroSum is computed. So
the question arises why do we still witness the ZeroSum property?
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Symmetric-Sum: The results suggest that for 215 and 214 the Output-Sum bears an even
more interesting property : Self-Symmetry. Existing literature does not seem to account
for this property. Hence, investigating this property and establishing theoretical arguments
form the main motivations of the current work.

Non-Symmetric-Sum: It is apparent that below a certain size of the MsgSet the Output-Sum
no longer shows a symmetric property. So, is there a relation between the degree of the
function and the symmetric property?

Repeating the experiments for various base messages with different sized message sets
have lead us into believing that there exists a relation between the size of the message
set and the nature of the Output-Sum: Zero/Symmetric/Non-Symmetric. Moreover, the
size of the message set giving a zero Output-Sum is strictly greater than the size of the set
that gives a symmetric Output-Sum. Coupled with the fact that the probability of an
ideal hash function exhibiting such a symmetric property is exponentially low,
Symmetric-Sum property shows prospect of devising a distinguisher for the SHA3 family
with very high advantage. The contribution of the current work can be summarized as
below:

Our Contribution
• Formalize the experiment mentioned above by using an operator based on classical
higher order derivatives of Boolean functions and justify the reason behind getting
ZeroSums.

• Establish a generic property of a class of SPN based iterated round functions by
analyzing the effect of the position of round constant addition on the overall algebraic
degree of the function.

• Analyze SHA3 in the light of the property to account for the self-symmetry exhibited
by the Output-Sum

• Propose a new distinguisher for SHA3 variants which is better that the classical
ZeroSum distinguisher by a constant factor.

Our first task is to formalize the mathematical operator in action behind the experiment.
We start by using a slightly different notion of higher-order derivatives which we refer to
as m−fold vectorial derivatives of a Boolean function. All concepts dealt with are easily
extended to vectorial functions.

4 The Operator: m−fold Vectorial Derivatives
The operator that we put forward uses a different notion of higher-order derivatives and is
analogous to computing derivatives over a subspace. The real intuition is to show that the
operation it performs is actually differentiation over a special subspace. Now, the selection
of this subspace is not straight forward and the operator tries to capture the selection of
this subspace. In doing so the operator mimics the generation of the Self-Symmetric input
states used in Section 3. We first give a generic definition of the operator referred to as
m−fold vectorial derivatives. Later we show that the way variables are manipulated in the
experiment before is a special case of computing these derivatives. The basic idea behind
evolves from the notion of repeated vectorial derivatives with respect to disjoint sets of
variables and is defined as below.

Definition 5 (m−Fold Vectorial Derivative). Let {x1,x2, · · · ,xm,xm+1} be (m+1) parti-
tions of the Boolean variables (x1, x2, · · · , xn) and f(x1,x2, · · · ,xm,xm+1) = f(x1, x2, · · · , xn) =
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f(x) a Boolean function of n variables, then

∂mf

∂xm · · · ∂x2∂x1

∣∣∣∣∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

= ∂

∂xm

(
· · ·

(
∂

∂x2

(
∂f

∂x1

∣∣∣∣∣
x1=c1

)∣∣∣∣∣
x2=c2

)
· · ·

)∣∣∣∣∣
xm=cm

is the m−fold vectorial derivative of the Boolean function f(x1,x2, · · · ,xm,xm+1)
with regards to the m partitions {x1,x2, · · · ,xm}.

The partitioning of the variables corresponds to the selection of special subspaces. The
corresponding expression for computing such a derivative is given below.

∂mf

∂xm · · · ∂x2∂x1

∣∣∣∣∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
⊕

{x1,x2,··· ,xm}∈C
xm+1=cm+1

f(x1,x2, · · · ,xm,xm+1) (1)

where, C =



c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
...

...
. . .

...
...

c1, c2, · · · , cm−1, cm


2m×m

ci ∈ F|xi|
2

Relation with previous Experiment: Now let us look back at the experiment we did
earlier and map it to the above definition. It can be noticed it just describes a special
partitioning of the variables. Every partition contains two variables that hold symmetric
position in the input message after suffixing and padding. This leads to the following
expression which is a special case of Equation 1.

∂mSHA3-512
∂xm · · · ∂x2∂x1

∣∣∣∣∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
⊕

{x1,x2,··· ,xm}∈C
∀i>m xi=const∈{00,11}

SHA3-512(x1,x2, · · · ,xm,xm+1,xm+2, · · · ,x288)

where, C =



c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
...

...
. . .

...
...

c1, c2, · · · , cm−1, cm


2m×m

ci ∈R {00, 11}

There are total of 288 partitions for SHA3-512. For the symmetric value constraint all
variables must take values from {00, 11}. The partitions with respect to which the m−fold
vectorial derivative is computed exhaust the set C. Each of the remaining partitions are
fixed to any random value5 from {00, 11}.

So the experiment in Section 3 corresponds to computing 17, 16, 15, 14, 13−fold vectorial
derivatives of SHA3-512 reduced to 4-rounds. This explains the first two rows of Table 2.
Since, the degree of 4-rounds of Keccak-p and consequently SHA36 is ≤ 16, computing
the 17−fold vectorial derivative leads to a ZeroSum. As regards the 16−fold vectorial

5Except for the partitions that need fixed value to handle padding and suffixing while maintaining the
self-symmetry. (Refer Appendix B)

6Since it is operating on a single message block thereby requiring a single call to Keccak-p.
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derivative giving the ZeroSum is justified by the fact that for the current choice of values
for constant partitions maximum degree could not be reached. This partially answers our
question about the nature of the Output-Sum. However, it still does not account for the
Symmetric-Sum property. For this we showcase the following property which is generic for
a class of SPN based iterated round functions.

5 The degree of terms involving round-constants in the
ANF of SPN based functions

The following lemma is stepping stone for the next theorem that helps us to establish a
relation between the algebraic degree of the monomials in the ANF of specific type of
iterated round functions (permutations), that involve round constants and the ones that
remain independent.

Lemma 1. For an iterated SPN round function (G) if the ordering of the component
transformations is such that the non-linear operation precedes the round constant addition,
then (G) can be expressed as

G = F + c×H,where
{
d◦G = d◦F
d◦G > d◦H

and G,F ,H : Fn2 → Fn2 , c→ constant

Proof. Let us consider a round function G : Fn2 → Fn2 and G = C◦N ◦L, where, C represents
round-constant addition, N is the non-linear component while L is the linear component.
Without loss of generality we can consider the sequence of component operations as
C ◦ N ◦ L. The q-round function Gq can be unrolled as below:

Gq = (Cq ◦ N ◦ L) ◦ (Cq−1 ◦ N ◦ L) ◦ · · · ◦ (C2 ◦ N ◦ L) ◦ (C1 ◦ N ◦ L)

=
[
((Cq ◦ N ◦ L) ◦ · · · ◦ (C2 ◦ N ◦ L)) ◦ C1

]
◦ (N ◦ L) (2)

Equation (2) shows that due to the ordering of the operations, first round N has no
effect on the monomials involving the round constants. In order to segregate the monomials
depending on round constants (TYPE-II monomials) from the ones that are independent
(TYPE-I monomials) we use the following visualization7 of the ANF of any co-ordinate
function Fq of the vectorial function Gq.

Fq = Fqs ⊕F
q
s′ where

{
TYPE-I monomials ∈ Fqs
TYPE-II monomials ∈ Fqs′

We now proceed with the proof by induction:

Base Case : q = 1 We have F = C1 ◦ N ◦ L. Now using the segregation made above we
look at the degree of its TYPE-I and TYPE-II monomials :

d◦Fs = d◦(N ◦ L) = d◦N = λ (Say) = Highest degree of F
d◦Fs′ = 0 [∵ N has no effect on TYPE-II]

=⇒ d◦Fs > d◦Fs′
7For example, for the ANF of a Boolean function f = x1x2x3 + c1c2x2x3 + x3x4 + c2c3 where, ci is a

constant, the above visualization is as follows.
f = x1x2x3 + c1c2x2x3 + x3x4 + c2c3

= (x1x2x3 + x3x4) + (c1c2x2x3 + c2c3)
= fs + fs′

Thus by definition, for this example TYPE-I monomials are {x1x2x3, x3x4} while TYPE-II monomials are
{c1c2x2x3, c2c3}.
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So, the lemma holds for q = 1.

Inductive hypothesis: Let us assume that the lemma is true for q = m i.e., all the
highest degree monomials of Fm are of TYPE-I and d◦Fms > d◦Fms′ . Also assume that
d◦Fm = λt where, t ≤ m.

Inductive step: Let q = m+ 1. Now, Fm+1 = Cm+1 ◦ N ◦ L ◦ Fm

d◦Fm+1
s′ ≤ d◦(N ◦ L)× d◦Fms′

< d◦(N ◦ L)× d◦Fms [∵ d◦Fms > d◦Fms′ by inductive hypothesis]
≤ d◦Fm+1

s

Hence, by the principle of mathematical induction, the lemma holds ∀q ∈ N. We
thus have d◦Fq = d◦Fqs and d◦Fqs > d◦Fqs′ implying the algebraic degree of d◦Fq is
determined by only TYPE-I monomials which in turn implies independence from the round
constants.

To properly utilize the result of lemma 1, it is vital to get a upper bound on the
highest degree of the TYPE-II monomials and its relation to the highest degree of TYPE-I
monomials i.e., d◦Fq. This is established by the following Theorem.

Theorem 1. The upper-bound on the degree of TYPE-II monomials is given by the
following expression: d◦Fqs′ ≤ d◦Fq − d◦N .

Proof. Let d◦N = λ. A TYPE-II monomial reaches its highest degree if in the qth round
non-linear operation, (λ− 1) number of TYPE-I monomials from some (λ− 1) coordinate
functions of Fq−1

s (Which by lemma 1 reach the highest degree for q− 1 rounds) get mixed
with one TYPE-II monomial of Fq−1

s′ . The mix is completely determined by the linear
diffusion layer that precedes the non-linear layer.

Let
[
Fq−1]

j
be the jth coordinate of the vectorial function Gq−1. Then

[
Fq−1
s

]
j
has

all TYPE-I monomials of
[
Fq−1]

j
while

[
Fq−1
s′

]
l
has all TYPE-II monomials of

[
Fq−1]

l
.

Now the statement made above translates into the following where the set of indices S
and the index l are determined by the linear diffusion layer.

d◦Fqs′ = d◦


 ∏

j∈S;|S|=λ−1
S⊂{1,2,··· ,n}

[
Fq−1
s

]
j

× [Fq−1
s′

]
l


≤
[
(λ− 1)× d◦Fq−1]+ k, where k = d◦Fq−1

s′ < d◦Fq−1

= λ× d◦Fq−1 − d◦Fq−1 + k

= d◦Fq −
[
d◦Fq−1 − k

]
Now,

[d◦Fq−1 − k] > 0
[
∵ k < d◦Fq−1]

So to maximize d◦Fqs′ , we need to minimize [d◦Fq−1 − k]. Again, since k and d◦Fq−1

are both multiples of λ, the least value of [d◦Fq−1 − k] is λ. Thus we have,

d◦Fqs′ ≤ d
◦Fq −

[
d◦Fq−1 − k

]
≤ d◦Fq − λ
= d◦Fq − d◦N
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Corollary 1. For q rounds of the SHA3 permutation Keccak-p, the maximum degree of a
monomial involving a round-constant is d◦Kq − 2

The above Theorem points us in the direction of getting a round-constant independent
function. This is achieved by a lemma which brings into context the m−fold vectorial
derivatives introduced earlier.

A Round-Constant Independent Function

Lemma 2. The (d◦F − d◦N + 1)−fold vectorial derivative of Fq, is a function that is
independent of round constants.

This easily follows from Theorem 1 as the (d◦F − d◦N + 1)−fold vectorial derivative
of Fq will give a function that has no TYPE-II monomials.

Corollary 2. For q rounds of Keccak-p the (d◦Kq − 1)−fold vectorial derivative is a
round-constant independent function.

The corollary brings us one step closer to explaining the results of Table 2. However,
it is still not sufficient because the property by itself is generic. We need to connect it
with some specific characteristic of Keccak-p. Herein, comes the Translation Invariance
Property which is associated with the symmetry of the internal state of Keccak-p.

Translation Invariance of θ, ρ, π, χ All step mappings with the exception of ι are
translation invariant in the z-axis [BDPA11]. In the context of the current work it implies
that

∀S ∈ S#, χ ◦ π ◦ ρ ◦ θ(S) ∈ S#

Thus the Self-Symmetric structure of the internal state is preserved. Since, Corollary 2
establishes the round-constant independence for (d◦Kq − 1)−fold vectorial derivative of
Keccak-p, this should in turn give a translation invariant function. Consequently, the
(d◦Kq − 1)−fold vectorial derivative will preserve the symmetry of the inputs. The same
can be verified using self-symmetric inputs. This conforms to the constraint on the inputs
that we impose in our experiment in Section 3. Finally, we are now in a position to make
a proposition that completely justifies the findings of Table 2 and consequently forms the
basis of a new type of distinguisher for SHA3 referred to as SymSum.

6 SymSum Distinguishers against SHA3

Proposition 1. The (d◦SHA3− 1)−fold vectorial derivative of SHA3 evaluated using only
self-symmetric input states will preserve the symmetric property.

The physical significance of this is that the (d◦SHA3− 1)−fold vectorial derivative of
SHA3 is independent of the effect of round constant addition which is the only symmetry
disturbing operation in Keccak-p. Thus it preserves the symmetry induced by the input
states. In Table 2, we have seen that 16-fold vectorial derivative yields a Zero-Sum signifying
that for this case (d◦SHA3-512 = 15). Thus, by virtue of the above proposition, we have
15−fold and the 14−fold vectorial derivatives exhibiting a Symmetric-Sum. Moreover,
the proposition does not guarantee such a property for m < (d◦SHA3− 1). Thus we see
that the 13 and 12−fold vectorial derivative are no longer symmetric in nature. This
experiment has been repeated with various message sets on all SHA3 variants and the
results were found to conform to the theoretical arguments. We now formally define the
SymSum distinguisher.
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Algorithm 1 SymSum (H, d ,mode, v)

Require:


H : (Fr2)∗ → Fh2/Fv2 for mode = FXD/VAR, h ∈ {224, 256, 384, 512}
d = d◦H→ (Estimated) Algebraic degree of H
mode ∈ {FXD, VAR}
v

Optional−−−−−→ Hash-length for mode = VAR

Ensure:
{

TRUE if H↔ SHA3 variant
FALSE Otherwise

1: ChooseM :
[
Pad(AddSuffix(M))

∣∣∣∣0c] ∈ S# . Base Message
2: Choose any d − 1 bits fromM . Except fixed bits (Refer Appendix B)
3: for i ∈ {0, 1}d−1 do
4: mi =M Assign d−1 bits←−−−−−−−−−−−−−−−−−−

and symmetric conterparts
i . Generating individual messages

5: hi ← H
(

mi
)

6: end for

7: Output-Sum←
2d−1⊕
i=0

hi . Computing (d − 1)−fold vectorial derivative

8: if
(
mode = VAR

)
&
(
v > r

)
then

9: Output-Sum← Trunc
[
Output-Sum

]
r

. Truncate to r bits for SHA3 XOFs

10: end if
11: if

(
Output-Sum64 → Output-Sum#

64

)
then

12: return TRUE
13: else
14: return FALSE
15: end if

Definition 6 (Symmetric Sum (SymSum)). Let us consider the SHA3 fixed-length hash
functions SHA3-h : (Fr2)∗ → Fh2 or XOFs SHAKE128/256 : (Fr2)∗ → F∗2. A Symmetric
Sum or SymSum is defined as a set of inputs {x1, x2, · · · , xk} ∈ Fr2 for which the input-sum
is zero while the 64-prefix of the output-sum is symmetric.

One can confirm that the padded messages used in the experiment in Section 3 conform
to the above definition and hence the message set constitutes a SymSum structure. It is
also evident that one can construct many such structures. Algorithm 1 elaborates how
SymSum can be used as a distinguisher for SHA3. Here the argument mode differentiates
between the fixed and variable length variants. v denotes the output hash-length for XOFs.
For the sake of consistency with Definition 6, we assume that v ≥ 64 bits. For XOFs, if
desired hash-length is greater than the rate, then the Output-Sum is truncated to r bits.
Next, we find the distinguishing advantage of SymSum by assessing the probability of the
SymSum property arising at random.

Advantage of SymSum Let us randomly select a string from a space of dimension equal
to the hash-length (h). The probability that the 64-prefix of such a string turns out to be
symmetric can be computed as below:
• For x ∈R {0, 1}64

Pr
[
x[0 · · · 31]⊕ x[32 · · · 63] = 0

]
= 1

232

• For X ∈R {0, 1}h, number of 64-bit substrings ∈ X64 =
⌊
h
64
⌋
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• Probability that 64-prefix of X is symmetric is given by:

Pr
[
X64 = X#

64

]
=

∏
∀x∈X64

Pr
[
x[0 · · · 31]⊕ x[32 · · · 63] = 0

]
= 2−32×b h64c

Thus the advantage of SymSum is given by the following expression which shows that the
SymSum distinguisher is almost deterministic.

AdvSymSum = 1− 2−32×b h64c ≈ 1

6.1 Degrees of Freedom
By degrees of freedom we refer to the number of variables against which higher order
derivatives can be computed. Generally, while computing m−fold simple derivative one
has maximum degrees of freedom since all variables are free in absence of any constraint.
However, this is apparent that this degrees of freedom decreases while computing m−fold
vectorial derivatives owing to the partitioning of the variables into disjoint sets.

Since, the classical ZeroSum technique corresponds to findingm−fold simple derivatives,
it enjoys maximum degrees of freedom. For ZeroSum computation on SHA3 this can be
achieved if message-size = (r − 4) for fixed-length and (r − 6) for XOFs. The reduction of
bits is attributed to Suffix = 01 (fixed-length), Suffix = 1111(XOFs) and Padding
(Minimum) = 11. As for SymSum, which has been established above as equivalent to
computing m−fold vectorial derivatives, a loss in the degrees of freedom is incurred due to
the Self-Symmetry constraint on inputs in addition to the reduction of bits above. The
figures for SymSum stand at 2 r−8

2 for fixed-length and 2 r−12
2 for the variable-length members

of SHA3 family. Table 3 presents a comparison after plugging the value of r. In the next
subsection we put the ZeroSum and SymSum distinguishers into perspective and compare
their impact on SHA3/Keccak.

Table 3: Comparison of degrees of freedom of classical ZeroSum and SymSum for SHA3
fixed-length and XOF members.

Degrees of freedom Degrees of freedom
SHA3 variant
Fixed-Length

ZeroSum
(2r−4)

SymSum

(2 r−8
2 )

SHA3 variant
XOFs

ZeroSum
(2r−6)

SymSum

(2 r−12
2 )

SHA3-224 21148 2572
SHAKE-128 21338 2666

SHA3-256 21084 2540

SHA3-384 2828 2412
SHAKE-256 21082 2538

SHA3-512 2572 2284

6.2 Comparison with ZeroSum
The ZeroSum distinguisher has been one of the most extensively studied distinguishers
on Keccak-f and is the only distinguisher that is able to penetrate all the 24 rounds of
Keccak-f using the inside-out strategy. The efficiency of this distinguisher is measured in
terms of the size of the ZeroSum structure which is directly determined by the algebraic
degree(d) of the underlying function. This directly follows from the fact that ZeroSum
property is exhibited by any m−fold simple derivative of the function where m > d.
Thus, the research on the ZeroSum distinguisher has been concentrated on improving the
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upper bounds on the degree of Keccak-f permutation which automatically translated into
reduction of the size of ZeroSum structures. This resulted in findings that show that the
algebraic degree of Keccak-f stops growing exponentially after 10 rounds. Due to the
prospect of the inside-out technique there have been studies on improving the bounds
of the inverse of the Keccak-f round function. However, ZeroSum has this fundamental
limitation that its complexity is lower-bounded by the (estimated) algebraic degree of
Keccak-f . Moreover, results on Keccak-f/Keccak-p do not directly apply on Keccak/SHA3
since the inside-out analysis is no longer valid on the over-all hash-function. Thus, though
ZeroSum for Keccak-p reaches 24 round, the same for SHA3 manages to go up to 10 rounds
(Refer Table 4) before exhausting the degrees of freedom (Refer Table 3). In addition to
that it is worth mentioning that since ZeroSum is based on the evolution of the degree of
the round-function, it only exploits the properties of χ and/or χ−1 among the different
component mappings.

Table 4: Complexity of classical ZeroSum Vs SymSum
Complexity

#Rounds
(nr)

Bound on
d◦SHA3

ZeroSum
(2d◦SHA3+1)

SymSum

(2d◦SHA3−1)
1 2 23 21

2 4 25 23

3 8 29 27

4 16 217 215

5 32 233 231

6 64 265 263

7 128 2129 2127

8 256 2257 2255

9 512 2513 2511†

10 1024 21025† ?

11 1408[BCC11] ? ?

† Not applicable for SHA3-512 and SHA3-384 ? Exceeds degrees of freedom (Table 3)

SymSum seems to bring to the table interesting avenues despite being also dependent
on the algebraic degree as it also computes higher order derivatives (of a special form).
The first significant improvement over ZeroSum is the 4 times reduction in the size of a
structure exhibiting SymSum property in comparison to ZeroSum since the order of the
derivatives can be reduced a couple of times for SymSum. A comparison of the complexities
of finding ZeroSum and SymSum structures is furnished in Table 4. It was mentioned in
Subsection 6.1 that SymSum, due to the self-symmetry constraint imposed on its input
set, looses degrees of freedom. However, this does not have a significant impact since
it is evident from Table 4 that with regards to SymSum, ZeroSum is able to reach one
extra round (Round 10) for four variants. For all the other rounds SymSum performs
better that ZeroSum. It can be noted that the SymSum property holds only if the degree
grows maximally. Hence it cannot be exploited for higher rounds as it has been shown in
literature that the algebraic degree of Keccak stops growing maximally after 10 rounds.
However, in the current work our motivation was to present a property that holds despite
the degree growing maximally. This is confirmed by the fact that the degrees of freedom of
SymSum allows it be used up to a maximum of 9 rounds. Interestingly, as shown in Table 4
ZeroSum too exhausts its degrees of freedom after 10 rounds.
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Most of the results on ZeroSum work on the Keccak permutation but cannot be adapted
to the hash function as we pointed out in the introduction of the work. The only result that
works is a better bound on the degree. This only happens when the degree stops growing
maximally. So, ZeroSum gives a generic result for maximal growth of degree for the hash
function. On the other hand, SymSum gives a fourfold better result despite the maximal
growth. Finally, SymSum not only exploits the properties of Keccak-p round function
pertaining to its algebraic degree but it also capitalizes on the translation invariance
property (due to θ, ρ, π, χ) and round-constant independence (due to position of ι in the
round function). Additionally, SymSum constitutes the first property of Keccak/SHA3 that
relies on the round-constants but is independent of their hamming-weights.

7 Conclusion
In this work we investigated an interesting symmetric property exhibited by the sum
of SHA3 message digests computed over a specially constructed set of inputs. We put
forward a mathematical framework to explain the results which consists of a operator
that tries to select a specific subspace over which it computes higher order derivatives
and a relation that estimates the degree of round-constant dependent terms in ANF for
SPN based functions. Putting all results together a new distinguisher SymSum is proposed
for the SHA3 family which corresponds to computing m−fold vectorial derivative of the
hash-function using self-symmetric input states. SymSum which has a high distinguishing
advantage is shown to penetrate up to 9 rounds of SHA3 and outperform classical ZeroSum
distinguisher by a factor of four.

Acknowledgement
We would like to thank the anonymous reviewers for their valuable comments.

References
[AK09] Jean-Philippe Aumasson and Dmitry Khovratovich. First Analysis of Keccak.

Available online, 2009. http://131002.net/data/papers/AK09.pdf.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. NIST mailing list,
2009. http://www.131002.net/data/papers/AM09.pdf.

[Bau] Renaud Bauvin. Keccak implementation in Python, supporting the FIPS
202 standard instances. Available online. http://keccak.noekeon.org/
KeccakInPython-3.2.zip.

[BC10a] Christina Boura and Anne Canteaut. A zero-sum property for the Keccak-f
permutation with 18 rounds. In IEEE International Symposium on Information
Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings, pages
2488–2492, 2010.

[BC10b] Christina Boura and Anne Canteaut. Zero-Sum Distinguishers for Iterated
Permutations and Application to Keccak-f and Hamsi-256. In Selected Areas
in Cryptography - 17th International Workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12-13, 2010, Revised Selected Papers, pages 1–17, 2010.

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-Order
Differential Properties of Keccak and Luffa. In Fast Software Encryption -

http://131002.net/data/papers/AK09.pdf
http://www.131002.net/data/papers/AM09.pdf
http://keccak.noekeon.org/KeccakInPython-3.2.zip
http://keccak.noekeon.org/KeccakInPython-3.2.zip


Dhiman Saha1, Sukhendu Kuila2, Dipanwita Roy Chowdhury1 15

18th International Workshop, FSE 2011, Lyngby, Denmark, February 13-16,
2011, Revised Selected Papers, pages 252–269, 2011.

[BDPA07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
Ecrypt Hash Workshop 2007, May 2007.

[BDPA11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Keccak refer-
ence. Submission to NIST (Round 3), 2011. http://keccak.noekeon.org/
Keccak-reference-3.0.pdf.

[DGPW12] Alexandre Duc, Jian Guo, Thomas Peyrin, and Lei Wei. Unaligned Rebound
Attack: Application to Keccak. In Fast Software Encryption - 19th Inter-
national Workshop, FSE 2012, Washington, DC, USA, March 19-21, 2012.
Revised Selected Papers, pages 402–421, 2012.

[DL11] Ming Duan and Xuajia Lai. Improved zero-sum distinguisher for full round
Keccak-f permutation. Cryptology ePrint Archive, Report 2011/023, 2011.

[DL12] Ming Duan and XueJia Lai. Improved zero-sum distinguisher for full round
keccak-f permutation. Chinese Science Bulletin, 57(6):694–697, 2012.

[DM14] Sourav Das and Willi Meier. Differential Biases in Reduced-Round Keccak. In
Progress in Cryptology - AFRICACRYPT 2014 - 7th International Conference
on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings,
pages 69–87, 2014.

[DMP+14] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Practical Complexity Cube Attacks on Round-Reduced Keccak Sponge
Function. Cryptology ePrint Archive, Report 2014/259, 2014. http://eprint.
iacr.org/.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced Keccak Sponge Function. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part I, pages 733–761, 2015.

[HWX+16] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional Cube Attack on Reduced-Round Keccak Sponge Function.
Cryptology ePrint Archive, Report 2016/790, 2016. http://eprint.iacr.
org/2016/790.

[JN15] Jeremy Jean and Ivica Nikolic. Internal Differential Boomerangs: Practical
Analysis of the Round-Reduced Keccak-f Permutation. Cryptology ePrint
Archive, Report 2015/244, 2015. http://eprint.iacr.org/.

[KSPC14] Sukhendu Kuila, Dhiman Saha, Madhumangal Pal, and Dipanwita Roy Chowd-
hury. Practical Distinguishers against 6-Round Keccak-f Exploiting Self-
Symmetry. In Progress in Cryptology - AFRICACRYPT 2014 - 7th Interna-
tional Conference on Cryptology in Africa, Marrakesh, Morocco, May 28-30,
2014. Proceedings, pages 88–108, 2014.

[Lat09] J Lathrop. Cube attacks on cryptographic hash functions. Master’s thesis,
2009. Available at http://www.cs.rit.edu/ jal6806/thesis/.

http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2016/790
http://eprint.iacr.org/2016/790
http://eprint.iacr.org/


16 SymSum: Symmetric-Sum Distinguishers Against Round Reduced SHA3

[MPS12] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanal-
ysis of round-reduced Keccak. Cryptology ePrint Archive, Report 2012/546,
2012. http://eprint.iacr.org/.

[Nat15] National Institute of Standards and Technology. SHA-3 Standard: Permutation-
based hash and extendable-output functions, August 2015. http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.

[NRM11] María Naya-Plasencia, Andrea Röck, and Willi Meier. Practical Analysis of
Reduced-Round Keccak. In Progress in Cryptology - INDOCRYPT 2011 - 12th
International Conference on Cryptology in India, Chennai, India, December
11-14, 2011. Proceedings, pages 236–254, 2011.

[oST] National Institute of Standards and Technology. SHA-3 : Cryptographic hash
algorithm competition. http://csrc.nist.gov/groups/ST/hash/sha-3/
index.html.

A Description of SHA3

After the completion of the standardization process of Keccak, NIST published the new
standard as FIPS PUB 202 [Nat15] : ‘SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions’. The SHA3 standard defines four fixed length hash-function
along with two variable-length variants dubbed as XOFs or extendable-output functions.

Fixed-Length→ SHA3-224/256/384/512

XOF→ SHAKE128/256

The main difference between Keccak family and the standard functions reported in FIPS
202 lies in the introduction of the domain separation bits which are appended to the
message before the standard 10?1 padding. More specifically,

M
Add Suffix−−−−−−−→

{
M ||01 Fixed-Length
M ||1111 XOF

The main motivation on domain separation is that the outputs of SHA3-h hash functions
and SHAKE functions be unrelated given the same input to the functions. The SHA3 standard
preserves all other properties pertaining to the internal permutation Keccak-p with some
minor notational changes. For instance, in FIPS 202, the internal permutation Keccak-f
[b] of Keccak is denoted as :

Keccak-p[b, nr]
where b denoted the width of the permutation while nr is the number of rounds. For the six
SHA3 hash functions, the underlying permutation is Keccak-p [1600, 24] which is equivalent
to Keccak-f [1600]. The SPN based round function of Keccak-p is a composition of five
step mappings operating on a state that is expressed as a three-dimensional array of bits.
A particular bit of a state a is indexed using a[x][y][z] where, x, y ∈ Z5 while z ∈ Z64.
a[∗][∗][z] is referred to as the zth slice while a[x][y][∗] denotes the (x, y)-lane. Operations
involving x, y are performed modulo 5 while those related to z are done modulo 64. The
operations are briefed below:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ
θ → The operation θ is linear and it produces diffusion. The parity of two neighboring

columns of each bit are added with it. Additions are performed over GF (2).

θ : a[x][y][z]← a[x][y][z] +
4∑

y′=0
a[x− 1][y′][z] +

4∑
y′=0

a[x+ 1][y′][z − 1]

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
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ρ→ Another linear operation ρ translates each lane by some predetermined values T (x, y)
called ρ offsets (Refer Page 13, FIPS 202).

ρ : a[x][y][z]← a[x][y][z + T (x, y)]

π → The operation π is a permutation on a slice and it is defined as

π : a[x][y][z]← a[x′][y′][z];
[
x
y

]
=
[
0 1
2 3

]
.

[
x′

y′

]
χ→ The only nonlinear function χ operates on every row independently.

χ : a[x][y][z]← a[x][y][z] + ((¬a[x+ 1][y][z]) ∧ a[x+ 2][y][z])

ι→ At the end of every round a unique 64-bit round constant is added with the lane
a[0][0][∗].

B Message-Set Construction for SymSum

The messages used in the SymSum experiment have the following properties:
1. Single Block: Every message is of a single block i.e., the size of the message block

after adding suffix (as per FIPS 202 specification) and padding is exactly equal to
the rate. This implies that there is exactly one call to the Keccak-p permutation in
the absorbing phase while processing a single message.

|Pad(AddSuffix(Msg))| = r = 576(SHA3-512)

2. Self-Symmetric: The messages are chosen in such a fashion that they lead to a
Self-Symmetric input state for Keccak-p.

∀Msg ∈ MsgSet,
[
Pad(AddSuffix(Msg))||0c

]
∈ S#

3. Base Message: For a particular instance of the experiment every message is derived
from a base message. The base message conforms to the above mentioned properties.
This message has two parts : symmetric and fixed. The fixed part corresponds
to symmetric positions of the bits that would be fixed after appending suffix and
padding. The remaining part of the message is variable with symmetric bits having
equal values. This will be clear from the following example of a typical base message
for SHA3-512:

58ea364a58ea364ad212d88cd212d88cc71fe688c71fe688af2e37f3af2e37f3

510b3fea510b3fea028c16ce028c16ce9b2806999b2806999fcb34b99fcb34b9

62c26a8662c26a

One can easily identify the symmetric 64-prefix of the message. In this example,
86 represents the fixed part while the other bytes are symmetric. After adding the
suffix and padding bits, the last part becomes 62c26a8662c26a86 thereby ensuring
the second property above.

To generate 2d messages from the base message one can choose any8 set of d bits and vary
them assigning all values from {0, 1}d preserving the symmetric property. All generated
messages constitute the Message Set : MsgSet. By construction the symmetric-difference
over the MsgSet is 0. ⊕

Msg∈MsgSet

Msg = 0

8Except the fixed part.
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C Message Sets used for SymSum experiment on SHA3-512

The message set used in the Experiment on SHA3-512 are given below. Here the *****
represent the nibbles from which bits are chosen to be varied to generate individual
messages. Recall, to preserve symmetry ***** and ***** must have the same value for a
particular message.

MsgSet ={58ea364a58ea364ad212d88cd212d88cc71fe688c71fe688af2e37f3af2e37f3

510b3fea510b3fea028c16ce028c16ce9b0*****9b0*****9fcb34b99fcb34b9

62c26a8662c26a}

As stated in Appendix B these messages after suffixing and padding lead to inputs to
the internal permutation that are self-symmetric. Table 5 shows the representative state
that generates the set of inputs of Keccak-p with respect to the above message set.

Table 5: The state representing the self-symmetric input states of Keccak-p
4a36ea584a36ea58 8cd812d28cd812d2 88e61fc788e61fc7 f3372eaff3372eaf ea3f0b51ea3f0b51
ce168c02ce168c02 ****0*9b****0*9b b934cb9fb934cb9f 866ac262866ac262 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

By increasing the number (d) of bits to be varied, MsgSet of various sizes (2d) were
generated for the SymSum experiment in Section 3 where the Output-Sum was computed
after running SHA3-512 on every Msg of each such MsgSet.
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