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Abstract. Data loss is perceived as one of the major threats for cloud
storage. Consequently, the security community developed several
challenge-response protocols that allow a user to remotely verify whether
an outsourced file is still intact. However, two important practical prob-
lems have not yet been considered. First, clients commonly outsource
multiple files of different sizes, raising the question how to formalize such
a scheme and in particular ensuring that all files can be simultaneously
audited. Second, in case auditing of the files fails, existing schemes do
not provide a client with any method to prove if the original files are still
recoverable.
We address both problems and describe appropriate solutions. The first
problem is tackled by providing a new type of “Proofs of Retrievabil-
ity” scheme, enabling a client to check all files simultaneously in a com-
pact way. The second problem is solved by defining a novel procedure
called “Proofs of Recoverability”, enabling a client to obtain an assur-
ance whether a file is recoverable or irreparably damaged. Finally, we
present a combination of both schemes allowing the client to check the
recoverability of all her original files, thus ensuring cloud storage file
recoverability.

Keywords: Proofs of Retrievability, Proofs of Recoverability, Cloud Storage,
Cloud Security

1 Introduction

Cloud service providers (CSPs) have gained continuous importance over the
last decade, e.g. Amazon AWS, Google Cloud Platform, or Windows Azure.
They offer various services in numerous application domains such as storage,
computation, and key management. Especially storage has matured into one of
the main applications with growing interests. However, as the client loses control
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over her data, at the same time new security concerns rise. For instance, one of
the major risks perceived in the context of cloud storage is the fear of data
loss [2].

Proofs of Storage (PoS) [10] allow a client to remotely verify that a server
truthfully stores a file. Well-studied examples of a PoS are Proofs of Retrievability
(PoR) [25, 34] and Proofs of Data Possession (PDP) [9]. In a nutshell, such
schemes work as follows. Before uploading a file, a user pre-processes it and
stores locally some meta information about the file. For verification, a challenge-
response-protocol is executed. Here, a challenge covers some blocks of the file
and security of the scheme ensures that a provider can only provide a correct
response if these blocks are stored entirely. In other words, such schemes aim to
ensure for a single file that if the provider yields correct responses, the outsourced
file is stored correctly. We argue that these guarantees are often not sufficient in
practice and that these gaps require novel solutions.

First, clients commonly outsource multiple files of various sizes. A straight-
forward approach would be to run PoR over each file. However, the effort scales
over all procedures of PoR with the number of files. Alternatively, one may con-
sider to randomly select blocks over the set of all blocks of all files. However,
then small files risk to be overlooked regularly.

Second, PoR guarantee that if the response is correct then the outsourced
file is retrievable. However, PoR provide only limited information about the
original file in case of wrong responses. At a first glance, one may argue that
in case incorrect responses are given (and hence some blocks are missing), the
provider neglected his task and is ultimately accountable. However, in practice,
the Service Level Agreement (SLA) never guarantees 100% reliable storage, and
hence, the CSP could always claim that the missing blocks are part of the ex-
pected loss [4] (including natural data degradation), which we call regular data
loss. Hence, there is an inherent gap to provide any assurance at all about the
original file as soon as even small loss occurs. This leaves the client with the
uncertainty whether it is worth downloading the remaining damaged file hoping
to recover the original file since she would have to invest her own resources (stor-
age, communication, and computation). Note that posing another set of large
challenges to cover most of the blocks not only imposes a huge communication
and computation effort for the CSP which he may not be willing to do so. Large
challenges also dramatically increase the detection probability of finding a dam-
aged block which typically results in an incorrect response and no information
about the recoverability of the original files. Consequently, this leaves only the
alternative to make many short challenges. This induces the questions on de-
termining the optimal challenge size as well as how often those challenges need
to be posed to obtain a sufficient level of confidence that an original file can be
recovered from the damaged one.

In this work, we propose solutions to both problems. With respect to the
multi-file case, we first describe a formal extension of PoR to the multi-file sce-
nario and provide an instantiation. With respect to the second problem, we show
how to solve it by using the previous solution as a stepping stone enabling us to
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formalize proofs of recoverability that provide the required assurance to argue
about the retrievability of original files even if some parts of the outsourced ver-
sion are damaged. Finally, we combine both schemes to give a complete solution
for cloud storage file recoverability.

The paper is structured as follows. We begin in Section 2 with reviewing
relevant related work. In Section 3, we provide the necessary background as well
as discuss insecure straightforward solutions and challenges that arise from ac-
commodating multiple files into the realm of PoR, and discuss problems that
occur in the PoR functionality as soon as it detects file corruption. In Section 4,
we describe an extension of the PoR framework that captures multiple files. In
Section 5, we propose solutions towards the question on how to check retrieva-
bility in the context of a potential file corruption. We close the paper in Section
6 with a conclusion.

2 Related Work

Proofs of Retrievability [7, 12, 14, 16, 18, 23, 25, 31, 32, 34, 36, 39] allow a client to
store her data on a remote server and provably check that all her data is still
fully intact and can be retrieved. The concept was initially defined by Juels
and Kaliski [25]. Concurrently, Ateniese et al. [9] proposed a close variant of
PoR called Proofs of Data Possession (PDP). The main difference between PoR
and PDP is the notion of security they achieve. More precisely, a PoR provides
stronger security guarantees than PDP, as a PoR assures that the server main-
tains full knowledge of the client’s processed data whereas a PDP only assures
that most of the data is retained. Both concepts have received much research
attention.

On the one hand, there are works focusing on the case where the data is static.
Here works have been developed that propose improvements [14] compared to
[25], offer the use of homomorphic authenticators yielding compact proofs [34],
and [18] introducing the notion of PoR codes. In [7] the notion of an outsourced
PoR scheme was introduced in which a user can task an external auditor to
perform and verify PoR procedures.

On the other hand, some approaches deal with the construction of dynamic
schemes supporting efficient updates. Cash et al. [16] achieve dynamic updates
using oblivious RAM, whereas [36] improves the performance by relying on a
Merkle hash tree. Stefanov et al. [37] consider updates where a trusted “portal”
performs operations on the client’s behalf. Furthermore, dynamic PDP solutions
were proposed in [11] where the problem of dynamic writes/updates is consid-
ered, and [19] uses authenticated dictionaries based on rank information. Some
works explore the direction to extend works into the multi-server setting [13,
15, 17] and [22] introduces a third party enabling the client to efficiently check
the integrity of the data. In particular, Bowers et al. [13] use a related notion of
recoverability compared to ours in the multi-server scenario. Here after detecting
a file corruption, a test-and-redistribute protocol is initiated which recovers the
file from uncorrupted samples of other servers and restores it. Guan et al. [23]
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explore the usage of indistinguishability obfuscation for building a PoR scheme
that offers public verification while the encryption process is based on symmet-
ric key primitives. Recently, Armknecht et al. [5] introduce a unified model for
proving data replication and data retrievability. Vasilopoulos et al. [38] suggest a
similar scheme proposing a message-locked PoR approach rendering the involved
algorithms to be deterministic and therefore enabling file-based deduplication. In
[6], Armknecht et al. extend the classical PoR scheme accommodating multiple
clients proposing a storage efficient PoR solution by using data deduplication.
Other contributions [33, 35, 39] deal with public verifiable PoR schemes.

3 Preliminaries

In this section, we briefly recall the PoR model as described in previous work [25,
34]. Furthermore, we discuss shortcomings of the notion since we want to accom-
modate multiple files and regular data loss in the realm of cloud storage.

3.1 Proofs of Retrievability

Proofs of Retrievability are a minimally interactive protocol between a client
and cloud storage provider which cryptographically proves the retrievability of
an outsourced file. In more detail, a PoR scheme consist of three basic procedures,
namely Setup, Store, and PoRP. The first two procedures basically initialize the
scheme as well as prepare the file to be outsourced, i.e., the file is processed
with an erasure-correcting code (ECC). An ECC encoding is a process that
adds redundant data to the original file in such a way that a receiver may
recover the original file even when a number of erasures were introduced into
the processed (outsourced) file4, either during the transmission of the file, or
while storing it. We denote the ECC coding rate by ρ with 0 < ρ ≤ 1. The
final procedure PoRP is a minimally interactive protocol between a verifier and
a prover determining whether the outsourced file is retrievable by outputting
a decision bit δ ∈ {accept, reject}.5 The term minimally refers to a single
execution of a challenge-response protocol providing a provable statement about
the retrievability of the outsourced file. Such a single execution suffices here since
the ECC functionality boosts the probability to detect a misbehaving server.
In more detail, the detection probability of a cheating server is approximately
1− (1− ρ)` where ` corresponds to the size of the challenge which describes the
number of different blocks of the processed file that are simultaneously checked.
In case a malicious server is detected, the procedure outputs δ = reject with
overwhelming probability indicating that the processed file is not fully intact
anymore. In other words, the CSP is misbehaving.

4 Note that we use the terms “outsourced file” and “processed file” interchangeably.
5 For a formal definition of PoR please refer to [34].
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3.2 Adversarial Model

We consider a stateful rational attacker in form of a malicious storage provider
that may try to delete bits, blocks, or rearrange specific files in order to make
storage space available, thus obtaining a financial benefit, e.g. by letting the
same space multiple times. Since the adversary can precisely choose which bits
or bytes to delete within the outsourced file, we call this an adversarial erasure
strategy. Note that we assume the adversary only deletes data prior to a PoRP
procedure. In other words, the adversary does not dynamically delete any data
while the file is being checked.

3.3 Multiple Files

It is natural that a client aims to store multiple (different-sized) files F (1), . . . , F (f)

at a storage provider and wishes to obtain a provable assurance that the provider
is indeed in possession of the files as well as them being retrievable. However,
current known PoR proposals do not support the multiple files case well. In more
detail, assume one outsources multiple files F (1), . . . , F (f) to a provider and sim-
ply performs a separate PoR for each file individually. However, even if this
approach theoretically works, it is inefficient due to the increased workload that
scales in the number of files over all procedures. Another approach is to simply
concatenate all files into one (large) file F̂ = F (1)‖F (2)‖ . . . ‖F (f) and execute a

PoR scheme for the composed file F̂ . Unfortunately, the employed type of ECC
encoding used while processing the file becomes the bottleneck rendering this ap-
proach to be infeasible. For example, a “concatenated-file ECC” encoding results
in a processed file of the form F = F (1)‖F (2)‖ . . . ‖F (f)‖P (1,...,f) = F̂‖P (1,...,f)

where P (1,...,f) denotes the added redundancy generated over the concatenation
of all files. In this particular case it may be possible to use existing PoR notions
depending on the size of f , however, this approach suffers from other drawbacks
making it an unattractive solution. In more detail, in case a client wishes to
update a single file F (i), i ∈ [f ] := {1, . . . , f}, then she is required to download
the whole processed file F since the redundancy was generated over the con-
catenated file and thus makes (individual) file updates expensive. Note that the
same holds in case the client wants to delete files and that F may include all
outsourced files.

Another type of ECC encoding called “individual-file ECC” results in obtain-
ing a processed file of the form
F = F (1)‖P (1)‖F (2)‖P (2)‖ . . . ‖F (f)‖P (f) where each original file F (i), i ∈ [f ], is
initially processed before all files are concatenated and thus all parity parts P (i)

are independent from each other. Here, updating a file F (i) is easier since we can
solely download the required file, however, this approach suffers from the “small
file problem”. In more detail, if some file F (i) of the processed file F is small (e.g.
the file solely consists of a password) then there is a non-negligible probability
that within a single PoRP execution this file does not get examined while the
procedure outputs accept, since only a small number of blocks is being checked.
However, this acceptance token may be false positive since the procedure has
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not checked all files and hence the statement cannot provide sufficient assur-
ance about the retrievability of all files. Yet another drawback of this approach
is that in case any file and respective parity block is deleted then this specific
file is completely deleted. Both approaches suffer from the problem that in case
PoRP fails (i.e., outputting reject), it is unclear in which file(s) the error has
occurred and thus forces the client to download the whole processed file and
losing her initial advantage of outsourcing the files in the first place.

To overcome the above problems we introduce a new PoR notion called cloud
storage proofs of retrievability (CSPoR) in Section 4.

3.4 Recovering Corrupted Files

So far, a single execution of PoRP solely enables one to detect a cheating server
or regular data loss with overwhelming probability. Thus, in case PoRP returns
reject we know that the outsourced file is not retrievable (with overwhelming
probability) and that at least one block is missing or damaged. Usually, the
literature does not further investigate this case and it seems to be a common
agreement that the client is supposed to blame the provider and also to initiate
countermeasures in order to secure the remaining data by typically downloading
all remaining file parts. In practice, however, the provider claims that he is not
the one to blame since the SLA never guarantees 100% reliable storage and
hence the missing block(s) are part of the (potential) expected regular data loss,
yielding corrupted files. The countermeasure of downloading the file is not a
very satisfying solution since the client is now in the position of losing the initial
advantage of outsourcing her files and is required to invest her own precious
resources to get the files. Furthermore, she does not know whether a large erasure
(i.e., more data than the amount of parity data encoded into the file got deleted)
or a small erasure (i.e., at most the amount of parity data encoded into the file
got deleted) occurred. Hence, putting it all together we observe that a negative
PoRP answer does not provide us with any information about the retrievability
or irretrievability of the original file. Thus, it is the client’s goal to determine
whether the original file is recoverable without downloading it. To achieve this
goal, we need to ensure that we obtain the knowledge that at least a certain
minimal amount of file blocks in the processed file (at least as many blocks as
the original file consists of) is valid. In order to sample this minimum amount of
blocks, we require to perform multiple audits over the file. If this is successful,
then, by the properties of the ECC decoding procedure, we are able to recover
the original file. Otherwise the file is irrecoverable.

To the best of our knowledge, we are the first to investigate a solution towards
ensuring recoverability of a file in the single-server setting after a PoR scheme
returns a negative reply. In Section 5, we discuss in detail our approach and
solution towards ensuring recoverability of the original file and thus close an
important gap within the PoR functionality.6 We also propose a solution which
is applicable in the multi file case.

6 Note that we provide a different solution towards ensuring recoverability than Bowers
et al. [13] who aim to restore a corrupted file after file tampering has been detected.
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3.5 On Erasure-Correcting Codes

Our CSPoR solution follows previous PoR proposals and also utilizes a forward
erasure-correction code (ECC). On the one hand, ECCs are mainly used to in-
crease the probability of detecting a malicious provider while, on the other hand,
they enable one to reconstruct the original data from any part of the encoded
data even if an error, i.e. erasure, has been introduced, as long as this part is
sufficiently large. For example, using Reed-Solomon (RS) codes as in SW-PoR, a
fraction of the ECC coding rate ρ of the outsourced file blocks ñ is enough in or-
der to decode them to the original file blocks n. Note that without ECC already
a small bit degradation renders a file to be irretrievable even if 99% of the file
is truthfully stored and thus may satisfy the SLA. Recall that in the single-file
case of classical PoR schemes, one has generally two options to encode the ECC
into the file. One possibility is to divide a file into chunks and apply the ECC to
each chunk and another possibility is to encode the whole file as a single data-
word. The first proposal is insecure since all chunks are independently encoded
of each other and thus deleting a huge part of a single chunk with respective
parity data makes this chunk absolutely irrecoverable. According to our security
model, cf. Section 3.2, an adversary is able to apply adversarial erasure from bits
up to nearly every size. In order to prevent adversarial erasure in practice one
would use variants of a RS code. Unfortunately RS has an encoding and decoding
time being quadratic in the number of symbols s, i.e., O(s2). Recent research
has shown that this can be reduced to O(s log(s)) [26]. Since each symbol is
involved to generate parity data, a linear-time encoding and decoding is desired,
i.e., O(s). However, the second proposal has an efficiency drawback because to
the best of our knowledge, there is no linear-time ECC which is secure against
adversarial erasure. Thus, both encodings are not suitable for our requirements.

In our context, we also aim to maximize data output and storage space and
thus employ a systematic code (actual data is separated from the parity data),
which is at the same time maximum distance separable, i.e. an optimal code.
Coming back to RS codes, it is known that they meet those properties for any size
of code and data words. However, to overcome the performance drawback of RS
mentioned earlier and also accommodating the multi-file case, we follow [8] and
scramble the generated parity data, i.e., we permute and encrypt the parity data
block-wise for each file under a specific key for this file. To encrypt each block
independently a tweakable block cipher may be used [27], and for constructing
large permutations one may follow [24]. In more detail, the original file is split
in chunks of a fixed size which can be processed very fast by the employed RS
code, for example Cauchy-RS (255, 223) over GF(256). Then, all code words are
separated in data words and parity words in such a way that at the beginning of
the file all data words are stored sorted followed by the according parity words in
the same sorting. Next, the parity words are treated as one long word which gets
divided in fractions of same size and then permuted. Again, the result is treated
as one single word which gets split in words of a certain length to be encrypted.
To summarize this, an original file F , consisting of n blocks, gets processed with
the ECC of code rate ρ to a file F = F‖P , consisting of ñ = n/ρ blocks, where
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P represents the scrambled parity data. Observe that the adversary may still
delete a data word and its constrained parity data. However, with increasing file
size the probability of erasure is negligible, i.e. the adversary can at most delete
randomly. Obviously, if the file size is very small, the chances of the adversary
to erase two constrained words is not negligible. 7 Then we advise to use RS in
a mode where the whole file is a single data word.

In order to overcome the restrictions of the non-linear-time effort of RS,
splitting the file as described will decrease the running time immensely. However,
if that is not enough, one may employ near optimal erasure codes (NOEC)
which are linear-time, an overview is given in [29]. A well-known example of
this class of erasure codes are low-density parity-check codes (LDPC) [26]. Note
that they do not protect against adversarial erasure. To solve this, the previous
scrambling method may be utilized. That is, the adversary cannot do better
than randomly delete data since the relation between the original data and
parity data is unknown to him and thus the adversarial erasure corresponds to
random erasure.

While for decoding, RS needs any n of ñ blocks, NOEC requires any n(1 + ε)
blocks, ε > 0. In other words, original data can be recovered by the decoding
procedure if at most (1−(1−ε)ρ) of the processed data has been deleted.8 We do
not apply an ECC over multiple files at the same time because of the drawbacks
mentioned in Section 3. As a final note, the stronger the robustness of the ECC,
the less replicas are needed on the side of the CSP.

4 Cloud Storage Proofs of Retrievability

In this section we introduce our new PoR notion called Cloud Storage Proofs of
Retrievability (CSPoR) scheme which is a natural generalization of “classical”
PoR systems, overcoming the previously discussed problems. Furthermore, we
briefly present the appropriate security model and provide details about the
concrete instantiation.

4.1 Formal Definition

In this section we present a formal definition of CSPoR. Prior to this, let us briefly
introduce the notion of a cloud storage which acts as the underlying abstract
model of data storage in which digital data can be stored. We denote the cloud
storage by S and assume it can store multiple arbitrary files F ∈ {0, 1}∗.

Definition 1. A cloud storage proofs of retrievability (CSPoR) scheme CSPoR
comprises the following procedures:

7 For example, if n = 2 and ñ = 4, then there is a chance of 33% of deleting constrained
blocks when erasing two blocks randomly.

8 One can think of (1 − (1 − ε)ρ) as an abbreviation for (1 − (1 − ε)ρ) · 100 percent,
for RS ε = 0.
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(pk, sk,S)
$← CSPoRSetup(1λ): this randomized algorithm generates a public-

private key pair (pk, sk) and takes as input the security parameter λ. It
initializes a cloud storage S;

(F̂ , τ̂ ,S)
$← CSPoRStore(sk, F̂ ): this randomized data storing algorithm takes

as input a secret key sk and the set of all files F̂ a client wishes to store at
the provider’s cloud storage. The set of files consists of K ∈ N files where
F̂ := {F (k) | F (k) ∈ {0, 1}∗, k ∈ [K]}. Each file within the cloud storage gets

processed yielding the set of all processed files F̂ := {F (k) | k ∈ [K]} and
a respective set of file tags is generated τ̂ := {τ (k) | k ∈ [K]} where each
tag contains additional information (e.g. meta data) about the processed file.
Furthermore, the algorithm outputs the updated cloud storage S;

δ
$←
[
CSPoRVerify(pk, sk, τ̂ ′)
 CSPoRProve(pk, F̂ ′, τ̂ ′)

]
: this

challenge-response protocol defines a protocol for proving cloud storage re-
trievability. The prover algorithm takes as input the public key pk, the file
tag set τ̂ ′ := {τ (k) | k ∈ [K ′]} and the set of the processed files F̂ ′ := {F (k) |
k ∈ [K ′]}, where [K ′] ⊆ [K]. The verification algorithm uses as input the key
pair (pk, sk) and the file tag set τ̂ ′. Algorithm CSPoRVerify finally outputs
a binary value δ which equals accept if verification succeeds, indicating the
files F̂ ′ are being stored and retrievable from the cloud storage provider, and
reject otherwise.

Note that F̂ may not be exactly equal to F̂ but it must be guaranteed that F̂
can be recovered from F̂ . We wish to remark that the involved file tag set τ̂ ′ in
the challenge-response protocol can correspond to either the full set of file tags
τ̂ or any arbitrary subset of file tags enabling a CSPoR scheme to flexibly check
any set of files by specifying the appropriate tags. Informally, a CSPoR scheme is
correct if all processed files F̂ outputted by the store procedure CSPoRStore will
be accepted by the verification algorithm when interacting with a valid prover.
More formally this is captured as follows.

Definition 2. A CSPoR protocol is correct if there exists a negligible function
negl such that for every security parameter λ, every key pair (pk, sk) generated

by CSPoRSetup, for all sets of files F̂ (containing files F (k) ∈ {0, 1}∗), and for

all (F̂ , τ̂ ,S) generated by CSPoRStore, it holds that

Pr
[(
CSPoRVerify(pk, sk, τ̂ ′)
 CSPoRProve(pk, F̂ ′, τ̂ ′)

)
9 accept

]
= negl(λ).

Furthermore, we denote the above challenge-response procedure of CSPoR by
CSPoRP(pk, sk, τ̂ ′, F̂ ′). If the involved files and tags are clear from the context,
we simply abbreviate it as CSPoRP which we also refer to as an audit throughout
the paper.

Remark 1 (Cloud Storage and Storage Container). Recall that we denote by
cloud storage an abstract model of data storage in which one stores digital data.
However, moving towards realizing a cloud storage architecture, we can introduce
another storage unit called a storage container. Such a storage unit allows for
storing multiple files within one location (in the physical layer of the cloud
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environment), providing a client with a file system structure. Note that similar
concepts are already in practical use called Buckets [3, 21] or Blobs [28]. Usually,
a storage container is limited by a pre-defined storage space size. Hence, a client
may create and handle multiple storage containers simultaneously. Ultimately,
we call the set of all storage containers a cloud storage. In Appendix A.1 we
present an extended definition of CSPoR which takes into account multiple cloud
containers and the respective instantiation can be found in Appendix A.2.

4.2 Security Model

In this section we discuss the security model within our proposed model. Note
that we do not explicitly consider confidentiality of a file F , but assume that
a client may encrypt the files before the initiation of the CSPoR protocol. The
adversary aims to convince a client with overwhelming probability that the out-
sourced files are still fully intact and retrievable. In the following we define the
security notion of extractability for our CSPoR scheme following existing security
notions for PoR models.

Extractability Intuitively, we wish to formalize and say that a CSPoR proto-
col is secure if any cheating prover that convinces the verification algorithm to
accept is indeed storing all files in F̂ with a sufficient level of probability. In other
words, we wish to guarantee that, whenever a malicious prover is in a position
of successfully passing a CSPoRP instance, it must know the entire file content
of all files. We require an extractor algorithm E(pk, sk, τ̂ ,P ′) taking as input the
generated key pair, the set of file tag τ̂ as well as a description of the machine
implementing the prover’s role in the CSPoR protocol. The extractor’s output is
the set of files F̂ . As noted above, the extractor is given (non black-box) access
to P ′ and in particular can rewind it. Furthermore, we require that the algorithm
is efficient, i.e. E ’s running time needs to be polynomial in the security parameter.

Consider the following extractability game ExpExtract
A,ε

[
CSPOR, 1λ

]
between

a malicious adversary A, an extractor E , and a challenger C.

1. The challenger initializes the system by running CSPoRSetup to generate
the public and private key pairs. The public keys are provided to A. It also
generates a cloud storage S which is also given to the adversary A.

2. The adversary A is now able to interact with the challenger that takes the
role of an honest client. A is allowed to request executions to a CSPoRStore
oracle by providing, for each query, a set of files F̂ := {F (k) | F (k) ∈
{0, 1}∗, k ∈ [K]}.

3. Likewise, A can request executions of the CSPoRP procedure for any set
of files on which it previously made a CSPoRStore query by specifying the
corresponding tags τ̂ . In the procedures, the challenger will play the role of
the honest verifier V and the adversary the role of the corrupted prover, i.e.
V(pk, sk, τ̂)
 A. In the end of the execution the adversary is provided with
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the output of the verifier. Furthermore, the CSPoRStore oracle queries and
the executions of CSPoRP can be interleaved arbitrarily.

4. Finally, the adversary outputs a set of challenge tags τ̂ ′ returned from some
CSPoRStore query and the description of a prover P ′.

5. Run the extractor algorithm F̂ ′ ← E(pk, sk, τ̂ ′,P ′) inputting the challenge
tags τ̂ ′ and description P ′ where E gets black-box rewinding access to P ′,
and attempts to extract the file content of all files as F̂ ′.

6. If Pr [(V(pk, sk, τ̂)
 P ′)→ accept] ≥ ε and F̂ ′ 6= F̂ then output 1, else 0.

Note that we say a malicious prover P ′ is ε-admissible if the probability that it
convincingly answers verification challenges is at least ε, i.e., if

Pr [(V(pk, sk, τ̂)
 P ′)→ accept] ≥ ε.

Here the probability is over the coins of the verifier and prover.

Definition 3. We say that a CSPOR scheme is ε-extractable (or secure) if
there exists an efficient extraction algorithm E such that, for all PPT adversaries
A it holds that

Pr
[
ExpExtract

A,ε
[
CSPOR, 1λ

]
→ 1

]
is negligible in the security parameter.

4.3 Instantiation Details

Our concrete instantiation is based on the private PoR scheme of Shacham and
Waters (SW-PoR) [34] mainly due to its ability to handle an unbounded number
of verification queries in a compact way. In case a better communication complex-
ity is required, one may build upon the scheme presented in [14]. On a high level,
our instantiation exploits the homomorphic properties of the SW-PoR proposal
enabling us to aggregate a proof for all files into a small value. Our CSPoR
instantiation overcomes the identified limitations, as discussed in Section 3.3,
when employing existing schemes straightforwardly to prove retrievability for
multiple different-sized files simultaneously. After outlining our main building
blocks, we provide details about our instantiation.

Building Blocks Unless otherwise specified all operations are performed over
the finite field F = Zp where p is a λ-bit prime with λ being the security param-
eter. As we instantiate a private CSPoR system, it suffices to use a symmetric
encryption scheme and we set the public key pk =⊥. We utilize a MAC scheme
and a pseudo-random function (PRF) g : {0, 1}∗ × {0, 1}φprf → F, where φprf is
the key length of the PRF. and a MAC scheme. Furthermore, we make use of a
cloud storage S, cf. Section 4.1, which contains all outsourced data.
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Specification of the CSPoRSetup Procedure In the CSPoRSetup procedure,

the client derives a random symmetric key κenc
$← Kenc and a random MAC key

κmac
$← Kmac, where Kenc and Kmac are the respective key spaces. The secret

key is sk = (κenc, κmac) and requests create a cloud storage S.

Specification of the CSPoRStore Procedure The CSPoRStore procedure is
initiated by the client holding a set of K ∈ N files where F̂ := {F (k) | F (k) ∈
{0, 1}∗, k ∈ [K]} that she wishes to store in S. The following steps are carried

out for each file F (k) of F̂ :

1. First, we apply an information dispersal algorithm (i.e. an erasure code, e.g. a
systematic MDC ECC like permuted and encrypted Reed-Solomon code [8])
with code rate ρ over the file F (k) which originally consists of n(k) ∈ N
blocks. The resulting processed file is denoted by F (k);

2. Next, we divide the processed file F (k) into ñ(k) ∈ N blocks, each block being

s symbols long. That is F (k) = {f (k)ij }, where 1 ≤ i ≤ ñ(k), 1 ≤ j ≤ s, and

f
(k)
ij ∈ F. Note that s is constant for all files while the number of blocks ñ(k)

varies depending on the respective underlying original file size;

3. We sample uniformly at random a PRF key κ
(k)
prf

$← {0, 1}φprf and sample s
random elements from the finite field F which are kept private by the client,

that is α
(k)
1 , . . . , α

(k)
s

$← F;

4. Then, we compute for each file block of F (k) an authentication tag σ
(k)
i ,

i ∈ [ñ], as follows

σ
(k)
i ←− g

κ
(k)
prf

(i) +

s∑
j=1

α
(k)
j f

(k)
ij ∈ F;

5. At last, a file tag τ (k) := τ
(k)
0 ‖MACκmac

(τ
(k)
0 ) is computed, where τ

(k)
0 :=

ñ(k)‖Encryptκenc

(
κ
(k)
prf‖α

(k)
1 ‖ . . . ‖α

(k)
s

)
.

Finally, the client combines all authentication tags into the set σ̂, all file tags
into the set τ̂ , as well as all processed files are aggregated as the set F̂ . The
three sets are uploaded to the cloud storage S of the provider while σ̂ and F̂
are removed locally from the client (τ̂ is optional). Note that in the fifth step
the provider only learns the size of the outsourced file, since the remaining part
of τ (k) is encrypted with the client’s secret key.

Specification of the CSPoRP Procedure The CSPoRP procedure obtains
an assurance about the retrievability of the files. In the following we describe
the technical details of an audit step providing a reply δ. Note that the client
may wish to audit only a subset K ′ of all K outsourced files, hence we have
[K ′] ⊆ [K].
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1. The client first verifies the MAC on each τ (k) within τ̂ . If the MAC is invalid
the client aborts the protocol and outputs reject. Otherwise, she parses all

τ (k) from τ̂ and uses κenc in order to recover ñ(k), κ
(k)
prf and α

(k)
1 , . . . , α

(k)
s for

all k ∈ [K ′];
2. Next the client selects a random subset I(k) ⊆$ [ñ(k)] of size `(k) and chooses

for each i ∈ I(k) a random element from the finite field ν
(k)
i

$← F for all
k ∈ [K ′];

3. Then the client generates the challenge by aggregating the sampled values

from Step (2) per file to a set Q(k) = {(i, ν(k)i )i∈I(k)} of size `(k), for all

k ∈ [K ′]. All sets Q(k) are combined to Q̂ := {Q(k) | k ∈ [K ′]} which is then
sent to the provider.

The cloud service provider now parses all files from F̂ as {f (k)ij } and {σ(k)
i },

and the corresponding challenges Q(k) from Q̂. Then, the provider computes for
1 ≤ j ≤ s and all k ∈ [K ′]

µ
(k)
j ←−

∑
(
i,ν

(k)
i

)
∈Q(k)

ν
(k)
i f

(k)
ij , σ(k) ←−

∑
(
i,ν

(k)
i

)
∈Q(k)

ν
(k)
i σ

(k)
i .

Next, the CSP accumulates all responses and authentication tags to output for
each 1 ≤ j ≤ s

µ̃j :=
∑
k∈[K′]

µ
(k)
j and σ̃ :=

∑
k∈[K′]

σ(k).

Finally, the client parses the provider’s response and checks

σ̃
?
=
∑
k∈[K′]

 ∑
(
i,ν

(k)
i

)
∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +

s∑
j=1

α
(k)
j µ̃j

 .

If this equality check is successful, the verifier outputs δ = accept, and otherwise
she outputs δ = reject. Note that it is easy to check the correctness for the
above instantiation. A formal treatment can be found in Appendix A.2.

Now we formulate our theorem capturing the security of our CSPoR scheme.

Theorem 1. If the MAC scheme is unforgeable, the symmetric encryption
scheme is semantically secure, and the PRF is secure, then no adversary (ex-
cept with negligible probability) against the extractability game Extract of our
CSPoR scheme ever causes the verifier to accept a cloud storage proofs of retriev-
ability protocol instance, except by responding with correctly computed responses
µ̃j (1 ≤ j ≤ s) and authentication tag σ̃.

Proof. The security of our proposed scheme follows immediately from the se-
curity of the private-key SW scheme [34] as we base our construction on their
scheme and thus inherit the security property. The only main difference in the
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proof is that we have to ensure the correctness of the aggregated set of responses
{µ̃j}.

First, we need to argue that the verification algorithm will reject answers
except if the answers {µ̃j} were computed correctly by the prover. This can be
shown via a sequence of games for which we argue that the adversary’s distin-
guishing advantage between two consecutive games is negligible. The analysis
follows via the same game hops as in [34] while adapting the notion of having
aggregated answers {µ̃j} from all outsourced files.

Secondly, we need to argue that the extraction procedure can efficiently re-
construct a ρ fraction of file blocks when interacting with a prover that provides
correctly computed responses for a non-negligible fraction of the query space.
The same arguments as in [34] apply to our scheme. Here we only need to slightly
change the proof details when showing that a well-behaved ε-admissible cheat-
ing prover P ′ as the output of the extractability game (cf. Section 4.2) can be
turned into an ε-polite adversary B (implemented as a probabilistic polynomial-
time Turing machine). Note that we say an adversary is ε-polite if it responds
with probability ε to given queries Q covering an ε fraction of the query- and
randomness-tape space. P ′ can be used to construct the adversary B. For a
query Q, P ′ interacts with the verifier according to V(pk, sk, τ̂) 
 P ′. If the
interaction is successful the responses (µ̃1, . . . , µ̃s) will be written to its output
tape while a wrong interaction leads to writing ⊥ on the tape. Note that after
k interactions we can represent all responses as a (k × s) matrix. Each time the
adversary B runs the prover P ′ it is able to effectively rewind the prover. Since
P ′ is well-behaved a successful interaction computes valid (µ̃1, . . . , µ̃s) and given
that P ′ is ε-admissible we know that an ε fraction of the answers are computed
correctly. Having this we can further follow SW and can represent the extrac-

tor’s knowledge by a row in the matrix for each audit step, i.e. as (µ̃
(t)
1 , . . . , µ̃

(t)
s )

where t ∈ [A], and thus have sampled enough information to permit successful
extraction.

Lastly, we argue that following the ECC reconstruction property it suffices to
positively check any n blocks of a processed file consisting of ñ blocks to recover
the original file F (k) with all but negligible probability. This is trivially fulfilled
by employing Reed-Solomon codes of rate ρ, since any ρ fraction of encoded file
blocks suffice in order to reconstruct the underlying file. Note, however, that this
does not protect a client from revealing correlations between the plaintext blocks
and redundant blocks through the access pattern. This can be avoided if a client
encrypts and permutes the parity part of the file following Ateniese et al. [8]. ut

Remark 2 (Applicability of CSPoR to Current Cloud Architectures). The above
introduced CSPoR system can be translated straightforwardly into present cloud
architectures. This can be achieved by introducing procedures (e.g., CSPoRStore)
that capture the communication steps between a client and a storage provider.
Let us assume that a provider exposes a standard interface to its client offer-
ing a handful of commands in order to execute some basic operations such as
storing or downloading a file, as well as other commands. To implement such
an interface for our CSPoR system, we can use currently employed APIs from
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Amazon [3], Google [20] or Microsoft [28]. Following those APIs, it suffices to use
only two commands to implement the above procedures for a CSPoR system in
current cloud architectures, namely POST and GET. Note that all formal details
and discussions can be found in Appendix A.3.

5 Determining File Recoverability

As mentioned in the previous sections, PoR schemes detect with an overwhelming
probability whether data loss has occurred within a single audit. Since data may
be lost without violating the mutually agreed SLA, the CSPoR scheme will
output δ = reject, although the original files may still be retrievable. Thus, in
summary, we can check multiple files with CSPoR simultaneously. If the scheme
returns accept this indicates that all files are retrievable with overwhelming
probability, while in contrast we only know that at least one block of some
file is corrupted if CSPoR returns reject. Recall that the literature has not
further considered a solution towards forming a provable statement about the
retrievability of the original file in case the scheme returns a rejection token.9 In
the following, we provide a solution to close this gap.

Let us assume that CSPoR returns a rejection token. In the following let us
redefine CSPoRP to take as input a single processed file F , a single file tag τ ,
and the challenged block identifiers I, which we abbreviate by CSPoRP’, i.e.

CSPoRP′(I, τ,F) := [CSPoRVerify(I, τ)
 CSPoRProve(F , τ)].

Next we introduce a new algorithm called Proofs of Recoverability (PoRec), see
Algorithm 1, which is initiated by the verifier C and involves the provider S. It
takes as input the ECC code rate ρ, a file tag τ of the outsourced file F from C,
and S inputs the outsourced file F . At the end, the algorithm outputs accept

if and only if the original file F is recoverable from F , otherwise reject. Line
1 represents the extraction of ñ from τ , Line 3 follows from Theorem 2, Line
8 denotes a random sampling of ` disjunctive elements of the set [ñ] \ S, and
Lines 13 and 14 follow from Theorem 3. Note that a non-random sampling would
give the attacker information about the verifier’s query pattern and hence may
enable him to predict her behavior to determine specific parts of the file which
are usually seldomly checked and thus motivates the attacker to delete them.

We stress again that CSPoR is used to detect corruptions, and PoRec de-
termines if an original file is fully recoverable from the respective damaged out-
sourced file. Combining both allows us to prove if all original files are fully
recoverable, see Section 5.3.

5.1 Challenge Size

The situation we consider is that some data loss has occurred in the outsourced
file F which results in a reject using CSPoR. Recall that in the procedure

9 As discussed in Section 3.4, it seems that the literature assumes that in case a rejec-
tion token is returned that one downloads all remaining parts of the file independent
of the actual degree of data loss.
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Algorithm 1: PoRec (Proofs of Recoverability)

Input: C: Filetag τ , ECC code rate ρ; S: processed file F
Output: accept if original F is recoverable, else reject

1 ñ←↩ τ // extract number of blocks of F
2 n←− ñρ // number of blocks of F
3 `←− 1 // Theorem 2

4 a←− 0 // number of accepts

5 r←− 0 // number of rejects

6 S ←− ∅ // set of previously challenged block ids

7 for A← 1 to ñ do

8 I
$!{`}←− [ñ] \ S

9 S ←− S ∪ I
10 δ′ ←− CSPoRP′(I, τ,F)
11 if δ′ = accept then a← a +1
12 else r←− r +1
13 if a = n then return accept // Theorem 3

14 if r = ñ− n+ 1 then return reject // Theorem 3

15 return reject

CSPoRVerify the challenge size ` is usually chosen conservatively, i.e. ` = λ.
To obtain an assurance that F is fully recoverable from its respective damaged
outsourced file, we need to prove that there exist at least any n valid blocks out
of ñ blocks in the outsourced file, and hence enables us to recover the original
file by using the ECC decoding procedure. In Theorem 2 we show that ` = 1
enables us to learn whether a certain block is valid.

Theorem 2 (Challenge Size). Let 0 < ρ ≤ 1 be the ECC code rate, |F| = ñ,
|F | = n = ñρ, and let 1 ≤ ` ≤ ñ be the challenge size of each audit A ∈ N.
Assume that at least one of the blocks of F is damaged. To ensure that at least
any valid n blocks are contained in F using the CSPoRP’ algorithm, it must hold
` = 1.

Proof. Let ` ∈ N0. Obviously ` < 1 results in no challenge at all and thus we can
ignore this case. If ` > 1, then CSPoRP′ likely returns reject since the detection
probability of finding a damaged block is overwhelming. However, this does not
provide any information on how many blocks are in fact damaged. At this point,
we only know that at least one block is damaged but at most `. Of course, there
is a probability to hit the non-damaged blocks with ` > 1, however it gets very
small depending on the degree of erasure. In other words, CSPoRP′ may return
reject for ` > 1, even if the original data could indeed be recovered due to the
ECC. Therefore, we explicitly require to know if any n valid blocks are contained
in F , and thus need to determine this number precisely. Hence, ` = 1, which
allows us to count the non-damaged blocks in a precise manner. ut

In terms of CSPoRP′, this means that the challenge set Q̂ consists only of a single
block identifier and coefficient.
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5.2 Number of Audits

In order to count the number of valid blocks, we need to know how often CSPoRP′

needs to be performed, i.e. the number of audits A. Theorem 3 gives lower and
upper bounds for A.

Theorem 3 (Audit Bounds). Let ρ, ñ, n be defined as in Theorem 2, let ` =
1, and assume that at least one of the blocks of F is damaged. Then min(n, ñ−
n+ 1) ≤ A ≤ ñ disjunctive audits are required for the PoRec algorithm to output
either accept or reject.

Proof. The number of audits required is lower bounded by the minimum of two
values. First, after any n disjunctive audits have yielded accept, the PoRec
procedure returns accept. The other lower bound is fulfilled when the ECC
decoding is not able to reconstruct F out of the remaining blocks of F . That
is, if any ñ − n + 1 audits resulted in reject, the PoRec algorithm aborts and
outputs reject. The upper bound is reached if n− 1 audits resulted in accept

but the last undamaged block may be on the last remaining unchecked position.
Depending on the retrievability of the final block, the PoRec procedure returns
accept or reject. ut

Finally, the verifier performs A times CSPoRP′ accumulating the number of
valid and invalid responses. Since the randomly sampled block identifiers are dis-
junct, the verifier performs audits for as long as it takes until she is convinced that
the number of valid (accept) or invalid (reject) responses is sufficiently large.
The algorithm PoRec defines this formally and finally either outputs accept or
reject meaning that the file F is recoverable from F or not, respectively.

Remark 3 (SW-PoR Scheme and Recoverability). Note that the SW-PoR scheme
on which our CSPoR scheme CSPoR builts upon yields no recoverability guar-
antees for a large challenge size `, e.g. ` = n. This holds since the detection
probability is overwhelming even if only one of the ` challenged blocks of F
is damaged resulting in the SW-PoR scheme outputting a rejection token, and
hence, we cannot determine whether the original file can be recovered. Also,
if we perform the SW-PoR scheme A times with ` = 1, this will not provide
an assurance about the recoverability, since the challenges are chosen randomly
and hence are not disjunct with high probability. Therefore, this results in likely
challenging too few blocks or inefficiency.

5.3 Locating Damaged Files

As described in both preceding Sections 5.1 and 5.2, the output of PoRec deter-
mines whether a file F is recoverable from the remaining parts of F . Now we
apply this to the multi-file case with the goal to convince the verifier that any n
out of ñ blocks for each file are still valid which enables us to argue that all files
are recoverable. In other words, we combine CSPoR and PoRec.
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Employing a File Tree. The verifier usually performs the CSPoRP procedure
of the CSPoR scheme over all stored files F̂ with ` = λ for each file (except
for ñ < λ, then ` = ñ). Each time CSPoRP outputs accept, the verifier knows
that the probability of some fraction of the data being damaged is negligible. As
a result, all original files F̂ can be recovered. However, if one CSPoRP results
in a reject, the verifier stops with the regular execution of CSPoR. Since this
does not provide any information about the retrievability of the original files, the
verifier organizes her files in a b-ary tree and performs a multiple b-ary search on
this tree. The root of the tree represents the result of CSPoRP over all processed
files f := F̂ ′ ⊆ F̂ , which the verifier wishes to check. Then, the first level of
the tree consists of b nodes where each contains disjunctive filesets. For each
of these nodes, the verifier again performs a CSPoRP with ` = λ. If a CSPoRP
returns accept, the verifier discards the node from his tree since all associated
(outsourced) files are retrievable. Otherwise the node is split again into b nodes
and for each node a CSPoRP is executed. This process is repeated until the set of
files which a single CSPoRP execution checks contains only one file. At the end,
the verifier gets a list of all processed files fc := F̂ ′c which are corrupted. Finally,
for each file Fc of fc, the verifier executes PoRec(τ, ρ,Fc). Now the verifier knows
which files can be recovered and which are ultimately lost. Note that all files f\fc
are also obviously recoverable since they did not contain any corrupted blocks
with overwhelming probability.

An example is shown in Figure 1 for values b = 3, |f | = 4, and |fc| = 2.
Traversing the tree yields the corrupted and sound files. The input of a CSPoRP
(©) consists of the set of all files to which the CSPoRP node is a parent node.
The output of the procedure is displayed next to the respective node. Regarding

PoRec (�), the input consists of the outsourced file labeled below the box,
and the output is displayed at the bottom of each PoRec. The fourth CSPoRP
returned accept, hence all files belonging to this specific node do not need any
further inspection and are immediately marked as accepted, i.e., retrievable. This
is shown by the dashed lines between the accepted CSPoR and its leaves, as well
as the omitted PoRec executions, which are not required to be executed since
there is no output and the files are directly marked as sound (X).

Observe that in the worst case, all f files need to be checked which requires

1 +
∑logb(f)
i=1 bi CSPoRP executions. In the best case of only a single file being

damaged, a maximum of 1 + b logb(f) CSPoRP executions are required. Further
steps, regarding repairing the damaged files, changing or taking legal actions
against the cloud storage provider, is out of the scope of this work. An adaption
of CSPoR-PoRec to the multiple cloud container case is presented in Appendix B.

Combining CSPoR and PoRec. Combining CSPoR and PoRec to a single
procedure yields our final algorithm CSPoR-PoRec(F̂ , ρ, λ), see Algorithm 2.

CSPoR-PoRec checks from time to time the retrievability of the fileset F̂ (or
a subset thereof) employing CSPoR. This is done until an error occurs. Then,
the corrupted files get located and PoRec is performed outputting references to
all recoverable files as well as all irrecoverable files as A and R, respectively.
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Fig. 1. Traversing the file tree spanned over nine different outsourced files. Four times

CSPoRP is performed (©) and six times PoRec (�). As a result F (1) is damaged

beyond repair (�), F (5) is damaged but recoverable ( ), and all other files are sound
and recoverable.

Remark 4 (Optimizations for the Verifier). First note that the verifier might
want to check the retrievability of all files regularly. More precisely, she is able
to run a scheduled CSPoRP routine, where each audit is planned for a certain time
period and file set. This is represented in Algorithm 2 by Lines 3-5. Further, the
verifier might optimize the way she performs CSPoRP and PoRec. For CSPoRP,
depending on the ECC, the verifier might change the size of `(k), for some files
F (k), k ∈ [K ′], in order to decrease the effort required for an audit. Regarding
PoRec, the verifier might be already convinced if tn accept tokens are counted
for a certain threshold 0 < t ≤ 1.

5.4 Efficiency Comparison

Let f denote the number of multiple different files being checked simultaneously.
We can compare the storage and communication overhead of CSPoR to SW-PoR.
Regarding storage, in SW-PoR-Setup the keys are file-dependent and thus require
a storage amount of 2fλ. CSPoR uses the same keys κenc and κmac for each
file, requiring a file-independent storage amount of 2λ. The challenge phase in
both SW-PoR and CSPoR demand the same communication overhead of 2`fλ
from the client. However, the response in SW-PoR has a communication effort
of (s + 1)fλ for the provider, while in CSPoR only a file-independent effort of
(s + 1)λ is needed. Similarly, the verification phase has a computation effort of
f in SW-PoR, while having a constant computation effort of a single execution
in CSPoR.

The algorithm PoRec is an even smaller version of the audit phase of CSPoR,
hence requiring a constant minimal computation and communication effort.
However, each execution of PoRec is repeated up to ñ times for each file. Observe
that downloading x disjunctive blocks is much larger in terms of computation,
communication, and storage overhead than checking the recoverability of these
x blocks using PoRec. Regarding computation, the ECC decoding procedure re-
quires more information than a single block resulting in a lot of overhead due to
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Algorithm 2: CSPoR-PoRec

Input: C: set of files F̂ , ECC code rate ρ, security parameter λ
Output: List of recoverable (A) and non-recoverable (R) files

1 (pk, sk,S)←− CSPoRSetup(1λ) // Definition 1

2 (F̂ , τ̂ ,S)←− CSPoRStore(sk, F̂ ) // Definition 1

3 repeat

4 δ ←− CSPoRP(pk, sk, τ̂ ′,S, F̂ ′) // Definition 1

5 until δ = reject

6 Create b-ary tree T using F̂ ′

7 repeat
8 Perform CSPoRP for all child nodes of rejected nodes of T

9 until tree traversed as needed, yielding F̂ ′
c // Section 5.3

10 A←− ∅, R←− ∅
11 foreach Fc ∈ F̂ ′

c do
12 δ ←− PoRec(pk, sk, τ, ρ,Fc) // Algorithm 1

13 if δ = accept then A←− A ∪ τ
14 else R←− R ∪ τ
15 return (A,R)

downloading additional data and decoding all of it. In terms of communication,
the actual block would need to be transferred instead of a single bit per block
as in PoRec. Lastly, the client would need to store the whole downloaded blocks,
however, in PoRec only about log(A) + S bits need to be stored per file. This is
why PoRec is more efficient than downloading the blocks directly.

6 Conclusion

In this paper we have introduced two extensions to the traditional PoR concept
which we call cloud storage proofs of retrievability (CSPoR) and proofs of re-
coverability (PoRec) as well as provide a combined CSPoR-PoRec solution. This
scheme is motivated by the natural desire to outsource multiple different-sized
files to a cloud storage provider and also takes a model of an abstract storage unit
into account to map current cloud storage practice such as regular data loss into
the realm of PoR. We showed that there is an inherent gap in the functionality of
PoR such that in case the scheme returns a rejection token one is not able to for-
malize a provable statement about the retrievability of the original file. Hence,
we close this gap by systematically studying this problem and propose solutions
towards formalizing a proof of recoverability based on PoR techniques. In order
to gather enough knowledge to output a proof of recoverability, our technique
relies on repeatedly auditing the damaged files with special parameters, that is
formally executing PoRP with a small challenge size. Future work may consider
a different adversarial model where the adversary may dynamically delete data
while the verifier aims to obtain a proof of recoverability.
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A Additional Details for Cloud Storage Proofs of
Retrievability

We have introduced the notion of cloud storage proofs of retrievability in Sec-
tion 4. Recall that we used the notion of a cloud storage as the underlying
abstract model of data storage and noted that towards realizing a cloud storage
architecture one needs to further introduce a storage container. In this section, we
first provide a formal treatment of storage containers and then give an updated
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definition of CSPoR accommodating this new notion. Note that throughout the
appendix we will stay on this abstract level and provide all details in respect to
the storage containers.10

Let a storage container be denoted by S storing multiple arbitrary files
F ∈ {0, 1}∗. Throughout this chapter, we assume that a client may possess
several storage containers S(c) hosted at a cloud storage provider. We denote
the total number of different storage containers by Γ ∈ N, hence 1 ≤ c ≤ Γ . This
describes the client’s potential need to handle different types of data in different
storage containers, e.g. a client wishes to store important documents separately
from her picture library. This also captures the common cloud storage practice

where each storage container’s storage space (size) is upper bounded by S
(c)
max

which corresponds to the maximum number of storable files within a container,
and thus we need the possibility to create multiple storage containers. The set
of all storage containers is denoted by Ŝ and is called a cloud storage.

A.1 Formal Definition of CSPoR

In the following we present an extended definition of the CSPoR scheme CSPoR
in respect to Definition 1 using the notion of storage containers.

Definition 4. A cloud storage proofs of retrievability (CSPoR) scheme CSPoR
comprises the following procedures:

(pk, sk, Ŝ, Ŝid, γ̂)
$← CSPoRSetup(1λ): this randomised algorithm generates a

public-private key pair (pk, sk) and takes as input the security parameter
λ. Additionally, it creates a cloud storage (i.e. a set of Γ storage containers)

Ŝ := {S(c) | c ∈ [Γ ]} and their set of respective associated unique identifiers

Ŝid := {S(c)
id | c ∈ [Γ ]}. Furthermore, some meta data γ̂ := {γ(c) | c ∈ [Γ ]}

is created for each storage container;

(F̂ , τ̂ , Ŝ, γ̂)
$← CSPoRStore(sk, F̂ , Ŝid): this randomised data storing algorithm

takes as input a secret key sk, Ŝid, and the set of all files F̂ := {F̂
S

(c)
id

|

c ∈ [Γ ]} a client wishes to store at the provider’s cloud storage. Each F̂
S

(c)
id

consists of K
S

(c)
id

∈ N files that will be stored within a particular S(c) where

F̂
S

(c)
id

:= {F (k) | F (k) ∈ {0, 1}∗, k ∈ [K
S

(c)
id

]} for c ∈ [Γ ]. Each file within

each storage container gets processed yielding the set of all processed files for
this storage container F̂

S
(c)
id

:= {F (k) | k ∈ [K
S

(c)
id

]} and a respective set of

file tags is generated τ̂
S

(c)
id

:= {τ (k) | k ∈ [K
S

(c)
id

]} where each tag contains

additional information (e.g. meta data) about the processed file. Finally the

algorithm outputs the set of all such processed files F̂ := {F̂
S

(c)
id

| c ∈ [Γ ]},

tags τ̂ := {τ̂
S

(c)
id

| c ∈ [Γ ]} and the updated cloud storage Ŝ. The meta data

γ̂ is also updated;

10 In case one wishes to neglect the storage containers one may simply interpret S(c)

as a simple cloud storage and reduces the notions to S.
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δ
$←
[
CSPoRVerify(pk, sk, τ̂ ′, Ŝid)
 CSPoRProve(pk, F̂ ′, τ̂ ′, Ŝ)

]
: this challenge-

response protocol defines a protocol for proving cloud storage retrievability.
The prover algorithm takes as input the public key pk, the file tag set τ̂ ′ :=
{τ̂ ′

S
(c)
id

| τ̂ ′
S

(c)
id

= {τ (k) | k ∈ K ′
S

(c)
id

}, c ∈ Γ ′} and the set of the processed files

F̂ ′ := {F̂ ′
S

(c)
id

| F̂ ′
S

(c)
id

:= {F (k) | k ∈ K ′
S

(c)
id

}, c ∈ Γ ′}, where [K ′
S

(c)
id

] ⊆ [K
S

(c)
id

]

and [Γ ′] ⊆ [Γ ]. The verification algorithm uses as input the key pair (pk, sk),

the file tag set τ̂ ′, and identifiers Ŝid. Algorithm CSPoRVerify finally outputs
a binary value δ which equals accept if the verification succeeds, indicating
the files in F̂ ′ are being stored and retrievable from the cloud storage provider,
and reject otherwise.

At the beginning of the CSPoRSetup procedure, the involved parties agree on
the storage containers in the set Ŝ. Similarly, they agree on the files in the set
F̂ at the beginning of the CSPoRStore procedure. Note this does not require the
files being given in clear within the agreement. An agreement could also consist
of hashes of these files. Moreover note that the cloud storage Ŝ may already
contain data from previously performed CSPoRStore procedures.

As described in Section 4.1, observe that F̂ may not be exactly equal to
F̂ but it must be guaranteed that F̂ can be recovered from F̂ . Additionally, we
wish to remark that the involved file tag set τ̂ ′ in the challenge-response protocol
can correspond to either the full set of file tags τ̂ or any arbitrary subset of file
tags enabling a CSPoR scheme to flexibly check any set of files by specifying the
appropriate tags.

Definition 5. We denote the challenge-response procedure of the CSPoR scheme
CSPoR given as[

CSPoRVerify(pk, sk, τ̂ ′, Ŝid)
 CSPoRProve(pk, F̂ ′, τ̂ ′, Ŝ)
]

by CSPoRP(pk, sk, τ̂ ′, Ŝid, F̂ ′, Ŝ), and if the context is clear briefly CSPoRP. A
single challenge-response step of a CSPoRP is called an audit.

Informally, a CSPoR protocol is correct if all processed files F̂ outputted by
the store procedure CSPoRStore will be accepted by the verification algorithm
when interacting with a valid prover. More formally this is captured as follows.

Definition 6. A CSPoR protocol is correct if there exists a negligible function
negl such that for every security parameter λ, every key pair (pk, sk) and set of

storage containers Ŝ with respective identifiers Ŝid and meta data γ̂ generated
by CSPoRSetup, for all sets of files F̂ (containing files F (k) ∈ {0, 1}∗), and for

all (F̂ , τ̂ , Ŝ, γ̂) generated by CSPoRStore, it holds that

Pr
[(
CSPoRVerify(pk, sk, τ̂ ′, Ŝid)


 CSPoRProve(pk, F̂ ′, τ̂ ′, Ŝ)
)
9 accept

]
= negl(λ).
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Client

Cloud Storage Provider

Storage Container S(c)

F̄ (1) F̄ (2) F̄ (3)

F̄ (4) F̄ (5)

F̄ (6) F̄ (7) F̄ (8) F̄ (9)

. . .

CSPoR
...

Fig. 2. Model of a CSPoR scheme between a client and cloud storage provider with a
detailed representation of a storage container containing multiple different-sized files.

In Figure 2, we illustrate the execution of a CSPoR scheme between a client
and a cloud storage provider as well as represent a model of a storage container
S(c). The client is able to access the storage container held by the CSP via a
secure channel. The storage container S(c) can contain an arbitrary set of files
F̂ which were uploaded by the client during a CSPoRStore procedure, and the
CSP may hold an arbitrary amount Γ of storage containers (displayed right of
S(c)). Here, F̄ (k) := (F (k)‖σ(k)‖τ (k)) for k ∈ [K

S
(c)
id

] denotes a processed file

with respective authentication tags and file tag stored in the storage container
S(c) located at the cloud storage provider. Note that in practice the data of the
processed files and associated tags may be stored separately.

A.2 Instantiation

In this section we present an instantiation which is to a large extent similar
to the one in Section 4.3, however takes the notion of a storage container into
account.

Building Blocks Unless otherwise specified all operations are performed over
the finite field F = Zp where p is a λ-bit prime with λ being the security param-
eter. As we instantiate a private-key CSPoR system it suffices to make use of a
symmetric encryption scheme and we set the public key pk =⊥. We make use
of a pseudo-random function g : {0, 1}∗ × {0, 1}φprf → F, where φprf is the key
length of the PRF11, and a MAC scheme. Furthermore, we make use of storage
containers S(c), c ∈ [Γ ], of the cloud storage Ŝ which contains all outsourced
data.

Specification of the CSPoRSetup Procedure In the CSPoRSetup procedure

the client derives a random symmetric key κenc
$← Kenc and a random MAC

key κmac
$← Kmac. The secret key sk = (κenc, κmac) is kept secret and requests

create a cloud storage S, i.e. a set of storage containers located at the server S.

11 Note that we use the shorthand g
κ
(k)
prf

(i) := g(κ
(k)
prf , i).
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Specification of the CSPoRStore Procedure The CSPoRStore procedure is
initiated by the client holding files F̂ = {F̂

S
(c)
id

| c ∈ [Γ ]} that she wishes to

store in Ŝ. Then, for each file F (k) of F̂ , k ∈ [K
S

(c)
id

]c∈[Γ ], the steps given for

the specification of CSPoRStore in Section 4.3 are carried out. At the end, the
client combines all authentication tags into the set σ̂, all file tags into the set τ̂ ,
as well as all processed files are aggregated as the set F̂ . The three sets will be
uploaded to the respective storage container in Ŝ located at the cloud storage
provider while σ̂ and F̂ will be removed locally from the client (τ̂ is optional).
Note that in the fifth step the provider only learns the size of the outsourced
file, since the remaining part of τ (k) is encrypted with the client’s private key.

Specification of the CSPoRP Procedure The CSPoRP procedure obtains
an assurance about the retrievability of the files. In the following we describe
the technical details of an audit step providing a reply δ. Note that the client
may wish to audit only a subset of all outsourced files, hence we have [K ′

S
(c)
id

] ⊆
[K

S
(c)
id

], c ∈ [Γ ′], [Γ ′] ⊆ [Γ ].

1. The client first verifies the MAC on each τ (k) within τ̂ . If the MAC is invalid
the client aborts the protocol and outputs reject. Otherwise, she parses all

τ (k) from τ̂ and uses κenc in order to recover ñ(k), κ
(k)
prf and α

(k)
1 , . . . , α

(k)
s for

all k ∈ [K ′
S

(c)
id

]c∈[Γ ′];

2. Next the client selects a random subset I(k) ⊆$ [ñ(k)] of size `(k) and chooses

for each i ∈ I(k) a random element from the finite field ν
(k)
i

$← F for all
k ∈ [K ′

S
(c)
id

]c∈[Γ ′];

3. Then the client generates the challenge by aggregating the sampled values

from the step before per file to a set Q(k) = {(i, ν(k)i )i∈I(k)} of size `(k), for
all k ∈ [K ′

S
(c)
id

]c∈[Γ ′]. All sets Q(k) per storage container are aggregated as

Q
S

(c)
id

:= {Q(k) | k ∈ [K ′
S

(c)
id

]}. Finally, the combined set over all containers

Q̂ := {Q
S

(c)
id

| c ∈ [Γ ′]} is then sent to the provider.

The cloud service provider now parses all files from F̂ as {f (k)ij } and {σ(k)
i },

and the corresponding challenges Q(k) from Q̂. Then, the provider computes for
1 ≤ j ≤ s and all k ∈ [K ′

S
(c)
id

]c∈[Γ ′]

µ
(k)
j ←−

∑
(
i,ν

(k)
i

)
∈Q(k)

ν
(k)
i f

(k)
ij , σ(k) ←−

∑
(
i,ν

(k)
i

)
∈Q(k)

ν
(k)
i σ

(k)
i .
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This execution is repeated for all files in all storage containers contained in Q̂.
Next, S accumulates all responses and authentication tags to output for 1 ≤ j ≤ s

µ̃j :=
∑
c∈[Γ ′]

∑
k∈
[
K′

S
(c)
id

]µ(k)
j and σ̃ :=

∑
c∈[Γ ′]

∑
k∈
[
K′

S
(c)
id

]σ(k).

Finally, the client parses the provider’s accumulated response and checks

σ̃
?
=
∑
c∈[Γ ′]

∑
k∈
[
K′

S
(c)
id

]
 ∑
(
i,ν

(k)
i

)
∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +

s∑
j=1

α
(k)
j µ̃j

 .

If this equality check is successful, the verifier outputs δ = accept, and otherwise
she outputs δ = reject.

Correctness of the Instantiation

Now we present that our above scheme is correct. Let the PRF key be κ
(k)
prf and

α
(k)
1 , . . . , α

(k)
s

$← F be the secret coefficients for all k ∈ [K
S

(c)
id

]c∈[Γ ]. Let the file

symbols be denoted by {f (k)ij }, and the block authenticators are expressed as

g
κ
(k)
prf

(i) +
∑s
j=1 α

(k)
j f

(k)
ij . For a prover that responds honestly to queries from Q̂

such that µ̃j =
∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

] µ
(k)
j and σ̃ =

∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

] σ
(k) then we

have

σ̃ =
∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

]

σ(k) =
∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i )∈Q(k)

ν
(k)
i σ

(k)
i



=
∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i )∈Q(k)

ν
(k)
i

g
κ
(k)
prf

(i) +

s∑
j=1

α
(k)
j f

(k)
ij




=
∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i )∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +
∑

(i,ν
(k)
i )∈Q(k)

ν
(k)
i

s∑
j=1

α
(k)
j f

(k)
ij



=
∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i )∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +

s∑
j=1

α
(k)
j

∑
(i,ν

(k)
i )∈Q(k)

ν
(k)
i f

(k)
ij



=
∑
c∈[Γ ]

∑
k∈[K

S
(c)
id

]

 ∑
(i,ν

(k)
i )∈Q(k)

ν
(k)
i g

κ
(k)
prf

(i) +

s∑
j=1

α
(k)
j µ

(k)
j

 ,
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which shows that verification is satisfied.

A.3 Communication Model

We have already mentioned in Section 4 that the above CSPoR system can
be translated straightforwardly into present cloud architectures. This can be
achieved by introducing procedures that capture the communication steps be-
tween a client and a cloud storage provider. The expression

Π : [C : inC; S : inS] −→ [C : outC; S : outS]

denotes the event that a client C and a provider S run an interactive protocol Π
where inX and outX denote the input and output of entity X (either C or S),
respectively.

In the following we describe the execution of the required procedures. Follow-
ing the order of our algorithms in Definition 4, we first need to run the procedure
Create between C and S in order to create a storage container S(c) located at
the server in which the client stores her files. Note that a storage container is

upper-bounded by S
(c)
max, i.e. C and S need to engage in another Create proce-

dure to create a new storage container as soon as the maximal storage capacity
is reached or a client wishes to store different types of data in different storage
containers. In more detail, the procedure

Create : [C : pk; S : pk] −→
[
C : S

(c)
id , γC; S : S(c), γS

]
takes no other inputs than the public keys of both parties and outputs the identi-

fier S
(c)
id to identify the storage container S(c) and a tag γC which contains meta

data related to S(c) for the client. The CSP initialises the storage container S(c)

on its infrastructure and obtains a tag γS as its output.

After the successful generation of a storage container a client wishes to store
her files by executing a Store procedure as follows

Store :
[
C : F̂ ,S

(j)
id ; S : S(c)

]
−→

[
C : κ̂, τ̂ ; S : F̂ ,S(c), τ̂

]
.

A client needs to provide as input her set of files F̂ and the respective storage

container identifier S
(c)
id to store the files in S(c). The procedure outputs the

set of processed files F̂ and the updated storage container S(c) for the server.
Furthermore, the client receives a set κ̂ which contains keys for file dependent
functions (e.g. MACs or PRFs) and a set of verification tags τ̂ which are com-
puted on the client side. Those tags are also provided to S and used to check
consistency of the file sizes.
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Finally, a client C and cloud storage provider S engage in a CSPoRP proce-
dure.

CSPoRP :
[
C : τ̂ , Ŝid; S : τ̂ , Ŝ

]
−→ [C : δ; S : ⊥] .

In this procedure, a client provides her file tags τ̂ and her respective set of storage

container identifier Ŝid. Note that in general our CSPoR scheme enables a client
to check whether all outsourced files in Ŝ are intact and retrievable. However, it
is also possible for a client to check only a subset of her outsourced files by simply
choosing a subset of tags τ̂ ′ from τ̂ . The server inputs Ŝ and the file tags τ̂ . The
protocol run is accepted by the verifier if δ = accept, or rejected otherwise.
More precisely, the CSPoRP procedure uses additional locally computed values
in order to be executed. Following our instantiation in Appendix A.2, a client
prepares her challenge set Q̂ according to the file tags τ̂ and sends the challenge
set to S, i.e.,

SendChallenge :
[
C : Q̂; S : ⊥

]
−→

[
C : ⊥; S : Q̂

]
.

The server uses the challenge set and computes the authentication tags σ and
responses µ as its replies which are returned to C, i.e.,

Response :
[
C : ⊥; S : Ŝ, τ̂ , I

]
−→ [C : σ, µ; S : ⊥] .

Finally, a client uses the authentication tags and response values to verify the
CSPoRP procedure as in Appendix A.2. The client outputs a binary decision
value δ indicating whether she accepts or rejects the CSPoRP procedure.

The introduced procedures are easily translated into current cloud archi-
tectures as mentioned in Remark 2. The POST and GET commands can achieve
different functionalities by simply specifying different parameters as detailed in
their respective APIs.

B CSPoR-PoRec for Multiple Cloud Storage Container

The algorithm for CSPoR-PoRec given in Algorithm 2 can be easily extended
to the multiple cloud storage container case. For each audit (cf. Definition 5)

performed in Lines 3-5, the set of all files to be checked F̂ ′ is defined as

F̂ ′ :=
{
F̂ ′

S
(c)
id

| c ∈ [Γ ′]
}

where
F̂ ′

S
(c)
id

:=
{
F (k) | k ∈

[
K ′

S
(c)
id

]}
for [

K ′
S

(c)
id

]
⊆
[
K

S
(c)
id

]
and [Γ ′] ⊆ [Γ ] .

The remaining parts of the algorithm CSPoR-PoRec work as previously specified
in Section 5.3.
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