
Robust P2P Primitives Using SGX Enclaves

Yaoqi Jia1 Shruti Tople2 Tarik Moataz3 Deli Gong1 Prateek Saxena4 Zhenkai Liang4

1ACM Member {jiayaoqijia, gnnnnng}@gmail.com 2Microsoft Research t-shtopl@microsoft.com
3Brown University tarik_moataz@brown.edu 4National University of Singapore {prateeks, liangzk}@comp.nus.edu.sg

Abstract
Peer-to-peer (P2P) systems such as BitTorrent and Bit-

coin are susceptible to serious attacks from byzantine nodes
that join as peers. Due to well-known impossibility results
for designing P2P primitives in unrestricted byzantine set-
tings, research has explored many adversarial models with
additional assumptions, ranging from mild (such as pre-
established PKI) to strong (such as the existence of common
random coins). One such widely-studied model is the general-
omission model, which yields simple protocols with good
efficiency, but has been considered impractical or unrealiz-
able since it artificially limits the adversary only to omitting
messages.

In this work, we study the setting of a synchronous network
wherein peer nodes have CPUs equipped with a recent trusted
computing mechanism called Intel SGX. In this model, we
observe that the byzantine adversary reduces to the adversary
in the general-omission model. As a first result, we show
that by leveraging SGX features, we eliminate any source
of advantage for a byzantine adversary beyond that gained
by omitting messages, making the general-omission model
realizable. Second, we present new protocols that improve
the communication complexity of two fundamental primitives
— reliable broadcast and common random coins (or beacons)
— in the synchronous setting, by utilizing SGX features. Our
evaluation of 1000 nodes running on 40 DeterLab machines
confirms theoretical efficiency claim.

1 Introduction

Peer-to-peer systems such as BitTorrent [2], Symform [15],
CrashPlan [5], StorJ [14], Tor [16] and Bitcoin [1] are be-
coming popular among users due to ease of accessibility. In
such P2P systems, online users can simply volunteer as peers
(nodes) to join the network. However, this exact property al-
lows adversarial or Sybil peers to be a part of the network
and exhibit a byzantine (malicious) behavior. The presence of
byzantine adversaries is a major security concern in P2P sys-
tems. For example, recently, researchers have demonstrated
that in a popular cryptocurrency — Bitcoin — byzantine
nodes can collude to eclipse or partition the honest nodes lead-
ing to double-spending and selfish mining attacks [60, 77].
Further, byzantine nodes in anonymous P2P networks can
become the entry and exit nodes of an honest node’s commu-

nication circuit, by advertising high-bandwidth connections
and high-uptimes falsely [22]. These byzantine entry / exit
nodes can selectively deny service or severely weaken the
core anonymity properties of such systems as Tor, Cashmere
and Hydra-Onions [16, 31]. In addition, byzantine nodes in
the network can selectively forge, divert, delay or drop mes-
sages to disrupt the protocol execution. Therefore, designing
robust P2P protocols continues to be an important research
problem due to the attacks possible in a byzantine setting.

Researchers have extensively worked in the byzantine
model to design solutions for fundamental P2P problems such
as reliable broadcast and agreement among the peers [18, 19,
26, 28, 53, 54, 65, 81]. There are well-known impossibility
results in the standard model of byzantine setting, such as
the inability to achieve reliable broadcast or agreement when
over 1

3 of the network is byzantine [65, 81]. In a quest for
efficient protocols that tolerate a larger fraction of malicious
nodes, several failure models have been proposed which limit
the capabilities of the byzantine adversaries. For instance,
one such model is the general-omission model where the
byzantine node can only omit messages that are either sent
or received by it during the execution of a protocol [79, 82].
In this weaker adversarial model, it is possible to tolerate N

2
adversarial nodes and design relatively simple and efficient
protocols for reliable broadcast [41, 59, 79, 82]. However,
many of these models make strong assumptions, which are
not always realistic and have not had a concrete basis for
implementation.

Our approach. To this end, we study the possibility of using
recent hardware-root-of-trust mechanisms for making previ-
ous adversarial models realizable in practical systems. We
observe that emerging hardware, specifically Intel SGX, pro-
vides stronger trusted computing capabilities, which allow
running hardware-attested user-level enclaves on commodity
OSes [7–9,46]. Enclaves provide hardware-isolated execution
environment which guarantees that an application executing
in an enclave is tamper-resistant and can be attested remotely.
Assuming that SGX-like capabilities become commodity and
widescale in end hosts, we ask if it is feasible to build robust
P2P protocols. Our main observation is that by leveraging
the capabilities of such a trusted hardware, one can restrict
the behavior of byzantine adversaries to the general-omission
model in synchronous networks [41, 59, 79, 82].

1



Specifically, we use four SGX features, i.e., enclave ex-
ecution (F1), unbiased randomness (F2), remote attestation
(F3) and trusted elapsed time (F4). Based on these hardware
features, we enforce six security properties (P1 - P6). First,
we enforce execution integrity (P1), message integrity & au-
thenticity (P2) and blind-box computation (P3) to restrict the
attacker to not forge messages or deviate from the execution
of the given protocol. Thus, the adversarial node can only de-
lay, replay and omit messages. We further leverage lockstep
execution (P5) and message freshness (P6) to reduce the ad-
versarial model to the general-omission model, where byzan-
tine nodes have no additional advantage than omitting to send
/ receive messages. In such model, P3 disallows the adversary
to selectively omit messages based on the content. Lastly,
the halt-on-divergence (P4) allows us to detect and eliminate
peers that selectively omit messages based on identities of
senders / receivers, thus in turn reducing round complexity
and “sanitizing” the network. Leveraging these properties we
can further achieve improvement for the efficiency of proto-
cols. We present efficient designs for reliably broadcasting
messages called Enclaved Reliable Broadcast (ERB) protocol
and an unbiased common random generator called Enclaved
Random Number Generator (ERNG) protocol. Both ERB
and ERNG primitives can be used as building blocks to solve
a wide range of problems in distributed systems, such as ran-
dom beacons [84], voting schemes [75], random walks [58],
shared key generation [55, 56], cryptocurrency protocols [71]
and load balancing protocols [47,85] (details in Appendix H).

Results. Our work targets synchronous network where every
machine is running an SGX-enabled CPU. Both of our pro-
tocols asymptotically reduce the round and communication
complexity as compared to previous works in the byzantine
model, and match with (or outperform) the results in general-
omission model. For a network of size N, the round and com-
munication complexity for ERB are min{ f + 2, t + 2} and
O(N2), where t / f ( f ≤ t < N

2 ) is the number of byzantine
peers / peers actually behaving maliciously for one execution
of ERB. The communication complexity of the basic ERNG
is O(N3), and the optimized ERNG further reduces the com-
plexity to O(N logN). We have implemented our solution and
the source code is available online [11]. We evaluate both
ERB and ERNG, and our experimental results match our
theoretical claims.
Contributions. We summarize the main contributions of this
paper as below:
• Realizable General-Omission Model. We leverage SGX

features to reduce byzantine model to general-omission
model, where byzantine nodes have no extra advantage
than omitting messages.

• Better Synchronous P2P Protocols. By enforcing our prop-
erties, we can improve the efficiency of P2P protocols. As
the first attempt, we propose efficient protocols for reliable
broadcast (ERB) and unbiased random number generation
(ERNG).

• Security Analysis & Evaluation. We provide security anal-
ysis and proof for our protocol constructions. Our experi-
mental evaluation confirms the theoretical expectations of
our solutions.

2 Problem

Designing efficient solutions for P2P protocols in the byzan-
tine setting is a widely-recognized problem with limited so-
lutions [18, 19, 26, 53, 54, 81]. Our goal is to shed light on
how SGX can aid to improve efficiency of synchronous P2P
protocols. In this work, we take two fundamental problems
as examples: 1) reliable broadcast and 2) common unbiased
random number generator.

2.1 Problem Definition
In light of the previous works, we recall the standard definition
of reliable broadcast [41, 79] and common unbiased random
number [20] in the synchronous network:
Definition 2.1. (Reliable Broadcast). A protocol for reliable
broadcast in synchronous settings satisfies the following con-
ditions:
• (Validity) If the sender is honest and broadcasts a message

m, then all honest nodes eventually accept m.
• (Agreement) If an honest node accepts m, then all honest

nodes eventually accept m.
• (Integrity) For any message m, every honest node accepts m

at most once, if m was previously broadcast by the sender.
• (Termination) Every honest node eventually accepts a mes-

sage (m or ⊥).
To define a common unbiased random number generator,

we define the bias of any multi-variate function in a standard
way [20].

Definition 2.2. (Unbiasedness). Let G : {0,1}k×N→{0,1}k

be a deterministic multi-variate function that maps N ele-
ments in {0,1}k to one element in {0,1}k. We define the bias
of G, β(G), as follows:

β(G) = max
S⊆{0,1}k

(
max

( E[S]
EG[S]

,
EG[S]
E[S]

))
,

where EG[S] is the expected number of values in
G(x1, · · · ,xN)∈ S, and E[S] = |S|

2k , which is the expected value
when the output of G is distributed uniformly at random.

Definition 2.3. (Common Unbiased Random Number). A
protocol G generates a common unbiased random number
r among N nodes if it satisfies the following conditions with
high probability (w.h.p.):
• (Agreement) At the end of the protocol, all the honest nodes

agree on the same value r.
• (Unbiasedness) The bias of β(G) = 1.

For the analysis of protocols, we define the following com-
plexities with respect to a single execution of the protocol.

2



• The message / communication complexity is defined as the
total number of messages / bits transferred among all nodes
in the worst case.

• The round complexity is defined as the number of executed
rounds (or steps) in the worst-case.

2.2 Attacker Model

We consider a widely-studied standard synchronous model
of P2P systems [18, 19, 26, 53, 54, 81]. In this model, our
only new requirement is that every peer in the network uses
an SGX-enabled CPU to run the P2P protocols. In a net-
work of N nodes, the number of byzantine nodes t is strictly
bounded under a fraction of N

2 . The number of peers that
actually behave maliciously for a particular execution of the
protocol is f (≤ t). Thus, a P2P network P is composed of
N peers P = {p1, · · · , pN} such that N = 2t +1. Every peer
pi in the P2P overlay has an identifier idi and can communi-
cate with other peers using their ids. The underlying TCP/IP
substrate is assumed to provide reliable message delivery
within a known bounded delay say ∆. Moreover, we con-
sider a round-based synchronous model where each round is
equal to the time an honest node requires to send a message
and receive a response. Every peer is directly connected to
all other peers in the network and knows the network size
N. To summarize, we assume: the network size is N (S1);
the protocol starts synchronously (S2); the round time is 2∆
(S3); the number of byzantine nodes is limited upto N

2 (S4);
the peers are connected to each other (S5). This is a promi-
nently used model in the previous literature of distributed P2P
systems [18–20, 58, 79, 82]. We discuss the validity of these
assumptions in Appendix G.

Our Model using SGX. In our model, a byzantine peer has
a compromised or malware-ridden operating system but exe-
cutes protocols using SGX enclaves [7, 8, 46]. Enclaves guar-
antee untampered execution in presence of malicious under-
lying software or co-processes. The byzantine nodes can take
arbitrary software actions as long as it does not violate SGX
guarantees.

Scope. Our focus is showing how to leverage SGX features
to improve the efficiency of synchronous P2P protocols. Our
model does not consider an adversary that can perform hard-
ware attacks and break SGX security guarantees. We do
not aim to prevent any information leakage through side-
channels such as pagefaults, memory accesses or timing at-
tacks to which SGX-enabled CPUs are known to be suscepti-
ble [66,74,90]. Indeed these problems are under investigation
and recent research shows that defending against them is fea-
sible. Existing solutions against these problems can directly
apply to our work [72, 78, 86].

2.3 Strawman Solution & Attacks

Consider a strawman protocol for distributed random num-
ber generation using reliable broadcast, where the initiator

Algorithm 1: Strawman distributed random number generation
protocol using reliable broadcast.
Input: A P2P network P composed of N nodes, an initiator node idinit

Output: A message m̂

1 Initialization: m̂←⊥; Sm← /0; rnd← 1

2 upon self_id is initiator:
3 get(m) // m is a random number
4 m̂← m
5 add self_id to Sm
6 multicast INIT(m) to other peers
7 for rnd≤ t +1 do
8 upon receiving INIT(m):
9 m̂← m

10 add self_id and sender_id to Sm
11 multicast ECHO(m) to other peers in round rnd+1
12 upon receiving ECHO(m):
13 if m̂ =⊥ then
14 m̂← m
15 add self_id to Sm
16 multicast ECHO(m) to other peers in round rnd+1
17 end
18 if m = m̂ and sender_id /∈ Sm then
19 add sender_id to Sm
20 if |Sm|= N− t then
21 accept m̂
22 end
23 end
24 rnd← rnd+1
25 end
26 if rnd > t +1 then
27 accept ⊥
28 end

broadcasts a random number m using an initialization mes-
sage INIT to all the peers in a synchronous network (shown
in Algorithm 1). If m is generated randomly and unbiasedly
as well as reaches every honest node without being tampered,
then all honest nodes will agree on the common unbiased
random number m and the goal of the protocol is achieved.
In Algorithm 1, upon receiving the INIT message, each peer
further multicasts an ECHO message to all other peers. After
receiving the ECHO messages from the majority of nodes,
each peer accepts m as the final message m̂. Note that if the
initiator is honest, all honest nodes receive the message INIT
during the first round and multicast ECHO messages at the
beginning of the second round. In the second round, every
honest node receives at least N − t ECHO messages from
N− t honest nodes and maybe some byzantine nodes. Thus,
after two rounds, every honest node will output the same value
m from the initiator, which satisfies all the conditions of re-
liable broadcast in Definition 2.1. However, we show how a
byzantine initiator and other byzantine peers can attack this
protocol to violate Definitions 2.1 and 2.3.

Attacks by Byzantine Adversary. Byzantine initiator / peers
can tamper with the execution of Algorithm 1 and forge the
values of INIT and ECHO messages to perpetrate the follow-
ing attacks.
A1 (Execution Deviation): For this attack, an adversary de-
viates from the control flow of the running program for the
given protocol. The adversary can disregard essential condi-
tions to jump to the desired instructions and execute them
directly. For example, the adversary can skip all the conditions
like Line 7 & 13 to directly multicast its ECHO value to parts

3



of honest nodes but not all of them, to introduce equivoca-
tion to their final decisions. Moreover, the adversary can also
repeat particular instructions to obtain an output she wants.
For instance, if m is generated from a random source without
being tampered during the execution of the protocol, an unbi-
ased common random number can be agreed among all the
peers in the network. A byzantine peer, however, can repeat
the step that generates m (Line 3) from the random source
until it returns a favorable random number. Hence, the output
is biased as per Definition 2.3.
A2 (Message Forgery): Suppose that the adversary does not
deviate from the execution of the given protocol, she can
still alter the data flow (including input / output and inter-
mediate states) of the program to forge messages. As per
Definition 2.1, a reliable broadcast protocol requires that if
one honest node accepts message m then all honest nodes
accept m. The adversary can tamper with the INIT and ECHO
messages to violate this agreement property of the protocol. A
byzantine initiator colluding with other byzantine peers in the
network can tamper with Line 6, 11 and 16 in the algorithm
such that some honest nodes receive most ECHO messages
with m′ while others with m. This results in a fraction of hon-
est nodes assigning m̂ with m′ and accepting m′, while other
honest nodes accept m as the final output, thereby causing
inconsistency in the network.
A3 (Selective Omission): Assume that the adversary does
not deviate from the control flow (i.e., the execution) of the
given protocol or tamper with the data flow to forge messages,
she can still omit, delay and replay messages in this restricted
model. For an omission attack, it has two types: one is based
on the content of the transmitted message and the other is
dependent on the identity of the sender / receiver. For the
first type, the adversary can observe its generated or received
random number m and selectively decide to drop or forward
it to other nodes based on its value, which introduces a bias
in the final output for the honest nodes. For example, if the
adversarial peers receive or initiate a message m, which is
not the favorable one, they can omit to relay the message to
the other nodes, thus all honest nodes may finally agree on ⊥
instead of m. Further, to violate the agreement condition in
Definition 2.1 and 2.3, the adversary can selectively decide
to omit the message m depending on whether the destination
peer is honest or malicious. It can broadcast m correctly to a
few honest nodes and not send the message to the others for
the last round. The honest nodes receiving m can multicast m
to the others, but the others will not accept it as the execution
ends. Thus, the honest nodes that do not receive a message
will agree on ⊥ while others will agree on m.
A4 (Message Delay): Alternatively, to generate an unbiased
common random number, every peer can broadcast its random
number to all other peers using Algorithm 1. All peers can
then XOR the random numbers in the final set to generate
the output. To bias this final output, a byzantine peer can
intentionally hold its random number until it receives inputs

Enclaves)

OSs)

Enclaver)

OSr)
Transfer Write Read 

Peers Peerr 

)))

Figure 1: Each peer consists of two entities: an Enclave and an OS. The OS
models the operating system and memory. The Enclave models the isolated
memory and the secure execution of a program. The sender Enclaves can
send a message via a secure channel to the receiver Enclaver . The grey areas
are secure against malicious OSes of byzantine nodes.

from all other honest peers [20]. In this way, the adversary can
“look ahead" in the protocol, calculate the final output and
then decide whether to participate in the protocol by sending
its random number. If the final random number already favors
the adversary then it does not participate in the protocol,
otherwise it sends its message to all the peers. Note that, for
t < N

2 , all the byzantine adversaries can collude to introduce
an exponential bias in the final value.
A5 (Message Replay): In the restricted model, the adversar-
ial node can use a message mprev from an instance of the
protocol running in parallel, or which was run in the past to
one (or more) honest node(s) and forward the correct message
m to other honest nodes [69]. This results in an inconsistency
where few honest nodes agree on mprev and others agree on
m, thereby violating the agreement condition.

3 Solution Overview

In this section, we put forward ideas using SGX features to
enforce six security properties to restrict the capabilities (A1 -
A5) of a byzantine adversary, as shown in Section 2.

3.1 SGX Features and Security Properties

We first start by recalling Intel SGX features (supported
in both simulation and hardware modes in the latest ver-
sion [7, 9]), which can also be provided by other trusted hard-
ware.
F1: Enclaved Execution - SGX supports hardware-isolated
memory region called enclaves such that a compromised un-
derlying OS cannot tamper the execution of the code running
inside this enclave.
F2: Unbiased Randomness - SGX provides a function
sgx_read_rand that executes the RDRAND instruction to gen-
erate hardware-assisted unbiased random numbers.
F3: Remote Attestation - SGX allows a remote party to ver-
ify that an application is running in an enclave on an SGX-
enabled CPU.
F4: Trusted Elapsed Time - SGX provides a function
sgx_get_trusted_time that returns a trusted elapsed time
in seconds relative to a reference point.

Abstractly, a peer can be considered as the composition
of two entities: an OS and an Enclave as shown in Figure 1.
The OS models the untrusted entity including the operating
system and memory. It has access to all the system resources

4



such as file system and network. The OS can arbitrarily in-
voke an enclave program and start its execution. The Enclave
models the isolated memory space that loads the program
and executes it securely. Thus, Enclave corresponds to the
trusted entity of a peer. We illustrate how to enforce P1 - P6
properties using SGX features to thwart A1 - A5 attacks.
P1 (Execution Integrity): With remote attestation (F3), an
enclave in one peer can verify the correctness of the running
program for the given protocol on the other nodes and whether
it is executing on a valid SGX-enabled CPU or not. More-
over, F1 ensures that the execution in an enclave cannot be
tampered with by the OS. F1 and F3 together enforce the
execution integrity against A1. Hence, an adversary cannot
deviate from the execution of the protocol in an enclave ar-
bitrarily by skipping / repeating instructions to violate the
control flow of the running program.
P2 (Message Integrity & Authenticity): In designing our
protocols, we first perform a setup phase where each peer
connects to every other in the network and then performs a
series of steps. Analogous to P1, every enclave first uses F3
to verify the correctness of the protocol executing on other
peers. Next, they generate public / private key pairs inside the
enclaves and exchange the public keys with each other. Then
all the messages transmitted between any two enclaves can
be signed to ensure the integrity and authenticity against A2.
Moreover, the internal states of the program are also protected
using F1. Therefore, the integrity of all messages including
input / output / intermediate states is guaranteed. In this case,
it is clear that an adversary cannot forge valid messages to
bias the honest nodes to make inconsistent decisions.
P3 (Blind-box Computation): F1 ensures that all interme-
diate states of the protocol’s computation are hidden from the
OS. Leveraging F2, the provided randomness is also hidden
from the OS. This guarantees that the input state is hidden
along with the intermediate states of the protocol’s execu-
tion We say in this case that the computation is a blind-box
computation. As the adversarial node does not know the ran-
dom number and given that the output of the computation is
encrypted between the Enclave and the OS, she cannot selec-
tively omit or drop messages based on their contents. Note
that an important part of instantiating such a blind-box com-
putation is the ability to instantiate a secure channel between
two or more enclaves. In fact, enclaves can agree on a shared
key to establish a secure channel using Diffie-Hellman key
exchange. Nodes can then encrypt all the messages (including
program’s intermediate input / output) transmitted between
each other to provide confidentiality against malicious OSes.
Note that, establishing such a shared key in the enclaved
setting is slightly weaker than the standard byzantine model,
as the malicious operating system cannot access the shared
secret keys and decrypt the exchanged messages due to F1.
With P1 - P3, we can reduce the byzantine model to a re-
stricted model, where an adversarial node can only replay,
omit and delay messages.

P4 (Halt-on-Divergence): To mitigate selective omission
based on nodes’ identities (A3), we enforce a security mecha-
nism called halt-on-divergence. This property halts any ma-
licious node deviating from the protocol under some given
condition. As an instance, if an adversarial node sends a mes-
sage, but does not receive adequate responses, it will be forced
to leave the current protocol execution. Halt-on-divergence
mechanism should be incorporated through a specific ac-
knowledgment protocol instantiation in such a way that every
malicious node will be forced to leave if the acknowledgment
is not verified. In particular, we introduce an acknowledgment
scheme where every receiver acknowledges the sender on
receiving every valid message. A message sent over a secure
channel is considered valid only if it contains the expected
sequence and round number. Naturally, an acknowledgment is
not sent for a replayed, omitted or delayed message. Since all
honest receivers will reply with acknowledgment (ACK) mes-
sages on receiving valid messages, an honest sender should
at least receive t +1 ACK messages. Any node receiving less
than t +1 ACK messages will halt and leave the network.

The key idea here is to penalize any deviating adversary
by churning the node out of the network. This effectively
“sanitizes" the network. Thus, to remain a part of the network,
every peer should send valid messages to the majority of the
network. This property also aids honest nodes in the proto-
col to decide the final output early and finish the execution
immediately.
P5 (Lockstep Execution): F4 allows us to realize a synchro-
nized network across all rounds of a protocol. Each peer uses
F4 to decide the correct value of the ongoing round and inserts
this round number in all the sent messages. To detect delay
attacks (A4), a peer simply matches the round number present
in an incoming message with the current round number. This
defense is hard in the byzantine model with public-key in-
frastructure even if it supports F1, since the OS can tamper
with the relative time to either increase or decrease the rounds
of a node. Therefore, having access to a trusted elapsed time
functionality allows to perform lockstep execution and detect
delay attacks in the restricted model.
P6 (Message Freshness): Similar to [69], we use sequence
numbers to ensure message freshness and therefore defend
against replay attacks (A5). The main challenge lies in ensur-
ing secure exchange of the initial sequence numbers for each
peer and ensuring that the sequence number remains untam-
pered with during the entire intermediate states of the protocol
execution. Using the secure channel, the peers securely ex-
change a nonce or a sequence number, which is incremented
sequentially by the peer. The nonce is generated using F2
supported by SGX. This prevents the malicious adversary
from tampering the initial nonce value to its own advantage.
Note that the keys and initial sequence numbers exchange
occur only once during the setup phase. If an adversarial node
restarts or relaunches its enclave, all the data in the enclave
will be removed. Since the enclave does not have the valid

5



sequence number and round number, it cannot re-join the
same or any on-going execution, which is equivalent to be
considered as a new node for the protocol.

3.2 Overview of Our Results
In this work, we achieve the following results.
R1: By enforcing (P1 - P6), we reduce the byzantine model
to the general-omission model.

By enforcing P1 - P3, we first reduce byzantine model to a
restricted model, in which byzantine nodes can only delay /
omit / replay messages. Due to space constraints, we defer the
formalization and proof to Appendix A. We believe that the
formalization, while based on traditional cryptographic prim-
itives, provides a new conceptual framing of SGX-enabled
CPUs security features, and may be of independent interest.
By applying P5 and P6, we further confine the adversarial
nodes into the general-omission model.
R2: We propose an efficient reliable broadcast protocol
(ERB) with early stopping, which improves communication
complexity from O(N3) to O(N2) (refer to Section 4).

For this result, we leverage four properties. First, P1 - P3
ensure that the adversarial nodes cannot forge messages and
deviate from the execution of the protocol. Second, we lever-
age P4 to show that ERB can broadcast a message to the entire
network in min{ f +2, t +2} rounds with better performance
as shown in Table 1. We further illustrate that our properties
are generic and can improve the efficiency of traditional proto-
cols of reliable broadcast. Due to space limitations, we detail
our findings in Appendix B.
R3: We propose a new unbiased random number generation
protocol (ERNG) with communication complexity O(N3) for
the basic version, or O(N logN) for the optimized one, as
shown in Table 2 (refer to Section 5).

With P3 and P5, our unoptimized ERNG solution directly
runs our ERB protocol as a sub-routine on the entire net-
work to agree on a random number generated using F2. It has
round and communication complexity of O(N) and O(N3),
respectively. We present an optimized version of ERNG by
reducing the byzantine fraction from N

2 to N
3 , and forming a

cluster of peers within the network. Leveraging the trusted
randomness F2 and P3, we can sample a small set of nodes
forming a representative cluster. The ERB protocol is exe-
cuted within this small cluster to generate the final unbiased
random number. The round and communication complexity
of this optimized ERNG is further reduced to O(logN) and
O(N logN). Note that the optimized version of ERNG only
applies when the size of the network is large enough.

4 Enclaved Reliable Broadcast Protocol
We propose an enclaved reliable broadcast (ERB) in the
synchronous model using SGX features. The transmitted
message, val, between any two peers has the format: val :=
〈type, id,seq,m, rnd〉, where type∈{INIT,ECHO,ACK} and
rnd represents the current round of the ERB protocol. If

Protocol Attacker
Model

Network
Size

Round
Complexity

Comm.
Complexity

PT [82]
Omission

t +1 min{ f +2, t +1} O(N3)PR [79] 2t +1 min{ f +2, t +1}
CT [41] 2t +1 O(N2)
PSL [81]

Byzantine

3t +1 t +1 O(exp (N))BGP [28] min{ f +2, t +1}
BG [26] 4t +1 t +1

O(poly(N))GM [53, 54] 3t +1 min{ f +5, t +1}
AD15 [18] min{ f +2, t +1}
AD14 [19] Byzantine 2t +1 3t +4 O(N4)
ERB Byz. + SGX 2t +1 min{ f +2, t +2} O(N2)

Table 1: Round complexity and communication complexity for reliable
broadcast in synchronous network.

Protocol Network
Size

Round
Complexity

Comm.
Complexity

AS [20] 6t +1 O(N) O(N3)
AD14 [19] 2t +1 O(N) O(N4)
Basic ERNG 2t +1 O(N) O(N3)
Optimized ERNG 3t +1 O(logN) O(N logN)

Table 2: Round / communication complexity for random number generation
protocols in synchronous distributed systems.

type= INIT, then the initiator peer idinit is initiating the broad-
cast by sending the message m with sequence number seqinit

at round rnd. If type = ECHO, it means that its sender knows
that idinit has sent m, as it has already received either a value
with INIT or ECHO for the first time. Finally, if type = ACK,
it means that the peer acknowledges that it has already re-
ceived either INIT or ECHO values from the sender. We in-
troduce three functions Halt, Multicast and Wait:
• Halt(st): is a function that sets the state st to ⊥.
• Multicast

(
idi,val

)
: is a functionality that multicasts the

value val from the sender pi to the receiver p j, for all j ∈
[N]\{i}.

• Wait(τ): is a function that has as an input the current
elapsed time τ in the ongoing round, and suspends the
protocol for (2∆− τ) seconds.
Note that Halt function enforces the halt-on-divergence

property (P4) that we have introduced in Section 3. When the
state of the node is set to ⊥ the node halts on-divergence and
is ejected from the P2P network P . For the sake of exposition,
we write Wait(rnd) in the code description, we say in this
case that the protocol waits until the end of the round rnd.

4.1 ERB details

Prior to running the very first instance of the ERB protocol,
there is a setup phase. The setup is performed whenever the
program (ERB) needs to be updated or changed. We detail
the setup phase followed by the explanation of our algorithm.
Setup Phase: Every pair of sender and receiver peer use re-
mote attestation (F3) along with enclaved execution (F1) to
verify the correctness of the execution, and therefore enforc-
ing P1 - P3. Then they establish a secure channel using Diffie-
Hellman key exchange. This setup enforces P1 - P3, which
restricts the byzantine nodes to only omit, replay and delay
messages. Next, each peer picks at random a sequence num-

ber such that seqs,seqr
$← {0,1}k and send it to each other.

That is, every node has to store the sequence numbers of all

6



other nodes in P . Finally, every node sets the variable rnd to
the value 1. The overhead of the setup is in O(N2) while the
storage overhead per node is in O(N).
Initialization Phase: An initiator node first multicasts the
value val = 〈INIT, idinit,seqinit,m, rnd)〉, where seqinit is the
sequence number of the initiator node, and rnd is the round
number. The round rnd is first initialized to 1, the enclave
will now increment the rnd after every 2∆ seconds—we take
advantage of the elapsed time feature of SGX to tie a round
to an interval of 2∆ seconds.
Echo Phase: Until round t +2, if a node receives an INIT or
ECHO message for the first time, it performs the following
actions: (1) start the local clock and initialize the round rnd
to 1, the round will increment every 2∆ seconds, (2) if both
rnd and seq are consistent with the expected values, it will
store the message m, else it just ignores it and treats it as an
omitted message. If there is no delay or replay detected, then
it multicasts an ECHO message to all nodes at the end of the
current round. If the node has already received a valid ECHO
message from a distinct node, it will only add the sender’s
identifier into the set Secho. Recall that at the end of the setup
phase, all honest nodes have the same copy of the sequence
number of all honest nodes. After every valid instance of the
protocol, nodes will increase all sequence numbers by 1.
Decision Phase: If the node has received at least t+1 correct
ECHO messages from distinct nodes, i.e., |Secho|= t+1, then
the node accepts m̂. After t + 2 rounds, if the node has not
received adequate distinct ECHO messages, it accepts m̂ :=⊥.
Every multicast requires the node to receive at least t+1 ACK
messages, else the node churns out itself using Halt.

4.2 Analysis
In Algorithm 2, if a byzantine sender decides to omit a mes-
sage, it will not receive a corresponding ACK message as
the sent messages never reach the receiver peer. The sender
Enclaves detects that the underlying OSs is byzantine if it
does not receive at least t +1 ACK messages. On failing to
receive majority ACK messages, Enclaves executes the Halt
function as per our algorithm and churns itself out of the net-
work based on our halt-on-divergence property (P4). By lever-
aging the P4, any node can actively detect its own anomalous
behavior instead of relying on other nodes to send messages
every round to passively identify the anomaly. This results in
communication complexity for anomaly detection decreased
from O(N2) to O(N) and the overall complexity is reduced to
O(N2), compared to previous passive-detection approaches,
e.g., Perry et al.’s work [82]. Here we state our main theorem
below and defer the detailed proof to Appendix C.

Theorem 4.1. If N ≥ 2t + 1, ERB is a reliable broadcast
protocol as defined in Definition 2.1.

ERB Performance Analysis. Algorithm 2 has a worst-case
round complexity equal to t + 2 with communication com-
plexity in O(N2) and t < N

2 byzantine nodes. This only occurs

Algorithm 2: ERB: Enclaved reliable broadcast protocol (for a node
idi with the initiator idinit sending a message m and a sequence number
seqinit).

Input: A P2P network P composed N nodes, a message m and a sequence
number seqinit for the initiator idinit

Output: A message m̂

• initialization: m̂←⊥;Secho← /0; rnd← 1
• upon idi = idinit and sti 6=⊥:

m̂← m;
Secho← Secho ∪{idinit};
Multicast

(
idinit,〈INIT, idinit,seqinit,m, rnd〉

)
;

• for rnd≤ t +2 do
• upon receiving 〈INIT, idinit,seq,m, rnd′〉 from idinit:

if rnd′ = rnd and seq = seqinit then
send 〈ACK, idinit,seq,H(m), rnd〉 to idinit;
m̂← m;
Secho← Secho ∪{idinit}∪{idi};
Wait

(
rnd
)

then Multicast
(
idi,〈ECHO, idinit,seq,m, rnd+1〉

)
;

end
• upon receiving 〈ECHO, idinit,seq,m, rnd′〉 from peer id j :

if rnd′ = rnd and seq = seqinit then
send 〈ACK, idinit,seq,H(val), rnd〉, where
val = 〈ECHO, idinit,seq,m, rnd〉 to peer id j ;
if m̂ =⊥ then

m̂← m;
Secho← Secho ∪{idi};
Wait

(
rnd
)

then
Multicast

(
idi,〈ECHO, idinit,seq,m, rnd+1〉

)
;

end
if id j /∈ Secho then

Secho← Secho ∪{id j}
if |Secho|= N− t then

accept m̂;
end

end
end

• upon Multicast(idi,val):
send val to idk , for all k ∈ [N]\{i};
receive Nack acknowledgements 〈ACK, idinit,seq,H(val), rnd′〉, where
rnd′ = rnd and seq = seqinit;
if Nack < t then

Halt(sti) ;
end

• rnd← rnd+1;
end

• if |Secho|< N− t then
m̂←⊥;
accept m̂;

end
• seqinit← seq+1;

if the byzantine peers delay the instance for t rounds before
sending the message to at least one honest node. However,
in this case, the round complexity is equal to f + 2 rather
than t + 2 as the delay is only in function of the number of
byzantine nodes f . On the other hand, byzantine nodes can
also decide to not send the message to any honest node, and
then the round complexity is t +2 with O(t) communication
complexity.

5 Enclaved Random Number Generation
We present our algorithm that generates an unbiased common
random number called enclaved random number generation
(ERNG).

5.1 Unoptimized ERNG

We detail our unoptimized ERNG in Algorithm 3. At a higher
level, every node generates a random number from the en-
clave, and then performs ERB protocol to broadcast to every

7



Algorithm 3: Unoptimized-ERNG: Unoptimized enclaved unbiased
random number generation protocol executed by peer pi.
Input: A P2P network P composed of N nodes
Output: A unbiased random number r

• initialization: Sfinal← /0; rnd← 1
for rnd≤ t +2 do
• if rnd = 1 then

initiate ERB with inputs mi
$←{0,1}k and seqi;

end
if 2≤ rnd≤ t +2 then

execute ERB instances and wait for the output
(Mi = {m̂1, · · · , m̂li});

end
rnd← rnd+1;

end
• Sfinal←Mi;

seq j ← seq j +1, for all j ∈ [N]
accept r =

⊕
v∈Sfinal

v.

node. According to Theorem C.1, all honest nodes in this
case will receive the random numbers from all honest nodes
after t + 2 rounds, and may eventually receive several ran-
dom numbers from other byzantine nodes. According to the
validity requirement, for each ERB instance, every honest
node will accept a random number from its initiator or ⊥ so
that all honest nodes have the same final set Sfinal of random
numbers. By performing exclusive disjunction (or XOR) of
all received random numbers, every honest node obtains an
unbiased common random number eventually.

Unbiasedness and Randomness Analysis. We describe the
main intuition behind the common unbiasedness and ran-
domness of our ERNG’s output and defer formal details to
Appendix E. To bias the random value, the adversary may
perform several attacks. It can first try to directly forge the
random number, however, this is restricted as per execution
integrity (P1) and message integrity (P2) enforced by F1 and
F3. An adversary can force the program to generate a local
random number of its choice. However, each enclave gener-
ates an unbiased random number from SGX-enabled CPU
instruction RDRAND using F2. It is not possible to bias the
source of randomness based on the hardware guarantees.

Our blind-box computation (P3) together with the secure
channel guarantee that an adversary cannot selectively omit
its random number based on its value with the goal to bias
the output. Therefore, the adversary cannot infer the random
numbers submitted by other honest peers during the execu-
tion. Note that, the defense against replay attacks is already
provided by the ERB protocol.

One adversarial strategy is to learn the final output and then
decide whether to participate or not in the protocol, as in At-
tack A4. From Algorithm 3, all honest nodes output the final
value after round t + 2. In order to bias the final value, the
adversary should perform the following steps within round
number t + 2: (1) learn the XOR of random numbers from
honest nodes, (2) decide whether to participate or not based
on the final value, (3) and multicast its number to honest
nodes. In Algorithm 3, the final XOR operation executes only
when rnd > t + 2. The execution integrity (P1) ensures se-

quential execution of our protocol. This property restricts the
adversary from directly jumping to the step that computes the
XOR operation and learn the result before other honest nodes
generate the final output. Next, the lockstep execution (P5)
enforced by the elapsed time feature (F4) allows us to bound
the time for each round, even on a byzantine peer. Therefore,
the adversary cannot look ahead and compute the final output
before the last round. If the adversary decides to delay its
own random number based on the computed final value, the
adversarial random number will be neglected by all honest
peers as it will reach after t +2 round. Combining P1, P5 and
P3, it is not possible for the byzantine adversary to achieve
steps (1) and (3) simultaneously.

For clarity and without any loss of generality, we model Al-
gorithm 3 as a multi-variate function G : {0,1}k×N →{0,1}k

that maps N elements in {0,1}k to one element in {0,1}k

such that G(x1, · · · ,xN) =
⊕N

i=1 xi.
Theorem 5.1. The bias of G β(G) = 1.

We defer the proof to Appendix E.

5.2 Optimized ERNG

Next, we illustrate the main steps behind our optimized
ERNG and defer the pseudo-code details to Appendix F.1. In
this section, we consider that at most t ≤ N

3 nodes of the net-
work can be byzantine. In this case, ERNG terminates after
γ+4 rounds, where γ is a statistical parameter. The intuition
behind our optimization can be formulated as follows: we
first notice that if we select uniformly at random a subset of
nodes from P , we can still guarantee w.h.p. the existence of
an honest majority within this smaller representative cluster.
By leveraging F2 to generate a random number and blind-box
computation (P3), we can sample a set of peers forming a rep-
resentative cluster. The main remaining question, therefore,
is how large this cluster should be. As a starting point, note
that if the cluster size is equal to 2N

3 , the probability of having
an honest majority is equal to one. This already suggests that
the cluster size can be chosen to be smaller. Conceptually, the
protocol can be decomposed into three main steps:
Cluster Selection: The purpose of this step is to construct a
representative cluster of the entire P2P network. The cluster
will consist of nodes selected uniformly at random from P . At
round 1, every node picks uniformly at random a number from
{0, · · · , N

2γ
−1} using SGX (F2). This operation is protected

leveraging property P3 in such a way that the computation is
hidden from the OS. If the random number equals 0, then the
node is chosen to be part of the cluster, and then it multicasts
a CHOSEN message to all nodes in P . Upon receiving the
CHOSEN message, every chosen node adds the identifier of
the sender to its own set Schosen. The size of the set Schosen

represents the size of the cluster.
ERB Instances: We first detail a pseudo-solution and then de-
tail our main construction in Algorithm 6 in Appendix F.1. In
round 2, the nodes constituting the cluster will each generate a

8



random number and broadcast it only to the nodes constituting
the cluster (i.e., peers’ identifiers in Schosen). That is, every
node in the cluster will run an independent ERB instance.
The intuition behind these multiple instances is the following:
for the broadcast to be effective, at least one broadcast in-
stance has to succeed in that the accepted message is different
from ⊥. However, the complexity of such solution is cubic in
O(|Schosen|3) which can be a handicap in term of efficiency.
As a solution, we incorporate a two-phases clustering. The
idea behind this choice is the following: in order to generate
a random number we only require one honest node to output
a random number r (otherwise the ERNG protocol may out-
put ⊥). We can then proceed to select just a few number of
nodes to perform the ERB protocol. As long as at least one
of these nodes is honest, the correctness of our ERNG holds.
Concretely, to generate the second representative cluster, we
perform the following: from nodes in Schosen, we uniformly
pick at random a value from {0, · · · ,γ′− 1}, where γ′ is a
parameter in function of γ that verifies γ′ ≤ γ. The peers that
output a random number equal to zero will be the only peers
able to initiate the ERB protocol. We will show that this strat-
egy will greatly decrease the communication complexity and
defer its analysis to Appendix F. Note that this phase lasts for
γ+2 rounds when all ERB instances terminate.
Selection Decision: At the end of the broadcast phase, the
node of the clusters will have each a set containing eventu-
ally several random numbers. Note that, as ERB is a reliable
broadcast primitive, we know that all honest peers in the clus-
ter will have the same set of random numbers. Once a node
in P receives at least γ+1 sets of random numbers, Mκ, orig-
inating from the nodes in the cluster, it will output the set
Mκ as Sfinal. All honest nodes will output the same set under
the assumption that there is a majority of honest nodes in the
cluster. Finally, the random number equals the XOR value of
all random numbers in Sfinal.

5.3 Analysis
We present the proofs for the Lemma and Theorems below in
Appendix F.
Lemma 5.1. If up to t = N

3 nodes are byzantine, then with
at least 1−negl(γ) probability, the representative cluster has
more than γ honest nodes, and less than γ byzantine nodes.

Theorem 5.2. Agreement: All honest nodes eventually agree
on the same common set Sfinal in ERNG.

Theorem 5.3. Unbiasedness: The output of the ERNG pro-
tocol is an unbiased random number.
ERNG Performance Analysis. Note that in ERNG, O(γ)
nodes will be chosen to form the first representative cluster
and therefore run O(γ) Multicast functions. The communi-
cation complexity of this first step is O(γ2). Then, among
this first representative cluster, a second cluster will be com-
posed such that all nodes of this cluster will run each an ERB

instance. If the size of the second representative cluster is
O(
√

γ) (as shown in Corollary F.1 in Appendix F), then the
communication complexity of this step is O(γ2 ·√γ). Finally,
the member of the first representative cluster will multicast
the output of the ERB instances to all peers in P . The com-
munication complexity of this final step is O(N · γ). That
is, overall, the communication complexity of ERNG equals
O(N · γ+ γ

5
2 ). Based on Lemmas F.1 and F.2, if N is large

such that it verifies γ ∈ o(N), then we can set γ ∈ O(logN).
In this case, the communication complexity and round com-
plexity of ERNG are equal to O(N logN) and O(logN).

6 Evaluation

Implementation. We have implemented a prototype of ERB,
unoptimized ERNG and ERNG in C/C++ using Intel SGX’s
Linux SDK [8]. The implementation contains 4030 lines of
code (LOC) measured using CLOC tool [4]. Our prototype
implementation is open source and available online [11]. We
re-use the ported OpenSSL library including cryptographic
utilities (libcrypto available with Intel SDK), to perform
Diffie-Hellman key exchange and AES encryption/decryp-
tion. We use boost [3] library to implement the communi-
cations between any two nodes and use Google protobuf

libraries [12] and rapidjson [13] to serialize transferred
data.
Experimental Setup. We use the DeterLab network testbed
for our experiments [6]. It consists of 40 servers running
Ubuntu 14.04 with dual Intel(R) Xeon(R) hexacore processors
running at 2.2 GHZ with 24 cores and 24 GB of RAM. All
machines are connected and share the same link with the
bandwidth of 128MBps. Every node in our protocol takes up
to 1 - 800 MB memory which limits the maximum number of
nodes to 210 in our experiments. Due to the limited number
of machines in our testbed, we have to run multiple nodes on
each machine, thus we use SGX simulation mode1 for our
program and use a simulated Intel attestation service (IAS).
Evaluation Methodology. To evaluate the correctness of
our protocols, we measure the round complexity (time to
terminate) and communication complexity (network traffic)
for ERB, unoptimized-ERNG and ERNG, by varying the
number of nodes from 22 to 210. We have highly optimized
our system to handle dynamic ports allocations to handle
a larger number of nodes within one machine (order of 25
nodes per machine). Part of our results reported in this section
are for the optimistic case where all nodes behave honestly.
We evaluate the round complexity of ERB while varying the
number of byzantine nodes in the network up to 1

4 of the
entire network composed of 512 nodes. We also compare our
experiment results for the traffic size with theoretical ones to
verify if they match our asymptotic analysis.

1 All SGX features we use are supported in the simulation mode and F4
is supported in seconds.

9



 1

 10

 100

2 2
3

2
5

2
7

2
9

2
11

T
im

e
 (

s
)

Number of peers

One Round
ERB termination

(a) Termination of ERB slightly increase with the
number of peers.

 1

 10

 100

2 2
3

2
5

2
7

2
9

T
im

e
 (

s
)

Number of peers

One Round
ERNG termination

(b) Termination time of ERNG in function of the
number of nodes in P .

 10

 100

1/512 1/256 1/128 1/64 1/32 1/16 1/8 1/4

T
im

e
 (

s
)

Byzantine peers (fraction)

N=512

(c) Time termination of ERB linearly increase with
the number of byzantine nodes in P .

Figure 2: Termination time in seconds for ERB, both unoptimized and optimized versions of ERNG in honest and byzantine network with different fractions.

 0

 50

 100

 150

 200

 250

 300

2 2
3

2
5

2
7

2
9

2
11

S
iz

e
 (

M
B

y
te

s
)

Number of peers

Ex
Th

(a) Communication of ERB in function of the num-
ber of nodes in P .

 0.01

 0.1

 1

 10

 100

 1000

 10000

2 2
3

2
5

2
7

2
9

S
iz

e
 (

M
B

y
te

s
)

Number of peers

Ex-ERNG-0
Ex-ERNG-1
Th-ERNG-0
Th-ERNG-1

(b) Communication of ERNG in function of the
number of nodes in P .

 10

 100

1/256 1/128 1/64 1/32 1/16 1/8 1/4

S
iz

e
 (

M
B

y
te

s
)

Byzantine peers (fraction)

Ex
Th

(c) Communication of ERB in function of different
byzantine peers in P .

Figure 3: (Th) theoretical and (Ex) experimental comparisons off network overall communication bandwidth in MB for ERB, both unoptimized (ERNG-0) and
optimized (ERNG-1) versions of ERNG in honest and byzantine network with different fractions.

6.1 ERB Evaluation

Honest Termination: Constant Scalability. Determining
the termination of ERB is essential to validate our reliable
broadcast primitive. Fig. (2a) shows that the termination time,
in the case of an honest initiator, is nearly equal to twice
the value of one round. This validates our theoretical results
where we show that ERB finishes in 2 rounds when the ini-
tiator is honest. The small increase at 28 is purely due to the
bandwidth bottleneck of our testbed, as the nodes share the
same link.
Traffic Size: Quadratic Scalability. Fig. (3a) demonstrates
that the communication complexity quadratically increases in
function of the number of peers in P (note that the x-axis is
logarithmic). The message size of INIT and ACK is around
100 Bytes and 80 Bytes, respectively. For 1024 nodes in P , the
traffic size equals 277 MB. We show that this result matches
our theoretical expectation.

6.2 ERNG Evaluation

Honest Termination: Limited Scalability. We show in
Fig (2b) that ERNG termination remains slightly constant
from 22 to 27 and then increases afterwards. Unfortunately,
this does not reflect our theoretical findings and this is mainly
due to the limitation of our testbed, namely, the upper bound
on the communication link of 128MBps that all nodes have to
share. For small values of peers N, the communication com-
plexity of the unoptimized ERNG is cubic in N, while the
optimized version is also (nearly) cubic for smaller values of

N. Given a fixed bandwidth, this explains why the termination
increases for larger values of N to reach 103 s for one instance
of ERNG.
Traffic Size: Cubic Scalability. Fig. (3b) demonstrates that
the communication complexity cubically increases in function
of the number of peers in P for the unoptimized ERNG. Our
theoretical results back up our experimental result. For ERNG
as the bandwidth links get overflowed much faster, we limited
our experiments to 512 nodes. For the optimized ERNG,
small values of the number of peers in the network did not
allow us to optimally select a cluster size that can guarantee
w.h.p. the agreement. In this case, we fix the cluster to be 2

3
of the network and we show that the traffic size decreases and
has a 60% improvement over the unoptimized one. Note that
this result can get much better for a larger number of peers in
realistic settings. Here, we draw our theoretical curve for the
ideal evaluation which can be guaranteed only for larger N.

6.3 Byzantine case
In Fig (2c), we show that the termination time of ERB lin-
early increases with the number of byzantine nodes behaving
maliciously in the current instance. We gradually increase
the fraction of byzantine nodes from 1

512 to 1
4 . As a strat-

egy of byzantine nodes, we have taken into consideration the
worst-case where byzantine nodes create a chain (a byzantine
sends its message to only one byzantine node each round
and then gets eliminated) in order to delay the termination
as much as possible. In the case of 1

4 byzantine fraction, the
ERB termination takes 389 seconds while it only takes 4

10



seconds in the honest case. For traffic size, if the number of
byzantine nodes increases, the communication complexity
of ERB decreases as shown in Fig. (3c). This is mainly due
to the halt-on-divergence property that will eject the nodes
whenever it behaves maliciously. That is when an honest node
multicasts a message, the eliminated byzantine node will not
acknowledge this message which greatly reduces the commu-
nication complexity. For example, for 1

4 byzantine fraction in
a 512-node network, the traffic size equals 35 MB, while in
an honest node instance, it is equal to 69 MB, a 50% decrease.

7 Related Work
Reliable broadcast has been extensively investigated in vari-
ous adversarial models. In our work, we show how Intel SGX
improves the efficiency of existing protocols in these models,
renewing interest in studying these protocols with SGX-based
implementations.

Reliable Broadcast: Reliable broadcast has been extensively
studied since the 1980s, and is closely related to the problem
of byzantine agreement (BA). Several excellent surveys on the
problem are available [64, 88]. Byzantine agreement can also
achieve reliable broadcast [32, 35, 37, 61, 73, 76, 83, 88]. For
the asynchronous network, Bracha’s classic reliable broadcast
protocol requires O(N2) communication complexity and toler-
ates up to N

3 byzantine nodes [33,34]. Cachin and Tessaro [38]
leverage erasure codes to improve efficiency and reduce com-
munication complexity. However, as the time is not bounded,
messages may incur arbitrary delays, and most protocols do
not guarantee terminating runs, except under some special
assumptions such as sharing a “common coin” [32, 83].

Without any extra assumptions, reliable broadcast and
byzantine agreement in the synchronous setting can tolerate
N
3 byzantine nodes at most, and with min{ f +2, t +1} round
complexity [48, 65, 81]. Lamport et al. and Pease et al. pro-
pose protocols terminating within t +1 rounds and tolerating
up to N

3 byzantine nodes, but with exponential communication
complexity [65, 81]. Berman et al. achieve O(poly(N)) com-
munication complexity but only tolerating upto N

4 byzantine
nodes [26]. Garay et al. later present a BA protocol terminat-
ing within min{ f +5, t +1} rounds [53, 54].

To tolerate a larger fraction of byzantine nodes, additional
assumptions are often needed. A common assumption is that
of having a one-time trusted dealer that pre-deploys PKI in the
infrastructure. This assumption, for instance, allows digital
signatures to be used for authentication, wherein a message
claimed to be sent by a node A can be assured to be origi-
nating from A [49, 52, 62, 65]. This weakens the capabilities
of the byzantine adversary, which cannot forge messages on
behalf of honest nodes. Researchers have proposed protocols
to use digital signatures to boost the resilience from N

3 to
N− 1, but the communication complexity is still large, i.e.,
O(exp(N)) and O(N3) [49, 65]. Katz et al. extend the work
of Feldman and Micali [51] to employ authenticated chan-
nels, and present protocols tolerating N

2 byzantine nodes with

O(poly(N)) complexity [62]. Fitzi et al. also give an authenti-
cated BA protocol that beats this bound ( N

2 ) but under specific
number-theoretic assumptions [52]. Abraham et al. provide
a solution with early stopping (min{ f +2, t +1}) and poly-
nomial complexity [18]. In this work, we use SGX features
to reduce the byzantine model to the general omission model,
and further propose ERB to achieve min{ f +2, t +2} round
complexity and O(N2) communication complexity.

Researchers also have proposed byzantine fault-tolerant
algorithms using trusted services, such as by using trusted
computing primitives, primarily focusing on making PBFT
more efficient [23, 40, 42, 44, 45, 67, 70, 89]. These works
have observed similar relation to crash-fault-tolerant proto-
cols, as we have. For example, Chun et al. introduce an at-
tested append-only memory (A2M) to remove the ability of
adversarial replicas to equivocate without detection, which
helps to increase the resilience from N

3 to N
2 [42]. However,

these works have concentrated on handling asynchronous pro-
tocols with weak time assumptions like PBFT. In this paper, in
contrast to previous approaches, we work on the round-based
synchronous model. Our work extends these ideas to detecting
and remediating failures of synchronous network assumptions
(e.g. our lockstep execution and halt-on-divergence). Addi-
tionally, we investigate the use of our blind-box execution
primitive in our new distributed RNG protocol which is bias-
resistant, and more efficient using secure sampling for cluster
creation. We leave the extension of applying our properties
and primitives to asynchronous protocols for future work.

Distributed RNG: Generating common coins in a dis-
tributed manner for randomized BA in asynchronous net-
works can also be used for generating unbiased random num-
bers [27, 36, 83]. However, these protocols either require a
trusted dealer to set up the initial states of different nodes or
pre-distribute data to the nodes in the network. Other works
employing asynchronous verifiable secret sharing (AVSS) pro-
tocols do not have the trusted dealer, but can probabilistically
execute with errors [24, 32, 39, 87]. Most of these works em-
ploy some cryptographic primitives that, in most case, can be
considered heavy-weight and performance unfriendly. Awer-
buch et al. propose a solution that tolerates up to N

6 byzantine
nodes, with O(N) round complexity and O(N3) communica-
tion complexity [20] to generate a random number with a
constant bias. Other works, such as Andrychowicz et al.’s
one, generate a common random number based on proof of
work [19] with O(N4) communication complexity, but the
output can eventually be biased. Moreover, the large commu-
nication cost for most of these approaches prevents scalability
to a large number of nodes. We present more efficient (with
O(N logN) communication complexity) and unbiased RNG
generation for the synchronous network case.

8 Conclusion
The recent availability of Intel SGX in commodity laptops
and servers provides a promising research direction for ad-

11



vancing the area of P2P systems. Our main observation is
that leveraging SGX features can restrict a byzantine model
to a general-omission model in synchronous systems. We
highlight that using SGX we can improve the efficiency of
P2P protocols such as reliable broadcast and unbiased random
number generator in synchronous settings.

References

[1] Bitcoin. https://bitcoin.org/en/, Accessed: 2017.

[2] BitTorrent. http://www.bittorrent.com/, Ac-
cessed: 2017.

[3] Boost C++ library. http://www.boost.org/, Ac-
cessed: 2017.

[4] CLOC. http://cloc.sourceforge.net/, Accessed:
2017.

[5] CrashPlan. http://www.code42.com/crashplan/,
Accessed: 2017.

[6] DeterLab. https://www.isi.deterlab.net/index.
php3, Accessed: 2017.

[7] Intel Software Guard Extensions. https://software.
intel.com/en-us/sgx, Accessed: 2017.

[8] Intel Software Guard Extensions for Linux OS. https:
//01.org/intel-softwareguard-extensions, Ac-
cessed: 2017.

[9] Intel software guard extensions sdk for linux os.
https://download.01.org/intel-sgx/linux-1.
9/docs/Intel_SGX_SDK_Developer_Reference_
Linux_1.9_Open_Source.pdf, Accessed: 2017.

[10] NIST randomness beacon. https://www.nist.gov/
programs-projects/nist-randomness-beacon,
Accessed: 2017.

[11] P2P using SGX. https://bitbucket.org/
P2PUsingSGX/p2pusingsgx, Accessed: 2017.

[12] Protocol Buffers - Google’s data interchange format.
https://github.com/google/protobuf, Accessed:
2017.

[13] RapidJSON. http://rapidjson.org/, Accessed:
2017.

[14] Storj.io. http://storj.io/, Accessed: 2017.

[15] Symform. http://www.symform.com/, Accessed:
2017.

[16] Tor. https://www.torproject.org/, Accessed:
2017.

[17] True Random Number Service. https://www.random.
org/, Accessed: 2017.

[18] I. Abraham and D. Dolev. Byzantine agreement with op-
timal early stopping, optimal resilience and polynomial
complexity. In STOC, 2015.

[19] M. Andrychowicz and S. Dziembowski. Distributed
cryptography based on the proofs of work. IACR, 2014.

[20] B. Awerbuch and C. Scheideler. Robust random number
generation for peer-to-peer systems. In PODC, 2006.

[21] L. Babai. Trading group theory for randomness. In
STOC, 1985.

[22] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and
D. Sicker. Low-resource routing attacks against tor.
In WPES, 2007.

[23] J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids:
Sgx-based high performance bft. In EuroSys, 2017.

[24] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous
secure computations with optimal resilience. In PODC,
1994.

[25] I. Bentov, A. Gabizon, and D. Zuckerman. Bitcoin bea-
con. arXiv, 2016.

[26] P. Berman and J. A. Garay. Cloture votes: n/4-resilient
distributed consensus in t+ 1 rounds. STOC, 1993.

[27] P. Berman and J. A. Garay. Randomized distributed
agreement revisited. In FTCS, 1993.

[28] P. Berman, J. A. Garay, and K. J. Perry. Optimal early
stopping in distributed consensus. In WDAG, 1992.

[29] J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a
public randomness source. IACR, 2015.

[30] N. Borisov. Computational puzzles as sybil defenses. In
P2P, 2006.

[31] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. Denial
of service or denial of security? In CCS, 2007.

[32] G. Bracha. An asynchronous [(n-1)/3]-resilient consen-
sus protocol. In PODC, 1984.

[33] G. Bracha. Asynchronous byzantine agreement proto-
cols. Information and Computation, 1987.

[34] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. JACM, 1985.

[35] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Se-
cure and efficient asynchronous broadcast protocols. In
CRYPTO, 2001.

12

https://bitcoin.org/en/ 
http://www.bittorrent.com/ 
http://www.boost.org/
http://cloc.sourceforge.net/ 
http://www.code42.com/crashplan/ 
https://www.isi.deterlab.net/index.php3 
https://www.isi.deterlab.net/index.php3 
https://software.intel.com/en-us/sgx 
https://software.intel.com/en-us/sgx 
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://download.01.org/intel-sgx/linux-1.9/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.9_Open_Source.pdf 
https://download.01.org/intel-sgx/linux-1.9/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.9_Open_Source.pdf 
https://download.01.org/intel-sgx/linux-1.9/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.9_Open_Source.pdf 
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://bitbucket.org/P2PUsingSGX/p2pusingsgx 
https://bitbucket.org/P2PUsingSGX/p2pusingsgx 
https://github.com/google/protobuf
http://rapidjson.org/
http://storj.io/ 
http://www.symform.com/ 
https://www.torproject.org/ 
https://www.random.org/
https://www.random.org/


[36] C. Cachin, K. Kursawe, and V. Shoup. Random ora-
cles in constantinople: Practical asynchronous byzantine
agreement using cryptography. J. Cryptology, 2005.

[37] C. Cachin and J. A. Poritz. Secure intrusion-tolerant
replication on the internet. In DSN, 2002.

[38] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In SRDS, 2005.

[39] R. Canetti and T. Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In STOC, 1993.

[40] M. Castro, B. Liskov, et al. Practical byzantine fault
tolerance. In OSDI, 1999.

[41] T. D. Chandra and S. Toueg. Time and message efficient
reliable broadcasts. In WDAG, 1990.

[42] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick
to their word. In OSR, 2007.

[43] J. Clark and U. Hengartner. On the use of financial data
as a random beacon. EVT/WOTE, 2010.

[44] M. Correia, N. F. Neves, and P. Verissimo. How to toler-
ate half less one byzantine nodes in practical distributed
systems. In SRDS, 2004.

[45] M. Correia, P. Veríssimo, and N. F. Neves. The design
of a cots real-time distributed security kernel. In EDCC,
2002.

[46] V. Costan and S. Devadas. Intel SGX explained. IACR,
2016.

[47] G. Cybenko. Dynamic load balancing for distributed
memory multiprocessors. JPDC, 1989.

[48] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping
in byzantine agreement. JACM, 1990.

[49] D. Dolev and H. R. Strong. Authenticated algorithms
for byzantine agreement. SICOMP, 1983.

[50] S. Even, O. Goldreich, and A. Lempel. A randomized
protocol for signing contracts. CACM, 1985.

[51] P. Feldman and S. Micali. An optimal probabilistic pro-
tocol for synchronous byzantine agreement. SICOMP,
1997.

[52] M. Fitzi and J. A. Garay. Efficient player-optimal pro-
tocols for strong and differential consensus. In PODC,
2003.

[53] J. A. Garay and Y. Moses. Fully polynomial byzantine
agreement in t+ 1 rounds. In STOC, 1993.

[54] J. A. Garay and Y. Moses. Fully polynomial byzantine
agreement for processors in rounds. SICOMP, 1998.

[55] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Se-
cure distributed key generation for discrete-log based
cryptosystems. In EUROCRYPT, 1999.

[56] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Se-
cure distributed key generation for discrete-log based
cryptosystems. J. Cryptology, 2007.

[57] S. Goldwasser and M. Sipser. Private coins versus public
coins in interactive proof systems. In STOC, 1986.

[58] R. Guerraoui, F. Huc, and A.-M. Kermarrec. Highly
dynamic distributed computing with byzantine failures.
In PODC, 2013.

[59] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts
and related problems. In Distributed Systems (2nd Ed.),
1993.

[60] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg.
Eclipse attacks on bitcoin’s peer-to-peer network. In
USENIX Security, 2015.

[61] B. M. Kapron, D. Kempe, V. King, J. Saia, and V. San-
walani. Fast asynchronous byzantine agreement and
leader election with full information. TALG, 2010.

[62] J. Katz and C.-Y. Koo. On expected constant-round
protocols for byzantine agreement. In CRYPTO, 2006.

[63] J. Katz and Y. Lindell. Introduction to modern cryptog-
raphy. 2014.

[64] V. King and J. Saia. Scalable byzantine computation.
SIGACT News, 2010.

[65] L. Lamport, R. Shostak, and M. Pease. The byzantine
generals problem. TOPLAS, 1982.

[66] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado. Inferring fine-grained control flow inside
sgx enclaves with branch shadowing. arXiv, 2016.

[67] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
Trinc: Small trusted hardware for large distributed sys-
tems. In NSDI, 2009.

[68] F. Li, P. Mittal, M. Caesar, and N. Borisov. Sybilcontrol:
practical sybil defense with computational puzzles. In
STC, 2012.

[69] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the com-
position of authenticated byzantine agreement. JACM,
2006.

13



[70] J. Liu, W. Li, G. O. Karame, and N. Asokan. Scalable
byzantine consensus via hardware-assisted secret shar-
ing. arXiv, 2016.

[71] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena. A secure sharding protocol for open
blockchains. In CCS, 2016.

[72] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Som-
mer, A. Gervais, A. Juels, and S. Capkun. Rote: Rollback
protection for trusted execution. IACR, 2017.

[73] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The
honey badger of bft protocols. In CCS, 2016.

[74] Ming-Wei-Shih, S. Lee, T. Kim, and M. Peinado. T-sgx:
Eradicating controlled-channel attacks against enclave
programs. 2017.

[75] T. Moran and M. Naor. Split-ballot voting: everlasting
privacy with distributed trust. TISSEC, 2010.

[76] A. Mostefaoui, H. Moumen, and M. Raynal. Signature-
free asynchronous Byzantine consensus with t < n

3 and
O(n2) messages. In PODC, 2014.

[77] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn
mining: Generalizing selfish mining and combining with
an eclipse attack. In EuroS&P, 2015.

[78] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa. Oblivious
multi-party machine learning on trusted processors. In
USENIX Security, 2016.

[79] P. R. Parvédy and M. Raynal. Optimal early stopping
uniform consensus in synchronous systems with process
omission failures. In SPAA, 2004.

[80] R. Pass, E. Shi, and F. Tramèr. Formal abstractions for
attested execution secure processors. IACR, 2016.

[81] M. Pease, R. Shostak, and L. Lamport. Reaching agree-
ment in the presence of faults. JACM, 1980.

[82] K. J. Perry and S. Toueg. Distributed agreement in the
presence of processor and communication faults. TSE,
1986.

[83] M. O. Rabin. Randomized byzantine generals. In FOCS,
1983.

[84] M. O. Rabin. Transaction protection by beacons. JCSS,
1983.

[85] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in structured p2p systems. In
IPTPS, 2003.

[86] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets. In
ASIACCS, 2016.

[87] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly,
L. Gasser, I. Khoffi, M. J. Fischer, and B. Ford. Scalable
bias-resistant distributed randomness. IACR, 2016.

[88] V. Vaikuntanathan. Randomized algorithms for reliable
broadcast. PhD thesis, 2009.

[89] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung,
and P. Verissimo. Efficient byzantine fault-tolerance.
TC, 2013.

[90] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted oper-
ating systems. In Security and Privacy, 2015.

14



A Primitives and Formal Definitions

In this section, we first start by formally defining the syntax
of the communication protocol between two peers, that we
denote by Peer channel. Using this definition, we next de-
fine various failure modes and primitives. Using SGX, we
assume that execution integrity (P1) is enforced. We then
show that the following properties: message integrity & au-
thenticity (P2), blind-box computation property (P3) can be
emulated based on the Blinded channel, executing on a par-
ticular program. Then we go ahead and formally define the
halt-on-divergence (P4) property for any program running
between two peers. Finally, we show how to reduce the byzan-
tine model to a model where a peer can only replay, omit and
delay, dubbed ROD , given that a Blinded channel exists.

A.1 Peer Channel
Abstractly, a peer can be considered as the composition of
two entities: an Enclave and an OS. The OS models the un-
trusted entity including the operating system and memory.
It has access to all the system resources such as file system,
network and others. The OS can arbitrarily invoke an enclave
program and start its execution. The Enclave models the iso-
lated memory space that loads the program and executes it
securely. Thus, Enclave corresponds to the trusted entity of
a peer. A concurrent work provides a formal study to show
that SGX enclaves can be considered as a trusted entity [80].
The Enclave of the two Peers can interact with each other via
their OSs. We formally define a Peer channel as a protocol,
Peerch, between a sender Peers = (Enclaves,OSs) and a re-
ceiver Peerr = (Enclaver,OSr). A Peer channel can be seen
as a generalization of the traditional secure communication
channel between two parties. The main difference is that the
definition of Peerch protocol is augmented with the program π

running within the trusted Enclave. Before defining the Peer
channel, we first provide a definition of a program π.

Definition A.1. (Program.) A program π is a sequence of
instructions i.e., π = (π1, · · · ,πn) such that the ith instruction
πi takes as an input the state sti and a message mi and outputs
a message mi+1 along with an updated state sti+1. By conven-
tion, we write for all mi ∈ {0,1}∗, (sti+1,mi+1)← πi(sti,mi).
The initial state is st1.

Based on the above definition, for a program π with n in-
structions the output out of π is (stout ,out)← πn(stn,mn)
where stout is the final state of the program. We denote
the set of all such programs by Π. Note that, in a program
π, an instruction with ⊥ state as input always outputs ⊥
i.e., (⊥,⊥) ← πi(⊥,mi). Hence, if ∃i such that (⊥,⊥) ←
πi(sti,mi), then the output of the program π is always ⊥.

Definition A.2. (Program Transcript.) Let π ∈ Π and
messages m1, · · · ,mn ∈ {0,1}∗ such that m = (mi)i∈[n], for

all initial states st1 ∈ {0,1}∗ and for all i ≥ 1 such that
(sti+1,mi+1)← πi(sti,mi), a transcript of π with inputs st1
and m denoted by transm

π equals:

transm
π =

(
π1(st1,m1), · · · ,πi(sti,mi), · · · ,πn(stn,mn)

)
.

Definition A.3. (Transcript Types.) Let π ∈ Π and transm
π

its transcript for a fixed message m = (mi)i∈[n]. We say that
the transcript is:

• valid, if ∀i ∈ [n], sti 6=⊥,

• invalid, if ∃i ∈ [n], sti =⊥,

where (sti,mi)← πi−1(sti−1,mi−1).
We denote by Vπ and Iπ, the set of all n-messages for which

the transcript is valid and invalid, respectively.

Definition A.4. (Peer Channel.) Given πs,πr ∈ Π are pro-
grams executing in Enclaves and Enclaver with sts and str
as respective initial states. A Peer channel between Enclaves
and Enclaver is tuple of four possibly interactive algorithms
Peerch = (Init,Write,Transfer,Read) such that:

• (Ks,Kr) ← Init
(
(1k,sts,πs),(1k,str,πr)

)
: is a proba-

bilistic interactive algorithm between Enclaves and
Enclaver. Enclaves and Enclaver take as inputs a se-
curity parameter k, a program πs and πr and the initial
state sts and str, and outputs keys Ks and Kr for the
sender and receiver, respectively.

• (st′s,data
′
s)←Write

(
(sts,Ks,m,πs),datas

)
: is a proba-

bilistic interactive algorithm between Enclaves and OSs.
Enclaves has as inputs a state sts, a key Ks, a message
m and a program πs; the OSs has as the input a data
block datas; the algorithm outputs an updated state st′s
for Enclaves and the updated data block data

′
s for OSs.

• (null,data
′
r)←Transfer

(
data

′
s,datar

)
: is a probabilis-

tic interactive algorithm between OSs and OSr that takes
as input the data block data

′
s and datar respectively, and

outputs null for OSs and an updated data block data
′
r

for OSr

•
(
(st′r, r),null

)
←Read

(
(str,Kr,πr),data

′
r
)
: is a proba-

bilistic interactive algorithm between Enclaver and OSr.
Enclaver has as inputs a state str, a key Kr and the pro-
gram πr; the OSr has as the input a data block data

′
r; the

algorithm outputs an updated state st′r and a response r
for Enclaver and null for OSr.

When πs = πr = π, we can write Peerch
π to denote that

Peerch is parametrized with the program π.

15



A.2 Failure Modes
We define four progressively stronger failure modes: hon-
est, general omission, ROD and byzantine modes of Peerch.
Here we introduce a ROD model as an intermediate model,
wherein the adversary can only a) Replay b) Omit c) or Delay
messages during a protocol, or follow it as prescribed. We
particularly focus on the sender behavior for simplicity, but
our definition extends to both sender and receiver. Note that
to capture delay, we super-script the Transfer algorithm with
∆ such that Transfer∆, to denote that the Transfer can take
time ∆ to complete. We denote by Replayπ, the set contain-
ing all values generated by Write in polynomial number of
executions of program π running concurrently or earlier in
time [69].

Definition A.5. (Failure Modes.) Given a Peer channel
Peerch = (Init,Write,Transfer,Read) between two Peers,
Peerr and Peers , for all security parameters k ∈ N and for
all programs π,πs,πr,π

′ ∈Π such that

• (Ks,Kr)← Init
(
(1k,sts,πs),(1k,str,πr)

)
.

For all messages m ∈ {0,1}∗, for all state sts ∈ {0,1}∗, for
all data block datas,datar ∈ {0,1}∗ such that |m| ≤ |datas|
and |datas|= |datar|,

• (st′s,data
′
s)←Write

(
(sts,Ks,m,πs),datas

)
;

• (⊥,data
′
r)← Transfer∆

(
data

′
s,datar

)
;

•
(
(st′r, r),⊥

)
← Read

(
(str,Kr,πr),data

′
r
)
.

We say that

• Peerch is in an honest mode, if we have

– data
′
s = data

′
r and,

– πs = π,

– ∆ is bounded.

• Peerch is in a general omission mode , if we have

– data
′
s =

{
⊥ or,
data

′
r ;

– πs = π,

– ∆ is bounded.

• Peerch is in a ROD mode, if we have

– data
′
s =


⊥ or,
data← Replayπ or,
data

′
r ;

– πs = π,

– ∆ < ∞.

• Peerch is in a byzantine mode, if we have

– data
′
s =


φ(data

′
r) where

φ ∈ {{0,1}∗→{0,1}∗} or,
data← Replayπ or,
⊥;

– πs =

{
π or,
π′ where π′ 6= π;

– ∆ < ∞

A.3 Core Primitives
We define two primitives: a) Blinded channels and b) halt-
on-divergence. Theorem A.2, below, uses the Blinded chan-
nel primitive to demonstrate that byzantine mode reduces
to the ROD mode. As shown in Section 4, we can further
leverage additional SGX features, namely properties (P5)
and (P6), to reduce the ROD model to the general-omission
model. Informally, a Blinded channel guarantees confidential-
ity and integrity of a message over a Peer channel Peerch =
(Init,Write,Transfer,Read).

Definition A.6. (Blinded Channels.) We say that Peerch is
Blinded if for all p.p.t adversaries A we have:

Pr[ExpEX
A ,Peerch(λ) = 1]≤ 1

2
+negl(λ),and,

Pr[ExpPriv
A ,Peerch(λ) = 1]≤ 1

2
+negl(λ),and,

Pr[ExpAuth
A ,Peerch(λ) = 1]≤ negl(λ),

where ExpEX
A ,Peerch(λ), ExpPriv

A ,Peerch(λ), ExpAuth
A ,Peerch(λ) are:

ExpEX
A ,Peerch(λ):

• two parties generate keys Ks and Kr such that (Ks,Kr)←
Init
(
1k,π

)
. The entire interaction between both of the

parties is saved in a transcript T ;

• compute b $← {0,1}, if b = 0, then output K =

(Ks,Kr)
$← {0,1}k, otherwise output K = (Ks,Kr) ←

Init
(
1k,π

)
.

• Given K and T , A outputs b′ and wins if b′ = b.

ExpPriv
A ,Peerch(λ):

• generate keys Ks and Kr such that (Ks,Ks)← Init
(
1k,π

)
;

• A has access to Owrite(Ks,.)(.) and Oread(Kr ,.)(.);

• A chooses two equal-length messages m0 and m1;

• compute Write
(
(sts,Ks,mb,π),datas

)
where b $←

{0,1}, and output data;

16



• A has again access to Owrite(Ks,.)(.) and Oread(Kr ,.)(.);

• A outputs b′, if b′ = b, the experiment outputs 1, and 0
otherwise.

ExpAuth
A ,Peerch(λ):

• generate keys Ks and Kr such that (Ks,Kr)← Init
(
1k,π

)
;

• A has access to Owrite(Ks, .). A queries a polynomial
number of messages m and eventually outputs ct, we
denote by Q the set of all queries that A sent to the
oracle;

• Given ct, Owrite(Ks, .) outputs r. If m /∈ Q and r 6=⊥. A
outputs 1.

Attaching a program π while defining a Peerch enables us
to introduce the halt-on-divergence primitive as follows.

Definition A.7. (Halt-on-divergence.) Let π ∈ Π be a pro-
gram and transm

π its transcript for a fixed n-messages m, we
say that Peerch

π halts on-divergence if transm
π is invalid, i.e.,

m ∈ Iπ

A.4 Implementing Blinded Channel using
SGX

We show how we build a Peerch channel using SGX where
Enclaves and Enclaver are trusted entities. Theorem A.1
shows that such a PeerCh

sgx channel is a Blinded channel, and
therefore enforces both (P2) and (P3) propertie. In particular,
we consider that there is a KeyExπ protocol between Enclaves
and Enclaver that is used to generate a session key for a pro-
gram π. Whenever there is a new program the key has to be
re-generated. The key exchange protocol can be instantiated
using Diffie-Hellman key exchange, referring to [63] Chapter
9. We use SGX remote attestation to verify that both parties
run their code inside an Enclave. While this step is neither
required nor captured in the Peerch definition, it is mandatory
to guarantee our execution integrity (P1). We detail our instan-
tiation in Figure 4, in our case, we consider that πr = πs = π.
We denote by parse and compute the actions of decoding a
string and running a particular algorithm, respectively.

Theorem A.1. If KeyEx is a secure key exchange protocol,
SKE is CPA secure encryption schemes, MAC a secure mes-
sage authentication code, then PeerCh

sgx is a Blinded Peer chan-
nel.

Proof Sketch. First, we want to show that the Init algorithm
is a secure key exchange. Note that both parties run two in-
stances of a KeyEx protocol to generate two session keys. That
is, if KeyEx is a secure key exchange then Pr[ExpEX

A ,Peerch(k) =

1]≤ 1
2 +negl(k).

Second, we need to show that PeerCh
sgx is a secure communi-

cation channel. Note that, we use the variant encrypt-then-mac

Let SKE= (Gen,Enc,Dec) be a private encryption scheme,
MAC= (Gen,Auth,Vrfy) be a message authentication code,
KeyEx a key exchange algorithm, and H be a hash function.
We define PeerCh

sgx = (Init,Write,Transfer,Read) as follows:

• Init
(
(1k,sts,π),(1k,str,π)

)
:

1. Enclaves and Enclaver fetch the hardware-
embedded private keys sks,skr from sts,str, re-
spectively;

2. compute (key1,key2)← KeyExπ

(
sks,skr

)
;

3. Enclaves outputs Ks =
(
key1,key2

)
and

Enclaver outputs Kr =
(
key1,key2

)
.

• Write
(
(sts,Ks,m,π),datas

)
:

1. parse Ks =
(
key1,key2,sks

)
;

2. set (st′s,val)← π(sts,m)

3. compute ct1 = SKE.Enc(key1,〈val,H(π)〉) and
ct2 =MAC.Auth

(
key2,ct1

)
;

4. set datas = (ct1,ct2)

5. Enclaves outputs st′s and OSs outputs data′s =
datas.

• Transfer
(
data

′
s,datar

)
:

1. OSr sets datar = data
′
s;

2. OSs outputs ⊥ and OSr outputs data
′
r = datar.

• Read
(
(str,Kr,π),data

′
r
)
:

1. parse Kr =
(
key1,key2,skr

)
and data

′
r =

(ct1,ct2);

2. if MAC.Vrfy
(
key2,ct1

)
:= ct2 and str 6= ⊥,

Enclaver computes

– 〈r1, r2〉= SKE.Dec(key1,ct1);
– if r2 = H(π), then compute (st′r, r) ←

π(str, r1), output (str,⊥) otherwise.

3. if MAC.Vrfy
(
key2,ct1

)
6= ct2 or str = ⊥,

Enclaver outputs r =⊥ and st′r = str

Figure 4: PeerCh
sgx: SGX-based Peer channel.

17



which is shown in [63] Chapter 9 to provide a secure com-
munication channel if SKE is CPA secure and MAC a secure
message authentication. This ends our proof sketch.

Theorem A.2. Assuming that PeerCh
sgx is a Blinded channel,

then Peerch in byzantine is equivalent to Peerch in ROD mode.

Proof Sketch. For clarity, we assume that the sender is byzan-
tine while the receiver is not. We can apply an analogous
proof for the remaining combinations as well. To prove the
theorem, we need to show that the view of the honest node in
the ROD and byzantine modes are the same w.h.p. under the
assumption that PeerCh

sgx is a Blinded Peer channel. For this,
it is sufficient to show the following two steps: first, that any
forged message for any φ ∈ {{0,1}∗→ {0,1}∗} \ {C} will
not change the state of the receiver str, i.e., that the forged
message is equivalent to receiving nothing, ⊥, where C is
the set composed of all functions that maps data

′
r to one of

the messages in Replayπ

⋃
{data

′
r}. Second, we need to show

that, for any valid data data
′
s output by Write, the receiver

state will not change if πs 6= πr (recall that we are assuming
the receiver honest and in this case means that πr = π). We
detail below the two steps of the reduction:

Step 1. If data
′
s = φ(data

′
r) where φ ∈ {{0,1}∗→{0,1}∗}\

{C} such that 〈ct1,ct2〉 = data
′
s. Then, we have that

Pr[MAC.Vrfy(key2,ct1) 6= ct2] ≥ 1− negl(k) under the as-
sumption that PeerCh

sgx is a Blinded channel. Based on the
PeerCh

sgx in Figure 4, if MAC.Vrfy(key2,ct1) 6= ct2, then st′r =
str w.h.p. Note that this is valid for any program πs. The view
of the receiver is now equal:

• data
′
s =

 data
′
r ∀πs

data← Replayπs ∀πs
⊥

Step 2. Now, if the node is running a new program πs 6= π

such that (st′s,data
′
s)←Write

(
(sts,Ks,m,πs),datas

)
. In this

case, data
′
r = data

′
s = 〈ct1,ct2〉. However, based on collision-

resistance assumption of the hash function H, the malicious
node cannot find any program πs such that H(πs) = H(π).2 In
this case, if H(πs) 6=H(π), then based on the PeerCh

sgx protocol,
st′r = str, i.e., the state of the receiver does not change, which
is therefore equivalent to receiving nothing, ⊥. the view of
the receiver is then equal:

• data
′
s =

 data
′
r for πs = π

data← Replayπs for πs = π

⊥

Finally, we emphasize that the delay constraint (∆ < ∞)
remains valid for both byzantine and ROD modes. Note that
this final view is exactly the same of the ROD model. Note

2This can also be done by signing the program for every message output
by the SGX-enabled program.

that the same holds when we consider the receiver byzantine,
or both sender and receiver byzantine. This concludes our
proof.

B Rethinking Reliable Broadcast Protocols

In this section, we explain the shortcomings of classic proto-
cols for reliable broadcast. Reliable broadcast or byzantine
generals problem is formally defined in Definition 2.1. The
crux of such protocol is that all honest nodes eventually agree
on the same value, which is the one proposed by the sender
(or initiator) if the initiator is honest. Reliable broadcast was
first proposed by Lamport et al. in 1982, which has O(Nt)
message complexity and t + 1 round complexity. The pro-
posed protocol was also resilient upto N

3 byzantine nodes [65].
Since 1980s, reliable broadcast has been extensively studied
and various protocols have been developed, which are well
summarized in several excellent survey papers [64, 88]. As
byzantine nodes can behave arbitrarily, these protocols have to
use different techniques to prevent the impact of the proposed
biased values by the byzantine nodes, which generally leads
to high (like exponential or polynomial) message complex-
ity. Moreover, it has been shown that the optimal resilience
cannot exceed third the size of the network [81]. To reduce
communication complexity and increase resilience, several
ways have been proposed, and using digital signatures is the
primary one.

B.1 Digital Signature Schemes
Using digital signatures denotes that a node appends its sig-
nature (signed with its private key) to every message it sends.
This guarantees the integrity and authenticity of the message,
which can be easily verified by the other nodes using the
sender’s public key. It is well known that no nodes can forge
the signature of another node w.h.p. This results in restrict-
ing the behavior of byzantine nodes, which can in this case
only omit to relay messages, or construct different values as
an initiator. We present a reliable broadcast protocol using
digital signatures in Algorithm 4 adapted from Lamport et
al.’s work [65].

In RBsig, each node signs every message it multicasts. In
the first round, the initiator sends a signed message to the
other nodes. Then for any round rnd, a node that receives
a valid message will sign and forward it in the next round.
A message received by a node idi in round rnd is valid if it
contains signatures from rnd different nodes except idi. In
Algorithm 4, we use [m : id1 : id2 : ... : id j] to denote a message,
in which m is the value signed by the initiator id1 and [m : id1]
is signed by id2, and so on. This means that id1 sent the signed
message [m : id1] to a node id2 in the first round, and id2 sent
[m : id1 : id2] in the second round, until id j sent the signed
message [m : id1 : id2 : ...id j] in the rndth round.

18



Algorithm 4: RBsig: Reliable broadcast protocol using digital signa-
tures (for a node idi with the initiator idinit sending a message m).

Input: A P2P network P composed N nodes, a message m for the
initiator idinit

Output: A message m̂

• initialization: m̂←⊥;Sm← /0; rnd← 1
• for rnd≤ t +1 do

if rnd = 1 and idi = idinit then
m̂← m
Multicast [m : idinit] to all the other nodes

end
• upon receiving [m′ : idinit] from idinit:

Sm←{m′}
Multicast [m′ : idinit : idi] to all nodes except idinit, idi in round
rnd+1

• upon receiving [m′ : idinit : id1 : ... : id j] from peer id j:
if m′ /∈ Sm then

Sm← Sm ∪{m′}
if j < t +1 then

Multicast [m′ : idinit : id1 : ... : id j : idi] to all nodes
except idinit, ..., idi in round rnd+1

end
end

• rnd← rnd+1;
end
if rnd > t +1 then

if |Sm|= 1 then
m̂← m where Sm = {m}

end
return m̂

end

In RBsig, the initiator idinit signs and sends its value to every
node in the first round. If any node receives the message, it
stores the value in Sm, signs and sends it to the other nodes for
the second round. For round rnd< t+1, every node receives a
valid message from other node. In the case where the received
value does not belong to Sm, then the node adds the value
to Sm and multicasts the signed message to the other nodes.
After t +1 rounds, every node verifies whether Sm consists
of a unique value m̂, if that holds then the node outputs m̂,
otherwise he output is the default value ⊥.

Based on digital signatures property, the byzantine nodes
cannot forge a honest-like message. Therefore, every honest
node only requires one valid message sent from either one
byzantine or one honest node to determine the value from
the initiator. If the initiator is honest, every honest node will
receive the correct value from the initiator during the first
round, and will discard invalid messages forged by byzantine
nodes for the remaining rounds. If the initiator is byzantine,
it can send different values to different honest nodes to bias
the result. To ensure the validity of the message, after t +1
rounds, at least one signature in the message is from an honest
node, and the honest node will broadcast the signed message
to the other honest nodes, thus all honest nodes will receive
the same message. Eventually, all honest nodes received the
same set of values. If multiple values are received, all honest
nodes will agree on a default value, otherwise they agree on
the only received value.

Using digital signatures improves network’s resilience from

N
3 to N−1, but communication complexity remains the same
O(Nt). Later, an optimized algorithm using digital signa-
tures was proposed to reduce communication complexity to
O(N3) [49]. At a higher level, this improvement is achieved
through a new strategy that only retransmits values which
have not been previously sent. Even in this case, every node
has to relay O(N) messages and a message can contain O(N)
signatures, which results in O(N3) communication complex-
ity for the protocol. Meanwhile, the verification of O(N2)
signatures may lead to a non-negligible performance cost for
the honest nodes, especially when the byzantine nodes con-
struct and send enormous number of invalid messages to the
honest nodes.
Efficiency Improvement. In the following, we discuss how
our properties can lead to better asymptotics. First, by enforc-
ing P1 - P3 and P5 - P6, we confine the byzantine nodes into
the general-omission model only allowing to omit messages.
We can further use P3, and secure channels in particular, to
guarantee the confidentiality of the transmitted messages. In
this way, when a node relays a message to the others in this
model, it can append its identity instead of signing the mes-
sage with its private key, which achieves the same effect of
using signatures. Therefore, we circumvent the transmission
of multi-signature messages and the process of verifying sig-
natures, which reduces the communication complexity from
O(N3) to O(N2) and avoids the significant computation cost
(as the symmetric decryption is much cheaper than signature
verification).

B.2 Early Stopping Schemes

Apart from reducing communication complexity, SGX can
also aid to decrease round complexity. In the general-omission
model, several protocols have been proposed to reduce the
round complexity. We recall a classic example of reliable
broadcast protocol with early stopping in min{ f + 2, t + 1}
rounds in Algorithm 5 adapted from Perry et al.’s work [82].
When f < t omission faults take place, then all honest nodes
will stop by the end of round f +2.

In Algorithm 5, Mrnd
i ( j) represents the message received

by idi from id j in round rnd. QUIETrnd
i denotes the set of

nodes from which idi has not received a message from round
1 through round rnd. In the first round, the initiator sends
a message to the other nodes and halts. For any round, if
a node receives a message from another node, it stores the
value in Mrnd

i ( j). If a node idi does not receive any message
from another node id j for round rnd, id j will be added into
QUIETrnd

i . When a node has not decided the value and it
receives a value, it will set the decision as the new value and
broadcasts the value to all nodes in the next round (rnd+1≤
t + 1). If it does not receive any value and rnd = t + 1, the
node will decide the default value ⊥. If the round number
rnd < t +1 is larger than the size of QUIETrnd

i , the node will

19



Algorithm 5: RBearly: Reliable broadcast protocol with early stop-
ping (for a node idi with the initiator idinit sending a message m).

Input: A P2P network P composed N nodes, a message m for the
initiator idinit

Output: A message m̂

• initialization: m̂←?;QUIETrnd
i ← /0,Mrnd

i ( j)← /0; rnd← 1
• upon idi = idinit:

m̂← m;
Multicast m to all the other nodes
return m̂

• for rnd≤ t +1 do
• upon receiving 〈m′〉 from peer id j:

Mrnd
i ( j)←Mrnd

i ( j)∪{m′}
• QUIETrnd

i ←QUIETrnd−1
i ∪{id j|Mrnd

i ( j) = /0}
if m̂ =? and ∃id j where Mrnd

i ( j) 6= /0 then
m̂←Mrnd

i ( j)
if rnd < t +1 then

Multicast m̂ to all the other nodes in round rnd+1
end

else if m̂ =? and 6 ∃id j where Mrnd
i ( j) 6= /0 then

if rnd < t +1 then
if rnd > |QUIETrnd

i | then
m̂←⊥

end
Multicast m̂ to all the other nodes in round rnd+1

else
m̂←⊥

end
else if m̂ 6=? then

return m̂
• rnd← rnd+1

end

send ⊥ to all nodes in round rnd+1, otherwise it will send
⊥. Finally, once the node decides its value, it halts.

The early-stopping protocol requires every node to broad-
cast its decision for every round, to inform the other nodes
about its liveness. In this way, honest nodes can detect abnor-
mal behaviors of malicious nodes for each round. Based on
the detection, all honest nodes can halt and agree on the same
value by the end of round f +2, where f nodes behave mali-
ciously (e.g., omit to replay messages). The detailed proof can
be found in the work [82]. Based on the proposed broadcast
detection mechanism, the protocol can early-stop. However,
the communication complexity increases to be in O(N3), as
every node broadcasts its value every round.

Efficiency Improvement. By leveraging the halt-on-
divergence property (P4), we can actively stop nodes behaving
maliciously, which eliminates the t-round broadcasting and
reduces the communication complexity to O(N2) as well as
sanitizes the network by removing the malicious nodes. For
instance, if a malicious node sends a message to other nodes
but omit to receive messages from over half of the nodes in
the network, the node will be forced to leave the network.
Therefore, any node can actively detect its own anomalous
behavior instead of relying on other nodes to send messages
every round to passively identify the anomaly. This can lead
to reduce communication complexity for anomaly detection
from O(N2) to O(N).

C ERB Analysis

In this section, we use the same terminology used in Ap-
pendix A, namely, we assume that between any two nodes
of the network, an PeerCh

sgx instantiation of the Blinded Peer
channel is enabled. In particular, it provides us with both mes-
sage Integrity & authenticity (P2) and blind-box computation
(P3) properties. Throughout this section, we implicitly con-
sider that the program is publicly available, and therefore its
execution integrity (P1) is enforced.

Theorem C.1. If N ≥ 2t +1 where t is the upper bound on
the number of byzantine peers, and PeerCh

sgx is a Blinded Peer
channel, then ERB is a reliable broadcast protocol as defined
in Definition 2.1 with worst-case round complexity equal to
t +2 and communication complexity equal to O(N2).

Proof. We are going to gradually prove the five requirements
of terminating reliable broadcast. Note that the assumption
that the peers communicates using PeerCh

sgx implies that a
byzantine node can only delay, omit or replay messages, as
we have shown in Theorem A.2. As long as the network is
synchronous with a fixed time interval for a round to com-
plete, delaying is then equivalent to omitting a message, as
the message will not be considered by honest nodes past the
round, enforcing therefore the lockstep execution (P5) prop-
erty. Replaying a message is also ineffective as every peer
is identified by a sequence number as well, that is gener-
ated by the trusted enclave in the Peer channel, and therefore
enforcing the message freshness (P6) property. Under the
assumption that PeerCh

sgx is a Blinded channel, we can replace
all occurrences of Multicast by communication between two
trusted parties. To sum up, and throughout the proof, it is valid
to consider that if there is a delay, omission or replay, this will
be equivalent to considering that the first party does not send
any message.

Lemma C.2. Validity: In ERB, if the sender is honest and
accepts message m, then all honest nodes eventually accept
m, otherwise if the sender is byzantine, after round t +2, all
honest nodes either accept the same message m or ⊥.

Proof. In the following, we consider two different types of
initiators: an honest and a byzantine peer.

(1) Let the sender be the peer pinit with identifier idinit. If
pinit is honest, according to ERB, the sender multicasts its
message m in an INIT message for the first round. All honest
nodes will receive m in the first round and multicast ECHO
to all nodes in the second round, as every node at this stage is
going to receive m for the first time. At the end of these two
rounds, every honest node will receive at least t + 1 ECHO
messages for m from all honest nodes. According to ERB,
each honest node will accept m.

(2) If the initiator is byzantine, we proceed to show the va-
lidity by contradiction. Suppose that the lemma does not hold
in the byzantine case, which means that at the end of round

20



t +2, not all honest nodes agree on the same value, i.e., only
a strict subset of honest nodes agree on m, but the remaining
peers agree on ⊥. According to the protocol, any node accept-
ing m must have received at least t +1 ECHO messages from
different nodes. The upper bound of byzantine nodes is t, thus
at least one honest node should have multicasted an ECHO
message to nodes accepting m during t + 2 rounds. For the
proof to go through, we introduce the following claims and
then proceed with the contradiction case.

Claim C.1. There is at least one honest node that does not
receive any ECHO message after t +1 rounds.

Proof. We prove this claim by contradiction. Suppose that all
honest nodes receive an ECHO message during t +1 rounds,
then they multicast ECHO after receiving it. Therefore, all
honest nodes will receive t+1 ECHO before the end of round
t +2, which means that all of them accept m. This contradicts
our assumption that only a strict subset of honest nodes agree
on the same value m.

Claim C.2. No honest nodes receives ECHO messages after
round t.

Proof. This claim can be also shown by contradiction. Sup-
pose one honest node receives an ECHO message before
round t, it must multicast ECHO to all nodes, and all hon-
est nodes receive it before the end of round t. However, this
contradicts our Claim C.1.

We can now proceed by induction where the two claims
holds for any i ∈ [t−1]. That is, we can show:

• There is at least one honest node that does not receive
any ECHO message after t +1− i rounds.

• All honest nodes do not receive ECHO messages after
round t− i.

In this case, for any i ∈ [t], we can show that all honest nodes
do not receive ECHO messages after round i. That is the only
way an honest node can receive a message m is in round
t + 1 transmitted by a byzantine node. However, this is a
contradiction as this event cannot occur. A byzantine node
holding a message at round t+1 means that through all rounds
the message was transmitted between byzantine nodes, only.
Knowing that if a node does not receive t +1 ACK it will halt,
this means that the best strategy is to transfer the message to
only one byzantine node at a time. This means that there is a
need to t+1 byzantine nodes in the network which contradicts
our assumption.

Lemma C.3. Agreement: If an honest node accepts m, then
all honest nodes eventually accept m.

Proof. If the sender of m is honest, then all honest nodes
accept m according to Lemma C.2. If the sender is byzan-
tine, then all honest nodes either accept m or ⊥ according
to Lemma C.2. Therefore, if an honest node accepts m, all
honest nodes accept m, no matter the sender is honest or byzan-
tine.

Lemma C.4. Integrity: For any message m, every honest
node accepts m at most once, and only if m was broadcast by
the sender.

Proof. According to Algorithm 2, every honest node only
accepts m once, while receiving t + 1 ECHO messages. If
m 6=⊥, all honest nodes accept the message broadcasted by
the sender, no matter if the sender is honest or byzantine,
Lemma C.2.

Lemma C.5. Early Stopping: Every honest node will ter-
minate at round min{ f +2, t +2}.

Proof. According to Algorithm 2, if the initiator is honest,
then all honest nodes accept m from idsint after two rounds.
If it is a byzantine intiatior and f nodes violate the protocol
(e.g., receiving less than t + 1 acknowledgement responses
after sending a message), any of these f nodes can exist in the
network for at most f rounds. After f rounds, if the message
m is sent from any of the f nodes to the other nodes, then the
other nodes will follow the protocol and multicast m to all
honest nodes. After two rounds, all honest nodes will agree
on the same value m. Otherwise, all honest nodes will wait
until the end of round t + 2 and accept the default value ⊥.
Therefore, all honest nodes will terminate at round min f + 2, t
+ 2. Lemma C.2, C.3 and C.4 also hold in the early-stopping
case.

Lemma C.6. Termination: Every honest node eventually
accepts m or ⊥.

Proof. According to Algorithm 2, if an honest node receives
t + 1 ECHO or INIT messages during min{ f + 2, t + 2}
rounds, it will accept m immediately; otherwise, it will accept
⊥ at the end of round t +2.

Lemma C.7. Efficiency: For any sender, the communication
complexity is O(N2) for one instance of ERB.

Proof. For ERB, every node only broadcasts to all nodes
once when receiving INIT or ECHO for the first time, thus
every node sends N messages. To reply requests from other
nodes with ACK messages, every node sends at most another
N messages. There are N nodes in the network, so the com-
munication complexity for one run of ERB is at most 2N2 or
O(N2) in total.

This concludes our proof.

21



D P2P Sanitization & Analysis

In ERB, we introduce the concept of network sanitization or
faulty node elimination captured by the halt-on divergence
(P4) property, or the Halt function for short. This process
has an important impact on the P2P topology as whenever
a byzantine node misbehaves, the enclave of the node will
deterministically stop the node. Thus, the byzantine node
gets ejected from the network. This byzantine node cannot
generate any new message as its enclave halts. We say that
this sanitizes the P2P topology.

A byzantine OS gets churned out if it deviates from the
sequential execution of ERB. Since it cannot infer the content
of each message due to our blinded channel, one of the possi-
ble strategy is to behave maliciously uniformly at random. We
present in the following our analysis that details the sanitiza-
tion impact on ERB in this particular scenario, and shows that
after a polynomial number of instances, the expected round
complexity of the protocol becomes constant3. First, we give
a characterization of the pace of sanitization considering that
for every instance, a byzantine node can behave malicious
with a probability that can be independently tuned. We also
consider the effect of a new node joining the network before
the start of every instance of the protocol to replace eventually
an eliminated node.

Theorem D.1. Let Fr denotes the random variable counting
the number of byzantine nodes after r instances of Algorithm 2,
then

Pr[Fr ≥ 1]≤ e−λ,

where λ = rp
2 − ln(t), t the upper bound of byzantine nodes

in the P2P network and p the fraction of activated byzantine
nodes at any instance.

Proof. It is easy to see that the number of byzantine nodes
in the P2P network at the (i+1)th instance of Algorithm 2
equals: Fi+1 = Fi−Ri +Ai, where Ri represents the number
of byzantine nodes that have arbitrarily misbehaved and there-
fore are eliminated from the network, and Ai represents the
number of new peers that have joined the P2P network. We
can then write: Ri = ∑

Fi
j=1 X (1)

j , and Ai = ∑
Fi
j=1 X (2)

j , where

X (1)
j ∼ Bp and X (2)

j ∼ B p
1
2

is a conditional Bernoulli random

variables such that , X (2)
j = 1 if X (1)

j = 1 for j ∈ [Fi].

X (1)
j is a Bernoulli random variable with parameter p that

captures the fact that a node can misbehave in a particular
instance of Algorithm 2 with probability p, while the second
random variable X (2)

j captures the fact that whenever a node is
eliminated from the network, it can be replaced with either a
honest or malicious node. This is in phase with our assumption
that we can handle a honest majority at the beginning.

3We believe that the network sanitization asymptotic improvement can
apply independently of the malicious nodes’ strategy

Note that both Ri and Ai are both a random sum of random
variables. As the number of failures at some iteration can
be considered independent of the sum of failures occurred
throughout all iterations of Algorithm 2, we can consider that
both X (1)

j and X (2)
j are independent of Fi.

Based on Wald’s equation, we have E[Fi+1] = (1− p
2 ) ·

E[Fi]. By induction we can show that E[Fi+1] = (1− p
2 )

i+1 ·
E[F0], where E[F0] = E[t] = t, the initial number of byzantine
nodes in the network.

Based on Markov inequality, we show that

Pr[Fr ≥ 1] ≤ t(1− p
2
)r ≤ e−

rp
2 +ln(t).

Setting rp
2 − ln(t) = λ concludes the proof.

For example, for λ= 30 and t = N
2 −1 for N = 210 p= 2−5,

the number of rounds before the P2P gets sanitized with high
probability equals to r ≈ 2500.

We are now interested in computing the expected number
of rounds in average of Algorithm 2 while taking into con-
sideration our sanitization protocol. Theorem D.1 shows that
the P2P can get sanitized w.h.p. after a particular number
of rounds, however, throughout the different instances, the
number of byzantine nodes decreases as well, which suggests
that the round complexity can get better. We will show in
the following theorem that Algorithm 2 has a constant round
complexity in average after a polynomial number of instances.

Theorem D.2. Algorithm 2 has a constant round complexity
in average for a number of instances r = poly(N) w.h.p.

In this theorem, we consider the same setting of Theo-
rem D.1 where the number of byzantine nodes at the (i+1)th
instance equals Fi+1 = Fi−Ri +Ai, where Ri = ∑

Fi
j=1 X (1)

j ,

and Ai = ∑
Fi
j=1 X (2)

j , X (1)
j ∼Bp and X (2)

j ∼B p
1
2

is a conditional

Bernoulli random variables such that , X (2)
j = 1 if X (1)

j = 1
for j ∈ [Fi].

We have shown that in this case the expected value of
E[Fi] = (1− p

2 )
i · t.

To compute the expected number of rounds per instance,
we need to count first the total number of possible byzan-
tine nodes to ever occur after r instances, Tr. This equals
Tr = ∑

r
i=1 ∑

Fi
j=1(X

(1)
i +X (2)

i ), Moreover, we also define the
average number of rounds per instance as a random variable ,
R, equal to R = 2 · (r−Tr)

r + t · Tr
r , where during r−Tr rounds

the protocol is optimal and equals 2, and in Tr rounds the
protocol has a worst-case round complexity and equals to f .

We then have that, leveraging Wald’s equation, E[Tr] =
3t
2 · (1− (1− p

2 )
r+1). Then, E[R]− 2 ∼ 3t2

2r · (1− e
−pr

2 ). By

Markov, we have Pr(R≥ 3)≤ 3t2

2r · (1− e
−pr

2 ).
That is, if r = poly(N) and p = O( 1

t ), then Pr(R ≥ 3) ∈
O( 1

poly(N) ).

22



E Unoptimized ERNG Analysis

In this section, similar to Appendix A, we denote by the ROD
mode, a mode where peers in a network P can only replay,
omit and delay messages.

Theorem E.1. If P operates in the ROD mode, then the bias
of G β(G) = 1.

Proof. Note that while G can be modeled as a multi-variate
function, it does not capture the sequencing of inputs. For our
proof to go through, we need to first show that the sequencing
of ERNG is guaranteed and a node can only participate with
its input if it starts synchronously with all nodes. For this, we
have the following two cases:

• early start: if a byzantine node transmits its INIT at
rnd = 1, then based on Lemma C.2, the node outputs
(either m or ⊥) will be considered as an input for G,

• late start: if a byzantine holds the INIT message until
seeing the output, then its input will not be added to Sfinal

as the message will be considered delayed. The output
of G in this case equals ⊥

Note that for both cases, the nodes have to start the protocol
at rnd = 1 if they want to participate with their inputs in the
final output. Moreover, based on the Blinded channel, we
know that nodes can only obtain the final output of G while
not viewing any internal state of G, which enforce the blind-
box computation (P3) property. That is, it is valid to consider
G as a multi-variate function that is fed all inputs at once.
Let us denote by X the random variable that captures the
output of G such that X = X1⊕·· ·XN , where Xi’s are random
variables that capture the input provided by every node in P ,
for all i ∈ [N]. As P operates in the ROD mode, Lemma C.2
demonstrates that all honest nodes receive the same set Sfinal

at the end of the protocol. We then can rewrite X such that
X =

⊕
κ
i=1 Xi⊕

⊕N
i=κ+1 Xi, where κ= |Sfinal|. In the following,

we need to show that EG[S] = E[S] = |S|
2k , for all S⊆ {0,1}k.

Note that EG[S] = Pr[X ∈ S], and therefore it is sufficient to
compute Pr[X ∈ S].

Pr[X ∈ S] = Pr[
⋃
x∈S

(
X = x

)
] = ∑

x∈S
Pr[X = x]

The second equality follows from the fact that all events are
disjoint. Now for a given x ∈ S, Pr[X = x] equals:

= Pr[
κ⊕

i=1

Xi⊕
N⊕

i=κ+1

Xi = x]

= ∑
xN∈{0,1}k

(
Pr[

κ⊕
i=1

Xi⊕
N−1⊕

i=κ+1

Xi = x⊕ xN |XN = xN ]

· Pr[Xn = xN ]
)

= ∑
xN∈{0,1}k\{0}

(
Pr[

κ⊕
i=1

Xi⊕
N−1⊕

i=κ+1

Xi = x⊕ xN |XN = xN ]

· Pr[Xn = xN ]
)
+Pr[

κ⊕
i=1

Xi⊕
N−1⊕

i=κ+1

Xi = x|XN = 0] ·Pr[Xn = 0]

= Pr[
κ⊕

i=1

Xi⊕
N−1⊕

i=κ+1

Xi = x|XN = 0]

= Pr[
κ⊕

i=1

Xi = x|Xκ+1 = 0, · · · ,XN = 0]

= ∑
xκ∈{0,1}k

Pr[
κ⊕

i=1

Xi = x⊕ xκ|Xκ = xκ,Xκ+1 = 0, · · · ,XN = 0]

· Pr[Xκ = xκ]

=
1
2s ∑

xκ∈{0,1}k
Pr[

κ⊕
i=1

Xi = x⊕ xκ|Xκ = xκ,Xκ+1 = 0, · · · ,XN = 0]

=
1

2s·(k−1) ∑
x2 ,··· ,xκ∈{0,1}k

Pr[X1 = x⊕
κ⊕

i=2

xi|

X2 = x2, · · · ,Xκ = xκ,Xκ+1 = 0, · · · ,XN = 0]

=
1

2s·k |{x2, · · · ,xκ ∈ {0,1}k}|= 1
2s

Thus, Pr[X ∈ S] = |S|
2s . This concludes our proof.

F Optimized ERNG

F.1 Optimized ERNG pseudo-code
We present a pseudo-solution of our optimized ERNG in
Algorithm 6.

F.2 Proofs
Lemma F.1. If up to t = N

3 nodes are byzantine, then with
at least 1−negl(γ) probability, the representative cluster has
more than γ honest nodes, and less than γ byzantine nodes.

Proof. In ERNG at round 1, every node picks uniformly at
random a value from {0, · · · , N

2γ
−1}. That is, every node has

a probability equal to q = 2γ

N to be chosen as a representative.
Let Hi and Bi be two random variable that equal 1 if the ith hon-
est and byzantine node is chosen respectively, otherwise they
equal zero. Let us denote by H = ∑

2t
i=1 Hi and B = ∑

t
i=1 Bi

the number of selected honest and byzantine nodes in the
cluster. Then both H and B are distributed following a bi-
nomial distribution with a number of trials equal to 2t and
t, respectively. We have E[H] = ∑

2t
i=1 E[Hi] = 2t · 2γ

N = 4t·γ
N .

Similarly, E[Y ] = 2t·γ
N . Based on two variations of Chernoff

bound, considering t = N
3 , we obtain that

Pr[H > (1−δ1)
4γ

3
]≥ 1− e−

2δ2
1 ·γ
3 ,

similarly, Pr[B < (1+δ2)
2γ

3 ]≥ 1− e−
2δ2

2 ·γ
9 , where δ1,δ2 < 1.

For a choice of δ1 =
1
4 and δ2 =

1
3 , we obtain,

Pr[H > γ]≥ 1− e−
γ

24 ,

23



Algorithm 6: ERNG: Enclaved unbiased random number genera-
tion protocol executed by peer pi.

Input: A P2P network P composed of N nodes
Output: A unbiased random number r

• initialization: SM← /0;Sfinal← /0;Schosen← /0; rnd← 1
for rnd≤ γ+4 do

if rnd = 1 then
• every peer pi compute ri

$←{0, · · · , N
2γ
−1};

if ri = 0 then
Multicast(idi,val), where
val = 〈CHOSEN, idi,seqi,⊥,1〉;
Schosen←{idi};

end
• upon receiving val = 〈CHOSEN, id j,seq j,m j, rnd j〉

if type = CHOSEN and rnd j = 1 and seq j = seqi then
Schosen← Schosen ∪{id j};

end
end

• if ri = 0 and rnd = 2 then
compute r′i

$←{0, · · · ,γ′−1};
if r′i = 0 then

initiate ERB with inputs mi
$←{0,1}k , seqi and

peers in Schosen;
end
seq′j ← seq j , for all id j ∈ Schosen;

end
if ri = 0 and 3≤ rnd≤ γ+2 then

execute ERB instances and wait for the output;
end
if ri = 0 and rnd = γ+3 then

Wait
(
rnd
)

then obtain Mi = {m̂1, · · · , m̂li};
seq j ← seq′j , for all id j ∈ Schosen;

end
if rnd = γ+4 then
• if ri = 0 then

SM← SM ∪{Mi};
Multicast

(
idi,〈FINAL, idi,Mi,seqi,γ+4〉

)
;

end
• upon receiving val = 〈FINAL,M j,seq′j, rnd j〉:

if rnd j = γ+4 and seq′j = seq j then
SM← SM ∪{M j};
if # of Mκ ≥ γ+1 where Mκ ∈ SM then

Sfinal←Mκ;
accept r =

⊕
v∈Sfinal

v.
end

end
end
rnd← rnd+1;

end
• seq j ← seq j +1, for all j ∈ [N];

and,
Pr[B < γ]≥ 1− e−

γ

41 .

Lemma F.2. If γ′ =
√

γ, then the probability that Ω(
√

γ) hon-
est nodes are selected to be in the second representative clus-
ter is at least 1−negl(γ).

Proof. Based on Algorithm 6, every node in the cluster has a
probability of 1

γ′ to be chosen. Let us denote by Xi the random
variable equal to one if the node is selected. We then denote by,

H′ = ∑
H
i=1 Xi, the random variable that counts the number of

honest node in the second cluster. Based on Wald’s equation,
we obtain E[H′] = E[H]

γ′ = 4γ

3γ′ . Then, based on Chernoff bound,
we obtain for δ < 1,

Pr[H′ > (1−δ) · 4γ

3γ′
]≥ 1− e

− 4δ2 ·γ
3γ′

if we set δ = 1− 1
γ′ and γ′ =

√
γ, then we obtain

Pr[H′ >
4
√

γ

3
]≥ 1− e−

√
γ.

This ends out proof.

Note that we can obtain better bounds if we consider com-
puting the pmf of H′ as it follows a binomial distribution with
a binomial number of trials

Corollary F.1. If γ′ =
√

γ, then the size of the first and second
representative clusters is in O(γ) and O(

√
γ) w.h.p

The proof of the corollary directly follows from
Lemma F.2.

Theorem F.1. Agreement: All honest nodes eventually agree
on the same common set Sfinal in ERNG.

Proof. In round 1, |Schosen| nodes are uniformly at random
selected to be part of the representative cluster. Based on
Lemma F.1, we have shown that the cluster contains strictly
more than γ honest nodes, and strictly less than γ byzantine
nodes w.h.p. when t < N

3 That is, we have created a new
smaller P2P network Schosen in which the honest nodes repre-
sent the majority. In the cluster, all honest nodes know each
other, but byzantine nodes may deliberately not contact honest
nodes on purpose. In this case, the cluster will be more robust
with less byzantine nodes. Thus, all the results introduced for
ERB will hold for this cluster of nodes.

From round 2 to round γ+3, the second cluster has more
than

√
γ honest nodes w.h.p. according to Lemma F.2. For

each instance of ERB— whether initiated by an honest or
byzantine node, the honest representative nodes will agree
on a same message according to Lemma C.3. Since there
is at least one honest sender, all honest nodes will accept
the honest sender’s message for its run of ERB based on
Lemma C.2. After around O(

√
γ) runs, all honest nodes will

agree on the same set of random numbers. Since the number
of honest representative nodes is larger than γ and all of them
will multicast FINAL messages for the same set of messages
in round γ+ 4, then all honest nodes will receive adequate
FINAL messages to accept the common set Sfinal.

In ERNG, since the message mi is a random number gen-
erated by the SGX and proposed by the peer pi, then eventu-
ally every honest node accepts the same set Sfinal of random

24



numbers according to Theorem F.1. By performing exclu-
sive disjunction (or XOR) of all the random numbers in Sfinal,
every honest node can obtain a common random number r.
We demonstrate next that the random number r is unbiased
against byzantine nodes.

Theorem F.2. Unbiasedness: The output of the ERNG pro-
tocol is an unbiased random number.

sketch. Given Theorem F.1, we know that all honest nodes
agree on the same set SM. On the other hand, leveraging
PeerCh

sgx Peer channel, we know that all random numbers in
the ERNG protocol are generated within the SGX enclave and
never tempered with as the network is in the ROD model, based
on Corollary A.2. Finally, it is sufficient to show that if all ran-
dom numbers generated in SGX are random then the output
of ERNG is an unbiased random number, which holds given
SGX primitive generates unbiased random number against
the operating system according to Theorem E.1.

G Are our Assumptions Reasonable?

S1: Network Size. We start with a fixed size network P with
N peers. We assume that there exists information that publicly
identifies every node in P , this can be for example a node IP
address. This assumption is reasonable under some common
conditions. For example, for banking systems, all involved
machines should be registered and publicly available. Fortu-
nately, we can weaken such as assumption and we can extend
our setting to work within a variable size network based on
the following technique: whenever a node wants to join P , the
joining node contacts another neighbor node and communi-
cates both its sequence number and identifier. The contacted
node will use ERB to reliably broadcast the pair to all peers
in P and then send the joining peer a message containing all
existing identifiers of P . We can leverage the same technique
in a recursive way to even start with a one node network P .
Note that in this case the identifier need not to be publicly
known.
S2: Synchronous Start. Before initiating the ERB primitive,
we assume that any honest node in P can be triggered at the
same reference time. This reference time can be provided
in different ways such as periodic execution from a fixed
reference date, or simply by starting at a time posted in pub-
lic servers. Once synchronized, every node uses the trusted
elapsed time from SGX to maintain a relative time from the
reference time. This therefore will maintain an internal clock
within every node’s enclave. As the enclaves in all honest
nodes will have the (nearly) same internal clock, all nodes
will start the next instance of the protocol at the same time.
If any byzantine node deviates by omitting or delaying the
oracle message, its elapsed time will be different from the
one honest nodes have. Consequently, all the byzantine node
messages will be delayed as they are going to have a different
round number.

S3: Round time 2∆ seconds. The round time (2∆ seconds)
is adequately determined to allow any honest round trip mes-
sage to complete within 2∆ seconds. The round increments
are managed using the trusted elapsed time, which implies
that even if the OS is byzantine, the round number will be
always incremented inside the enclave every 2∆ seconds. We
also emphasize that the time interval between any two internal
clocks for honest nodes is negligible compared to 2∆ seconds.
As ERB does not use any underlying heavy cryptographic
primitive, we assert that any sent message will be received
in the same round. The 2∆ seconds is mostly dedicated for
network latency reasons.
S4: Number of byzantine nodes less than N

2 . To join a
network P , an adversary is required to control machines
with SGX-enabled CPUs, in which the number of possible
launched enclaves is bounded [46]. To control N

2 , the adver-
sary needs to control a number of SGX machines. Meanwhile,
we can also employ existing sybil defenses in our network to
control the number of byzantine nodes, e.g., defenses using
computation puzzles or proof of work [30, 68]. The details of
deploying these sybil defenses are beyond the scope of this
paper.
S5: Connected Peers. For simplicity of design and to follow
the standard model used in previous works, we assume that all
the peers in the network are connected to each other. However
this assumption can be relaxed such that the network is a
sparse but expander or random graph. This will guarantee that
there is a path in between any two honest nodes. Thus, the
direct point-to-point broadcast in our protocol can be replaced
with a flooding algorithm to broadcast messages.

H Applications

Both ERB and ERNG primitives can be used as building
blocks to solve a wide range of problems in distributed sys-
tems. In the following, we review some of the most prominent
applications.

Random Beacons. A random beacon protocol [84] offers
a way to generate uniformly random strings that are un-
known to the nodes before their generation. Random beacons
have been extensively studied as they have numerous appli-
cations in cryptography and information security, such as se-
cure contract signing protocols [50, 84], voting schemes [75],
zero-knowledge protocols [21, 57], and cryptocurrency proto-
cols [71]. Building random beacons is a difficult task. Practi-
cal solutions usually leverage a trusted third party [10, 17], or
utilize public data available on the Internet such as financial
data [43]. However, the data from these services has to be
trusted and certified, which unfortunately represents a strong
assumption in practice. Recently, researchers have also pro-
posed several protocols to generate random beacons by using
Bitcoin as a source of publicly-verifiable randomness [25,29].
However, the adversary can bias the beacon by introducing a

25



new monetary cost. With ERNG, the underlying system can
easily generate a common unbiased random number in the
network.
Random Walks. In order to build a more robust P2P topology,
random walk is an essential primitive to distribute nodes
uniformly in the network to maintain an expander topology.
Guerraoui et al. [58] build a virtual overlay on top of the
physical nodes, in order to maintain a robust P2P topology.
Each virtual node represents a cluster that consists of a set
of physical nodes such that at least 2

3 of the nodes are honest.
This guarantees that decisions or agreements of the cluster
hold on the behalf of the entire physical nodes of the network.
Ensuring that the virtual nodes are honest will guarantee the
correctness of the random walks against byzantine nodes.
However, this is not sufficient and in order to determine the
next hop in the random walk, an unbiased random number is
required. With ERNG, we present an efficient solution for
this issue in such a way that physical nodes in the cluster can
generate a common unbiased random number to designate
the next hop, and therefore maintain a robust topology.
Shared Key Generation. By performing ERNG, every hon-
est node will share a common unbiased random number that
can be used as a key, salt or initialization vector for symmetric

cryptography. ERNG can also be used as a building block
for distributed key generation (DKG) where the peers want
to compute a shared public and private key. DKG has several
applications and in particular in threshold cryptography, we
refer the reader to the works by Gennaro et al. [55, 56].

Random Load Balancing. Random load balancing is gener-
ally performed by a centralized server to distribute tasks to
slave servers [47,85]. A centralized server is often considered
as a single point of failure, which is usually the primary tar-
get of attackers. Once the centralized server is compromised,
the whole load balancing system fail as well. With ERNG,
we distribute the decision generation process to a cluster of
nodes instead of a centralized server. When a new request or a
task comes to any node, the cluster of nodes evaluate ERNG
to generate an unbiased common random number and send
the decision to the target slave server. Once the slave server
receives adequate confirmations from (say) half of the nodes,
it can take upon the task and evaluate it. This way, even if half
of the nodes are either compromised/failed, the load balanc-
ing system can still work correctly. Note that the nodes can
a-priori pre-process many random numbers to speed-up the
process. The random numbers can be generated and stored in
the hard drive using sealing technique enabled by the SGX.

26


	Introduction
	Problem
	Problem Definition
	Attacker Model
	Strawman Solution & Attacks

	Solution Overview
	SGX Features and Security Properties
	Overview of Our Results

	Enclaved Reliable Broadcast Protocol
	ERB details
	Analysis

	Enclaved Random Number Generation
	Unoptimized ERNG
	Optimized ERNG
	Analysis

	Evaluation
	ERB Evaluation
	ERNG Evaluation
	Byzantine case

	Related Work
	Conclusion
	Primitives and Formal Definitions
	Peer Channel
	Failure Modes
	Core Primitives
	Implementing Blinded Channel using SGX

	Rethinking Reliable Broadcast Protocols
	Digital Signature Schemes
	Early Stopping Schemes

	ERB Analysis
	P2P Sanitization & Analysis
	Unoptimized ERNG Analysis
	Optimized ERNG
	Optimized ERNG pseudo-code
	Proofs

	Are our Assumptions Reasonable?
	Applications

