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Improved Hybrid Consensus Scheme with
Privacy-preserving Property

Abstract—Proof-of-work-based consensus, adopted in Bitcoin,
has already drawn much attention from cryptocurrency and
block chain community. Despite its nice decentralization prop-
erty, it has significant limitation in terms of efficiency since
transactions can not be confirmed within seconds. In 2016, hybrid
consensus was proposed to partially deal with this issue by
introducing committee responsible for validating transactions.
However, there still exists some issues with respect to this hybrid
consensus such as selfish mining, fairness to the election of
committee member, incentives for the consensus scheme, and so
on.

To improve the hybrid consensus further, we first present
a substitution for proof-of-work, named as fair-proof-of-work
(FPoW), to solve the issues related to selfish mining and fair
committee election. We also demonstrate the incentives for our
improved hybrid consensus. Then, based on this consensus, we
build privacy-preserving constructions to make the consensus
more applicable and powerful. It is expected that this novel
consensus scheme could be adopted in block chains which require
decentralization, high efficiency, as well as privacy-preserving.

Index Terms—Block chain, Proof-of-work, Consensus, Privacy-
preserving, Hybrid Consensus.

I. INTRODUCTION

Decentralized ledger-based currency systems (such as Bit-
coin[Nak08]) provided a novel means of constructing payment
system without a trusted central bank [BMC+15]. In bitcoin,
proof-of-work is introduced to construct ledger-based decen-
tralized consensus mechanism, through which time-stamping
is formed and transaction history is hard to change. Blockchain
requires miners to solve a hash problem, so as to perform
Proof-of-work. Removal of central bank leads to cost of
transaction privacy and efficiency. Traditional block chain is
facing two issues. Firstly, it has no guarantee on privacy
of identity and transaction amount, although pseudo-identity
might be utilized to achieve anonymity, some previous works
have shown that such anonymity is not dependable. Secondly,
traditional block chain grows at unsatisfactory speed.

Works have been done in attempt to achieve real
anonymity. ZeroCoin and ZeroCash proposed in [MGGR13]
and [BCG+14], provided us a novel vision of transaction
anonymity by implementing zero-knowledge proof. Also, new
mechanisms were proposed to achieve better efficiency by
replacing Proof-of-work by Proof-of-stake (see [BGM16]) or
PBFT (see Hybrid Consensus).

Hybrid consensus proposed in [PS16b] gave an outline of
new utilization of proof-of-work by taking Nakamoto Chain
or Fruit Chain (see [PS16a]), which were named snailchain,
as generator of a rotating committee, and all transactions are
validated by the committee through a Permissioned Byzantine
Fault-tolerance(PBFT) [CL99] protocol. Committee members
of each round are miners of csize blocks on-chain, that

is to say, committee members will wait till generation of
csize new blocks to perform a switchover. Soundness of this
construction is guaranteed as long as over 3/4 (or 2/3 for
Fruit Chain) computing power is at hands of honest nodes.
In Hybrid Consensus, by term round, it meant time interval
for creation of csize blocks in snailchain, which was also the
duration of service of current committee. Rounds were denoted
with consequent natural numbers starting from 1. Validated
transaction log of round R is denoted as recR, and recR[l]
means l-th transaction in daily log (l is called a sequence
number). By notation CMR = [ID1, ID2, . . . , IDcsize], we
denote set of committee members for round R.

Here are some drawbacks of original Hybrid Consensus:
• Privacy. In original work of Hybrid Consensus, all con-

tents of transactions were stored in the clear. Hence,
privacy was not guaranteed.

• Motivation for honesty. In Hybrid Consensus, honesty of
committee members were guaranteed from block reward
and transaction fee. However, it merely guaranteed hon-
esty and hard-working of nodes as committee candidates
(i.e. miners), not as committee members.

• Existence of forking. In Hybrid Consensus, forking of
underlying snailchain existed, wasting great amount of
time and energy, leading to security hazards such as
possibility of Selfish Mining (that is the reason why it
required 3/4 overall honesty rate instead of 2/3).

In this paper, we will propose a new cryptocurrency mecha-
nism. It is an improvement of Hybrid Consensus, providing us
privacy-preserving property, as well as satisfactory efficiency
and stronger security guarantees. Demand on honest rate of
total computing power is 2/3 in our scheme.

A. Our contribution

In our construction, we use modified Hybrid Consensus as
underlying protocol. We can achieve following properties.
• Privacy-preserving. In this construction, identities of

payers and payees of transactions are blurred out with
techniques in Section IV.

• Permissionless model with excellent Efficiency. This is
a permissionless model, where nodes can join and leave
dynamically. In traditional constructions, a permission-
less model means terrible performance in efficiency of
transaction validation. However, with rotating committee
elected from underlying snailchain (see Hybrid Consen-
sus), we can validate transactions through BFT network
among committee members. In such way, satisfactory
efficiency can be achieved. Inherited from Hybrid Con-
sensus, our confirmation time is bounded only by actual
delay, instead of theoretical upper-bound of delay.
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• Forking-free. In traditional blockchain, forking has to be
implemented in order to tackle with ambiguous. However,
forking is waste of time and energy. Users have to
wait for generation of sufficiently many new blocks to
conform a transaction. Power consumed by miners who
followed ”wrong” block has to be wasted in vain. For
this reason, fairness is lost. Also, existence of forking
leads to existence of selfish mining. In Hybrid Consensus,
forking still exists in underlying snailchain. While in our
construction from Section III, forking can be prevented.

• Security. Compared with related works (including Hybrid
Consensus), our construction is endowed with following
security properties.

Tolerated corruption. In this work, we require
roughly 2/3 overall honesty to achieve 2/3-chain quality,
so as to assure 2/3 BFT committee members are honest.
(Hybrid Consensus utilizing traditional blockchain as
underlying snailchain required 3/4 overall honesty)

Looser assumption against mildly agile corrup-
tion. In Hybrid Consensus, adversary is allowed to per-
form mildly agile corruption, i.e., they can choose nodes
to corrupt according to the configuration of environment.
τ -agility, which means an adversary has to wait for τ time
to corrupt a honest node, is defined to describe assump-
tion on adversary’s capability. In our work, assumption
on τ can be much looser than that of Hybrid Consensus.

Preventing selfish mining. In traditional block
chain, with existence of transaction pool, selfish mining
may happen (see [ES14]). However, in our forking-free
construction, selfish mining has no reason to exist.

• Fairness in competition. Without existence of forking,
selfish mining is prevented. Also, with our FPoW, better
fairness to committee candidates can be guaranteed in
face of network delay.

II. NOTATIONS AND PRELIMINARIES

Notations are shown in TABLE I. In following contents we
show some preliminaries.

A. Proof-of-work

Proof-of-work, has been introduced to bitcoin system in
order to make sure any newly generated block is mined by an
honest node with probability equal to fraction of total honest
computing power.

In detail: suppose H is a cryptographic hash function, Bi

is i-th block on chain, and target is a target range to adjust
difficulty of puzzle. Miners of block prove their computing
power by trying to solve hash-puzzles H(Bi−1,nci) ∈ target
after block (say, Bi−1) on chain, so that (s)he could propose
Bi with nci (along with reward transaction to reward itself)
appended onto it.

B. Blockchain

Block Chain (for short, blockchain), was digital currency
system firstly proposed by Satoshi Nakamoto in [Nak08]. In
bitcoin system, network links transactions by time-stamping

technique, and hashing them into a chain of hash-based proof-
of-work. In such way, history that cannot be tampered without
redoing the proof-of-work is formed.

C. Hybrid consensus

Hybrid Consensus, proposed in [PS16b], was a brand-
new cryptographic scheme utilizing Nakamoto blockchain or
FruitChain (see [PS16a]) as underlying snailchain, so as to
dynamically maintaining a rotating committee. All transactions
are verified by a BFT network among committee members,
legitimated if over 1/3 committee members concur and broad-
cast corresponding signatures on them.

D. Permissioned model

Permissionless models, where nodes are allowed to join
and leave dynamically, often lacks effciency in practice. On
the other hand, Permissioned models, where nodes are pre-
determined, can achieve satisfactory efficiency. In Hybrid
Consensus, a rotating committee is elected from a permis-
sionless environment, so as to perform permissioned BFT
among committee members. With this technique, efficiency
of transaction validation is guaranteed in a permissionless
environment.

E. Mildly agile corruption

In fully adaptive corruption model, we assume that adver-
sary can perform any corruption without any cost of time.
This assumption is too strong in practice, since adversary has
to spend long time locating a node, when adversary in fact
only know its pseudo-identity.
τ -agile corruption is assumption that adversary has to

spend time τ to corrupt a node. That is to say, time interval
between adversary’s deciding to corrupt a node and node’s
getting finally corrupted should be at least τ .

III. IMPROVED HYBRID CONSENSUS WITH
FAIR-PROOF-OF-WORK

In Hybrid Consensus, for each round, transactions are
validated through PBFT network among committee members.
However, committee election in Hybrid Consensus is based
on traditional PoW, hence is not forking-free (which we will
unfold in following contents). To improve this, we propose
our Fair-Proof-of-Work (for short, FPoW).

A. Demand for forking-free construction

When multiple nodes mine a block at almost same time,
how to make sure all nodes concede to ”miner of next block”?
In traditional block chain, forking of chain helps to solve this
issue. Forking is necessary in classical cryptocurrency systems,
because forking also helps tackle with misbehaviour of miners.
But it is not the case in Hybrid Consensus, since validation of
transactions has nothing to do with non-committee miners.

From our perspective, demand for forking-free construction
arises mainly for three reasons. Firstly, forking is waste of
energy, as much computation power would be wasted in
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Notation Description
κ, λ security parameters for encryption and consensus
H(·) a cryptographic hash function
ID in this work, by term identity, we mean a pseudo-identity named by node itself

(collision can be prevented)
R round number
` sequence number

CMR committee members for round R
csize size of rotating committee csize := Θ(λ)

ek key for symmetric encryption
(pk, sk) public and private key for digital signature scheme
(pk, sk) public and private key for hybrid encryption scheme
(PK,SK) public and private key for public key encryption scheme

(k, ψ) session key k and its encapsulation ψ in hybrid encryption scheme
in = (R, l) in is index of one transaction, R is its round number and l is its sequence

number of that round
round(in) round((R, l)) = R
seq(in) seq((R, l)) = l
〈tx, tx′〉 pair of payment transaction and corresponding charge transaction
〈TX,TX′〉 pair of payment transaction and corresponding charge transaction after encryp-

tion
txc, TXC transaction command txc and its encryption TXC
txp, TXP transaction proof txp and its encryption TXP
val(tx) transaction amount for tx

valek(TX) transaction amount for TX, which requires symmetric key ek to be disclosed
(pkcom, skcom) public and private key for committee in hybrid encryption scheme

sig(sk,m) signature on message m with key sk
TABLE I

NOTATIONS FOR CONSTRUCTION

vain merely in order to tackle with ambiguity. Secondly,
forking is waste of time and long confirmation time means
that committee members might be more vulnerable under
target corruption. Thirdly, forking-free helps to prevent selfish-
mining (since selfish mining exists only when forking is
possible, see [ES14]).

B. Fair-proof-of-work

In original construction of Hybrid Consensus, where com-
mittee members are selected from traditional Proof-of-work,
controversial problems arises. Compared with original Hybrid
Consensus, FPoW mainly has following advantages:
• Forking-free. One issue of Hybrid Consensusis that,

forking still happens in competition for block mining.
However, we hope to prevent forking. To avoid forking,
we can revise the rule and stipulate that blocks should
be appended with broadcast time and the one that is
broadcast first should be the next block. Certainly this
is impractical, since it is hard for all nodes to share the
same clock, and nodes have no reason to behave honestly
when appending broadcast time.
In our construction, we need neither guarantee on time
synchronization nor honesty of nodes, to achieve a fair
competition for ”first miner of next block” without exis-
tence of forking.

• Fairness in competition. Our construction guarantees
on better fairness on candidates suffering network delay.
In Appendix C, we will give a formal proof of why

our newly proposed construction excels ordinary PoW
considering the existence of network delaying.

• Robust against target corruption. Secondly, committee
switchover in Hybrid Consensus happens every creation
of csize blocks, and due to the existence of forking,
nodes have to wait for creation of at least λ blocks to
finally become a committee member. This is too long an
interval, as well as great exposure to target corruption.

• Preventing selfish mining. In our forking-free construc-
tion, selfish mining has no reason to work. In Hybrid
Consensus, 3/4 overall honesty has to be guaranteed (if
underlying snailchain is Nakamoto Chain) to achieve
2/3-chain quality, due to existence of selfish mining.
However, we have no such concern in this work.

Our proposed Fair-Proof-of-Work (FPoW) is novel version
of Proof-of-Work. We denote it as FPoW in order to distinguish
it from traditional PoW. In traditional construction, for each
candidate, probability of mining a nonce for each block is
roughly proportional to its computing power, similarly, in our
construction, we lower down difficulty of mining puzzle to
make expected number of nonce found proportional to its
computing power.

We can view list of committee members as a queue, each
day one lucky miner enters and one leaves. In our construction,
difficulty of nonce-puzzle is smaller than that of PoW. In
each round, each candidate u finds some nonce solutions, say,
ncu,1,ncu,2, . . . ,ncu,Pu . Before end of this round, candidate
submits all solutions it found to the committee, then committee
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members arrange all received solutions in an array L in a
certain order, and decides one random number 1 ≤ r ≤ |L| =∑
u Pu. Finally, committee announces one new committee

member of next round, who is the miner corresponding to
the r-th item of L. We will give a more detailed description
in following contents.

C. Committee from FPoW
In our construction, one node enters committee and one

leaves for each round. Hence our round interval is much
shorter than that of Hybrid Consensus (which is called ”Day”
in Hybrid Consensus). Now we present introduction to FPoW.

1) On side of candidates: In round R, one candidate, say,
Tom, collects all transactions of round R − 1 (signed by
over 1/3 committee members) and arrange them according
to sequence order into recR−1, then finds as much as possible
nonces nctom,1,nctom,2, . . . ,nctom,Ptom such that

H(BR−1||IDtom||nctom,i) ∈ target (1 ≤ i ≤ Ptom)

where block content BR−1 := {recR−1, H(BR−2),CMR−1}
is block of previous round. Note that differently from tra-
ditional Bitcoin block chain, recR−1 here includes users’
transactions handled by previous round’s committee, reward
transactions for previous round’s committee. CMR−1 is iden-
tity list of previous round’s committee members.

Tom arranges all nonces found into Ltom:

Ltom =


nctom,1 IDtom
nctom,2 IDtom

...
...

nctom,Ptom IDtom


and submit all items in Ltom to the rotating committee before
the end of round R.

Remark: In practice, it is not good idea to submit nonces
to all committee members and assume they will all receive
same number of nonces during whole interval of round R.
Consensus on nonce acceptance should be reached through
another PBFT network. However, in following contents, we
merely assume that a safe submission protocol exists, to
simplify representation.

2) On side of current committee member: For simplicity,
we order all committee members in 1, 2, . . . , csize. Each
honest committee member receives Lu from all candidates,
putting all Lu into L, sorts all items in the same order, to get

L =



ncA,1 IDA
ncA,2 IDA
ncB,1 IDB

...
...

nctom,1 IDtom
nctom,2 IDtom

...
...

nctom,Ptom IDtom
...

...


|L|×2

Before beginning of next round, committee members in
CMR = [ID1, ID2, . . . , , IDcsize] produce a random number

1 ≤ r ≤ |L| =
∑
u Pu by the procedures in Figure 1. That

is, all members firstly find random number rj (for j-th one)
and broadcast H(rj). After that, all members broadcast rj .
In such way, adversary can control nothing about generated
random number, as long as any one committee member is
honest. Details are shown in Fig.1. By term "Accuse", we
mean to vote denial during final voting process.

Finally, committee members declare ("Enter", ID′) along
with their signatures, where ID′ is identity of miner of r-th
nonce. This lucky candidate is enrolled into committee if this
declaration is signed by over 1/3 current committee members.
After that, this round ends and next round begins.

D. Bootstrapping techniques

Here comes question: how to bootstrap this system? In fact,
likewise the genesis block in bitcoin, we need csize genesis
blocks maintained by system creator, to perform bootstrapping
of this system. Differently from that of bitcoin, system creator
(i.e. maintainer of csize genesis blocks) should have certain
computational to perform consensus for the first csize rounds.

E. Determination on commencement and termination time

In our scheme, all users’ transaction commands and FPoW
nonces of candidates are submitted to the committee, and
committee members reach consensus through PBFT. As we
know, PBFT is a ordered procedure during which transaction
commands and nonces are proposed by PBFT participants (i.e.
committee members) sequentially in turn. Utilizing this prop-
erty of PBFT, we can stipulate that each round is terminated
at time of M th proposal within PBFT process, where M is a
predetermined parameter.

F. Incentive of honesty

In original construction of Hybrid Consensus, incentive of
participants’ honesty is inherited from that of bitcoin. This
mechanism is endowed with merits of motivation for honesty
during candidates’ mining process. However, it ignored incen-
tive for honesty and presence of members after being elected
into the committee. To guarantee on honesty and presence of
committee members, we devise voting-liked mechanism. In
detail, we design reward transactions with specially designed
structure to reward honest and diligent members, thereby
providing incentive of honesty. At termination of each of
round, committee sends out reward transactions for each other
members, each member appends proper signatures for rewards
to those who acted honestly and diligently in this round. Each
rewards transaction is legitimized as long as over 1/3 members
broadcast signature on this transaction. Reward transactions
should have specially designed structure, so that they can be
validated without specifying payer.

IV. PRIVACY-PRESERVING CONSTRUCTIONS BUILT ON
OUR IMPROVED HYBRID CONSENSUS

In this section, with homomorphism property of key pairs,
we devise privacy-preserving structure of transaction com-
mands. In detail, identities of sender and receipt of transactions
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Generating random number 1 ≤ r ≤ |L| on round R
(for member of identity IDi , 1 ≤ i ≤ csize)

CMR = [ID1, ID2, . . . , , IDcsize];
Choose randomly ri ← {0, 1}κ;
Broadcast commitment commiti := H(ri) (and its signature);
Receive commitj := H(rj) broadcast by other members j 6= i;
Broadcast ri (and its signature) towards all other members;
Receive all rj (j 6= i) from other members;
For j 6= i: if H(rj) 6= commitj , then {set rj ← 0; Accuse j;}
r ← 1 + d

(
PRF(

⊕csize
j=1 rj , R)

)
· |L|2κ e

Fig. 1. Generating random number for committee election

are blurred out with a pseudo-identity, based on homomor-
phism property of key pairs. Note that in this section, we just
regard identity ID as public key pk, and we stipulate that DSA
signature scheme is adopted in our cryptocurrency system.
Certainly, this technique can also be implemented to other
signatures schemes satisfying homomorphism property of key
pairs. To facilitate description, in remaining contents of this
section, we assume each transaction refers to only one income
transaction, in fact this method can be easily generalized to fit
in case of multi-income scenario.

For any key pair (pk, sk) of DSA, and any random number
r, (pkr, sk · r) should also be valid key pair of DSA. We
use this homomorphism property to construct our scheme. In
our construction, we consider all transaction commands are
arranged in form

tx = (pkr11 ,pkr22 ,m),

tx’ = (pkr11 ,pkr31 ,m0 −m),

tx0 = (pkr03 ,pkr
′
0

1 ,m0),

in0 = (Rtx0 , `tx0),

σtx = ΠDSA.sig(sk · r′0, tx||tx’||in0),

where r0, r
′
0 are random numbers utilized in income trans-

action, r1, r2, r3 are random numbers picked at random, tx0

represents the income transaction, tx is payment transaction
and tx’ is charge transaction. m0 is amount of coins included in
income transaction, m is amount of payment. in0 is address of
income transaction, which should be appended to transaction
command for committee to check up.

For a user with public key pk1 to spend transaction tx0 =

(pkr03 ,pkr
′
0

1 ,m0) with a newly constructed transaction in order
to pay pk2. Payer pk1 chooses random numbers r1, r2. Then
the payment transaction is tx = (pkr11 ,pkr22 ,m), and charge
transaction is tx’ = (pkr11 ,pkr31 ,m0−m), where r3 is another
random number, so that charge transaction can be indis-
tinguishable from payment transactions in structure. Within
transaction command, address in0 of income transaction must
be included, and signature σtx signed with identity pkr

′
0

1 should
be appended to prove payer pk1’s rights to spend income
transaction. After that, pk1 can send transaction command
to the committee. Also, r3 must be sent to pk2 so that pk2

can spend revenues included in tx afterwards. After receiving
r3 from pk1, and receiving tx broadcast by committee after

consensus process, pk2 should check whether pseudo-identity
of receipt in tx is pkr32 or not.

V. CONCLUSION AND DISCUSSION

We have proposed a privacy-preserving bitcoin protocol
from rotating committee elected from FPoW, where FPoW
is fair-proof-of-work firstly proposed in this paper. We’ve
provided detailed description of this protocol and security
analysis.

A. How to achieve better privacy-preserving property?

Here we propose new scheme to provide better privacy-
preseving property. In Hybrid Consensus, encryption on trans-
actions is not introduced, hence transactions are open to all
publicity. In this section, we propose framework of a privacy-
preserving consensus, in which all transactions are sent to
committee with KEM/DEM encapsulation, with public key
negotiated by committee members. In this way, all transactions
can be blurred out to publicity.

In our construction, one transaction tx will be encrypted
with a symmetric encryption key to form TX, this symmetric
key should be generated by the payer, and acknowledged
to payee and committee members of current round. After
that, TX is send to committee members through KEM/DEM
encapsulation.

Similarly to that of bitcoin, we assume all transactions may
have multiple incomes, but only two outcomes: one for pay-
ment, one for charge (sent to itself or another account held by
itself). For convenience, we denote transactions in lowercase
tx as transaction before encryption, and transaction encrypted
with AES in uppercase TX. We use ek to denote a symmetric
encryption key. Additionally, since committee members should
check whether double-spending exists, transaction command
should include all symmetric keys of income transactions for
committee members to check. We use notation val(tx) to
denote quantity of currency in transaction tx, valek(TX) for
quantity included in transaction TX encrypted with ek.

For example, for Alice to transmit m coins to Bob, she may
not use all coins from income transactions, so she may need
to return charge of amount m′ to herself. More formally, she
makes such transaction pair:

〈tx, tx′〉 = 〈(IDAlice, IDBob,m), (IDAlice, ID
′
Alice,m

′〉)
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so that once this transaction goes through consensus, Bob later
on will be able to spend the m coins later when he needs, he
can include round and sequence number of this transaction as
source reference of his later transaction. Of course, it must
guarantee that

t∑
i=1

[valekini (TXini)] = m+m′.

We note

TX = SE.Enc(ek, tx)

TX′ = SE.Enc(ek, tx′).

Transaction command: In our construction, transactions
command includes transaction 〈TX,TX′〉, symmetric key ek
to provide tx← SE.Dec(ek,TX), as well as symmetric keys
(ekin1 ,ekin2 , . . . ,ekint) to open up all previous transactions
which serve as income of the current transaction. For conve-
nience, we denote each transaction command as

txc = (〈TX,TX′〉,ek, t, in1, in2, . . . , int, ekin1
,ekin2

, . . . ,ekint)
(k′, ψ)← KEM.Enc(pkcom)

TXC = (ψ,DEM.Enc(k′, txc))

1) Committee side: Before starting each round, committee
members of current round determine key pair (pkcom, skcom)
through negotiation, description of this negotiation process
will be similar to generation of random number (we suppose
ElGamal-based scheme is adopted). More details of this ne-
gotiation are shown in Appendix A.

During this round, upon receiving a transaction command
TXC, each committee member verifies amount of TXC and
identity of sender (it should map receipt identity of income
transaction) then checks whether double-spending of income
transaction exists. After that, committee members reach con-
sensus through PBFT within this committee. To make judge-
ment on one transaction command, each honest committee
member gets k′ ← KEM.Decap (skcom, ψ), and then txc←
DEM.Dec(k′,TXC), after that, it concur to this transaction
command if b ∈ {0, 1} ← judge(txc) is 1, where judge(txc)
is includes checking of transaction identities, double-spending
detection, and amount verification, more details are shown in
Fig.2.

Finally, to prevent double-spending, committee should
broadcast all indexes of income transactions to the publicity
that are referred to by validated transactions, without speci-
fying which transaction referred to them (so as to guarantee
better privacy against tracing). History of income history of
each round should be part of mining puzzle, thereby time-
stamping is formed. Newly bootstrapped miners should collect
income history as as to conduct double-spending check when
elected to the committee.

txc = (〈TX,TX′〉,ek, t, in1, . . . , int,ekin1 , . . . ,ekint)
(k′, ψ)← KEM.Enc(pkcom)
TXC = (ψ,DEM.Enc(k′, txc))
txp = (tx, ek)
(k′2, ψ2)← KEM.Enc(pkcom)
TXP = (ψ2,DEM.Enc(k′2, txp))

Fig. 3. Transaction command to committee and transaction proof to payee

2) User side: For Alice to pay Bob, it makes a transaction
command txc and encrypts it with session key generated with
committee public key pkcom in order to get TXC, then delivers
it to the committee through network. At the same time, in
order to prove to Bob, she makes transaction proof txp and
sends TXP = (ψ2,DEM.Enc(k′2, txp)) to Bob, where pkbob
is public key of Bob.

After transaction goes through consensus of committee, Al-
ice finds the index of this encrypted transaction pair 〈TX,TX′〉,
which are denoted as ix1 = (R, l), ix2 = (R, l+1) (where R
is the round of transaction, l and l + 1 are adjacent sequence
number). Then Alice sends ix1 to Bob. For Bob to check
whether Alice has payed or not, it waits till receiving ix1

from Alice, then he finds TX = recR[`] on chain according to
the index. Finally, he checks tx = SE.Dec(ek,TX) and finish
confirmation.

B. How is time-stamping achieved?

In our construction, miners have to find nonce to solve
puzzle H(BR−1||IDtom||nctom,i) ∈ target, where BR−1 :=
{recR−1, H(BR−2),CMR−1}. We can see that name list of
committee members as well as transaction records are set
to be part of the puzzle. In such way, history of committee
and transaction is time-stamped. With time-stamped committee
list, legitimacy of signatures from committee members can be
checked later on.

APPENDIX A

Key Negotiation for committee members

In Sec.V-A’s construction, committee members need to
negotiate for two key pairs: (PKcom,SKcom) for public key
encryption scheme, and (pkcom, skcom) for hybrid encryption
(KEM/DEM) scheme. The main difficulty of key generation
is to generate random numbers, and such randomness should
not be controlled by any dishonest member in committee.
Similarly to the case in committee election, we give an
outline of how to generate a random number. In fact, the
main difference between this procedure and that in committee
election is that all broadcasting contents should be encrypted
with public key of all committee members, to prevent eaves-
dropping. We suppose R-round committee consists of CMR =
[ID1, ID2, . . . , IDcsize], public key and secret key (in public
key encryption scheme) for IDi is PKi and SKi, respectively.
Similar to that of random number generation, term "Accuse"
means to show denial during final voting process. More details
are shown in Fig.4.
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judge(txc)
txc = (〈TX,TX′〉,ek, t, in1, in2, . . . , int,ekin1

,ekin2
, . . . ,ekint)

TX = (SE.Enc(ek, tx))
TX′ = (SE.Enc(ek, tx′))

tx← SE.Dec(ek,SE.Enc(ek, tx))
tx′ ← SE.Dec(ek,SE.Enc(ek, tx′))

For i from 1 to t:
Search ini in history of income references,if successfully find one,

then consider this transaction as double-spending attempt:
{ Return 0; HALT; }

Calculate sum←
∑t
i=1[valekini (TXini)]

If any receipt of ini is not payer of tx: { Return 0; HALT; }
If val(tx) + val(tx′) > sum: { Return 0; HALT; }

Return 1;

Fig. 2. Committee validation as black box

Generating random number 0 ≤ r < 2κ on round R
(for member of identity IDi , 1 ≤ i ≤ csize)

All broadcast content here should be appended with proper signatures

CMR = [ID1, ID2, . . . , , IDcsize]

Choose randomly ri ← {0, 1}κ;
Broadcast (′Prepare′, IDi, commiti := H(ri));
Broadcast (′Commit′, IDi, IDi);
Upon receiving (′Prepare′, IDj , commiti):

Store H(rj);
Accuse if receiving two different tuples from IDj ;
Broadcast (′Commit′, IDi, IDj);

Keep pending till receiving (′Commit′, IDk, IDj) for all 1 ≤ k, j ≤ csize;
For j from 1 to csize, if j 6= i:

Broadcast (′Broadcast′, IDi, IDj ,PKE.Enc(PKj , ri));
Receive and decrypt all r′j (j 6= i) from other members;
For j 6= i: if H(r′j) 6= commitj , then {set rj ← 0; Accuse j;} or else rj ← r′j ;
r ← PRF(

⊕csize
j=1 rj , R)

Fig. 4. Generating random number for key generation

APPENDIX B

Why FPoW excels ordinary PoW given existence of delaying?

To begin with, we present few lemmas.

Lemma B.1. For any 0 < c < 1, any natural number N :
c ·
∑∞
i=0(1− c)(iN) − 1

N = o( 1
N ).

Proof.

c ·
∞∑
i=0

(1− c)(iN) = c · lim
k→∞

1− (1− c)Nk

1− (1− c)N
=

c

1− (1− c)N

=
c

1−
(

1N −
(
N
1

)
1N−1c+ o(c)

)
=

c

Nc− o(c)

And then we get

c ·
∞∑
i=0

(1− c)(iN) − 1

N
=

c

Nc− o(c)
− c

Nc

=
c · o(c)

(Nc− o(c)) ·Nc
= o(

1

N
)

Lemma B.2. For any integers ∆ > δ > δ′ > 0, any 0 < c <
1, there exists sufficiently large N , s.t.

∞∑
i=δ

(1− c)i−δ · c · (1− c)(N−1)(i−δ′) <
∆− δ
∆− δ′

· 1

N
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Proof. We denote d = δ − δ′, hence δ′ = δ − d;
∞∑
i=δ

(1− c)i−δ · c · (1− c)(N−1)(i−δ′)

=

∞∑
i=δ

(1− c)i−δ · c · (1− c)(N−1)(i−δ+d)

= (1− c)(N−1)d · c ·
∞∑
i=δ

(1− c)N(i−δ)

= (1− c)(N−1)d · c ·
∞∑
i=0

(1− c)(iN)

we use previous lemma and get:

(1− c)(N−1)d · c ·
∞∑
i=0

(1− c)(iN)

= (1− c)(N−1)d · ( 1

N
+ o(

1

N
))

≈ 1

N
(1− c)(N−1)d

Meanwhile,

∆− δ
∆− δ′

· 1

N
=

∆− δ
∆− δ + d

· 1

N

Since for sufficiently large N :

(1− c)(N−1)d � ∆− δ
∆− δ + d

And this lemma has been proved.
∞∑
i=δ

(1− c)i−δ · c · (1− c)(N−1)(i−δ′) <
∆− δ
∆− δ′

· 1

N

Given the lemma above, we now illustrate how an inequality
proves FPoW excels PoW in sense of stability when network
delaying exists.

In following discussion, for simplicity, we consider such
case: we have N candidates sharing the same computing
power, i.e., their expectation of timing of find one nonce
solution in FPoW is Ts. We assume one of them suffers from
certain network delaying and has to begin puzzle-solving at
time δ, and all other nodes start puzzle-solving at time δ′ < δ,
and we denote ∆ as ending time of current round.

Then, in FPoW, the probability that the node suffering
network delaying (say, Tom) would become new committee
of next round is:

γ1 =
E[solδ]

(N − 1) · E[solδ′ ] + E[solδ]
=

∆−δ
Ts

(N − 1) · ∆−δ′
Ts

+ ∆−δ
Ts

=
∆− δ

N(∆− δ′)
+ o(

1

N
)

where solδ denotes number of nonce solutions to be found if
starting puzzle-solving at time δ.

In the case that we want our election forking-free, with
traditional PoW, we have to stipulate that first block mined
should be the on-chain block. In this case, we take a glance

at the probability of Tom entering committee next round in
ordinary PoW scheme:

γ2 =

∞∑
i=δ

(1− c)i−δ · c · (1− c)(N−1)(i−δ′)

where c is the probability that one (since we assume they share
same computing power) find a nonce within one unit of time.

When δ = δ′, from Lemma B.1, we get γ1 − γ2 = o( 1
N ),

which fits our scenario since all them share the same proba-
bility of entering committee next round is no delaying exists
(or suffering exactly same delaying).

When δ′ < δ < ∆, then from Lemma B.2, FPoW excels
ordinary PoW in the sense of stability since it makes the
damage of delaying less γ2 < γ1.
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