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ABSTRACT
Due to lack of practical and scalable security verifi-
cation tools and methodologies, very few of the exist-
ing hardware-software security architectures have been
thoroughly checked at the design time. To address this
issue, our project develops a security verification method-
ology that is applicable to different hardware-software
security architectures during the design phase. The ver-
ification framework aims to prove that a system holds
desired properties with respect to not just functional-
ity but also security; and we mainly focus on infor-
mation flow and non-interference properties for verifi-
cation. Using these properties, confidentiality and in-
tegrity of the sensitive data can be checked at design
time. The proposed verification framework is built upon
Chisel hardware construction language. By extending
the Chisel language and tools, we created SecChisel.
Ongoing work is focused on implementing SecChisel on
top of Chisel 3 and realisation of the static and dynamic
security labels.

1. INTRODUCTION
Top security researchers constantly remind us that, as
computing becomes more pervasive, computer related
security vulnerabilities are more likely to translate into
real-world disasters [21]. In order to increase security
of computing systems, many hardware/software secu-
rity architectures have been designed. These architec-
tures leverage special hardware features as trust anchors
or provide security related functionality through new
hardware features. However, if the designs are not per-
fect, they are still vulnerable to attacks, resulting in the
failure of the promised protections.
Since the security of a computer system depends on the
correctness of the protections that both the hardware
and software components provide, there is the need to
verify the security of both the software and the hard-
ware components. Unlike software, hardware is almost
impossible to patch once it is fabricated. Lack of suffi-
cient formal verification at design time may leave some

vulnerabilities in the manufactured system. For exam-
ple, Intel’s Core 2 Duo processor family is known to
have 129 bugs [11] and many of the errata are security
related [10].
The number of known bugs illustrates the limitations
of the existing verification approaches. This has mo-
tivated researchers to look into the verification of the
security properties of these systems at design time, and
into developing new methods for the security verifica-
tion of hardware and software systems.
Especially, formal methods provide the possibility of
ruling out every security vulnerability in the designed
system. Formal methods have been used in the func-
tional verification of hardware and software for a long
time. Recently, the use of formal methods for security
verification of both the hardware and the software of a
system has emerged as an important research topic.
This work aims to extend the field of hardware security
verification by focusing on the hardware-software se-
cure architectures that have been designed in academia
[18, 22, 13, 14, 8, 4, 12, 23, 25] which provide enhanced
security features in hardware; but most, if not all, of
these designs do not come with any formal proof of se-
curity properties. The absence of formal verification of
the security of system architectures may also be one
reason why industry has been very slow to adopt the
academic research in this field. A number of designs
from processor vendors also provide some hardware fea-
tures for security, e.g. ARM TrustZone [24], Intel SGX
[19], and most recently AMD Memory Encryption [1].
Likewise, most, if not all, of these designs do not come
with any formal proof of security properties.

1.1 Prior Work
A small number of projects, detailed in Section 8, have
explored security verification of hardware architectures.
These projects are shown in Figure 1, alongside the typ-
ical hardware levels in a computer system, and arrows
showing at which levels the verification takes place. As
SecChisel, all these projects focus on design-time ver-
ification. A large number of projects has been based
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Figure 1: Overview of the typical hardware lev-
els which a computer system can be logically
broken down into, and the relation of the lev-
els to existing security verification projects.

on the popular Verilog hardware description language.
In addition, information flow tracking (IFT) or non-
interference analysis are typical ways to reason about
how information is processed by a system. Informa-
tion flow tracking and non-interference can be used to
enforce security properties such as confidentiality or in-
tegrity [20].
Goal of SecChisel is to further build upon, and extend,
the existing work. This project is the first to explore use
of Chisel [2] for security related work. Chisel provides
number of high-level functionalities, including hardware
design in a manner similar to object oriented program-
ming which may make it more practical for new design-
ers to get started with hardware design – and by ex-
tension with security verification when using SecChisel.
The goal is for SecChisel to be a framework that can
prove security correctness of designs with fine-grained,
dynamic features, unlike prior work that focused on
proving static cache partitioning or time-multiplexed
pipelines.

1.2 Paper Organization
The remainder of the work is organized as follows. Sec-
tion 2 gives overview of the SecChisel design. Section 3
discusses static security labels. Section 4 discusses dy-
namic security labels. Section 5 presents methodology
for verification of designs with nested modules. Section
6 discusses possible optimizations, focusing on the SMT
solving performance. Section 7 gives current status of
the project. Section 8 presents the related work. Sec-
tion 9 contains concluding remarks.

2. SECURITY VERIFICATION APPROACH
OVERVIEW

Our SecChisel project focuses on hardware security ver-
ification of hardware-software architectures at design
time. The goal is to show a design, in form of a hardware
description language code, is correct. Issues of trusted
CAD tools, hardware trojans, untrusted foundries, or
supply-chain issues are not in the scope of this project.
The hardware verification is done at design time, fol-
lowing the process depicted in Figure 2. The objec-
tive is to prove that a system representation holds de-
sired properties with respect to not just functionality

Figure 2: Security verification process considers
security properties (1) and system representa-
tion (2), then verifies the design (3), and pro-
vides feedback to fix any issues (4).

but also security. Especially, our focus is on informa-
tion flow and non-interference, which can be used to
reason about confidentiality and integrity. As discussed
next, SecChisel allows for system representation and se-
curity properties to be expressed in single code base –
the modified Chisel code. This information is then used
by an SMT solver, namely Z3, to check information
flows based on the security properties. Current proto-
type focuses on explicit information flow, but implicit
flows and timing will be explored in next steps of this
research project.

2.1 Components of SecChisel
SecChisel is based on a modified Chisel language and
tools. The base for the project is the existing Chisel 3,
developed at Berkeley, and used for hardware construc-
tion. SecChisel extends data types with security labels,
allowing designers to annotate design with the security
labels associated with various wires and registers. The
security labels come from a designer-specified lattice
that can be used to reason about relationship of differ-
ent security labels. The modified Chisel code is output
(in form of modified FIRRTL) to the Z3 SMT solver,
which checks for information flow violations based on
the security labels.
Checking of the security properties is done using Z3
SMT solver. The focus is on using the algorithm ap-
proach that allows to ensure that information flow be-
tween components, wires, and registers does not violate
expected security properties.

2.2 Lattice Model of Security Labels
To reason about information flow, the designer has to
assign security tags to register, wires, or other compo-
nents. The security tags come from a designer-specified
lattice. Lattice is an algebraic structure that formally
defines ordering between elements of a given set. It is
a partially ordered set with additional properties. A
partially ordered set is a lattice if it contains a unique
supremum (join, also called least upper bound) and a
unique infimum (meet, greatest lower bound) for every
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pair of elements inside the set.
Supremum: Let P be a partially ordered set and S be
a subset of P . Supremum of S is an element in P that
is greater than or equal to all elements in S. It is also
known as least upper bound. For a partially ordered set
to be a lattice, the supremum operation must result in
a single element for all possible subset combinations.
Infimum: Let P be a partially ordered set and S be a
subset of P . Infimum of S is an element in P that is less
than or equal to all elements in S. It is also known as
greatest lower bound. For a partially ordered set to be
a lattice, the infimum operation must result in a single
element for all possible subset combinations.

2.2.1 Bounded Lattice
Bounded lattice is a lattice that has a greatest element
(H) and a least element (L). For every element x in the
lattice, L ≤ x ≤ H. Bounded lattice introduces identity
laws on join (∧) and meet (∨) operations.
• Least element (L) becomes identity element for

meet (∨) operation. ”X ∨ L = X”
• Greatest element (H) becomes identity element for

join (∧) operation. ”X ∧ H = X”

2.2.2 Lattice Example

Figure 3: Example lattice structure

Let S be a partially ordered set. S = {1, 2, 3 4, 6, 12},
with binary relation, “divides”. Here, the elements {1,
2, 3, 4, 6, 12} can correspond to the security tags. Now
assume the ordering of elements with divides relation
creates the structure shown in Figure 3.
And assume suprema are defined as follows: Supre-
mum(1, 12) = (12), Supremum(1, 2, 3) = (6), Supre-
mum(1, 3) = (3), Supremum(2, 4) = (4), Supremum(2,
3, 4) = (12). And assume infinea are defined as fol-
lows: Infimum(4, 6) = (2), Infimum(12, 4, 6) = (2), In-
fimum(4, 6, 3) = (1), Infimum(1, 12) = (1), Infimum(12,
4, 2) = (2). Given this structure, and given any two se-
curity tags, i.e. elements from {1, 2, 3, 4, 6, 12}, what
is the join or meet of the two tags. Consequently, given
inputs signals to a logic gate (or set of logic gates) each
with different tags, the join or meet can be used to set
the tag of output, depending whether considering con-
fidentiality or integrity checks.

2.2.3 Bounded Lattice as Information Flow Policy

Figure 4: Overview of the SecChisel framework
steps.

It is convenient to use a bounded lattice as information
flow policy. It ensures there is a global confidential tag
(H) and a global public tag (L) in the system. Any
operation between two or more variables results in a
value which has a security tag of the supremum of the
operand’s tags. Using lattice conveniently ensures that
any possible combination of supremum will still result
with a unique tag in the lattice set. In Figure 3 these
correspond to elements 12 and 1.

2.2.4 Comparing Lattices
Modules in a design can come from different design-
ers, who annotate their designs with security tags taken
from different lattices. In such case the designer who in-
tegrates modules from other designers has to map one
lattice onto another. Typically, designer may write a
top master module, and integrate other nested modules
within it. For each element in their master lattice, the
designer has to specify relation to which element in the
nested module’s lattice it maps to. Some heuristics can
be used to automate the processes. For example, nested
module’s lattice may only have two elements, high and
low. These can be naturally mapped to the greatest
and least element of the master lattice. In general case,
however, it is an open question how to compare and
translate between tags from different lattices. This work
focuses on designs where all modules have security tags
taken from same lattice; problem of different lattices
will be explored in the future.

2.3 SecChisel Verification Steps
Given the lattice of security labels, designers can in-
corporate them into the hardware design through use
of the SecChisel framework. The steps of the SecChisel
framework are shown in Figure 4 and mirror the steps of
Chisel, with addition of the Z3 STM solver. The goal of
the framework is to show that none of the possible states
of the design would violate the desired information flow
policy. The policy itself is defined by the security la-
bels from the lattice, and annotations that the designer
puts in their design. Details of the specification of the
security labels and how designer writes them down are
given below, as well as in Section 3 for static security
labels and Section 4 for dynamic security labels.
The annotated code specifies an information flow pol-
icy of allowed data transitions between wires, registers,
or whole modules. A naive approach would be sim-
ulating every possible state of the design and try to
catch an information flow violation. However, possi-
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ble states of a circuit increases exponentially whereas
it is variables increases linearly. A design made out
of 100 variables (each of which are 1 bit) would have
1,267,650,600,228,229,401,496,703,205,376 possible states.
Assuming we can verify each state in 1 nanosecond, ver-
ifying whole design in a brute force fashion would take
more than 1013 years, thus this kind of approach is not
feasible.
Meanwhile, our approach involves transforming the given
design and information flow policy to its equivalent in
SAT (Satisfiability Modulo Theories) domain. Once the
problem is in a SAT domain, it can be solved by a SAT
solver, such as Z3. The whole process can be divided in
five steps:

1. Designer defines a design in SecChisel (Chisel with
addition of new security labels).

2. SecChisel generates an intermediate level circuit
defined in FIRRTL (Flexible Intermediate Repre-
sentation for RTL). All information about the se-
curity labels is transferred in to FIRRTL.

3. FIRRTL output is parsed into a FIRRTL state-
ment/expression tree. And, FIRRTL tree is pro-
cessed into SMT statements understood by Z3 model
checker.

4. SMT solver generates satisfiable or unsatisfiable
result from SMT statements.

2.3.1 SecChisel Circuit Definition and Flow Policy
A design is defined in an identical way as with Chisel.
As an addition to Chisel, the designer can also define
a information flow policy for the circuit. A flow policy
consists of security labels and a lattice. Security labels
are just identifiers (string) that can be bound to any
variable (wire or register) in a design and lattice de-
fines the hierarchical structure between security labels.
The security labels are taken from a lattice. The lattice
must be a bounded lattice, which is a special type of
lattice that contains a global highest and a global low-
est elements. For confidentiality, it is not allowed for
variables bounded with higher security labels to trans-
fer their data in variables with lower security labels.
For integrity, it is not allowed for variables bounded
with lower security labels to transfer their data in vari-
ables with higher security labels. Each variable (wire
or register) is then potentially labeled with two secu-
rity labels, read security label, tread, and write security
label, twrite, both taken from the lattice. The designer
adds these security labels into the source code, by anno-
tating module inputs, outputs and individual wires or
registers inside a module. Chisel’s data types are mod-
ified in a way that user can give an extra parameter to
their declarations to bound a security label to it. Not
all wires or registers need to be labeled in a design, and
the tools aim to infer some security labels. Underspec-
ification can lead to false positives, and designers may
have to update their design if the security checks fail
due to wire or register with initially undefined security
labels. The security labels from labeled portions will be
propagated during synthesis and checking time, until a
conflict is found, or no conflict exists.

The security label checking is effectively done at each
assignment operation specified in Chisel code, although
number of optimisations are proposed in Section 6. The
designer can also explicitly declassify a signal, i.e. over-
write the default security label propagation rules. E.g.
encrypted output of an encryption module can be de-
classified to indicate that the data has low security la-
bel (assuming correct implementation of the encryption
algorithm). Special annotation needs to be added to
the assignment during which declassification needs to
be done. Opposite is also possible, security label’s value
can be increased, e.g. to allow an initially low valued
signal to write to high valued register (otherwise in-
tegrity violation may be detected).

2.3.2 SecChisel to FIRRTL Transformation
FIRRTL language was created specifically for definition
of digital designs. Chisel’s output is an equivalent de-
sign definition in FIRRTL. FIRRTL language can be
parsed into an expression/statement tree. Design in
this data structure form is easier to be processed. Sec-
Chisel does not modify FIRRTL language’s grammar
to bind the security labels to their respective variables.
FIRRTL statements, by their grammar definition, have
an optional field for extra information that is ignored
by circuit generation process. However this extra infor-
mation fields are captured by parser and stored in their
respective vertices in the tree structure. SecChisel uses
this feature to transfer lattice structure and security la-
bel values in to FIRRTL definition.

2.3.3 Parsing FIRRTL Code
FIRRTL parser converts a stream of strings that gram-
matically satisfies FIRRTL language’s rules, into a FIR-
RTL statement tree. The statement tree can be tra-
versed and manipulated. Parsing of SecChisel’s FIR-
RTL output is no different than Chisel’s FIRRTL out-
put.

2.3.4 Processing FIRRTL Tree
Processing the FIRRTL tree is the part where the prob-
lem domain conversion is made. First set of SMT state-
ments defines lattice structure as a directional graph
(directions are from lowest to highest). Thus making a
path available among security labels that can be com-
pared (a higher security label to a lower security la-
bel), but preventing any paths between uncomparable
security labels. Then, during parsing, each node of the
statement tree gets visited and an appropriate SMT
statement is generated. The generated SMT statements
can be divided in two parts.
First part involves the definitions and restrictions which
the solver will have to satisfy for each of the statements
on the second part. Second part involves statements
for solver to satisfy. Up to two assertions are created
when a statement in FIRRTL tree with data transition
is encountered. For read security labels, tread, the tar-
get variable’s bounded security label must be greater or
equal than the source variable’s bounded security label
for valid information flow (source’s security label must
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be less or equal than target’s). If there is an operation
between source variables (a = b + c), then source vari-
able’s bounded security label’s least upper bound (join)
must be less than or equal to target’s security label.
When such statements are encountered, the processor
generates a path availability question for SMT solver to
satisfy. If there is a violation in information flow, SMT
solver will not be able to solve generated path require-
ment. The opposite checks are done for write security
labels, twrite.

2.3.5 Verification Using Z3
Generated SMT statements are input to a SMT solver
as final step. If SMT solver can satisfy all of the asser-
tions, then all information flow operations satisfy ini-
tial flow policy. Unsatisfiable assertions means there is
a violation of flow policy (no path exists in the defined
graph) in that particular case.

3. STATIC SECURITY LABELS
SecChisel allows the designer to enter fixed security la-
bels for each variable. Chisel’s data types are modified
in a way that user can give an extra parameter to their
declarations to bound a security label to it. The security
labels are “static” as each has explicit value assigned to
it by the designer. There are also “dynamic” security la-
bels, where the security label’s value depends on a value
of another signal. The dynamic security labels can help
facilitate security checks when design has modules that
are multiplexed between different entities. Dynamic se-
curity labels are explained in following Section 4.
There are several common data types in Chisel needed
to be extended with ability to add security labels. Se-
curity labels added to the data types will be propagated
from Chisel to the intermediate representation FIRRTL.
The following are the ones needed:
• Basic datatypes: UInt, SInt, Clock
• Aggregate datatypes: Bundle, Vector
• Composite (original) datatype: Reg, Wire
• Other datatype: Bool, Reset, etc.

3.1 Static Security Labels in SecChisel Code

Figure 5: Example of FullAdder with added se-
curity labels.

As a very simple example, we show implementation of a

full adder. After adding security labels to the input and
output port variables which have the types of UInt and
Bundle, the code looks as in Figure 5. For each, there
is no write security label, “NONE”, and read security
labels are specified as numerical values.
Given that now there are additional security labels in
the input variables in Chisel, and they are propagated
during the different assignment, and are added to FIR-
RTL representation of the circuit as well, as show in
Figure 6. Notice Chisel adds some intermediate vari-
ables not originally in the design code, these require
security label propagation as well.

Figure 6: Security label propagation.

The security labels are computed using the join opera-
tion on the lattice elements. However, we can also set
security labels to specific, ignoring the default behav-
ior. This can be done for declassification, for example.
Example is given in Figure 7.

Figure 7: Overwriting security label value dur-
ing propagation.

Composite datatypes, e.g. Reg and Wire, are constructed
upon basic datatypes like UInt. Security label defini-
tions for the basic type can then be used for the com-
posite data types.
After generating the FIRRTL representation, it is parsed
to generate a FIRRTL tree file which has Z3 format.
The file contains the assertions generated based on the
input Chisel code, as defined by designer and calculated
by security label propagation rules. The propagation
rules can use join or meet of multiple security labels
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when computing the output’s security label. The whole
flow from Chisel to Z3 is shown in Figure 8.

Figure 8: Parsing to a FIRRTL tree file.

3.2 Specifying Lattice for the Security Labels
We use lattice structure to construct and define our
security labels. A map in Chisel is used to define the
lattice structure, and it is propagated to Z3. Figure 9
shows a concrete example of how lattice-based security
hierarchy is defined and used in the Chisel file, and how
it parsed to FIRRTL and Z3.

Figure 9: Specifying lattice structure in Chisel
and passing it to Z3 for use during verification.

4. DYNAMIC SECURITY LABELS
Static security labels can help enforce the information
flow policy, however, they does not allow any shared
resources across security levels. Yet, it is possible to
achieve resource sharing across security levels in hard-
ware design without reducing the security guarantees.
To verify this kind of design, we introduce dynamic se-
curity labels. While our verification remains at the de-
sign time, the security label can be dynamically depen-
dent on variables in hardware design. For example, in
a data port, the security label of data might depends
on the address of that data. In this case, with dynamic
labelling, the label of the data can be defined as a func-
tion of the address. Then, the data port can be shared
by all the security levels. But at each possible time, it
can be checked that the data port is used for only one

security level. The verification will enforce the informa-
tion flow policy in the resource sharing situation with
the dynamic labels.

4.1 Dynamic Label Specification
These are two conditions to construct dynamic labels
in SecChisel. On the one hand, there exist possibil-
ities that a variable’s security label may depends on
our variable’s value or type. On the other hand, if we
consider nested modules, security labels can be even
brought from other places and requirements may be
needed to translate variable’s security label between dif-
ferent modules’ interference tables (interference table is
discussed in Section 5).
For example, for the first condition, we can assume we
define dynamic labels in this pattern:

val a = UInt (INPUT, 1, "L");
- for static label
val b = UInt (INPUT, 1, "SecMap(a)");
- for dynamic label, based on value of variable
a in current module

Where SecMap() is a map function which take variable
a’s value as input and output mapping result as variable
b’s security tag. For the case of security tags coming
from other modules, we can define dynamic labels as:

val c = UInt (INPUT, 1, "SecMap(ModuleName:a)");
- for dynamic label, based on value of variable
a in another module, ModuleName

4.2 Generating Z3 Statements for Dynamic La-
bels

Dynamic labels are transferred through FIRRTL similar
to static labels. The main difference is in their corre-
spondent SMT statements. All of the possible security
labels that a dynamically labeled variable can have by
its mapping function is tried by SMT solver to see if
any of the possible values creates an information flow
violation. However, possibility set is reduced by con-
text of the circuit at that point. If that point of the
circuit is under any kind of branching that can only
be triggered by certain values for dynamically labeled
variable (statements inside of an if statement, for exam-
ple), SMT solver does not try all possibilities but the
ones that satisfies branching condition. This reduction
of possible security label space enables usage verification
in case of shared resources through a controlled environ-
ment. Such optimisation, however, becomes difficult in
case of nested modules where the security label is based
on variable in another module, then all possible values
of that variable at any time need to be considered.

5. NESTED MODULES
One of the difficulties in hardware verification is han-
dling of modules. Especially, one of the problems of us-
ing modules during the verification is that the modules
might be used many times with different parameters
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with different security labels. Hence in each usage, we
need to determine the security labels separately. Fur-
thermore, it would not be difficult if all the modules
in a design share the same lattice structure. However,
modules can be developed by different developers, and
provided with different lattice structures. Therefore,
compatibility of lattice structures is an issue. Another
problem is dealing with blackbox modules. Sometimes
developers may use modules where there is no informa-
tion about the inner details of the modules. Therefore
it may not be possible to deduct how input and out-
put wires are interacting unless additional information
is give (or the module is reverse-engineered). For Sec-
Chisel design, we present two alternative methodologies
that can be used in the security verification of design
with nested modules.

5.1 Lattice Reduction
In the first approach, we simply ignore the lattice struc-
ture of the inner module. The outer module’s lattice can
be used for inner module by removing labels of all the
internal variables of the inner module. The input wires
will be labeled depending on the labels of the outputs
of the outer module’s wires that connect to the inner
module. All the remaining labels will by dynamically
deducted based on their relations with the input and
output wires. After each output signal receives its la-
bel, they will be compared with the expected output
labels of the outer module. The outer module will also
supply expected labels of the output wires.
For confidentiality, if the resulting read security labels of
an output is less than or equal to expected read security
label than it will be accepted otherwise it will not be
accepted. For example, the module shown in Figure 10
for inputs a, b, and c with security levels 1, 2, and
3 respectively. The labels of the k, l, m, and n are
calculated based on the labels of a, b, and c. The labels
of outputs wires k, l, m, and n will have label values
2, 3, 2, and 2 respectively. Note that this calculation
is done using the outer module’s lattice. The success
of verification depends on the compatibility of actual
and expected labels of the output wires. For example,
if the expected values of labels for k, l, m, and n were
1, 4, 1, and 3, the verification will fail. Since the actual
value of l and n are greater than its expected values as
in Figure 10.

Figure 10: Example of nested module.

5.2 Interference Table

The second alternative is to use a table for representing
which output wire depends on which input wire as in
Table 1. Suppose we have three input wires A,B and C
and three output wires, the intersection of these wires in
the table represents a dependence. For example, in the
table output wire X depends on A and C. This means
we can deduct the security label of X based on the la-
bels of A and C. We call this table as interference table.
The table can be calculated before the verification. For
blackbox modules, we can rely on the table given by a
trusted developer. With the table, during the verifica-
tion the labels of the output wires can be dynamically
calculated based on the labels of input wires.

Table 1: Example Interference Table

X Y Z
A 1 0 1
B 0 1 0
C 1 0 0

Both alternatives have their advantages and disadvan-
tages. Lattice reduction does not need a pre-processing
phase and does not require extra memory for storing
tables. However, it may take longer to calculate the
security labels of the output wires since inner module
has to be analyzed for every single usage. Interference
table is the opposite. It requires a prepossessing to cal-
culate the interference table, and as the size of the input
and output wires grow, it takes more and more memory.
However, using interference table the labels of output
wires can be calculated quickly.

6. OPTIMIZATIONS
The input of the verification process is labeled variables,
instructions and the lattice. For small designs the exe-
cution time of the model checker (Z3 in our case) will
not be an issue. However as the size of the input grows
the processing time can be an issue as the designer may
frequently modify the design in order to comply with
security properties. Therefore, optimizing verification
process to decrease the run-time is essential. Espe-
cially, the complexity of the SMT solving is the limiting
factor in the size of the designs that can be checked.
This project aims to incorporate a number of optimiza-
tions that span a number of heuristics, and more will
be added.
The security labels are taken from the annotated Chisel
code, passed to the FIRRTL representation, and finally
input to SMT solver. Prior work has looked at trans-
lating directly from the hardware description language,
e.g. Verilog, to SMT solver statements. This may re-
sult in excessive number of SMT solver statements. In
general, model checkers find a solution by performing a
search in a graph that represents the problem. There-
fore, if we can prune the graph before the actual search,
it decreases the overall verification time. The first opti-
mization heuristic is to limit the search space by merg-
ing or ignoring some of the instructions, labeled vari-
ables or lattice values. In order to do this optimization
a pre-processing is needed to see how this pruning can
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be done. This pre-processing step can be performed
exactly on the FIRRTL representation.
Second optimization can limit the label space by hav-
ing a table that represents all possible labels. A naive
Z3 representation results in possibly large number of
implied security labels, depending on how the lattice
structure is coded; resulting in increased runtime.
Third, the search space of dynamic labels can be lim-
ited. For dynamic labels referencing current module,
the code structure of the module can be used to limit
the possible values for the reference variables, and thus
the possible labels values. This, for example, can be
done for block of code inside an if statement, where
the statement limits possible values of the control vari-
able, and thus the possible values of the dynamic labels.
For dynamic labels referencing external modules, such
optimisation is not possible. Nevertheless, a table can
be built of all the possible values of the reference vari-
able over all executions. In certain cases, the reference
variable may have few or only 1 value, e.g. a register
is assigned a fixed value, and dynamic label uses that
register – thus there is only one possible value of the
security label, corresponding to the fixed value of the
referenced variable.
Further optimizations are possible, and will explored by
this project.

7. DESIGN STATUS
Currently, SecChisel is implemented using Chisel 3 and
latest version of Z3 SMT solver. The static labels are
implemented and can be verified for single module de-
signs in Z3. Active development is under way for dy-
namic labels discussed in Section 4 and nested modules
discussed in Section 5. The syntax of SecChisel is also
under active development and may change from cur-
rent one presented in the examples. Furthermore, this
project aims to improve SecChisel with the following
three expansions.

7.1 Expected SecChisel Expansions
Our work will integrate the optimizations mentioned
Section 6. These, and possibly others, will be added to
reduce the runtime, and allow for designs with multiple
nested modules to be realized and verified in an efficient
manner.
Current work focuses on designs where all modules have
security tags taken from same lattice. The problem
of different lattices will be addressed and incorporated
into SecChisel to allow designers to work with 3rd party
modules, making the framework more practical.
Major goal of the ongoing work is on allowing for timing
channel analysis as well, and the work will add temporal
labels. Target is verify complex designs, such as caches.
Temporal labels will also help with implicit flows, as
currently SecChisel only considers explicit flows.

8. RELATED WORK
A small number of projects have explored security ver-
ification of hardware architectures, and they are listed

below. Our more detailed survey of hardware and soft-
ware verification methodologies [6] has extended details
about these, and other, projects.
VeriCoq is a tool that provides mechanisms to transform
Verilog code into code with PCHIP (Proof-Carrying
Hardware Intellectual Property), which makes it pos-
sible for the customers to verify the security of the de-
sign written in Verilog. In addition, the newer version
of VeriCoq also supports the verification of the infor-
mation flow property [3].
Caisson [16] is a hardware description language with
static information flow verification at design time. Us-
ing Caisson, the authors were able to create the first
provably information-flow secure processor that con-
tains a time-multiplexed pipeline and a partitioned cache.
Their pipeline is secured by secure time multiplexing (or
time lease) with separated context (i.e., registers and
memory) for each security level. The cache is statically
partitioned between different security levels.
Sapper [15] is another hardware description language
that is based on a synthesizable subset of Verilog. Sap-
per compiler automatically enforces non-interference in
the generated hardware logic. Authors of Sapper re-
alized a processor that was designed and simulated in
ModelSim [9]. Unlike Caisson [16], data with different
security labels can share resources in Sapper, e.g. reg-
isters, resulting in lower overheads.
SecVerilog [26] is Verilog extended with information flow
annotations. It enables static checking of hardware in-
formation flow. Unlike Sapper, which uses dynamic in-
formation flow at runtime, information flow checking in
SecVerilog is done during compile time which provides
a better run time performance.
Unlike Verilog-based work, XOM architecture was for-
mally specified and then verified [17] against an ad-
versary in Murϕ model checker. The eXecute Only
Memory [18] (XOM) is a hardware design with embed-
ded cryptographic functionality and access control. By
adding new hardware and new instructions, XOM is
able to protect user data from a malicious operating
system. On-chip data is isolated using hardware tags
labeling the owner of data, while off-chip data is pro-
tected by encryption and hashing.
In a different approach, Micro Policies work presents
a generic approach for formalizing and verifying IFT
policies. It is based on recent work on Programmable
Unit for Metadata Processing (PUMP) [7], which added
programable metadata processing unit alongside with
the data computation. PUMP allows programmers to
create policies and rules that enforce IFT mechanisms
by manipulating the metadata tags in each instruction
that a processor executes.
Another type of work is Cache Verification [27] that
focuses on understanding side-channel leakage and cre-
ating models based on the non-interference property be-
tween an attacker and a victim process that are using
same processor cache. Zhang and Lee used Murϕ to
enumerate all possible states and transitions, and count
the number of inferences between attacker and victim
for the different state transitions. Based on this data,
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mutual information [5] is then used to quantitatively
analyze the interference between the two processes, and
reveal side-channel vulnerabilities.

9. CONCLUSION
SecChisel project develops a security verification method-
ology that is applicable to different hardware-software
security architectures during the design phase. The ver-
ification framework aims to prove that a system holds
desired properties with respect to confidentiality and
integrity. SecChisel focuses on information flow and
non-interference properties for verification. Using these
properties, confidentiality and integrity of the sensitive
data can be checked at design time. The proposed
verification framework is built upon Chisel hardware
construction language, and leverages Z3 SMT solver.
Present design integrates static labels and allows for
checking designs without nested modules. Ongoing work
focuses on dynamic labels, temporal labels, and sup-
port for nested modules. Furthermore, number of SMT
solver optimisations need to be added to ensure efficient
runtime for large designs.

10. ACKNOWLEDGEMENT
This work is supported in part by the National Sci-
ence Foundation (NSF) grants 1524680; and Semicon-
ductor Research Corporation (SRC) contract 2015-TS-
2633. Dr. Demir’s work is also supported in part by
TUBITAK grant 2219 and TUBITAK grant
1059B191401391.

References
[1] AMD. AMD Memory Encryption, 2016.

http://amd-dev.wpengine.netdna-cdn.
com/wordpress/media/2013/12/AMD_Memory_
Encryption_Whitepaper_v7-Public.pdf, ac-
cessed May 2016.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yun-
sup Lee, Andrew Waterman, Rimas Avižienis,
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