
Attribute-based concurrent signatures

BaoHong Li, Guoqing Xu and Yinliang Zhao

Department of Electronics and Information Engineering, Xi’an Jiaotong University

Xi’an, 710049 - China
[e-mail: bhli@mail.xjtu.edu.cn]

Abstract. In this paper, we introduce the notion of attribute-based concurrent signatures. This
primitive can be considered as an interesting extension of concurrent signatures in the
attribute-based setting. It allows two parties fairly exchange their signatures only if each of
them has convinced the opposite party that he/she possesses certain attributes satisfying a
given signing policy. Due to this new feature, this primitive can find useful applications in
online contract signing, electronic transactions and so on. We formalize this notion and
present a construction which is secure in the random oracle model under the Strong
Diffie-Hellman assumption and the eXternal Diffie-Hellman assumption.

Keywords: Computer security, Network security, Cryptography, fair exchange, concurrent
signatures.

1. Introduction

1.1 Motivation
Fair exchange of digital signatures is a fundamental problem in E-commerce, and concurrent
signatures, introduced by Chen, Kudla and Paterson [1], provide a novel solution to this
problem. This signature scheme allows two parties named as an initial signer and a matching
signer to produce and exchange two ambiguous signatures until an extra piece of information
(called keystone) is released by one of two parties. More specifically, before the keystone is
released, two signatures are ambiguous in the sense that, from a third party’s point of view,
each signature may be generated by either of two parties. Once the keystone is released,
however, both signatures are binding to their respective signers concurrently, and anybody can
publicly verify who signed which signature.

In some applications, it is preferred that both sides of exchange possess certain attributes,
such as title, age and nationality, in order for the exchange to occur correctly. We will illustrate
this by following two exemplary scenarios.

Online contract signing. Suppose Company A wants to sign an agreement with Company B for
software development. Company A requires the signer from Company B has to be either a senior
manager within the development department or, at a minimum, a junior manager in the cryptography
team. Meanwhile, Company B requires the signer from Company A must be the financial executive.

Electronic transactions. Broker Bob wants to sell a restricted class game to Customer Carl.
According to relevant laws, Bob should be a licensed retailer for the U.S. market, while Carl must be
over 18 years old and reside in U.S. [2].

Unfortunately, existing concurrent signature schemes do not take into account signers’
attributes, hence can not be applied directly in above scenarios. A trivial solution would be that,
prior to the exchange, two parties run an attribute-based authentication protocol [3] to confirm
that they fulfill the attribute requirements. However, this solution is not only inefficient but
also vulnerable to collusion attacks, that is, an unqualified signer may be able to produce and
exchange a signature after the authentication protocol has been executed by his/her partner,
who posseses enough attributes to fulfill the policy.

1.2 Contribution
In this paper, we introduce the notion of attribute-based concurrent signatures (ABCS) as a
practical solution to aforementioned scenarios. It can be thought as an interesting extension of
concurrent signatures in the attribute-based setting. In ABCS, every user obtains a set of
attributes from the authority. To start an exchange, both parties define signing policies which
the opposite side should satisfy. Then each of them can produce an anonymous signature if
his/her attributes satisfy the signing policy. Anonymity is a stronger security notion than
ambiguity, since it could be produced by anyone, not just limited to both parties of exchange.
After two anonymous signatures have been exchanged, the release of a keystone can
concurrently convert them to ordinary signatures such that they can be publicly verified.

We formalize this notion and present a formal security model for ABCS. We also present a
construction which is secure in the random oracle model under the Strong Diffie-Hellman
assumption [4] and the eXternal Diffie-Hellman assumption [5].

1.3 Technical Approach

We start from the attribute-based group signature scheme due to Khader [6], which provides
the basis for our ABCS scheme in terms of the anonymity and utility of attribute validation.
We also use a bottom-up approach presented by Emura and Miyaji [7] to efficiently construct
dynamic access trees. The main challenge is how to maintain the anonymity when we extend it
to concurrent signatures. Most concurrent signatures schemes [1, 8-12] are constructed from
Schnorr-based ring signatures [14] where the ring consists of the involved two parties.
Because of the anonymity and unforgeability of ring signatures, this kind of constructions
provides a natural way to obtain ambiguity and fairness for concurrent signatures. Given such
a ring signature, any third party can not tell which party of the ring is the signer, but the
opposite party surely know who produces the signature. If we add such a ring in our ABCS
scheme, however, the ambiguity may be compromised, since the signing policy attached with
the signature may help a third party to deduce the signer’s identity, especially when the signing
policy is only fulfilled by one party.

In [15], Nguyen proposed a method to construct concurrent signatures which is
independent of the ring signature concept. In this method, promises of signatures are used as
concurrent signatures. A promise of signature is anonymous because it could be produced by
anyone using solely public information, but the release of the keystone will convert it to an
ordinary signature. His signature scheme is asymmetric in the sense that different signature
schemes, namely the Schnorr signatures and the Schnorr-like signatures, have to be used for
the initial signer and the matching signer, respectively, so that the matching signer is also able
to produce a promise of signature even without the knowledge of the keystone. Although this
method provides proper anonymity which meets the requirement of our ABCS scheme, we can
not directly apply it to our construction since its Schnorr-like signatures can not be used to
generate a SPK of the discrete logarithms for a public key which has the form of y = 1 2

1 2
x xg g .

We address this limitation by presenting a new variant of Schnorr signatures (see Sect. 2.2).
This signature scheme is quite suitable for our construction since it has the same form of
responses as Schnorr signatures.

1.4 Related Work
Several concepts are related to ours ABCS. We briefly review them as follows.
Concurrent signatures. Chen, Kudla and Paterson [1] introduced the notion of concurrent
signatures in Eurocrypt 2004. This primitive has been considered to be more practical than
some other fair exchange techniques, such as gradual secret releasing [16] or optimistic fair
exchange (OFE) [17], since it does not rely on a highly interactive protocol or a (semi-trusted)
third party. In ICICS 2004, Susilo, Mu and Zhang [8] introduced the notion of perfect
concurrent signatures in order to strengthen the ambiguity of concurrent signatures.
Unfortunately, their scheme was shown to have a flaw in fairness by Wang, Bao and Zhou [9],
and thus a modified construction was presented. Subsequently, various efforts have been made
to add new features to concurrent signatures or strengthen their security. For example,
Sherman, Chow and Susilo [10] presented the first generic construction of identity-based
perfect concurrent signatures. Tonien, Susilo and Safavi-Naini [11] extended concurrent
signatures to the multi-party setting. Yuen et al. [12] added a feature of negotiable binding
control into concurrent signatures, and Tan, Huang and Wong [13] presented the first
concurrent signature scheme secure in the standard model.

Most concurrent signature schemes are based on Schnorr-based ring signatures [14], except

the asymmetric concurrent signatures of Nguyen [15], where promises of Schnorr signatures
and Schnorr-like signatures are used as concurrent signatures.
Attribute-based signatures. Maji, Prabhakaran and Rosulek [18] presented the first
attribute-based signatures (ABS) in 2008. This primitive allows a signer to convince a verifier
that he/she holds a set of attributes satisfying a given signing policy and has endorsed the
message. Since their construction is only secure in generic group model, several ABS schemes
[19-21] were presented that are secure in the standard model. However, they are only
selectively secure, a weaker notion of unforgeability than adaptive security. Maji, Prabhakaran
and Rosulek [22] presented the first ABS which is adaptively secure in the standard model, but
their scheme is much less efficient in signature size since it employed the Groth-Sahai NIZK
system as building blocks. Okamoto and Takashima [23] presented the first ABS which allows
non-monotone predicates to express signing policies. They further extended their ABS to the
multi-authority setting [24].
Attribute-based group signatures. The notion of attribute-based group signatures (ABGS)
was first introduced by Khader [6]. This primitive can be considered as an extension of group
signatures such that a group member can produce a signature if he/she holds sufficient
attributes satisfying a given signing policy. Subsequently, Emura, Miyaji and Omote [7]
presented a dynamic ABGS which is efficient when access trees have to change frequently.
Ali and Amberker [25] presented the first ABGS which is secure in the standard model. They
also addressed the issue of attribute anonymity, which may be desirable in some applications.
Attribute-based optimistic fair exchange. Wang, Au and Susilo [2] have identified the
necessity of attributes in the area of fair exchange of signatures, and introduced the notion of
attribute-based optimistic fair exchange (ABOFE) to address this issue. As an extension of
optimistic fair exchange [17], ABOFE allows each party of exchange to obtain the full
signature from the opposite side only if he/she holds sufficient attributes satisfying a given
signing policy. They also presented a generic construction of ABOFE from OFE and
ciphertext-policy attribute-based encryption (CP-ABE). The intuition behind their
construction is quite simple: prior to the exchange, each party encrypts his/her signature by
CP-ABE so that the opposite party can decrypt the signature only if he/she posseses sufficient
attributes. Since ABOFE is built on OFE, one of its problems is the requirement for a dispute
resolving third party, which may be undesirable in some applications. More seriously, their
construction is vulnerable to collusion attacks, that is, an unqualified user could have the
signature decrypted by his/her qualified partner. Hence, our ABCS scheme can be considered
as an improvement of ABOFE in terms of applicability and security.

The remainder of the paper is organized as follows. In Section 2, we review some
definitions and complexity assumptions. We also present a variant of Schnorr signature
scheme which serve as basic building block in our ABCS scheme. Section 3 defines ABCS
and formulizes its security. In Section 4, we present our construction of ABCS and prove its
security. Finally, Section 5 concludes the whole paper.

2. Preliminaries

2.1 Bilinear Groups and Complexity Assumptions
Definition 1 (Bilinear group): Consider two (multiplicative) cyclic groups G1 and G2 of
prime order p where

1g and
2g are respective generators of G1, G2. We say G1 and G2 are

bilinear groups if there exist a group GT and an efficiently computable function 1 2ˆ :e G G× →
TG with the following properties:

(1) For 1u G∀ ∈ , 2v G∀ ∈ and , pa b∀ ∈Z , ˆ(,)a be u v = ˆ(,)abe u v .
(2) 1 2ˆ(,)e g g is a generator of GT.

Additionally, we require a computable isomorphism ψ from G2 to G1, with 1g = ψ(g2).

The security of our construction relies on the Strong Diffie-Hellman assumption [4] and the
eXternal Diffie-Hellman assumption [5]. They have been used to construct anonymous
authentication [26], group signature [27], anonymous credentials [28], zero-knowledge proof
system [29], to name a few. We briefly review them as follows.

Assumption 1 (q-SDH). The q-Strong Diffie-Hellman problem in (G1, G2) is defined as
follows: On input of a (q + 2)-tuple 〈 1g , 2g , 2gγ , 2()

2g γ ,…, ()
2

qg γ 〉∈ 1
1 2

qG G +× , output a pair
〈 1/()

1
xg γ + , x〉∈ 1 pG ×Z . We say that the q-SDH assumption in (G1, G2) holds if no PPT algorithm

has non-negligible probability in solving the q-SDH problem.
Given a q-SDH instance 〈 1g , 2g , 2gγ , 2()

2g γ ,…, ()
2

qg γ 〉, by applying the Boneh-Boyen’s
Lemma in [4], we can obtain 〈 1g , 2g , w = 2gγ 〉 and (1q −) SDH pairs (Ai, xi) such that

2ˆ(,)ix
ie A wg = 1 2ˆ(,)e g g . Any SDH pair besides these (1q −) ones can be transformed into a

solution to the original q-SDH instance.

Assumption 2 (XDH). Given bilinear groups (G1, G2) with a computable isomorphism ψ

from G2 to G1 and
1g = ψ(g2). We say that the eXternal Diffie-Hellman assumption holds if the

DDH problem is hard in G1.

2.2 Access Tree and the bottom-up approach
Definition 2 (Access Tree [30]): An access tree is a tree structure representing an (monotone)
access structure, where threshold gates are defined on each interior node, and each leaf is
associated with an attribute.

An access tree is originally built from top to down. This approach has a drawback that it is
impossible to build a new access tree from an existing one. In [7], Emura and Miyaji proposed
a bottom-up approach which allows dynamic access tree construction. In this approach, a
central access tree is built first and secret values are assigned to attributes associated with
leaves. Then different access trees can be obtained by simplifying the central access tree, and
these secret values need not to be updated. As a result, it is not necessary to re-issue attribute
public keys whenever access structures change.

Our ABCS scheme uses this bottom-up approach to build an access tree, and we denote
these two steps by following two algorithms

–BuildCTree(Att). Takes the universe of attributes Att as input, outputs a central access
tree CT and some secret values.

–SimplifyCTree(CT, φ). Take as input a central tree CT and an attribute set φ ∈ Att,
outputs an access tree T where attributes in φ are leaves.

We refer to Appendix A for a self-contained presentation of these two algorithms.

2.3 A variant of Schnorr signature scheme and promises of signatures

Our ABCS scheme uses Schnorr signatures to produce promises of initial signatures. We also
need a signature scheme to produce promises of matching signatures such that they can be
produced without the knowledge of keystones. We present as follows a variant of Schnorr
signature scheme for this purpose.

–Setup. Choose primes p, q of appropriate size such that q | p − 1, and let g be the generator
for the subgroup in *pZ of order q. Choose a hash function *:{0, 1}H → qZ .

–Key Generation. Pick random x∈ qZ and set z = 1/ xg . The public key is 〈p, q, g, z〉 and the
secret key is x.

–Sign. Pick random
qr ∈Z and compute c = (,)rH M z , s = r cx+ . The signature is 〈c, s〉.

–Verify. Check c = (,)s cH M z g− .
Different from the Schnorr-like signature scheme presented in [15], Our Schnorr-like

signature scheme has the same form of response (i.e. s) as the original Schnorr signature
scheme. This feature is critical to our ABCS construction since it allows generating a SPK of
discrete logarithms for a public key with the form of y = 1 2

1 2
x xg g . Using essentially the same

method for the original Schnorr signature scheme [31], we can prove the following lemma.
Lemma 1. This Schnorr-like signature scheme is existentially unforgeable against adaptive
chosen message attacks in random oracle model, under the Discrete Logarithm assumption.
Definition 3 (promises of signatures [15])). Let func be some cryptographic function. The
value σ = 〈s, ρ〉 is said to be a valid promise of signature ω = 〈k, ρ〉 on some message M if the
following conditions hold:

–Publicly Verifiable: given σ, everyone is convinced that if there exists k = 1func− (s) then
ω = 〈k, ρ〉 is a valid ordinary signature.

–Anonymity: without the knowledge of k = 1func− (s), σ is indistinguishable from random
elements of the signature space.

Given a value f = kg , we can obtain a promise of signature σ = 〈 'f , c, s1〉 by picking random

qr ∈Z and computing 'f = 1/ xf = kz , c = H(M, 'rz f), s1 = r cx+ . This promise of signature can
be verified by checking c = H(M, 1 's cz g f−), and the release of k can convert it to an ordinary
Schnorr-like signature ω = 〈c, s1 + k 〉.
Lemma 2. Let ω = 〈c, s〉 be a Schnorr-like signature. The value σ = 〈 'f , c, s1〉 is a valid
promise of the signature ω, where c = H(M, 1 's cz g f−) and 'f = kz for some k.
Proof. Given the value k = 'log z f , from c = H(M, 1 's cz g f−) we have c = 1(,)s k cH M z g+ − . It
implies that ω = 〈c, s1 + k〉 is a valid Schnorr-like signature. In addition, the verification of c =
H(M, 1 's cz g f−) requires only public information. Hence the publicly verifiable condition is
satisfied.

To prove that this promise of signature is anonymous, we first show that it could be
simulated by using any public key: given any public key z, the simulator picks random r, 1s ,
computes c = H(M, 1r sz z) and sets 'f = c rg z . We have a promise of signature σ = 〈 'f , c, s1〉
where c = H(M, 1 's cz g f−) holds.

Next we prove that, in the random oracle model and under the DDH assumption, this
simulated promise of signature is indistinguishable from an honestly-generated promise of
signature.

Given a DDH instance 〈g, 1ag , 2ag , 3ag 〉, we set f = 1ag , z = 2ag , 'f = 3ag . Then we pick
random c, 1s , set c = H(M, 1 's cz g f−) and return the simulated promise of signature σ = 〈 'f , c,
s1〉. If a1a2 = a3, we have k = a1, x = 21/ a , 'f = 1az and r =s1 − cx, thus σ is an honestly-generated
promise of signature. Otherwise, σ is a simulated promise of signature. If there exists an
algorithm can distinguish an honestly-generated promise of signature from a simulated
promise of signature with non-negligible advantage, clearly it could be used to solve the DDH
problem.

3. Formal Definitions of ABCS
In this section, we presents the formal definition of ABCS and a concrete protocol to carry out
this signature scheme. We also present the security model for ABCS by adapting the
concurrent signatures model to the attribute-based setting.

3.1 Attribute-based concurrent signatures
Definition 4 (ABCS): An attribute-based concurrent signature scheme among an authority
and a set of users U = {1, …, n} is a signature scheme consisted of following algorithms.
–Setup(1λ). On input security parameter 1λ, this algorithm defines the keystone space K, the
keystone fix space F and a universe of attribute Att. It also runs the algorithm BuildCTree(Att)
to build a central access tree. Finally, it outputs a master secret key MSK for the authority and
some public parameters PK.
–KeyGen(i, atti, MSK, PK). This algorithm takes as input a user index i∈U, an attribute set
atti ⊆ Att possessed by the user, MSK and PK, outputs a public/secret key pair 〈 iupk , iusk 〉.
–KfGen(k). This algorithm takes as input a keystone k ∈K , outputs a keystone fix f ∈ F .
–KfTran(f , iusk). This algorithm takes as input a keystone fix f ∈ F and a secret key iusk ,
outputs a new keystone fix

if ∈ F .

–KfVer(k, if , iupk).Takes as input a keystone k∈K, a public key iupk and a keystone fix
if ∈F

output by KfTran, this algorithm outputs accept if
if is valid or reject otherwise.

–Isign(iupk , iusk , Ti, PK, Mi,). This algorithm takes as input a public/secret key pair, an access
tree Ti, PK and a message Mi, outputs a promise of initial signature σi = 〈 f , ρi〉 and a keystone
k∈K where f = KfGen(k).

–IVerify(σi, iupk , Ti, PK, Mi). This algorithm takes as input a promise of initial signature σi on
a message Mi, a public key iupk , an access tree Ti and PK, outputs accept if σi is valid or reject
otherwise.
–Msign(f , jupk , jusk , Tj, PK, Mj). This algorithm takes as input a keystone fix f , a
public/secret key pair, an access tree Tj, PK and a message Mj, outputs a promise of matching
signature σj = 〈 jf , sj, ρj〉 where

jf = KfTran(f , jusk).

–MVerify(σj, jupk , Tj, PK, Mj). This algorithm takes as input a promise of matching signature
σj on a message Mj, a public key jupk , an access tree Tj and PK, outputs accept if σj is valid or
reject otherwise.

–Verify(k, σi, iupk , Ti, PK, Mi). This algorithm takes as input a keystone k, a promise of
signature σi = 〈 f , ρi〉 or 〈 if , si, ρi〉 on a message Mi, a public key

iupk , an access tree Ti and PK.
Depending on the type of σi, it outputs accept if either of the following two cases hold:

(1) If σi = 〈 f , ρi〉, f = KfGen(k) ∧ IVerify(σi, iupk , Ti, PK, Mi) = accept, or

(2) If σi = 〈 if , si, ρi〉, KfVer(k, if , iupk) = accept ∧ MVerify(σi, iupk , Ti, PK, Mi) = accept.

3.2 A Signature Exchange Protocol
Given an attribute-based concurrent signature scheme, we define a signature exchange
protocol between an initial signer Alice and a matching signer Bob. Before the exchange phase,
The authority runs Setup(1λ) to establish the system and a central tree CT. It also runs
KeyGen to generate public/secret key pairs for Alice and Bob, respectively. Then the protocol
works as follows:

(1) Alice and Bob select attribute sets φB and φA that the opposite side should satisfy. Then
they run the algorithm SimplifyCTree(CT, φB), SimplifyCTree(CT, φA), respectively, and
output access trees TB and TA.

(2) Alice produces a promise of initial signature σA = 〈 f , ρA〉 = Isign(Aupk , Ausk , AT , PK,
MA) on a message MA and a keystone k such that f = KfGen(k). Alice sends σA to Bob.

(3) Bob validates σA by checking IVerify(σA, Aupk , AT , PK, MA) = accept. If not, Bob aborts
the protocol. Otherwise, Bob produces a promise of matching signature σB = Msign(f ,

Bupk , Busk , BT , PK, MB) on a message MB and sends it to Alice.

(4) Upon receiving σB = 〈 Bf , sB, ρB 〉 from Bob, Alice checks KfVer(k, Bf , Bupk) = accept
and MVerify(σB, Bupk , BT , PK, MB) = accept. If so, Alice forwards the keystone k to Bob.

(5) Using the keystone k, Alice and Bob convert σB and σA to ordinary signatures as ωA = 〈 k,
ρA〉, ωB = 〈 sB + k, ρB 〉.

3.3 Security Model
Unforgeability, anonymity and fairness are three security properties that our ABCS scheme
should satisfy. The unforgeability states that an adversary, without the knowledge of a signer’s
secret key, can not provide a keystone and a promise of signature, such that it can be converted
to an ordinary signature for this signer. Formally, it is defined in the following game between
an adversary A and a challenger C.
–Setup. C runs Setup(1λ) to generate the public parameters PK and the master secret key MSK.
C sends PK to A.
–Query. A can adaptively make following types of queries to C:

(1) PubkeyGen. A requests the public key
iupk for a user index i∈U.

(2) SecKeyGen. A requests the secret key pair
iusk for a public key

iupk and an attribute set
atti.

(3) BuildTree. A requests an access tree Ti on an attribute set φi.
(4) Isign. A requests a promise of initial signature by inputting a user index i, an access tree

Ti and a message Mi.
(5) Msign. A requests a promise of matching signature by inputting a user index i, an access

tree Ti, a message Mj and a keystone fix f.
(5) KsReveal. A requests the keystone k ∈K for a keystone fix f ∈ F which is an output of

previous Isign queries.
–Output. A outputs a keystone k and a promise of signature σi = 〈 f , ρi〉 or 〈 if , si, ρi〉 on a
message Mi, such that Verify(k, σi, iupk , Ti, PK, Mi) = accept. A succeeds if all of following
conditions hold:

(1) No SecKeyGen query has made on the public key
iupk .

(2) No Isign query on 〈i, Ti, Mi〉 or Msign query on 〈 f , i, Ti, Mi 〉 has made.
(3) No KsReveal query has made on f .

Definition 5 (Unforgeability). An attribute-based concurrent signature scheme is
existentially unforgeable against adaptive chosen message attacks if the success probability of
any PPT adversary in the above game is negligible.

The anonymity states that, without the knowledge of the keystone, an adversary can not
determine the identity of the signer from a promise of signature. Formally, it is defined in the
following game between an adversary A and a challenger C.
–Setup. It is the same as the unforgeability game.
–Query Phase 1. It is the same as the Query phase in the unforgeability game.
–Challenge. A provides two indices

0i , 1i , an access tree Ti and a message Mi such that both 0i
and 1i have secret keys satisfying Ti. Since there are two types of promises of signatures, we
consider following two cases.

(1) C returns a promise of initial signature
biσ = Isign(biupk , biusk , Ti, PK, Mi) for a random b

∈{0, 1}.
(2) A also provides a keystone fix f, with the restriction that f should be an output of

previous Isign queries and no KsReveal query has made on it. C returns a promise of matching
signature

biσ = Msign(f , biupk , biusk , Ti, PK, Mi) for a random b ∈{0, 1}.
–Query Phase 2. It is the same as Query Phase 1 except that no KsReveal query has made on
f.
–Output. Finally, A outputs a guess 'b of b. A wins the game if 'b = b.

Definition 6 (Anonymity). An attribute-based concurrent signature scheme is anonymous if
the advantage of any PPT adversary A in the above game is negligible, where the advantage of
A is defined as Pr['] 1/ 2b b= − .

The fairness states that, given an initial signer A and a matching signer B, B can not provide
a keystone k and a promise of initial signature such that it can be converted to an ordinary
signature for A, or A can not release a keystone k such that the promise of matching signature is
converted to an ordinary signature for B while the promise of initial signature still keeps
anonymous. Formally, it is defined in the following game between an adversary A and a
challenger C.

–Setup. It is the same as the unforgeability game.
–Query. It is the same as the Query phase in the unforgeability game.
–Output. A outputs a keystone k and a promise of signature σi such that they are accepted by
Verify and no SecKeyGen query has made on

iupk . A wins the game if either of following two
conditions holds:

(1) σi = 〈 f , ρi〉, and no KsReveal Query has made on f or,
(2) σi = 〈 if , si, ρi〉, and C also outputs a promise of signature σj = 〈 f , ρj〉 such that it is

accepted by IVerify and
if = KfTran(f , jusk) but σj and k are rejected by Verify.

Definition 3. An attribute-based concurrent signature scheme is fair if the success probability
of any PPT adversary in the above game is negligible.

4. Construction and Security Proofs

4.1 Construction
We present our construction of ABCS as follows.
– Setup(1λ). The algorithm performs the following steps:

(1) Generate a bilinear group (1G , 2G) of prime order p, with a computable isomorphism ψ:

2G → 1G . Select a random generator
2g in

2G , and set
1g = ψ(g2). Select random

1,u v G∈ and a
hash function *:{0, 1}H → *pZ . Define the keystone space and the keystone fix space as K = *pZ ,
F = 1G .

(2) Define a universe of attributes Att = {1,…, |Att|}. Run BuildCTree(Att) to obtain the
central access tree and secret values { }l l Attt ∈ , { }l l Dumd ∈ , where Dum is the set of dummy nodes.

(3) Compute 2
ltg and lv = ltv for each attribute l Att∈ . Compute 2

ldg for each dummy node

l Dum∈ .
(4) Select random *pγ ∈Z and output MSK = 〈 γ , 1t ,…, | |Attt 〉.

(5) Output PK = 〈 1G , 2G , 1g , 2g , w = 2gγ , u , v , 1
2
tg ,..., | |

2
Atttg , 1v ,..., | |Attv , 1

2
dg ,..., | |

2
Dumdg 〉.

–KeyGen(i, atti, MSK, PK). The algorithm picks random *i px ∈Z , computes
iA = 1/()

1
ixg γ + ,

iy = 1
ixg , iz = 1/

1
ixg and ,i lT = lt

iA for each attribute
il att∈ . It outputs

iupk = 〈 iy , iz 〉, iusk = 〈 iA , ix ,
,1iT ,…, ,| |ii attT 〉.

–KfGen(k). The algorithm outputs f = 1
kg .

–KfTran(f , iusk). The algorithm outputs if = 1/ ixf .

–KfVer(k, if , iupk). The algorithm outputs accept if
if = k

iz .
–Isign(iupk , iusk ,Ti, PK, Mi). The algorithm performs the following steps:

(1) Let φi be the attribute set in Ti. Compute l for each il φ∈ and set B = 2()l l
i

t
l gφ∈∏ .

(2) Pick random *, pα β ∈Z and encrypt
iA and

,i lT as:
C1 = uα , C2 = iA vα , C3 = 2g β , C4 = Bβ , CTl = ,()i l lT vα β , il φ∈ .

(3) Set δ = ix α and compute
1{(, , ,) : ix

i iSPK x y gα β δ = 2 2 1 2

2 2

ˆ ˆ(,) (,)
ˆ ˆ ˆ(,) (,) (,)

xie C g e g g
e v g e v w e C wδ α∧ = 3 2C g β∧ =

4C Bβ∧ = 2 3

2 4 4

ˆ ˆ(,) (,)

ˆ ˆ(,) (,) }()
l l

l ll li i
e CT g e v C

ie C C e v C M
α

φ φ
α

∈ ∈∏ ∏∧ = . Concretely, it picks random
ir , rα , rβ , rδ *p∈Z , and

computes:
1R = 1

irg , 2R = ru α , 3R = 1
ir rC u δ− , 4R = 2 2 2ˆ ˆ ˆ(,) (,) (,)ir r re C g e v w e v gα δ− −

5R = 2
rg β , 6R = rB β , 7R = 3 4ˆ ˆ((,) / (,))l

i
r

l le v C e v C αφ∈∏ .
c = H(iM , iupk , 1C , 2C , 3C , 4C , 1CT ,…, | |iCTφ , 1R ,..., 7R).
is = ()i ir cx+ , sα = ()r cα α+ , sβ = ()r cβ β+ , sδ = ()r cδ δ+ .

 f = KfGen(is) = 1
isg .

(4) Output k = is , σi = 〈 f , Ti, iupk , C1, C2, C3, C4, 1CT ,..., | |iCTφ , c, sα , sβ , sδ , 1
isC , 2

isC 〉.

–IVerify(σi, iupk , Ti, PK, Mi). This algorithm performs the following steps:
(1) Compute B = 2()l l

i

t
l gφ∈∏ from Ti.

(2) Compute:
1R = c

ify− , 2R = 1
csu Cα − , 3R = 1

is sC u δ− (1−3)

4R = 2 2 2 1 22ˆ ˆ ˆ ˆ ˆ(,) (,) (,) ((,) / (,))is s s ce C g e v w e v g e C w e g gα δ− − (4)

5R = 2 3
s cg Cβ − , 6R = 4

csB Cβ − (5−6)

7R = 3 4 2 4 2ˆ ˆ ˆ ˆ((,) / (,)) ((,) / (,))l l
i i

s c
l ll le v C e v C e C C e CT gαφ φ∈ ∈∏ ∏ (7)

(3) Output accept if c = H(iM , iupk , 1C , 2C , 3C , 4C , 1CT ,…, | |iCTφ , 1R ,…, 7R).
–Msign(f , jupk , jusk , Tj, PK, Mj). This algorithm performs the following steps:

(1) Compute B = 2()l l
j

t
l gφ∈∏ , where φj is the attribute set in Tj.

(2) Pick random *, pα β ∈Z and encrypt
jA and

,j lT as:
C1 = uα , C2 = jA vα , C3 = 2g β , C4 = Bβ , CTl = ,()j l lT vα β , jl φ∈ .

(3) Compute
jf = KfTran(f , jusk) = 1/ jxf .

(4) Set δ = jx α and compute 1/
1{(, , ,) : jx

j jSPK x z gα β δ = 2 2 1 2

2 2

ˆ ˆ(,) (,)
ˆ ˆ ˆ(,) (,) (,)

x je C g e g g
e v g e v w e C wδ α∧ = 3 2C g β∧ =

4C Bβ∧ =
2 3

2 4 4

ˆ ˆ(,) (,)

ˆ ˆ(,) (,) }
l l

l ll lj j
e CT g e v C

e C C e v C

α
φ φ

α

∈ ∈∏ ∏
∧ = (Mj). To do so, it picks random jr , rα , rβ , rδ *p∈Z , and

computes:
1R = jr

jjz f , 2R = ru α , 3R = 1
jr rC u δ− , 4R = 2 2 2ˆ ˆ ˆ(,) (,) (,)jr r re C g e v w e v gα δ− −

5R = 2
rg β , 6R = rB β , 7R = 3 4ˆ ˆ((,) / (,))l

j
r

l le v C e v C αφ∈∏ .
c = H(jM , jupk , 1C , 2C , 3C , 4C , 1CT ,…, | |jCTφ , 1R ,…, 7R).

js = ()j jr cx+ , sα = ()r cα α+ , sβ = ()r cβ β+ , sδ = ()r cδ δ+ .
(5) Output σj = 〈 jf , js , Tj, jupk , C1, C2, C3, C4, 1CT ,..., | |jCTφ , c, sα , sβ , sδ 〉.

–MVerify(σj, jupk ,Tj, PK, Mj). This algorithm performs the following steps:

(1) Compute B = 2()l l
j

t
l gφ∈∏ from Tj.

(2) Compute:
1R = 1

js c
jjz g f− , 2R = 1

csu Cα − , 3R = 1
js sC u δ− (8−10)

4R = 2 2 2 2 1 2ˆ ˆ ˆ ˆ ˆ(,) (,) (,) ((,) / (,))js s s ce C g e v w e v g e C w e g gα δ− − (11)

5R = 2 3
s cg Cβ − , 6R = 4

csB Cβ − (12−13)

7R = 3 4 2 4 2ˆ ˆ ˆ ˆ((,) / (,)) ((,) / (,))l l
j j

s c
l ll le v C e v C e C C e CT gαφ φ∈ ∈∏ ∏ (14)

(3) Output accept if c = H(Mj, jupk , 1C , 2C , 3C , 4C , 1CT ,…, | |jCTφ , 1R ,…, 7R).

–Verify(k, σi, iupk , Ti, PK, M). Given a keystone k and a promise of initial signature σi (or a
promise of matching signature σi), the algorithm outputs accept if IVerify(σi, iupk , Ti, PK, Mi)
= accept and f = KfGen(k) (or MVerify(σi, iupk , Ti, PK, Mi) = accept and KfVer(k, jf , jupk) =
accept).

4.2 Unforgeability

Theorem 1 (Unforgeability). Suppose there exists an adversary A that can break the
unforgeability of our ABCS scheme with a non-negligible probability ε. Then, in the random
oracle model, we can build an algorithm B that has advantage at least 2(/ 1/) / (16)Hn q qε − in
breaking the q-SDH assumption, where qH is the number of hash function queries made by A.
Proof. We first consider the case where σi is a promise of initial signature. We show how to
build the algorithm B as follows.

–Setup. Given a q-SDH instance, B can obtain a tuple of (1g , 2g ,w = 2gγ) and a list of 1q −

SDH pairs 〈 iA , ix 〉 where
iA = 1/()

1
ixg γ + . We will instantiate q as 1n + or n for different types of

forgeries. In the case where q = n, B obtains an additional pair by picking random 〈 *iA , *ix 〉
∈ *1 pG ×Z for a random * {1,..., }i n∈ . Then B setups the system in the same way as the algorithm
Setup(1λ), except that it implicitly sets γ as the part of MSK. Finally, B sends PK to A.

–PubkeyGen Queries. Given a user index i, B chooses the pair 〈 iA , ix 〉 from the list and
returns iupk = 〈 iy = 1

ixg , iz = 1

1
ixg − 〉.

–SecKeyGen Queries. Given a public key iupk and an attribute set atti, B returns
iusk = 〈 iA , ix ,

,1iT ,…, ,| |ii attT 〉 if i ≠ *i . Otherwise it aborts because 〈 *iA , *ix 〉 is not a valid SDH pair.

–BuildTree. Given an attribute set φi, B returns Ti = SimplifyCTree(CT, φi).

–Hash Queries. Given a tuple of 〈 iM , iupk , 1C −C4, 1CT − | |iCTφ , R1−R7〉, B returns a random

*pc ∈Z and saves it in hash table incase the same query is requested again.

–Isign Queries. If i ≠ *i , B returns a promise of signature
iσ by running Isign. Otherwise, it

has to simulate
*iσ . It first picks random *, pα β ∈Z and sets C1 = uα , C2 = *iA vα , C3 = 2g β , C4

= Bβ , CTj = 2() jtC β for j = 1,…, *| |iφ . Then it picks random c, si, sα, sβ, sδ
 *p∈Z , sets f = 1

isg , and
computes 1R − 7R using equations (1) − (7). It is easy to see that

*iσ can be accepted by IVerify
and it is indistinguishable from the output of Isign. We ignore the probability that the choice of
c could cause a collision in the hash table since it is obviously negligible.
–Msign Queries. If i ≠ *i , B returns a promise of signature

iσ by running Msign. Otherwise, B
simulates *iσ in the similar way as in the Isign queries except that it sets

if = 1
*i

xf − and
computes

1R − 7R using equations (8) − (14).

–KsReveal Queries. Given a keystone fix f produced in Isign queries, B returns k = si.

–Output. We divide A into two types of forgers. A type I forger outputs a forgery
iσ such that

we can obtain a new SDH pairs 〈 iA , ix 〉 for i∉ {1,…, n}. A type II forger outputs a forgery
iσ

such that we can obtain a new SDH pairs 〈 iA , ix 〉 for i = *i . We treat them in different way.
(1) For a type I forger, we instantiate q as 1n + . Since B has n valid SDH pairs, it can

perfectly simulate the challenger C to interact with A, and thus we obtain a Type I forgery with
probability ε.

(2) For a type II forger, we instantiate q as n. Since B has only 1n − valid SDH pairs, it will
abort when a SecKeyGen query is made on *i . However, it will not abort for a Isign/Msign
query on *i , since it can simulate a signature which is indistinguishable from the output of
Isign/Msign. So we obtain a type II forgery with probability ε/n.

Given a forged promise of initial signature σi and the corresponding keystone k = si, since
they are accepted by Verify and

1
isC , 2

isC can be computed from C1, C2, k, we rewrite σi as
〈Ti, iy , C1, C2, C3, C4, 1CT ,..., | |iCTφ , c, k, sα , sβ , sδ 〉. This signature has the right structure for the
application of the fork lemma [31]. Hence, by rewinding B and A, we can obtain the second
forged signature 'iσ = 〈Ti, iy , C1, C2, C3, C4, 1CT ,..., | |iCTφ , 'c , 'k , 'sα , 'sβ , 'sδ 〉 on the same message
Mi, with probabilities at least 2(1/) / (16)Hq qε − or 2(/ 1/) / (16)Hn q qε − for type I and type II
forgers, respectively. Let c = 'c c− and similarly for k , sα , sβ

 and sδ . We show as
follows how to extract a new SDH pair from these two forgeries.

–Compute
1R − 4R and '1R − '4R using equation (1) – (4).

–Compute '1 1/R R to obtain
iy = 1

ixg where ix = /k c .
–Compute '2 2/R R to obtain

1C = uα where α = /s cα .
–Compute '3 3/R R to obtain 1

kC = su δ . It implies sδ = kα from
1C = uα .

–Compute '4 4/R R to obtain
1 2 2ˆ ˆ((,) / (,)) ce g g e C w = 2 2 2ˆ ˆ ˆ(,) (,) (,)k s se C g e v w e v gα δ− − .

By substituting
ix = /k c ,α = /s cα , sδ = kα and rearranging the last equation, we

have
2 2ˆ(,)ixe C v wgα− = 1 2ˆ(,)e g g , so 〈 iA = 2C v α− , ix 〉 is a new SDH pair.

For the case where σi is a promise of matching signature, we let B interact with A just in the
same way and from the fork lemma we also obtain two forgeries σi, 'iσ on same message Mi.
Since they are produced from same input of f = 1

kg and
iz = 1/

1
ixg , we know

if = 'if = k
iz . By

rewriting them as σi = 〈 if , Ti, iz , C1, C2, C3, C4, 1CT ,..., | |iCTφ , c, is k+ , sα , sβ , sδ 〉, 'iσ = 〈 if , Ti,
iz , C1, C2, C3, C4, 1CT ,..., | |iCTφ , 'c , 'is k+ , 'sα , 'sβ , 'sδ 〉, and performing similar computation, we

can also extract a new SDH pair as 〈 iA = 2C v α− , ix = /is c 〉.

4.3 Anonymity
Theorem 2. Under the XDH assumption, our ABCS scheme is anonymous in the random
oracle model.
Proof. We prove the anonymity by contradiction. Suppose there exists an adversary A that
wins the anonymity game with a non-negligible advantage ε, we can build an algorithm B that

has advantage ε/2 in breaking the XDH assumption. We first consider the case where A is
challenged by a promise of initial signature.

Given a XDH instance 〈 1g , 1
1
ag , 2

1
ag , 3

1
ag 〉 4

1G∈ , B setups the system in the same way as the
algorithm Setup(1λ), except that it picks random r, β ∈ *pZ and sets u = 1

rg , v = 1
1()a rg . Since B

knows MSK, it can perfectly simulate the challenger C to interact with A. In the challenge
phase, when receiving 〈 0i , 1i , Ti , Mi 〉 from A, B sets C1 = 2 11()a rg , C2 = 3 11()b

a riA g , C3 = 2g β , C4
= Bβ , CTl = 2() ltC β . If a3 = a1a2, it is a valid ElGamal encryption of

biA with the implicit setting
of α = a2 and v = 1au . Otherwise it is encryption of a random message. Then B completes the
simulation by choosing random

is , sα , sβ , sδ , c *p∈Z and a random public key
jy for j ≠ 0i , j

≠ 1i , computing
1R − 7R using equations (1) − (7) and computing 1

isC , 2
isC from C1, C2 and

is .
Clearly, the resultant signature can be accepted by IVerify.

Finally, A outputs its guess 'b . If 'b = b, B returns 1 indicating that a3 = a1a2. Otherwise it
returns 0 indicating that a3 ≠ a1a2. It’s easy to see that the advantage of B in solving the XDH
problem is Pr['b b= | 3 1 2a a a=] + Pr['b b= | 3 1 2a a a≠] = (1/ 2) / 2 (1/ 2) / 2ε+ + = ε/2.

In the case where A is challenged by a promise of matching signature, B produces the
challenging signature in the similar way except that it picks two random values in

1G as the
public key

iz and the keystone fix
if , and computes

1R − 7R using equations (8) − (14). From
Lemma 2 we know that, from A’ point of view, the tuple 〈f, iz , if 〉 is indistinguishable from an
honestly-generated one under the XDH assumption. Hence, by using the advantage of A, B
can also obtain an advantage of ε/2 in breaking the XDH assumption.

4.4 Fairness
Theorem 3. Our ABCS scheme is fair in the random oracle model.
Proof. Suppose our ABCS scheme is not fair, by the definition we know that one of two
conditions must hold. We will reduce either of cases to a forgery of our ABCS, which
contradicts to Theorem 1.

Case 1. Since A has never made a KsReveal query on f , from the Discrete Logarithm
assumption we know that A must generate the keystone k by itself. Hence such k and σi lead to
a forgery of our ABCS.

Case 2. If A produces the signature σi = 〈 if , si, ρi〉 by itself, it immediately implies a forgery
of our ABCS. If A receives σi from C, it means C must have obtained a promise of initial
signature σj = 〈 f , ρj〉 from A. Since k and σi are accepted by Verify, we have

if = k
iz = 1/

1() ik xg ,
and from the condition if = KfTran(f , jusk) we further have f = 1

kg . Since σj = 〈 f , ρj〉 is

accepted by IVerify, k and σj must be accepted by Verify, which contradicts the second condition
in the definition.

5. Conclusion

We recognize the importance of attributes in the area of fair exchange of digital signatures, and
introduce the notion of attribute-based concurrent signatures. As an an interesting extension of
concurrent signatures in the attribute-based setting, this primitive allows two parties fairly
exchange their signatures only if each of them can convince the opposite party that he/she
possesses certain attributes satisfying a given signing policy. We formalize this notion and
present a construction which is secure in the random oracle model under the Strong
Diffie-Hellman assumption and the eXternal Diffie-Hellman assumption.

The security of our construction relies on the random oracle model. As denoted in [32],
some popular cryptosystems previously proved secure in the random oracle model are actually
provably insecure when the random oracle is instantiated by any real-world hashing functions.
So it is desirable to construct an ABCS in the standard model for more reliable security. We
left it as an interesting open problem.

Acknowledgments
This work is partially supported by NSFC under Grant No .

References
[1] Liqun Chen, Caroline Kudla and Kenneth G. Paterson, “Concurrent Signatures,” Proc. of

Advances in Cryptology – EUROCRYPT 2004, LNCS 3027, Springer-Verlag, pp. 287-305, May
2-6, 2004.

[2] YangWang, ManHo Au and Willy Susilo, “Attribute-based optimistic fair exchange: How to
restrict brokers with policies,” Theoretical Computer Science, vol. 527, no. 3, pp. 83-96, 2014.

[3] Dalia Khader, “Attribute-based Authentication Scheme,” PhD thesis, University of Bath, 2009.
[4] Dan Boneh and Xavier Boyen, “Short signatures without random oracles and the SDH assumption

in bilinear groups,” Journal of Cryptology, vol. 21, no. 2, pp. 149-177, 2008.
[5] Steven D. Galbraith, “Supersingular curves in cryptography,” Proc. of Advances in Cryptology –

ASIACRYPT 2001, LNCS 2248, Springer-Verlag, pp. 495-513, November 20, 2001.
[6] Dalia Khader, “Attribute based group signatures,” IACR Cryptology ePrint Archive, Report

2007/159, http://eprint.iacr.org/2007/159.
[7] Keita Emura, Atsuko Miyaji and Kazumasa Omote, “A dynamic attribute-based group signature

scheme and its application in an anonymous survey for the collection of attribute statistics,” Proc.
of International Conference on Availability, Reliability and Security (ARES 2009), pp. 487-492,
March 16-19, 2009.

[8] Willy Susilo, Yi Mu and Fangguo Zhang, “Perfect concurrent signature schemes,” Proc. of
Information and Communications Security (ICICS 2004), LNCS 3269, Springer-Verlag, pp. 14-26,
October 27-29, 2004.

[9] Guilin Wang, Feng Bao, and Jianying Zhou, “The fairness of perfect concurrent signatures,” Proc.
of Information and Communications Security (ICICS 2006), LNCS 4307, Springer-Verlag, pp.
435-451, December 4-7, 2006.

[10] Sherman S. M. Chow and Willy Susilo, “Generic construction of (Identity-based) perfect
concurrent signatures,” Proc. of Information and Communications Security (ICICS 2005), LNCS
3783, Springer-Verlag, pp. 194-206, December 10-13, 2005.

[11] Dongvu Tonien, Willy Susilo and Reihaneh Safavi-Naini, “Multi-party concurrent signatures,”
Proc. of 9th International Conference on Information Security (ISC 2006), LNCS 4176,
Springer-Verlag, pp. 131-145, August 30-September 2, 2006.

[12] Tsz H. Yuen, Duncan S. Wong, Willy Susilo and Qiong Huang, “Concurrent signatures with fully
negotiable binding control,” Proc. of 5th International Conference on Provable Security (ProvSec
2011), LNCS 6980, Springer-Verlag, pp. 170-187, October 16-18, 2011.

[13] Xiao Tan, Qiong Huang and Duncan S. Wong, “Concurrent signature without random oracles,”
Theoretical Computer Science, vol. 562, pp. 194-212, 2015.

[14] Masayuki Abe, Miyako Ohkubo and Koutarou Suzuki, “1-out-of-n Signatures from a Variety of
Keys,” Proc. of Advances in Cryptology –ASIACRYPT 2002, LNCS 2501, Springer-Verlag, pp.
415-432, October 16-18, 2002.

[15] Khanh Nguyen, “Asymmetric concurrent signatures,” Proc. of Information and Communications
Security (ICICS 2005), LNCS 3783, Springer-Verlag, pp. 181-193, December 10-13, 2005.

[16] Tatsuaki Okamoto and Kazuo Ohta, “How to simultaneously exchange secrets by general
assumptions,” Proc. of 2nd ACM Conference on Computer and Communication Security (CCS
1994), pp. 184-192, August 30-September 2, 1994.

[17] N. Asokan, Victor Shoup and Michael Waidner, “Optimistic fair exchange of signatures,” Proc. of
Advances in Cryptology – EUROCRYPT 1998, LNCS 1403, Springer-Verlag, pp. 591-606, May
31- June 4, 1998.

[18] Hemanta K. Maji, Manoj Prabhakaran and Mike Rosulek, “Attribute-based signatures: achieving
attribute-privacy and collusion-resistance,” IACR Cryptology ePrint Archive, Report 2008/328,
http://eprint.iacr.org/2008/328.

[19] Jin Li, Man Ho Au, Willy Susilo and Kui Ren, “Attribute-based signature and its application,”
Proc. of 5th ACM Symposium on Information, Computer and Communications Security (ASIACCS
2010), pp. 60-69, April 13-16, 2010.

[20] Siamak F. Shahandashti and Reihaneh Safavi-Naini, “Threshold attribute-based signatures and
their application to anonymous credential systems,” Proc. of Progress in Cryptology –ASIACRYPT
2009, LNCS 5580, Springer-Verlag, pp. 198-216, June 21-25, 2009.

[21] Javier Herranz, Fabien Laguillaumie, Benoît Libert and Carla Ràfols, “Short attribute-based
signature for threshold predicates,” Proc. of the Cryptographers’ Track at the RSA Conference
2011 (CT-RSA 2012), LNCS 7178, Springer-Verlag, pp. 51-67, February 27-March 2, 2012.

[22] Hemanta K. Maji, Manoj Prabhakaran and Mike Rosulek, “Attribute-based signatures,” Proc. of
the Cryptographers’ Track at the RSA Conference 2011 (CT-RSA 2011), LNCS 6558,
Springer-Verlag, pp. 376-392, February 14-18, 2011.

[23] Tatsuaki Okamoto and Katsuyuki Takashima, “Efficient attribute-based signatures for
non-monotone predicates in the standard model,” Proc. of the 14th Int. Conf. on Public Key
Cryptography (PKC 2011), LNCS 6571, Springer-Verlag, pp. 35-52, March 6-9, 2011.

[24] Tatsuaki Okamoto and Katsuyuki Takashima, “Decentralized attribute-based signatures,” IACR
Cryptology ePrint Archive, Report 2011/701, http://eprint.iacr.org/2011/701.

[25] Syed T. Ali and B.B. Amberker, “Short Attribute-Based Group Signature without Random Oracles
with Attribute Anonymity,” Proc. of Int. Symposium on Security in Computing and
Communications (SSCC 2013), pp. 223-235, August 22-24, 2013.

[26] Keita Emura, Atsuko Miyaji and Kazumasa Omote, “A Selectable k-Times Relaxed Anonymous
Authentication Scheme,” Proc. of 10th Int. Workshop on Information Security Applications (WISA
2009), LNCS 5932, Springer-Verlag, pp. 281-295, August 25-27, 2009.

[27] Dan Boneh, Xavier Boyen and Hovav Shacham, “Short Group Signatures,” Proc. of Advances in
Cryptology – CRYPTO 2004, LNCS 3152, Springer-Verlag, pp. 41-55, August 15-19, 2004.

[28] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss and Anna Lysyanskaya, “P-signatures and
Noninteractive Anonymous Credentials,” Proc. of 5th Theory of Cryptography Conference (TCC
2008), LNCS 4948, Springer-Verlag, pp. 356-374, March 19-21, 2008.

[29] Melissa Chase, “Efficient Non-Interactive Zero-Knowledge Proofs for Privacy Applications,”
PhD thesis, Brown University, 2008.

[30] Vipul Goyal, Omkant Pandey, Amit Sahai and Brent Waters, “Attribute-based encryption for fine
grained access control of encrypted data,” Proc. of 13th ACM Conference on Computer and
Communications Security (CCS 2006), pp. 89-98, October 30-November 3, 2006.

[31] David Pointcheval and Jacques Stern, “Security arguments for digital signatures and blind
signatures,” Journal of Cryptology, vol. 13, no. 3, pp. 361-396, 2008.

[32] Ran Canetti Oded Goldreich and Shai Halevi, “The random oracle methodology, revisited,” Proc.
of 30th ACM Symposium on Theory of Computing (STOC 1998), pp. 209–218, May 23-26, 1998.

Appendix A

For an access tree, let index(x) be a function which returns the index of a node x. For an interior node x,
let lx be the number of its children and kx (0 < kx ≤ lx) be the threshold value on node x. We also use
child(x) and dum(x) to denote the set of attribute children and dummy children of x, respectively.
–BuildCTree(Att). Takes Att = {1,…, |Att|} as input, this algorithm build a central access tree by
performing following steps.

(1) Build a tree CT where each attribute in Att is a leaf node.
(2) For an interior node x, add lx − kx dummy nodes as its children, and change its threshold value

from kx to lx. Let Dum be the set of all dummy nodes.
(3) Assign a unique index for each node in this tree.
(4) Assign a secret value *l pt ∈Z for each attribute leaf l Att∈ , and a secret value *l pd ∈Z for each

dummy node l Dum∈ .
(5) For an interior node x, select a polynomial qx of degree lx − 1 such that it passes though (index(l),

lt) for each attribute l ∈ child(x). Set ld = qx(index(l)) for each dummy node l ∈ dum(x). Finally, pick a
random xr *p∈Z and set qx(0) = xr .

(6) Repeat the step (5) up to the root node, and output CT and { }l l Attt ∈ , { }l l Dumd ∈ .

–SimplifyCTree(CT, φ). Take as input the central tree CT and an attribute set φ ∈ Att, this algorithm
returns a simplified access tree by performing following steps.

(1) Delete the set of attributes { }l Attl φ∈ − from CT.
(2) Delete an interior node x along with x’s descendants if it has children less than the threshold value

lx . Let T be the resultant access tree and ϕ be the set of dummy nodes in T.
(3) For all nodes x in of T except the root, compute Lx as follows, where cx is the set of leaves in the

depth 2 subtree with x as leaf node.

 Lx = \{ } ()x

k
k c x index x k

−
∈ −∏

 (4) For each leaf node l∈φ∪ϕ, compute l =
l nodenode path L∈∏ , where Pathl = {l, parent1, . . . , parentn

= rootT} be the set of nodes that appears in the path from l to root node of T.
(5) Output T and { }l l φ∈ , { }l l ϕ∈ .

Given an access tree T, we can compute the value r of the root node as:
 r = l l l ll lt dφ ϕ∈ ∈+∑ ∑

