
Anonymous Attestation with Subverted TPMs ?

Jan Camenisch1, Manu Drijvers1,2, and Anja Lehmann1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
{jca,mdr,anj}@zurich.ibm.com

2 Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

Abstract. Various sources have revealed that cryptographic standards
and components have been subverted to undermine the security of users,
reigniting research on means to achieve security in presence of such sub-
verted components. In this paper we consider direct anonymous attesta-
tion (DAA) in this respect. This standardized protocol allows a computer
with the help of an embedded TPM chip to remotely attest that it is in
a healthy state. Guaranteeing that different attestations by the same
computer cannot be linked was an explicit and important design goal of
the standard in order to protect the privacy of the user of the computer.
Surprisingly, none of the standardized or otherwise proposed DAA pro-
tocols achieves privacy when the TPM is subverted, but they all rely
on the honesty of the TPM. As the TPM is a piece of hardware, it is
hardly possible to tell whether or not a given TPM follows the specified
protocol. In this paper we study this setting and provide a new protocol
that achieves privacy also in presence of subverted TPMs.

1 Introduction

Direct anonymous attestation (DAA) is a cryptographic protocol for a platform
consisting of a host and a TPM chip (Trusted Platform Module). The TPM
serves as a trust anchor of the platform and anonymously attests either to the
host’s current state or some other message chosen by the host. Thus, DAA can
be used to convince a communication partner that the platform has not been
compromised, i.e., modified by malware. The main design goal of DAA is that
such attestations are anonymous, i.e., while a verifier can check that the signature
stems from a legitimate platform, it does not learn the identity of the platform,
or even recognize that multiple attestations stem from the same platform.

DAA was introduced by Brickell, Camenisch, and Chen [BCC04] for the
Trusted Computing Group and was standardized in the TPM 1.2 specification in
2004 [Tru04]. Their paper inspired a large body of work on DAA schemes [BCL08,
CMS08,CF08,BCL09,Che09,CPS10,BL10,BFG+13,CDL16b,CDL16a], includ-
ing more efficient schemes using bilinear pairings as well as different security
definitions and proofs. One result of these works is the recent TPM 2.0 spec-
ification [Tru14, Int15] that includes support for multiple pairing-based DAA
schemes, two of which are standardized by ISO [Int13]. Over 500 million TPMs

? This work has been supported by the ERC under Grant PERCY #321310.



have been sold,3 making DAA probably the most complex cryptographic scheme
that is widely implemented. Recently, the protocol has gotten renewed atten-
tion for authentication: An extension of DAA called EPID is used in Intel
SGX [CD16], the most recent development in the area of trusted computing. Fur-
ther, the FIDO alliance, an industry consortium designing standards for strong
user authentication, is in the process of standardizing a specification using DAA
to attest that authentication keys are securely stored [CDE+].

The first version of the TPM specification and attestation protocol had re-
ceived strong criticism from privacy groups and data protection authorities as it
imposed linkability and full identification of all attestations. As a consequence,
guaranteeing the privacy of the platform, i.e., ensuring that an attestation does
not carry any identifier, became an important design criteria for such hardware-
based attestation. Indeed, various privacy groups and data protection authorities
had been consulted in the design process of DAA.

Trusting Hardware for Privacy? Surprisingly, despite the strong concerns of
having to trust a piece of hardware when TPMs and hardware-based attestation
were introduced, the problem of privacy-preserving attestation in the presence of
fraudulent hardware has not been fully solved yet. The issue is that the original
DAA protocol as well as all other DAA protocols crucially rely on the honesty
of the entire platform, i.e., host and TPM, for guaranteeing privacy. Clearly,
assuming that the host is honest is unavoidable for privacy, as it communicates
directly with the outside world and can output any identifying information it
wants. However, further requiring that the TPM behaves fully honest and aims to
preserve the host’s privacy is an unnecessarily strong assumption and contradicts
the initial design goal of not having to trust the TPM.

Even worse, it is impossible to verify this strong assumption as the TPM is
a chip that comes with pre-installed software, to which the user only has black-
box access. While black-box access might allow one to partly verify the TPM’s
functional correctness, it is impossible to validate its privacy guarantees. A com-
promised TPM manufacturer can ship TPMs that provide seemingly correct out-
puts, but that are formed in a way that allows dedicated entities (knowing some
trapdoor) to trace the user, for instance by encoding an identifier in a nonce that
is hashed as part of the attestation signature. It could further encode its secret
key in attestations, allowing a fraudulent manufacturer to frame an honest host
by signing a statement on behalf of the platform. We stress that such attacks are
possible on all current DAA schemes, meaning that, by compromising a TPM
manufacturer, all TPMs it produces can be used as mass surveillance devices.
The revelations of subverted cryptographic standards [PLS13,BBG13] and tam-
pered hardware [Gre14] indicate that such attack scenarios are very realistic.

In contrast to the TPM, the host software can be verified by the user, e.g.,
being compiled from open source, and will likely run on hardware that is not
under the control of the TPM manufacturer. Thus, while the honesty of the host

3 http://www.trustedcomputinggroup.org/solutions/authentication



is vital for the platform’s privacy and there are means to verify or enforce such
honesty, requiring the TPM to be honest is neither necessary nor verifiable.

1.1 Our Contribution

In this paper we address this problem of anonymous attestation without having
to trust a piece of hardware, a problem which has been open since more than
a decade. We further exhibit a new DAA protocol that provides privacy even
if the TPM is subverted. More precisely, our contributions are twofold: we first
show how to model subverted parties within the Universal Composability (UC)
model and then propose a protocol that is secure against subverted TPMs.

Modeling Subversion Attacks in UC. We modify the UC-functionality of DAA
recently proposed by Camenisch, Drijvers, and Lehmann [CDL16b] to model the
preserved privacy guarantees in the case where the TPM is corrupt and the host
remains honest. Modeling corruption in the sense of subverted parties is not
straightforward: if the TPM was simply controlled by the adversary, then, using
the standard UC corruption model, only very limited privacy can be achieved.
The TPM has to see and approve every message it signs but, when corrupted,
all these messages are given to the adversary as well. In fact, the adversary
will learn which particular TPM is asked to sign which message. That is, the
adversary can later recognize a certain TPM attestation via its message, even if
the signatures are anonymous.

Modeling corruption of TPMs like this gives the adversary much more power
than in reality: even if a TPM is subverted and runs malicious algorithms, it
is still embedded into a host who controls all communication with the outside
world. Thus, the adversary cannot communicate directly with the TPM, but only
via the (honest) host. To model such subversions more accurately, we introduce
isolated corruptions in UC. When a TPM is corrupted like this, we allow the
ideal-world adversary (simulator) to specify a piece of code that the isolated, yet
subverted TPM will run. Other than than, the adversary has not control over
the isolated corrupted party, i.e., it can not directly interact with the isolated
TPM and can not see its state. Thus, the adversary will also not automatically
learn anymore which TPM signed which message.

A New DAA Protocol with Optimal Privacy. We further discuss why the existing
DAA protocols do not offer privacy when the TPM is corrupt and propose a
new DAA protocol which we prove to achieve our strong security definition.
In contrast to most existing schemes, we construct our protocol from generic
building blocks which yields a more modular design. A core building block are
split signatures which allow two entities – in our case the TPM and host –
each holding a secret key share to jointly generate signatures. Using such split
keys and signatures is a crucial difference compared with all existing schemes,
where only the TPM contributed to the attestation key which inherently limits
the possible privacy guarantees. We also redesign the overall protocol such that



the main part of the attestation, namely proving knowledge of a membership
credential on the attestation key, can be done by the host instead of the TPM.

By shifting more responsibility and computations to the host, we do not
only increase privacy, but also achieve stronger notions of non-frameability and
unforgeability than all previous DAA schemes. Interestingly, this design change
also improves the efficiency of the TPM, which is usually the bottleneck in a
DAA scheme. In fact, we propose a pairing-based instantiation of our generic
protocol which, compared to prior DAA schemes, has the most efficient TPM
signing operation. This comes for the price of higher computational costs for the
host and verifier. However, we estimate signing and verification times of under
40ms, which is sufficiently fast for most practical applications.

1.2 Related Work

A setting similar to our work has been discussed by Brands in 2000 [Bra00]
who considered user-bound credentials where the user’s secret key is protected
by a smart card. Brands proposes to let the user’s host add randomness to the
smart card contribution as a protection against subliminal channels. However,
his work does not include a formal security model or proof to backup the privacy
claims in the presence of subverted hardware. Further, it requires the smart card
to compute a Fiat-Shamir based proof of a credential on the user’s secret key,
which still can be used as subliminal channel as we discuss in Section 3.

More generally, the study of protection against subverted cryptographic al-
gorithms or devices dates back to the work by Young and Yung on kleptogra-
phy [YY97a,YY97b] in the late 1990s. Recently, caused by the revelations of sub-
verted cryptographic standards [PLS13,BBG13] and tampered hardware [Gre14]
as a form of mass-surveillance, this problem has again gained substantial atten-
tion.

Subversion-Resilient Cryptography. Bellare et al. [BPR14] provided a formaliza-
tion of algorithm-substitution attacks and considered the challenge of securely
encrypting a message with an encryption algorithm that might be compromised.
Here, the corruption is limited to attacks where the subverted party’s behavior is
indistinguishable from that of a correct implementation, which models the goal
of the adversary to remain undetected. This notion of algorithm-substitution
attacks was later applied to signature schemes, with the goal of preserving un-
forgeability in the presence of a subverted signing algorithm [AMV15].

The approach of replacing a correct implementation with an indistinguishable
yet corrupt one is similar to the approach in our work, we however grant the
adversary substantially more power. Indeed, subversion-resilient cryptography
crucially relies on honestly generated keys and aims to prevent key or information
leakage when the algorithms using these keys get compromised. We even want
to get security (or rather privacy) when the TPM behaves maliciously already
when generating the keys.

Clearly, allowing the TPM to run subverted keys requires another trusted
entity on the user’s side in order to hope for any privacy-protecting operations.



The DAA setting naturally satisfies this requirement as it considers a platform
to consist of two individual entities: the TPM and the host, where all of TPM’s
communication with the outside world is run via the host.

Reverse Firewalls. This setting is similar to the concept of reverse firewalls re-
cently introduced by Mironov and Stephens-Davidowitz [MS15]. A reverse fire-
wall sits in between a user’s machine and the outside world and guarantees
security of a joint cryptographic operation even if the user’s machine has been
compromised. Moreover, the firewall-enhanced scheme should maintain the orig-
inal functionality and security, meaning the part run on the user’s computer
must be fully functional and secure on its own without the firewall. Thus, the
presence of a reverse firewall can enhance security if the machine is corrupt but
is not the source of security itself. This concept has been proven very powerful
and manages to circumvent the negative results of resilience against subversion-
attacks [DMSD16,CMY+16].

The DAA setting we consider in this paper is not as symmetric as a reverse
firewall though. While both parties contribute to the unforgeability of attesta-
tions, the privacy properties are only achievable if the host is not corrupt. In fact,
there is no privacy towards the host, as the host is fully aware of the identity
of the embedded TPM. The requirement of privacy-protecting and unlinkable
attestation only applies to the final output produced by the host.

Divertible Protocols & Local Adversaries. A long series of related work explores
divertible and mediated protocols [BD95, OO90, BBS98, AsV08], where a spe-
cial party called the mediator controls the communication and removes hidden
information in messages by rerandomizing them. The host in our protocol resem-
bles the mediator, as it adds randomness to every contribution to the signature
from the TPM. However, in our case the host is a normal protocol participant,
whereas the mediator’s sole purpose is to control the communication.

Alwen et al. [AKMZ12] and Canetti and Vald [CV12] consider local ad-
versaries to model isolated corruptions in the context of multi-party protocols.
These works thoroughly formalize the setting of multi-party computations where
several parties can be corrupted, but are controlled by different and non-colluding
adversaries. In contrast, the focus of this work is to limit the communication
channel that the adversary has to the corrupted party itself. We leverage the
flexibility of the UC model to define such isolated corruptions.

Generic MPC. Multi-party computation (MPC) was introduced by Yao [Yao82]
and allows a set of parties to securely compute any function on private inputs.
Although MPC between the host and TPM could solve our problem, a negative
result by Katz and Ostrovsky [KO04] shows that this would require at least
five rounds of communication, whereas our tailored solution is much more effi-
cient. Further, none of the existing MPC models considers the type of subverted
corruptions that is crucial to our work, i.e., one first would have to extend the ex-
isting models and schemes to capture such isolated TPM corruption. This holds



in particular for the works that model tamper-proof hardware [Kat07, HPV16],
as therein the hardware is assumed to be “perfect” and unsubvertable.

2 A Security Model for DAA with Optimal Privacy

This section presents our security definition for anonymous attestation with
optimal privacy. First, we informally describe how DAA works and what the
desired security and (optimal) privacy properties are. Then we present our formal
definition in Section 2.1, and describe how it improves upon existing work in
Section 2.2. Finally, in Section 2.3, we elaborate on the inherent limitations the
UC framework imposes on privacy in the presence of fully corrupted parties and
introduce the concept of isolated corruptions, which allow one to overcome this
limitations yet capture the power of subverted TPMs.

High-Level Functional and Security Properties. In a DAA scheme, we have four
kinds of entities: a number of TPMs, a number of hosts, an issuer, and a number
of verifiers. A TPM and a host together form a platform which performs the
join protocol with the issuer who decides if the platform is allowed to become a
member. Once being a member, the TPM and host together can sign messages
with respect to basenames bsn. If a platform signs with a fresh basename, the
signature must be anonymous and unlinkable to any previous signatures. That
is, any verifier can check that the signature stems from a legitimate platform via
a deterministic verify algorithm, but the signature does not leak any information
about the identity of the signer. However, signatures the platform makes with the
same basename can by linked to each other via a (deterministic) link algorithm.

For security, one requires unforgeability: when the issuer is honest, the
adversary can only sign in the name of corrupt platforms. More precisely, if n
platforms are corrupt, the adversary can forge at most n unlinkable signatures
for one basename. With corrupt platform we mean that both the host and TPM
are corrupt, and thus a platform is called honest if at least one of the TPM or
host is honest. This is in fact stronger than the unforgeability notion covered in
all previous definitions which only rely on the honesty of the TPM.

Non-frameability captures the property that no adversary can create sig-
natures on a message m w.r.t. basename bsn that links to a signature created by
a platform with an honest host, when this platform never signed m w.r.t. bsn.

Finally, we require anonymity for attestations. An adversary that is given
two signatures, w.r.t. two different basenames cannot determine whether both
signatures stem from the same platform. All previous works considered anonymity
only for fully honest platforms, i.e., consisting of an honest TPM and honest host,
whereas our goal is to guarantee anonymity even if the TPM is corrupt. Note
that anonymity can only hold if the host is honest, though, as it has full control
over its output and can, e.g., always choose to append its identity to a signa-
ture. Thus, the best one can hope for is preserved anonymity when the TPM is
corrupt but the host is honest, which is the setting that this work addresses.



1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .
– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A, wait for input (JOINPROCEED, sid , jsid) from A.
– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥. (strong non-frameability)
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign

5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .
– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key: (strong privacy)
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor τ ′

registered in Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.
– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.
– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi,Mi,Hj) was found.
• Mi or Hj is honest but no entry 〈∗,m, bsn,Mi,Hj〉 ∈ Signed exists. (strong unforgeability)
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1 and no pair (τi,Mi,Hj) for an honest Hj was

found.
– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the verify

interface with RL = ∅).
– For each τi in Members and DomainKeys compute bi ← identify(σ,m, bsn, τi) and b′i ←

identify(σ′,m′, bsn, τi) and do the following:
• Set f ← 0 if bi 6= b′i for some i.
• Set f ← 1 if bi = b′i = 1 for some i.

– If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 1. Our ideal functionality Fpdaa for DAA with optimal privacy.



Universal Composability. Our security definition has the form of an ideal func-
tionality Fpdaa in the Universal Composability (UC) framework [Can00]. In UC,
an environment E gives inputs to the protocol parties and receives their outputs.
In the real world, honest parties execute the protocol over a network controlled
by an adversary A who may communicate freely with environment E . In the
ideal world, honest parties forward their inputs to the ideal functionality. The
ideal functionality internally performs the defined task and generates outputs
for the honest parties.

Informally, a protocol Π securely realizes an ideal functionality F if the real
world is as secure as the ideal world. For every adversary A attacking the real
world, there exists an ideal world attacker or simulator S that performs an
equivalent attack on the ideal world. As F performs the task at hand in an ideal
fashion, i.e., F is secure by construction, there are no meaningful attacks on the
ideal world, so there are no meaningful attacks on the real world. More precisely,
Π securely realizes F if for every adversary A, there exists a simulator S such
that no environment E can distinguish the real world (with Π and A) from the
ideal world (with F and S).

2.1 Ideal Functionality Fpdaa

We now formally define our ideal DAA-with-optimal-privacy functionality Fpdaa,
which is based on F ldaa by Camenisch et al. [CDL16b]. The crucial difference be-
tween the two functionalities is the resilience against corrupt TPMs: F ldaa guar-
antees anonymity, non-frameability and unforgeability only when both the TPM
and the host are honest. Our modified version Fpdaa guarantees all properties as
long as the host is honest, i.e., even when the TPM is corrupt. We explain these
differences in detail in Section 2.2. We start by describing the interfaces and
guaranteed security properties in an informal manner, and present the detailed
definition of Fpdaa in Figure 1.

Setup. The SETUP interface on input sid = (I, sid′) initiates a new session for
the issuer I and expects the adversary to provide algorithms (ukgen, sig, ver, link,
identify) that will be used inside the functionality. ukgen creates a new key gsk
and a tracing trapdoor τ that allows Fpdaa to trace signatures generated with
gsk . sig, ver, and link are used by Fpdaa to create, verify, and link signatures,
respectively. Finally, identify allows to verify whether a signature belongs to
a certain tracing trapdoor. This allows Fpdaa to perform multiple consistency
checks and enforce the desired non-frameability and unforgeability properties.

Note that the ver and link algorithms assist the functionality only for sig-
natures that are not generated by Fpdaa itself. For signatures generated by the
functionality, Fpdaa will enforce correct verification and linkage using its internal
records. While ukgen and sig are probabilistic algorithms, the other ones are
required to be deterministic. The link algorithm also has to be symmetric, i.e.,
for all inputs it must hold that link(σ,m, σ′,m′, bsn)↔ link(σ′,m′, σ,m, bsn).



Join. A host Hj can request to join with a TPM Mi using the JOIN interface.
If both the TPM and the issuer approve the join request, the functionality stores
an internal membership record forMi,Hj in Members indicating that from now
on that platform is allowed to create attestations.

If the host is corrupt, the adversary must provide Fpdaa with a tracing trap-
door τ . This value is stored along in the membership record and allows the
functionality to check via the identify function whether signatures were created
by this platform. Fpdaa uses these checks to ensure non-frameability and un-
forgeability whenever it creates or verifies signatures. To ensure that the ad-
versary cannot provide bad trapdoors that would break the completeness or
non-frameability properties, Fpdaa checks the legitimacy of τ via the “macro”
function CheckTtdCorrupt. This function checks that for all previously generated
or verified signatures for which Fpdaa has already seen another matching tracing
trapdoor τ ′ 6= τ , the new trapdoor τ is not identified as a matching key as well.
CheckTtdCorrupt is defined as follows:

CheckTtdCorrupt(τ) =6 ∃(σ,m, bsn) :

(
(
〈σ,m, bsn, ∗, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults

)
∧

∃τ ′ :
(
τ 6= τ ′ ∧

(
〈∗, ∗, τ ′〉 ∈ Members ∨ 〈∗, ∗, ∗, ∗, τ ′〉 ∈ DomainKeys

)
∧ identify(σ,m, bsn, τ) = identify(σ,m, bsn, τ ′) = 1

))

Sign. After joining, a host Hj can request a signature on a message m with
respect to basename bsn using the SIGN interface. The signature will only be
created when the TPM Mi explicitly agrees to signing m w.r.t. bsn and a join
record for Mi,Hj in Members exists (if the issuer is honest).

When a platform wants to sign message m w.r.t. a fresh basename bsn, Fpdaa

generates a new key gsk (and tracing trapdoor τ) via ukgen and then signs
m with that key. The functionality also stores the fresh key (gsk , τ) together
with bsn in DomainKeys, and reuses the same key when the platform wishes to
sign repeatedly under the same basename. Using fresh keys for every signature
naturally enforces the desired privacy guarantees: the signature algorithm does
not receive any identifying information as input, and thus the created signatures
are guaranteed to be anonymous (or pseudonymous in case bsn is reused).

Our functionality enforces this privacy property whenever the host is honest.
Note, however, that Fpdaa does not behave differently when the host is corrupt,
as in this case its output does not matter due to way corruptions are handled
in UC. That is, Fpdaa always outputs anonymous signatures to the host, but if
the host is corrupt, the signature is given to the adversary, who can choose to
discard it and output anything else instead.

To guarantee non-frameability and completeness, our functionality further
checks that every freshly generated key, tracing trapdoor and signature does not



falsely match with any existing signature or key. More precisely, Fpdaa first uses
the CheckTtdHonest macro to verify whether the new key does not match to any
existing signature. CheckTtdHonest is defined as follows:

CheckTtdHonest(τ) =

∀〈σ,m, bsn,M,H〉 ∈ Signed : identify(σ,m, bsn, τ) = 0 ∧
∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, τ) = 0

Likewise, before outputting σ, the functionality checks that no one else already
has a key which would match this newly generated signature.

Finally, for ensuring unforgeability, the signed message, basename, and plat-
form are stored in Signed which will be used when verifying signatures.

Verify. Signatures can be verified by any party using the VERIFY interface.
Fpdaa uses its internal Signed, Members, and DomainKeys records to enforce
unforgeability and non-frameability. It uses the tracing trapdoors τ stored in
Members and DomainKeys to find out which platform created this signature. If
no match is found and the issuer is honest, the signature is a forgery and rejected
by Fpdaa. If the signature to be verified matches the tracing trapdoor of some
platform with an honest TPM or host, but the signing records do not show that
they signed this message w.r.t. the basename, Fpdaa again considers this to be
a forgery and rejects. If the records do not reveal any issues with the signature,
Fpdaa uses the ver algorithm to obtain the final result.

The verify interface also supports verifier-local revocation. The verifier can
input a revocation list RL containing tracing trapdoors, and signatures matching
any of those trapdoors are no longer accepted.

Link. Using the LINK interface, any party can check whether two signatures
(σ, σ′) on messages (m,m′) respectively, generated with the same basename bsn
originate from the same platform or not. Fpdaa again uses the tracing trapdoors
τ stored in Members and DomainKeys to check which platforms created the two
signatures. If they are the same, Fpdaa outputs that they are linked. If it finds a
platform that signed one, but not the other, it outputs that they are unlinked,
which prevents framing of platforms with an honest host.

The full definition of Fpdaa is given in Figure 1. Note that when Fpdaa runs one
of the algorithms sig, ver, identify, link, and ukgen, it does so without maintaining
state. This means all user keys have the same distribution, signatures are equally
distributed for the same input, and ver, identify, and link invocations only depend
on the current input, not on previous inputs.

2.2 Comparison with F l
daa

Our functionality Fpdaa is a strengthened version of F ldaa [CDL16b], as it requires
fewer trust assumptions on the TPM for anonymity, non-frameability and un-



Corruption Setting F ldaa Fpdaa

Honest host, honest TPM + +
Honest host, isolated corrupt TPM - + optimal privacy, see Sec. 2.3
Honest host, fully corrupt TPM - (+) conditional privacy, see Sec. 2.3
Corrupt host - - impossible

Table 1. Overview of privacy guarantees by F ldaa [CDL16b] and Fpdaa (this work).

forgeability. It also includes a syntactical change which allows for more efficient
constructions, as we discuss at the end of this section.

Optimal Privacy. The most important difference is that F ldaa guarantees ano-
nymity only when both the TPM and the host are honest, whereas our modified
version Fpdaa guarantees anonymity as long as the host is honest, i.e., even when
the TPM is corrupt. As discussed, the honesty of the host is strictly necessary,
as privacy is impossible to guarantee otherwise.

In the ideal functionality F ldaa proposed by Camenisch et al. [CDL16b] the
signatures are created in the SIGNPROCEED step in two different ways, depend-
ing on whether the TPM is honest or not. For the case of a corrupt TPM, the
signature is provided by the adversary, which reflects that the adversary can
recognize and link the signatures and F ldaa does not guarantee any privacy. If
the TPM (and the host) is honest, F ldaa creates anonymous signatures inside
the functionality using the signing algorithm sig and ukgen. As signatures are
generated with fresh keys for every new basename, the functionality enforces the
desired unlinkability and anonymity.

In our functionality Fpdaa, we also apply that approach of internally and
anonymously creating signatures to the case where the TPM is corrupt, instead
of relying on a signature input by the adversary. Thus, Fpdaa guarantees the
same strong privacy for both settings of a corrupt and honest TPM. In fact,
for the sake of simplicity we let Fpdaa even generate the signatures for corrupt
hosts within the functionality now (whereas F ldaa used adversarially provided
ones). However, as Fpdaa outputs that signature to the host Hi, who will be the
adversary if Hi is corrupt, the behaviour of Fpdaa with respect to privacy does
not matter in that case: the adversary can simply ignore the output. We present
a summary of the privacy properties guaranteed by F ldaa and Fpdaa in Table 1.

Another difference between both functionalities is that in Fpdaa we assume
a direct communication channel between the host and TPM, which is necessary
to achieve the desired privacy properties (see Section 2.3). Note that in the real-
world, such a direct channel is naturally enforced by the physical proximity of
the host and TPM forming the platform, i.e., if both are honest, an adversary
can neither alter nor read their internal communication, or even notice that
communication is happening. Consequently, our functionality gets a bit simpler
compared to F ldaa as we omit in JOIN and SIGN all dedicated interfaces and out-
puts that informed the simulator about communication between Hj andMi and
waited for a proceed input by the simulator to complete their communication.



Stronger Non-Frameability and Unforgeability. While the focus of this work is
strengthening the privacy properties in the presence of a subverted TPM, we also
lift the trust assumption for non-frameability and unforgeability. Whereas F ldaa
and all other prior security models [BCC04,BCL09] guarantee non-frameability
only if the entire platform is honest, our modified definition Fpdaa enforces that
property as long as the host is honest. Our stronger version of non-frameability
is enforced by modifying the JOINPROCEED interface such that it allows the
adversary to provide a tracing trapdoor τ (which steers the non-frameability
checks by Fpdaa) only when the host is corrupt, as it set τ ← ⊥ whenever the
host is honest. This replaces the original condition of discarding the adversarial
τ when both, the host and TPM are honest. Note that similar to anonymity,
requiring an honest host is strictly necessary for non-frameability too, as we can
never control the signatures that a corrupt host outputs. In particular, a corrupt
host with an honest TPM could additionally run a corrupt TPM and “frame
itself” by outputting signatures from the corrupt TPM.

In terms of unforgeability, all previous definitions including F ldaa solely rely
on the honesty of the TPM (and issuer of course). In Fpdaa we provide a stronger
version and guarantee that attestations cannot be forged unless the entire plat-
form is corrupted, i.e., here we ensure unforgeability if at least one of two entities,
TPM or host, is honest. This change is reflected in our functionality Fpdaa as
follows: In the SIGNPROCEED interface we store the host identity as part of the
signature record 〈σ,m, bsn,Mi,Hj〉 ∈ Signed when signatures are created. Fur-
ther, the VERIFY interface now requires the existence of such record whenever
the signature to be verified belongs to an honest host or honest TPM. In F ldaa
only 〈σ,m, bsn,Mi〉 was stored and required when the TPM was honest. For un-
forgeability, relaxing the condition on the honesty of the TPM is not as crucial
as for privacy and non-frameability. Thus, if only the standard unforgeability
notion is sufficient, one can easily derive a functionality with optimal privacy
but standard unforgeability by reverting the changes we just described.

Dedicated Tracing Key. Our functionality also includes some syntactical changes.
F ldaa uses keys gsk for two purposes: to create signatures for honest platforms (via
sig), and to trace signatures (via identify) when enforcing non-frameability and
unforgeability. A key gsk can be provided by the adversary when a JOIN request
is completed for a corrupt host, or is generated internally via ukgen whenever an
anonymous signature is created. In Fpdaa we split this into two dedicated values:
gsk which is used to sign, and τ to trace signatures. Consequently, the identify
algorithm now takes τ instead of gsk as input. The adversary has to provide τ in
the JOIN interface, as its input is only used to ensure that a corrupt host cannot
impersonate or frame another honest platform. The internally created keys are
used for both, signing and tracing, and hence we modify ukgen to output a tuple
(gsk , τ) instead of gsk only.

The idea behind that change is to allow for more efficient schemes, as the
tracing key τ is usually a value that needs to be extracted by the simulator in the
security proof. In the scheme we propose, it is sufficient that τ is the public key
of the platform whereas gsk is its secret key. Using only a single gsk would have



required the join protocol to include an extractable encryption of the platform’s
secret key, which would not only be less efficient but also a questionable protocol
design. Clearly, our approach is more general than in F ldaa, one can simply set
τ = gsk to derive the same definition as F ldaa.

2.3 Modeling Subverted Parties in the UC Framework

As just discussed, our functionality Fpdaa guarantees that signatures created with
an honest host are unlinkable and do not leak any information about the signing
platform, even if the TPM is corrupt. However, the adversary still learns the
message and basename when the TPM is corrupt, due to the way UC models
corruptions. We discuss how this standard corruption model inherently limits the
achievable privacy level, and then present our approach of isolated corruptions
which allow one to overcome this limitation yet capture the power of subverted
TPMs. While we discuss the modeling of isolated corruptions in the context of
our DAA functionality, we consider the general concept to be of independent
interest as it is applicable to any other scenario where such subversion attacks
can occur.

Conditional Privacy under Full TPM Corruption. According to the UC
corruption model, the adversary gains full control over a corrupted party, i.e., it
receives all inputs to that party and can choose its responses. For the case of a
corrupt TPM this means that the adversary sees the message m and basename
bsn whenever the honest host wants to create a signature. In fact, the adversary
will learn which particular TPM Mi is asked to sign m w.r.t. bsn. Thus, even
though the signature σ on m w.r.t. bsn is then created by Fpdaa and does not leak
any information about the identity of the signing platform, the adversary might
still be able to recognize the platform’s identity via the signed values. That is, if
a message m or basename bsn is unique, i.e., only a single (and corrupt) TPM
has ever signed m w.r.t. bsn, then, when later seeing a signature on m w.r.t.
bsn, the adversary can derive which platform had created the signature.

A tempting idea for better privacy would be to change the functionality
such that the TPM does not receive the message and basename when asked
to approve an attestation via the SIGNPROCEED message. As a result, this
information will not be passed to the adversary if the TPM is corrupt. However,
that would completely undermine the purpose of the TPM that is supposed to
serve as a trust anchor: verifiers accept a DAA attestation because they know
a trusted TPM has approved them. Therefore, it is essential that the TPM sees
and acknowledges the messages it signs.

Thus, in the presence of a fully corrupt TPM, the amount of privacy that
can be achieved depends which messages and basenames are being signed – the
more unique they are, the less privacy Fpdaa guarantees.

Optimal Privacy under Isolated TPM Corruption. The aforementioned
leakage of all messages and basenames that are signed by a corrupt TPM is



ΠM ΠH

E

ΠH

E

A A ΠH

E

A AM

Fig. 2. Modeling of corruption in the real world. Left: an honest TPM applies the
protocol ΠM, and communicates with the host running ΠH. Middle: a corrupt TPM
sends any input the adversary instructs it to, and forwards any messages received to
the adversary. Right: an isolated corrupt TPM is controlled by an isolated adversary
AM, who can communicate with the host, but not with any other entities.

dM dH

E

Fpdaa

dH

E

FpdaaS S

dH

E

FpdaaS

SM

Fig. 3. Modeling of corruption in the ideal world. Left: an honest TPM is a dummy
party dM that forwards inputs and outputs between the environment E and the func-
tionality Fpdaa. Middle: a corrupt TPM sends any input the adversary instructs it to,
and forwards any subroutine output to the adversary. Right: an isolated corrupt TPM
is controlled by an isolated simulator SM, who may send inputs and receive outputs
from Fpdaa, but not communicate with any other entities.

enforced by the UC corruption model. Modeling corruption of TPMs like this
gives the adversary much more power than in reality: even if a TPM is subverted
and runs malicious algorithms, it is still embedded into a host who controls all
communication with the outside world. Thus, the adversary cannot communicate
directly with the TPM, but only via the (honest) host.

To model such subversions more accurately and study the privacy achievable
in the presence of subverted TPMs, we define a relaxed level of corruption that
we call isolated corruption. When the adversary corrupts a TPM in this manner,
it can specify code for the TPM but cannot directly communicate with the TPM.

We formally define such isolated corruptions via the body-shell paradigm
used to model UC corruptions [Can00]. Recall that the body of a party defines
its behavior, whereas the shell models the communication with that party. Thus,
for our isolated corruptions, the adversary gets control over the body but not the
shell. Interestingly, this is exactly the inverse of honest-but-curious corruptions
in UC, where the adversary controls the shell such that it sees all in and outputs,
but cannot change the body, i.e., the parties behavior remains honest.

In our case, an adversary performing an isolated corruption can provide a
body, which models the tampered algorithms that an isolated corrupt TPM
may use. The shell remains honest though and handles inputs, and subroutine



outputs, and only forwards the ones that are allowed to the body. In the real
world, the shell would only allow communication with the host in which the
TPM is embedded. In the ideal world, the shell allows inputs to and outputs
from the functionality, and blocks anything else.

Figure 2 and Figure 3 depict the different levels of corruption in the real
world and ideal world, respectively. In the ideal word, an isolated corruption of
a TPM replaces the dummy TPM that forwards inputs and outputs between the
environment and the ideal functionality with an isolated simulator comprising
of the adversarial body and honest shell.

When designing a UC functionality, then all communication between a host
and the “embedded” party that can get corrupted in such isolated manner must
be modeled as direct channel (see e.g., the SIGN related interfaces in Fpdaa).
Otherwise the simulator/adversary will be aware of the communication between
both parties and can delay or block messages, which would contradict the con-
cept of an isolated corruption where the adversary has no direct channel to the
embedded party. Note that the perfect channel of course only holds if the host
entity is honest, if it is corrupt (in the standard sense), the adversary can see
and control all communication via the host anyway.

With such isolated adversaries we specify much stronger privacy. The adver-
sary no longer automatically learns which isolated corrupt TPM signed which
combination of messages and basenames, and the signatures created by Fpdaa

are guaranteed to be unlinkable. Of course the message m and basename bsn
must not leak information about the identity of the platform. In certain appli-
cations, the platform would sign data generated or partially controlled by other
functions contained in a TPM. This is out of scope of the attestation scheme,
but the higher level scheme using Fpdaa should ensure that this does not happen,
by, e.g., letting the host randomize or sanitize the message.

3 Insufficiency of Existing DAA Schemes

Our functionality Fpdaa requires all signatures on a message m with a fresh base-
name bsn to have the same distribution, even when the TPM is corrupt. None
of the existing DAA schemes can be used to realize Fpdaa when the TPM is cor-
rupted (either fully or isolated). The reason is inherent to the common protocol
design that underlies all DAA schemes so far, i.e., there is no simple patch that
would allow upgrading the existing solutions to achieve optimal privacy.

In a nutshell, in all existing DAA schemes, the TPM chooses a secret key
gsk for which it blindly receives a membership credential of a trusted issuer.
To create a signature on message m with basename bsn, the platform creates a
signature proof of knowledge signing message m and proving knowledge of gsk
and the membership credential.

In the original RSA-based DAA scheme [BCC04], and the more recent qSDH-
based schemes [CF08,BL11,BL10,CDL16a], the proof of knowledge of the mem-
bership credential is created jointly by the TPM and host. After jointly comput-
ing the commitment values of the proof, the host computes the hash over these



values and sends hash c to the TPM. To prevent leaking information about its
key, the TPM must ensure that the challenge is a hash of fresh values. In all the
aforementioned schemes this is done by letting the TPM choose a fresh nonce n
and computing the final hash as c′ ← H(n, c). An adversarial TPM can embed
information in n instead of taking it uniformly at random, clearly altering the
distribution of the proof and thus violating the desired privacy guarantees.

At a first glance, deriving the hash for the proof in a more robust manner
might seem a viable solution to prevent such leakage. For instance, setting the
nonce as n← nt⊕ nh, with nt being the TPM’s and nh the host’s contribution,
and letting the TPM commit to nt before receiving nh. While this indeed removes
the leakage via the nonce, it still reveals the hash value c′ ← H(n, c) to the TPM
with the hash becoming part of the completed signature. Thus, the TPM can
base its behavior on the hash value and, e.g., only sign messages for hashes
that start with a 0-bit. This clearly results in signatures that are not equally
distributed as required by our functionality.

The same argument applies to the LRSW-based DAA schemes [CPS10,BFG+13,
CDL16b], where the proof of a membership credential is done solely by the TPM,
and thus can leak information via the Fiat-Shamir hash output again. The gen-
eral problem is that the signature proofs of knowledge are not randomizable. If
the TPM would create a randomizable proof of knowledge, e.g., a Groth-Sahai
proof [GS08], the host could randomize the proof to remove any hidden infor-
mation, but this would yield a highly inefficient signing protocol for the TPM.

4 Building Blocks

In this section we introduce the building blocks for our DAA scheme. In addition
to standard components such as additively homomorphic encryption and zero-
knowledge proofs, we introduce two non-standard types of signature schemes.
One signature scheme we require is for the issuer to blindly sign the public key
of the TPM and host. The second signature scheme is needed for the TPM and
host to jointly create signed attestations, which we term split signatures.

As our protocol requires “compatible” building blocks, i.e., the different
schemes have to work in the same group, we assume the availability of pub-
lic system parameters spar ←$ SParGen(τ) generated for security parameter τ .
We give spar as dedicated input to the individual key generation algorithms in-
stead of the security parameter τ . For the sake of simplicity, we omit the system
parameters as dedicated input to all other algorithms and assume that they are
given as implicit input.

4.1 Proof Protocols

Let NIZK{(w) : s(w)}(ctxt) denote a generic non-interactive zero-knowledge
proof that is bound to a certain context ctxt and proves knowledge of a witness
w such that statement s(w) is true. Sometimes we need witnesses to be online-
extractable, which we denote by underlining them: NIZK{(w1, w2) : s(w1, w2)}
allows for online extraction of w1.



All the NIZK we give have efficient concrete instantiations for the instan-
tiations we propose for our other building blocks. We will follow the notation
introduced by Camenisch and Stadler [CS97] and formally defined by Camenisch,
Kiayias, and Yung [CKY09] for these protocols. For instance, PK{(a) : y = ga}
denotes a “zero-knowledge Proof of Knowledge of integer a such that y = ga

holds.” SPK{. . .}(m) denotes a signature proof of knowledge on m, that is a
non-interactive transformation of a proof with the Fiat-Shamir heuristic [FS87].

4.2 Homomorphic Encryption Schemes

We require an encryption scheme (EncKGen,Enc,Dec) that is semantically secure
and that has a cyclic group G = 〈g〉 of order q as message space. It consists of
a key generation algorithm (epk , esk) ←$ EncKGen(spar), where spar defines
the group G, an encryption algorithm C ←$ Enc(epk ,m), with m ∈ G, and a
decryption algorithm m← Dec(esk , C).

We require further that the encryption scheme has an appropriate homo-
morphic property, namely that there is an efficient operation � on ciphertexts
such that, if C1 ∈ Enc(epk ,m1) and C2 ∈ Enc(epk ,m2), then C1 � C2 ∈
Enc(epk ,m1 ·m2). We will also use exponents to denote the repeated application
of �, e.g., C2 to denote C � C.

ElGamal Encryption. We use the ElGamal encryption scheme [ElG86], which
is homomorphic and chosen plaintext secure. The semantic security is sufficient
for our construction, as the parties always prove to each other that they formed
the ciphertexts correctly. Let spar define a group G = 〈g〉 of order q such that
the DDH problem is hard w.r.t. τ , i.e., q is a τ -bit prime.

EncKGen(spar) : Pick x←$ Zq, compute y ← gx, and output esk ← x, epk ← y.
Enc(epk ,m) : To encrypt a message m ∈ G under epk = y, pick r ←$ Zq and

output the ciphertext (C1, C2)← (yr, grm).
Dec(esk , C) : On input the secret key esk = x and a ciphertext C = (C1, C2) ∈

G2, output m′ ← C2 · C−1/x1 .

4.3 Signature Schemes for Encrypted Messages

We need a signature scheme that supports the signing of encrypted messages
and must allow for (efficient) proofs proving that an encrypted value is correctly
signed and proving knowledge of a signature that signs an encrypted value.
Dual-mode signatures [CL15] satisfy these properties, as therein signatures on
plaintext as well as on encrypted messages can be obtained. As we do not require
signatures on plaintexts, though, we can use a simplified version.

A signature scheme for encrypted messages consists of the algorithms (SigKGen,
EncSign,DecSign,Vf) and also uses an encryption scheme (EncKGen,Enc,Dec)
that is compatible with the message space of the signature scheme. In particu-
lar, the algorithms working with encrypted messages or signatures also get the
keys (epk , esk)←$ EncKGen(spar) of the encryption scheme as input.



SigKGen(spar) : On input the system parameters, this algorithm outputs a pub-
lic verification key spk and secret signing key ssk .

EncSign(ssk , epk , C) : On input signing key ssk , a public encryption key epk ,
and ciphertext C = Enc(epk ,m), outputs an “encrypted” signature σ of C.

DecSign(esk , spk , σ) : On input an “encrypted” signature σ, secret decryption
key esk and public verification key spk , outputs a standard signature σ.

Vf(spk , σ,m) : On input a public verification key spk , signature σ and message
m, outputs 1 if the signature is valid and 0 otherwise.

For correctness, we require that any message encrypted with honestly gener-
ated keys that is honestly signed decrypts to a valid signature. More precisely,
for any message m, we require

Pr
[
Vf(spk , σ,m) = 1 | spar ← SParGen(τ), (spk , ssk)←$ SigKGen(spar),

(epk , esk)← EncKGen(spar), C ← Enc(spar , epk ,m),

σ̄ ← EncSign(ssk , epk , c), σ ← DecSign(esk , spk , σ̄)
]
.

We use the unforgeability definition of [CL15], but omit the oracle for signa-
tures on plaintext messages. Note that the oracle OEncSign will only sign correctly
computed ciphertexts, which is modeled by providing the message and public
encryption key as input and let the oracle encrypt the message itself before
signing it. When using the scheme, this can easily be enforced by asking the
signature requester for a proof of correct ciphertext computation, and, indeed,
in our construction such a proof is needed for other reasons as well.

Experiment ExpESIG-forgeA,ESIG,Enc(G, τ):

spar ← SParGen(τ)
(spk , ssk)←$ SigKGen(spar)
L← ∅
(m∗, σ∗)←$ AO

EncSign(ssk,·,·)
(spar , spk)

where OEncSign on input (epk i,mi):
add mi to the list of queried messages L← L ∪mi

compute Ci ←$ Enc(epk i,mi)
return σ ←$ EncSign(ssk , epk i, Ci)

return 1 if Vf(spk , σ∗,m∗) = 1 and m∗ /∈ L

Fig. 4. Unforgeability experiment for signatures on encrypted messages.

Definition 1. (Unforgeability of Signatures for Encrypted Messages).
We say a signature scheme for encrypted messages is unforgeable if for any ef-
ficient algorithm A the probability that the experiment given in Figure 4 returns
1 is negligible (as a function of τ).



AGOT+ Signature Scheme. To instantiate the building block of signatures for
encrypted messages we will use the AGOT+ scheme of [CL15], which was shown
to be a secure instantiation of a dual-mode signature, hence is also secure in our
simplified setting. Again, as we do not require signatures on plaintext messages
we omit the standard signing algorithm. The AGOT+ scheme is based on the
structure-preserving signature scheme by Abe et al. [AGOT14], which is proven
to be unforgeable in the generic group model.

The AGOT+ scheme assumes the availability of system parameters (q,G1,
G2,GT , e, g1, g2, x), where G1,G2,GT are groups of prime order q generated by
g1, g2, and e(g1, g2) respectively, e is a non-degenerate bilinear map e : G1×G2 →
GT , and x is an additional random group element in G1.

SigKGen(spar) : Draw v ←$ Zq, compute y ← gv2 , and return spk = y, ssk = v.
EncSign(ssk , epk ,M) : On input a proper encryption M = Enc(epk ,m) of a

message m ∈ G1 under epk , and secret key ssk = v, choose a random
u←$ Z∗q , and output the (partially) encrypted signature σ̄ = (r, S, T, w):

r ← gu2 , S ← (Mv�Enc(epk , x))1/u, T ← (Sv�Enc(epk , g1))1/u, w ← g
1/u
1 .

DecSign(esk , spk , σ) : Parse σ = (r, S, T, w), compute s ← Dec(esk , S), t ←
Dec(esk , T ) and output σ = (r, s, t, w).

Vf(spk , σ,m) : Parse σ = (r, s, t, w′) and spk = y and output 1 iff m, s, t ∈ G1,
r ∈ G2, e(s, r) = e(m, y) · e(x, g2), and e(t, r) = e(s, y) · e(g1, g2).

Note that for notational simplicity, we consider w part of the signature, i.e.,
σ = (r, s, t, w), but that the verification equation does not perform any check
on w. As pointed out by Abe et al., a signature σ = (r, s, t) can be randomized
using the randomization token w to obtain a signature σ′ = (r′, s′, t′) by picking

a random u′ ←$ Z∗q and computing r′ ← ru
′
, s′ ← s1/u

′
, t′ ← (tw(u′−1))1/u

′2
.

For our construction, we also require the host to prove that it knows an
encrypted signature on an encrypted message. In Section 6 we describe how
such a proof can be done.

4.4 Split Signatures

The second signature scheme we require must allow two different parties, each
holding a share of the secret key, to jointly create signatures. Our DAA protocol
performs the joined public key generation and the signing operation in a strict
sequential order. That is, the first party creates his part of the key, and the second
party receiving the ‘pre-public key’ generates a second key share and completes
the joined public key. Similarly, to sign a message the first signer creates a ‘pre-
signature’ and the second signer completes the signature. We model the new
signature scheme for that particular sequential setting rather than aiming for
a more generic building block in the spirit of threshold or multi-signatures, as
the existence of a strict two-party order allows for substantially more efficient
constructions.



We term this new building block split signatures partially following the no-
tation by Bellare and Sandhu [BS01] who formalized different two-party settings
for RSA-based signatures where the signing key is split between a client and
server. Therein, the case “MSC” where the first signature contribution is pro-
duced by an external server and then completed by the client comes closest to
out setting.

Formally, we define a split signature scheme as a tuple of the algorithms
SSIG = (PreKeyGen,CompleteKeyGen,VerKey,PreSign,CompleteSign,Vf):

PreKeyGen(spar) : On input the system parameters, this algorithm outputs the
pre-public key ppk and the first share of the secret signing key ssk1.

CompleteKeyGen(ppk) : On input the pre-public key, this algorithm outputs a
public verification key spk and the second secret signing key ssk2.

VerKey(ppk , spk , ssk2) : On input the pre-public key ppk , the full public key spk ,
and a secret key share ssk2, this algorithm outputs 1 iff the pre-public key
combined with secret key part ssk2 leads to full public key spk .

PreSign(ssk1,m) : On input a secret signing key share ssk1, and message m, this
algorithm outputs a pre-signature σ′.

CompleteSign(ppk , ssk2,m, σ
′) : On input the pre-public key ppk , the second

signing key share ssk2, message m, and pre-signature σ′, this algorithm out-
puts the completed signature σ.

Vf(spk , σ,m) : On input the public key spk , signature σ, and message m, this
algorithm outputs a bit b indicating whether the signature is valid or not.

We require a number of security properties from our split signatures. The first
one is unforgeability which must hold if at least one of the two signers is honest.
This is captured in two security experiments: type-1 unforgeability allows the
first signer to be corrupt, and type-2 unforgeability considers a corrupt second
signer. Our definitions are similar to the ones by Bellare and Sandhu, with the
difference that we do not assume a trusted dealer creating both secret key shares.
Instead, we let the adversary output the key share of the party he controls.
For type-2 unforgeability we must ensure, though, that the adversary indeed
integrates the honestly generated pre-key ppk when producing the completed
public key spk , which we verify via VerKey. Formally, unforgeability for split
signatures is defined as follows.

Definition 2. (Type-1/2 Unforgeability of SSIG). A split signature scheme
is type-1/2 unforgeable if for any efficient algorithm A the probability that the
experiments given in Figure 5 return 1 is negligible (as a function of τ).

Further, we need a property that we call key-hiding, which ensures that sig-
natures do not leak any information about the public key for which they are
generated. This is needed in the DAA scheme to get unlinkability even in the
presence of a corrupt TPM that contributes to the signatures and knows part of
the secret key, yet should not be able to recognize “his” signatures afterwards.
Our key-hiding notion is somewhat similar in spirit to key-privacy for encryption



Experiment ExpUnforgeability-1A (τ):
spar ←$ SParGen(1τ )
(ppk , state)← A(spar)
(spk , ssk2)← CompleteKeyGen(ppk)
L← ∅
(m∗, σ∗)← AO

CompleteSign(ppk,ssk2,·,·)
(state, spk)

where OCompleteSign on input (mi, σ
′
i):

set L← L ∪mi

return σi ← CompleteSign(ppk , ssk2,mi, σ
′
i)

return 1 if Vf(spk , σ∗,m∗) = 1 and m∗ /∈ L

Experiment ExpUnforgeability-2A (τ):
spar ←$ SParGen(1τ )
(ppk , ssk1)← PreKeyGen(spar)
L← ∅
(m∗, σ∗, spk , ssk2)← AO

PreSign(ssk1,·)
(spar , ppk)

where OPreSign on input mi:
set L← L ∪mi

return σ′i ← PreSign(ssk1,mi)
return 1 if Vf(spk , σ∗,m∗) = 1, and m∗ /∈ L

and VerKey(ppk , spk , ssk2) = 1

Fig. 5. Unforgeability-1 (1st signer is corrupt) and unforgeability-2 (2nd signer is cor-
rupt) experiments.

schemes as defined by Bellare et al. [BBDP01], which requires that a ciphertext
should not leak anything about the public key under which it is encrypted.

Formally, this is captured by giving the adversary a challenge signature for
a chosen message either under the real or a random public key. Clearly, the
property can only hold as long as the real public key spk is not known to the ad-
versary, as otherwise he can simply verify the challenge signature. As we want the
property to hold even when the first party is corrupt, the adversary can choose
the first part of the secret key and also contribute to the challenge signature. The
adversary is also given oracle access to OCompleteSign again, but is not allowed to
query the message used in the challenge query, as he could win trivially otherwise
(by the requirement of signature-uniqueness defined below and the determinism
of CompleteSign). The formal experiment for our key-hiding property is given
below. The oracle OCompleteSign is defined analogously as in type-1 unforgeability.

Definition 3. (Key-hiding property of SSIG). We say a split signature
scheme is key-hiding if for any efficient algorithm A the probability that the
experiment given in Figure 6 returns 1 is negligible (as a function of τ).

Experiment ExpKey-HidingA (τ):
spar ←$ SParGen(1τ )
(ppk , state)←$ A(spar)
(spk , ssk2)←$ CompleteKeyGen(ppk)
L← ∅
(m,σ′, state ′)←$ AO

CompleteSign(ppk,ssk2,·,·)
(state)

b←$ {0, 1}
if b = 0 (signature under spk):

σ ← CompleteSign(ppk , ssk2,m, σ
′)

if b = 1 (signature under random key):
(ppk∗, ssk∗1)←$ PreKeyGen(spar)
(spk∗, ssk∗2)←$ CompleteKeyGen(ppk∗)
σ′ ←$ PreSign(ssk∗1,m)
σ ← CompleteSign(ppk∗, ssk∗2,m, σ

′)

b′ ← AO
CompleteSign(ppk,ssk2,·,·)

(state ′, σ)
return 1 if b = b′, m 6∈ L, and Vf(spk , σ,m) = 1

Fig. 6. Key-hiding experiment for split signatures.



For correctness, we require that honestly created signatures always pass ver-
ification:

Pr
[
Vf(spar , spk , σ,m) = 1 | spar ← SParGen(τ),

(ppk , spk1)←$ PreKeyGen(spar), (spk , ssk2)←$ CompleteKeyGen(ppk),

σ′ ←$ PreSign(ssk1,m), σ′ ← CompleteSign(ppk , ssk2,m, σ
′)
]

We also require two uniqueness properties for our split signatures. The first is
key-uniqueness, which states that every signature is only valid under one public
key.

Definition 4. (Key-uniqueness of split signatures). We say a split sig-
nature scheme has key-uniqueness if for any efficient algorithm A the probability
that the experiment given in Figure 7 returns 1 is negligible (as a function of τ).

Experiment ExpKey-UniquenessA (τ):
spar ←$ SParGen(1τ )
(σ, spk0, spk1,m)←$ A(spar)
return 1 if spk0 6= spk1, Vf(spar , spk0, σ,m) = 1, and Vf(spar , spk1, σ,m) = 1

Fig. 7. Key-uniqueness experiment for split signatures.

The second uniqueness property required is signature-uniqueness, which guar-
antees that one can compute only a single valid signature on a certain message
under a certain public key.

Definition 5. (Signature-uniqueness of split signatures). We say a split
signature scheme has signature uniqueness if for any efficient algorithm A the
probability that the experiment given in Figure 8 returns 1 is negligible (as a
function of τ).

Experiment ExpSignature-UniquenessA (τ):
spar ←$ SParGen(1τ )
(σ0, σ1, spk ,m)←$ A(spar)
return 1 if σ0 6= σ1, Vf(spar , spk , σ0,m) = 1, and Vf(spar , spk , σ1,m) = 1

Fig. 8. Signature-uniqueness experiment for split signatures.

Instantiation of split signatures (split-BLS). To instantiate split signatures, we
use a modified BLS signature [BLS04]. Let H be a hash function {0, 1} → G∗1
and the public system parameters be the description of a bilinear map, i.e.,
spar = (G1,G2,GT , g1, g2, e, q).



PreKeyGen(spar) : Take ssk1 ←$ Z∗q , set ppk ← gssk1
2 , and output (ppk , ssk1).

CompleteKeyGen(spar , ppk) : Check ppk ∈ G2 and ppk 6= 1G2 . Take ssk2 ←$ Z∗q
and compute spk ← ppk ssk2 . Output (spk , ssk2).

VerKey(spar , ppk , spk , ssk2) : Output 1 iff ppk 6= 1G2
and spk = ppk ssk2 .

PreSign(spar , ssk1,m) : Output σ′ ← H(m)ssk1 .
CompleteSign(spar , ppk , ssk2,m, σ

′) : If e(σ′, g2) = e(H(m), ppk), output σ ←
σ′ssk2 , otherwise ⊥.

Vf(spar , spk , σ,m) : Output 1 iff σ 6= 1G1
and e(σ, g2) = e(H(m), spk).

The proof of the following theorem is given in Appendix A.

Theorem 1. The split-BLS signature scheme is a secure split signature scheme,
satisfying correctness, unforgeability-1, unforgeability-2, key-hiding, key-uniqueness,
and signature-uniqueness, under the computational co-Diffie-Hellman assump-
tion and the DDH assumption in G1, in the random oracle model.

5 Construction

This section describes our DAA protocol achieving optimal privacy. On a very
high level, the protocol follows the core idea of existing DAA protocols: The
platform consisting of the TPM and a host first generate a secret key gsk that
gets blindly certified by a trusted issuer. After that join procedure, the platform
can use the key gsk to sign attestations and basenames and prove that it has a
valid credential on the underlying key, which certifies the trusted origin of the
attestation.

This high-level procedure is the main similarity to existing schemes though,
as we significantly change the role of the host to satisfy our notion of optimal
privacy. First, we no longer rely on a single secret key gsk that is fully controlled
by the TPM. Instead, both the TPM and host generate secret shares, tsk and
hsk respectively, that lead to a joint public key gpk . For privacy reasons, we
cannot reveal this public key to the issuer in the join protocol, as any exposure
of the joint public key would allow to trace any subsequent signed attestations
of the platform. Thus, we let the issuer sign only an encryption of the public
key, using the signature scheme for encrypted messages. When creating this
membership credential cred the issuer is assured that the blindly signed key is
formed correctly and the credential is strictly bound to that unknown key.

After having completed the JOIN protocol, the host and TPM can together
sign a message m with respect to basename bsn. Both parties use their indi-
vidual key shares and create a split signature on the message and basename
(denoted as tag), which shows that the platform intended to sign this message
and basename, and a split signature on only the basename (denoted as nym),
which is used as a pseudonym. Recall attestations from one platform with the
same basename should be linkable. By the uniqueness of split signatures, nym
will be a constant for one platform and basename and allow for such linkability.
Since split signatures are key-hiding, we can reveal tag and nym while preserving
the unlinkability of signatures with different basenames.



When signing, the host proves knowledge of a credential that signs gpk . Note
that the host can create the full proof of knowledge because the membership
credential signs a joint public key. In existing DAA schemes, the membership
credential signs a TPM secret, and therefore the TPM must always be involved to
prove knowledge of the credential, which prevents optimal privacy as we argued
in Section 3.

5.1 Our DAA Protocol with Optimal Privacy Πpdaa

We now present our generic DAA protocol with optimal privacy Πpdaa in detail.
Let SSIG = (PreKeyGen,CompleteKeyGen,VerKey,PreSign,CompleteSign,Vf) de-
note a secure split signature scheme, as defined in Section 4.4, and let ESIG =
(SigKGen,EncSign,DecSign,Vf) denote a secure signature scheme for encrypted
messages, as defined in Section 4.3. In addition, we use a CPA secure encryp-
tion scheme ENC = (EncKGen,Enc,Dec). We require all these algorithms to be
compatible, meaning they work with the same system parameters.

We further assume that functionalities (Fcrs,Fca,Fauth∗) are available to all
parties. The certificate authority functionality Fca allows the issuer to register
his public key, and we assume that parties call Fca to retrieve the public key
whenever needed. As the issuer key (ipk , πipk ) also contains a proof of well-
formedness, we also assume that each party retrieving the key will verify πipk .

The common reference string functionality Fcrs provides all parties with the
system parameters spar generated via SParGen(1τ ). All the algorithms of the
building blocks take spar as an input, which we omit – except for the key gen-
eration algorithms – for ease of presentation.

For the communication between the TPM and issuer (via the host) in the
join protocol, we use the semi-authenticated channel Fauth∗ introduced by Ca-
menisch et al. [CDL16b]. This functionality abstracts the different options on
how to realize the authenticated channel between the TPM and issuer that is
established via an unauthenticated host. We assume the host and TPM can
communicate directly, meaning that they have an authenticated and perfectly
secure channel. This models the physical proximity of the host and TPM forming
the platform: if the host is honest an adversary can neither alter nor read their
internal communication, or even notice that communication is happening.

To make the protocol more readable, we omit the explicit calls to the sub-
functionalities with sub-session IDs and simply say e.g., issuer I registers its
public key with Fca. For definitions of the standard functionalities Fcrs and
Fca we refer to [Can00, Can04]. All used functionalities are also presented in
Appendix B.

1. Issuer Setup. In the setup phase, the issuer I creates a key pair of the
signature scheme for encrypted messages and registers the public key with Fca.

(a) I upon input (SETUP, sid) generates his key pair:

– Check that sid = (I, sid ′) for some sid ′.



– Get (ipk , isk) ←$ ESIG.SigKGen(spar) and prove knowledge of the secret
key via πipk ← NIZK{(isk) : (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid).

– Initiate LJOINED ← ∅.
– Register the public key (ipk , πipk ) at Fca, and store (isk ,LJOINED).
– Output (SETUPDONE, sid).

Join Protocol. The join protocol runs between the issuer I and a platform,
consisting of a TPM Mi and a host Hj . The platform authenticates to the
issuer and, if the issuer allows the platform to join, obtains a credential cred
that subsequently enables the platform to create signatures. The credential is
a signature on the encrypted joint public key gpk to which the host and TPM
each hold a secret key share. To show the issuer that a TPM has contributed
to the joint key, the TPM reveals an authenticated version of his (public) key
contribution to the issuer and the host proved that it correctly incorporated
that share in gpk . A unique sub-session identifier jsid distinguishes several join
sessions that might run in parallel.

2. Join Request. The join request is initiated by the host.

(a) Host Hj , on input (JOIN, sid , jsid ,Mi) parses sid = (I, sid ′) and sends
(sid , jsid) to Mi.

4

(b) TPMMi, upon receiving (sid , jsid) from a partyHj , outputs (JOIN, sid , jsid).

3. M-Join Proceed. The join session proceeds when the TPM receives an
explicit input telling him to proceed with the join session jsid .

(a) TPMMi, on input (JOIN, sid , jsid) creates a key share for the split signature
and sends it authenticated to the issuer (via the host):
– Run (tpk , tsk)←$ SSIG.PreKeyGen(spar).
– Send tpk over Fauth∗ to I via Hj , and store the key (sid ,Hj , tsk).

(b) When Hj notices Mi sending tpk over Fauth∗ to the issuer, it generates its
key share for the split signature and appends an encryption of the jointly
produced gpk to the message sent towards the issuer.
– Complete the split signature key as (gpk , hsk)←$ SSIG.CompleteKeyGen(tpk).
– Create an ephemeral encryption key pair (epk , esk)←$ EncKGen(spar).
– Encrypt gpk under epk as C ←$ Enc(epk , gpk).
– Prove that C is an encryption of a public key gpk that is correctly derived

from the TPM public key share tpk :

πJOIN,H ← NIZK{(gpk , hsk) : C ∈ Enc(epk , gpk) ∧
SSIG.VerKey(tpk , gpk , hsk) = 1}(sid , jsid).

4 Recall that we use direct communication between a TPM and host, i.e., this message
is authenticated and unnoticed by the adversary.



– Append (Hj , epk , C, πJOIN,H) to the messageMi is sending to I over Fauth∗
and store (sid , jsid ,Mi, esk , hsk , gpk).

(c) I, upon receiving tpk authenticated by Mi and (Hj , epk , C, πJOIN,H) in the
unauthenticated part, verifies that the request is legitimate:

– Verify πJOIN,H w.r.t. the authenticated tpk and check that Mi /∈ LJOINED.
– Store (sid , jsid ,Hj ,Mi, epk , C) and output (JOINPROCEED, sid , jsid ,Mi).

4. I-Join Proceed. The join session is completed when the issuer receives an
explicit input telling him to proceed with join session jsid .

(a) I upon input (JOINPROCEED, sid , jsid) signs the encrypted public key C
using the signature scheme for encrypted messages:

– Retrieve (sid , jsid ,Hj ,Mi, epk , C) and set LJOINED ← LJOINED ∪Mi.
– Sign C as cred ′ ←$ ESIG.EncSign(isk , epk , C) and prove that it did so

correctly. (This proof is required to allow verification in the security proof:
ENC is only CPA-secure and thus we cannot decrypt cred ′.)

πJOIN,I ← NIZK{isk : cred ′ ∈ ESIG.EncSign(isk , epk , C) ∧
(ipk , isk) ∈ ESIG.SigKGen(spar)}(sid , jsid).

– Send (sid , jsid , cred ′, πJOIN,I) to Hj (via the network).

(b) Host Hj , upon receiving (sid , jsid , cred ′, πJOIN,I) decrypts and stores the
membership credential:

– Retrieve the session record (sid , jsid ,Mi, esk , hsk , gpk).
– Verify proof πJOIN,I w.r.t. ipk , cred ′, C and decrypt the credential as cred ←

ESIG.DecSign(esk , cred ′).
– Store the completed key record (sid , hsk , tpk , gpk , cred ,Mi) and output

(JOINED, sid , jsid).

Sign Protocol. The sign protocol runs between a TPM Mi and a host Hj .
After joining, together they can sign a message m w.r.t. a basename bsn using the
split signature. Sub-session identifier ssid distinguishes multiple sign sessions.

5. Sign Request. The signature request is initiated by the host.

(a) Hj upon input (SIGN, sid , ssid ,Mi,m, bsn) prepares the signature process:

– Check that it joined withMi (i.e., a completed key record forMi exists).
– Create signature record (sid , ssid ,Mi,m, bsn).
– Send (sid , ssid ,m, bsn) to Mi.

(b) Mi, upon receiving (sid , ssid ,m, bsn) from Hj , stores (sid , ssid ,Hj ,m, bsn)
and outputs (SIGNPROCEED, sid , ssid ,m, bsn).



6. Sign Proceed. The signature is completed when Mi gets permission to
proceed for ssid .
(a) Mi on input (SIGNPROCEED, sid , ssid) creates the first part of the split

signature on m w.r.t. bsn:

– Retrieve the signature request (sid , ssid ,Hj ,m, bsn) and key (sid ,Hj , tsk).
– Set tag ′ ←$ SSIG.PreSign(tsk , (0,m, bsn)) and nym′ ←$ SSIG.PreSign(tsk ,

(1, bsn)).
– Send (sid , ssid , tag ′,nym′) to Hj .

(b) Hj upon receiving (sid , ssid , tag ′,nym′) from Mi completes the signature:

– Retrieve the signature request (sid , ssid ,Mi,m, bsn) and key (sid , hsk ,
tpk , gpk , cred ,Mi).

– Compute tag ← SSIG.CompleteSign(hsk , tpk , (0,m, bsn), tag ′).
– Compute nym← SSIG.CompleteSign(hsk , tpk , (1, bsn),nym′).
– Prove that tag and nym are valid split signatures under public key gpk

and that it owns a valid issuer credential cred on gpk , without revealing
gpk or cred .
πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1 ∧
SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧ SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

– Set σ ← (tag ,nym, πSIGN) and output (SIGNATURE, sid , ssid , σ).

Verify & Link. Any party can use the following verify and link algorithms to
determine the validity of a signature and whether two signatures for the same
basename were created by the same platform.

7. Verify. The verify algorithm allows one to check whether a signature σ on
message m w.r.t. basename bsn and private key revocation list RL is valid.
(a) V upon input (VERIFY, sid ,m, bsn, σ, RL) verifies the signature:

– Parse σ as (tag ,nym, πSIGN).
– Verify πSIGN with respect to m, bsn, tag , and nym.
– For every gpk i ∈ RL, check that SSIG.Vf(gpk i,nym, (1, bsn)) 6= 1.
– If all tests pass, set f ← 1, otherwise f ← 0.
– Output (VERIFIED, sid , f).

8. Link. The link algorithm allows one to check whether two signatures σ
and σ′, on messages m and m′ respectively, that were generated for the same
basename bsn were created by the same platform.
(a) V upon input (LINK, sid , σ,m, σ′,m′, bsn) verifies the signatures and com-

pares the pseudonyms contained in σ, σ′:
– Check that both signatures σ and σ′ are valid with respect to (m, bsn) and

(m′, bsn) respectively, using the Verify algorithm with RL ← ∅. Output
⊥ if they are not both valid.

– Parse the signatures as (tag ,nym, πSIGN) and (tag ′,nym′, π′SIGN).
– If nym = nym′, set f ← 1, otherwise f ← 0.
– Output (LINK, sid , f).



5.2 Security

We now prove that that our generic protocol is a secure DAA scheme with
optimal privacy under isolated TPM corruptions (and also achieves conditional
privacy under full TPM corruption) as defined in Section 2.

Theorem 2. Our protocol Πpdaa described in Section 5, securely realizes Fpdaa

defined in Section 2, in the (Fauth∗,Fca,Fcrs)-hybrid model, provided that

– SSIG is a secure split signature scheme (as defined in Section 4.4),

– ESIG is a secure signature scheme for encrypted messages,

– ENC is a CPA-secure encryption scheme, and

– NIZK is a zero-knowledge, simulation-sound and online-extractable (for the
underlined values) proof system.

To prove Theorem 2, we have to show that there exists a simulator S as
a function of A such that no environment can distinguish Πpdaa and A from
Fpdaa and S. We let the adversary perform both isolated corruptions and full
corruptions on TPMs, showing that this proof both gives optimal privacy with
respect to adversaries that only perform isolated corruptions on TPMs, and
conditional privacy otherwise. The full proof is given in Appendix C, we present
a proof sketch below.

Proof Sketch

Setup. For the setup, the simulator has to provide the functionality the required
algorithms (sig, ver, link, identify, ukgen), where sig, ver, link, and ukgen simply re-
flect the corresponding real-world algorithms. Thereby the signing algorithm
also includes the issuer’s secret key. When the issuer is corrupt, S can learn the
issuer secret key by extracting from the proof πipk . When the issuer is honest,
it is simulated by S in the real-world and thus S knows the secret key.

The algorithm identify(σ,m, bsn, τ) that is used by Fpdaa to internally ensure
consistency and non-frameability is defined as follows: parse σ as (tag ,nym, πSIGN)
and output SSIG.Vf(τ,nym, (1, bsn)). Recall that τ is a tracing trapdoor that is
either provided by the simulator (when the host is corrupt) or generated inter-
nally by Fpdaa whenever a new gpk is generated.

Join. The join-related interfaces of Fpdaa notify S about any triggered join re-
quest by a platform consisting of host Hj and TPMMi such that S can simulate
the real-world protocol accordingly. If the host is corrupt, the simulator also has
to provide the functionality with the tracing trapdoor τ . For our scheme the
joint key gpk of the split signature serves that purpose. For privacy reasons the
key is never revealed, but the host proves knowledge and correctness of the key
in πJOIN,H. Thus, if the host is corrupt, the simulator extracts gpk from this
proof and gives it Fpdaa.



Sign. For platforms with an honest host, Fpdaa creates anonymous signatures
using the sig algorithm S defined in the setup phase. Thereby, Fpdaa enforces
unlinkability by generating and using fresh platform keys via ukgen whenever a
platform requests a signature for a new basename. For signature requests where a
platform repeatedly uses the same basename, Fpdaa re-uses the corresponding key
accordingly. We now briefly argue that no environment can notice this difference.
Recall that signatures consist of signatures tag and nym, and a proof πSIGN, with
the latter proving knowledge of the platform’s key gpk and credential cred , such
that tag and nym are valid under gpk which is in turn certified by cred . Thus,
for every new basename, the credential cred is now based on different keys gpk .
However, since we never reveal these values but only prove knowledge of them
in πSIGN, this change is indistinguishable to the environment.

The signature tag and pseudonym nym, that are split signatures on the mes-
sage and basename, are revealed in plain though. For repeated attestations under
the same basename, Fpdaa consistently re-uses the same key, whereas the use of a
fresh basename will now lead to the disclosure of split signatures under different
keys. The key-hiding property of split signatures guarantees that this change is
unnoticeable, even when the TPM is corrupt and controls part of the key. Note
that the key-hiding property requires that the adversary does not know the joint
public key gpk , which we satisfy as gpk is never revealed in our scheme; the host
only proves knowledge of the key in πJOIN,H and πSIGN.

Verify. For the verification of DAA signatures Fpdaa uses the provided ver
algorithm but also performs additional checks that enforce the desired non-
frameability and unforgeability properties. We show that these additional checks
will fail with negligible probability only, and therefore do not noticeably change
the verification outcome.

First, Fpdaa uses the identify algorithm and the tracing trapdoors τi to check
that there is only a unique signer that matches to the signature that is to be
verified. Recall that we instantiated the identify algorithm with the verification
algorithm of the split signature scheme SSIG and τ = gpk are the (hidden) joint
platform keys. By the key-uniqueness property of SSIG the check will fail with
negligible probability only.

Second, Fpdaa rejects the signature when no matching tracing trapdoor was
found and the issuer is honest. For platforms with an honest hosts, theses trap-
doors are created internally by the functionality whenever a signature is gener-
ated, and Fpdaa immediately checks that the signature matches to the trapdoor
(via the identify algorithm). For platforms where the host is corrupt, our simula-
tor S ensures that a tracing trapdoor is stored in Fpdaa as soon as the platform
has joined (and received a credential). If a signature does not match any of the
existing tracing trapdoors, it must be under a gpk = τ that was neither created
by Fpdaa nor signed by the honest issuer in the real-world. The proof πSIGN that
is part of every signature σ proves knowledge of a valid issuer credential on gpk ,
with gpk and cred being online extractable. Thus, by the unforgeability of the
signature scheme for encrypted messages ESIG, such invalid signatures can occur
only with negligible probability.



Third, if Fpdaa recognizes a signature on message m w.r.t. basename bsn that
matches the tracing trapdoor of a platform with an honest TPM or honest host,
but that platform has never signed m w.r.t. bsn, it rejects the signature. This
can be reduced to unforgeability-1 (if the host is honest) or unforgeability-2 (if
the TPM is honest) of the split signature scheme SSIG.

The fourth check that Fpdaa makes corresponds to the revocation check in
the real-world verify algorithm, i.e., it does not impose any additional check.

Link. Similar as for verification, Fpdaa is not relying solely on the provided link
algorithm but performs some extra checks when testing for the linkage between
two signatures σ and σ′. It again uses identify and the internally stored tracing
trapdoor to derive the final linking output. If there is one tracing trapdoor
matching one signature but not the other, it outputs that they are not linked. If
there is one tracing trapdoor matching both signatures, it enforces the output
that they are linked. Only if no matching tracing trapdoor is found, Fpdaa derives
the output via link algorithm.

We now show that the two checks and decisions imposed by Fpdaa are con-
sistent with the real-world linking algorithm. In the real world, signatures σ =
(tag ,nym, πSIGN) and σ′ = (tag ′,nym′, π′SIGN) w.r.t basename bsn are linked iff
nym = nym′. Tracing trapdoors are instantiated by the split signature scheme
public keys gpk , and identify verifies nym under the key gpk . If one key matches
one signature but not the other, then by the fact that the verification algorithm
of the split signatures is deterministic, we must have nym 6= nym′, showing that
the real world algorithm also outputs unlinked. If one key matches both signa-
tures, we have nym = nym′ by the signature-uniqueness of split signatures, so
the real-world algorithm also outputs linked. ut

6 Concrete Instantiation and Efficiency

In this section we describe on a high level how to efficiently instantiate the generic
building blocks to instantiate our generic DAA scheme presented in Section 5.

The split signature scheme is instantiated with the split-BLS signatures
(as described in Section 4.4), the signatures for encrypted messages with the
AGOT+ signature scheme (as described in Section 4.3) and the encryption
scheme with ElGamal, both working in G2. All the zero-knowledge proofs are
instantiated with non-interactive Schnorr-type proofs about discrete logarithms,
and witnesses that have to be online extractable are encrypted using ElGamal
for group elements and Camenisch-Shoup encryption [CS03] for exponents. Note
that the latter is only used by the issuer to prove that its key is correctly formed,
i.e., every participant will only work with Camenisch-Shoup ciphertexts once.

The shared system parameters spar then consist of a security parameter τ ,
a bilinear group G1,G2,GT of prime order q with generators g1 and g2 and
bilinear map e. Further, the system parameters contain an additional random
group element x ←$ G2 for the AGOT+ signature and an ElGamal encryption
key epk crs ←$ G2. This crs-key allows for efficient online extractability in the



security proof, as the simulator will be privy of the corresponding secret key.
Finally, let H : {0, 1}∗ → G∗1 be a hash function, that we model as a random
oracle in the security proof.

Setup. The issuer registers the AGOT+ key ipk = gisk1 along with a proof πipk
that ipk is well-formed. For universal composition, we need isk to be online-
extractable, which can be achieved by verifiable encryption. To this end, we let
the crs additionally contain a public key (n, y, g, h) for the CPA version of the
Camenisch-Shoup encryption scheme and an additional element g to make the
verifiable encryption work [CS03]. We thus instantiate the proof

πipk ← NIZK{(isk) : (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid)

as follows:

πipk ← SPK{(isk , r) : ipk = gisk1 ∧ ĝrgisk mod n ∧
gr mod n ∧ yrhisk mod n ∧ isk ∈ [−n/4, n/4]}(sid)

Join. Using the split-BLS signature, the TPM has a secret key tsk ∈ Z∗q and

public key tpk = gtsk2 , the host has secret key hsk ∈ Z∗q , and together they have

created the public key gpk = gtsk ·hsk2 .
We now show how to instantiate the proof πJOIN,H where the host proves that

C is an encryption of a correctly derived gpk . Recall that the issuer receives the
Mi’s public key contribution tpk authenticated from the TPM.

πJOIN,H ← NIZK{(gpk , hsk) : C ∈ Enc(epk , gpk) ∧
SSIG.VerKey(tpk , gpk , hsk) = 1}(sid , jsid).

The joint public key gpk is encrypted under an ephemeral key epk using
ElGamal with crs trapdoor epk crs. We set ρ ←$ Zq, C1 ← epkρcrs, C2 ← epkρ,
C3 ← gρ2 · gpk and prove:

π′JOIN,H ← SPK{(hsk , ρ) : C1 = epkρcrs ∧ C2 = epkρ ∧ C3 = gρ2 ·tpkhsk}(sid , jsid).

The host sets πJOIN,H ← (C1, C2, C3, π
′
JOIN,H) as the final proof. Note that gpk

is online-extractable as it is encrypted under epk crs. The issuer checks tpk 6= 1G2

and verifies π′JOIN,H.
Next, the issuer places an AGOT+ signature on gpk . Since gpk ∈ G2, the

decrypted credential has the form (r, s, t, w) which is an element of G1 × G3
2.

The issuer computes the credential on ciphertext (C1, C2, C3) as follows: Choose
a random u, ρ1, ρ2 ←$ Z∗q , and compute the (partially) encrypted signature σ̄ =
(r, (S1, S2, S3), (T1, T2, T3), w):

r ←gu2 , S1 ←Cv/u2 epkρ1 , S2 ←(Cv3x)1/ugρ12 ,

T1 ←Sv/u2 epkρ2 , T2 ←(Sv2g2)1/ugρ22 , w ←g1/u2 .



Then, with πJOIN,I it proves that it signed the ciphertext correctly:

πJOIN,I ← NIZK{isk : cred ′ ∈ ESIG.EncSign(isk , epk , C) ∧
(ipk , isk) ∈ ESIG.SigKGen(spar)}(sid , jsid).

To instantiate this, we let the issuer create π′JOIN,I as follows, using witness

u′ = 1
u and isk ′ = isk

u :

π′JOIN,I ← SPK{(u′, isk ′, ρ1, ρ2) : g2 = ru
′
∧ S1 = Cisk ′

2 epkρ1 ∧

S2 = Cisk ′

3 xu
′
gρ12 ∧ T1 = Sisk ′

1 epkρ2 ∧ T2 = Sisk ′

2 gu
′

2 g
ρ2
2 ∧ w = gu

′

2 ∧

1 = ipk−isk
′
gu
′

1 }(sid , jsid).

The issuer outputs πJOIN,I = (r, S1, S2, T1, T2, w, π
′
JOIN,I).

Sign. In our concrete instantiation, signatures on messages and basenames are
split-BLS signatures, i.e., the TPM and host jointly compute BLS signatures
tag ← H(0,m, bsn)tsk ·hsk and nym ← H(1, bsn)tsk ·hsk . Recall that we cannot
reveal the joint public key gpk or the credential cred . Instead the host provides
the proof πSIGN that tag and nym are valid split signatures under public key gpk
and that it owns a valid issuer credential cred on gpk , without disclosing gpk
and cred :

πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1 ∧
SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧ SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

This proof can be realized as follows: First, the host randomizes the AGOT+
credential (r, s, t, w) to (r′, s′, t′, w) using the randomization token w. Note that
this randomization allows the host to release r′ (instead of encrypting it) without
becoming linkable. The host then encrypts gpk , s′, and t′ to the crs-key epk crs.
That is, it takes (ρgpk , ρs, ρt)←$ Z3

q and computes gpk1 ← g
ρgpk
2 , gpk2 = epkρgpkcrs ·

gpk , s1 ← gρs2 , s2 = epkρscrs · s, t1 ← gρt2 , t2 = epkρtcrs · t.
Finally, the host proves that the partially encrypted credential signs the value

encrypted in (gpk1, gpk2), that tag is a valid split-BLS signature on (0,m, bsn)
under the encrypted gpk , and that nym is a valid split-BLS signature on (1, bsn)
under the encrypted gpk . It computes the following proof:

π′SIGN ← SPK{(ρgpk , ρs, ρt) :

gpk1 = g
ρgpk
2 ∧ s1 = gρs2 ∧ t1 = gρt2 ∧

e(r′, s2)/(e(g1, x) · e(V, gpk2)) = e(V, epk crs)
−ρgpk · e(r′, epk crs)

ρs ∧
e(r′, t2)/(e(g1, g2) · e(V, s2)) = e(V, epk crs)

−ρs · e(r′, epk crs)
ρt ∧

e(tag , g2)/e(H(0,m, bsn), gpk2) = e(H(0,m, bsn), epk crs)
−ρgpk ∧

e(nym, g2)/e(H(1, bsn), gpk2) = e(H(1, bsn), epk crs)
−ρgpk }

The host finally sets πSIGN ← (r′, gpk1, gpk2, s1, s2, t1, t2, π
′
SIGN). A verifier

receiving (tag ,nym, πSIGN) verifies π′SIGN and checks nym 6= 1G1 and tag 6= 1G1 .



6.1 Security

When using the concrete instantiations as presented above we can derive the
following corollary from Theorem 2 and the required security assumptions of
the deployed building blocks. We have opted for a highly efficient instantiation
of our scheme, which comes for the price of stronger assumptions such as the
generic group (for AGOT+ signatures) and random oracle model (for split-BLS
signatures and Fiat-Shamir NIZKs). We would like to stress that our generic
scheme based on abstract building blocks, presented in Section 5, does not require
either of the models, and one can use less efficient instantiations to avoid these
assumptions.

Corollary 1. Our protocol Πpdaa described in Section 5 and instantiated as de-
scribed above, securely realizes Fpdaa in the (Fauth∗,Fca,Fcrs)-hybrid model under
the following assumptions:

Instantiation Assumption
SSIG split-BLS co-DHP* [CHKM10] and DDH in G1, RO

model
ESIG AGOT+ generic group model (security of AGOT)
ENC ElGamal DDH in G2

NIZK Fiat-Shamir, ElGamal, Camenisch-Shoup DDH in G2, DCR [Pai99], RO model

6.2 Efficiency

We now give an overview of the efficiency of our protocol when instantiated
as described above. Our analysis focuses on signing and verification, which will
be used the most and thus have the biggest impact on the performance of the
scheme.

We now discuss the efficiency of our protocol when instantiated as described
above. Our analysis focuses on the signing protocol and verification, which will
be used the most and thus have the biggest impact on the performance of the
scheme.

TPM. Given the increased “responsibility” of the host, our protocol is actually
very lightweight on the TPM’s side. When signing, the TPM only performs two
exponentiations in G1. In fact, according to the efficiency overview by Camenisch
et al. [CDL16a], our scheme has the most efficient signing operation for the TPM
to date. Since the TPM is typically orders of magnitude slower than the host,
minimizing the TPM’s workload is key to achieve an efficient scheme.

Host. The host performs more tasks than in previous DAA schemes, but remains
efficient. The host runs split− BLS.CompleteSign twice, which costs 4 pairings
and 2 exponentiations in G1. Next, it constructs πSIGN. This involves randomizing
the AGOT credential, which costs 1 exponentiation in G1 and 3 in G2. It then
encrypts gpk , s′, and t′, costing 6 in G2. Finally, it constructs π′SIGN, where we
use some optimizations. First, the host does not need to compute the left hand
sides of the equations, which saves some exponentiations and pairings. Creating



the t-values (the commitment values for the SPKs) to prove knowledge of the
encryption randomness costs three exponentiations in G2. The second and third
lines of the SPK can be computed with one pairing and one multi-exponentiation
G2

1 each, by moving the exponentiations into G1.5 The t-values for the fourth and
fifth lines of the proof can be computed with one exponentiation in G1 and one
pairing each, again by moving the exponentiation into the pairing. This results
in a total signing cost of 5G1, 2G2

1, 12G2, 8P for a host.

Verifier. The verification checks the validity of (tag ,nym, πSIGN), which consists
of checking π′SIGN. Computing the left-hand sides of the equations in π′SIGN costs
eight pairings (as the verifier precomputes e(g1, g2) and e(g1, x)). Recomput-
ing the t-values (applying the same tricks that the host used when computing
the proof) requires 2G1, 2G2

1, 6G2, 4GT , 4P , and the revocation check with a
revocation list of n elements costs n+ 1 pairings.

Estimated Performance. We measured the speed of the Apache Milagro Cryp-
tographic Library (AMCL)6 and found that exponentiations in G1, G2, and GT
require 0.6ms, 1.0ms, and 1.4ms respectively. A pairing costs 1.6ms. Using these
numbers, we estimate a signing time of 30.2ms for the host, and a verification
time of 34.4ms, showing that also for the host our protocol is efficient enough to
be used in practice. Table 2 gives an overview of the efficiency of our concrete
instantiation.

M Sign H Sign Verify

Operations 2G1 5G1, 2G2
1, 12G2, 8P 2G1, 2G2

1, 6G2, 4GT , 12P
Est. Time 30.2ms 34.4ms

Table 2. Efficiency of our concrete DAA scheme.

References

[AGOT14] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Mehdi Tibouchi. Unified,
minimal and selectively randomizable structure-preserving signatures. In
Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 688–712.
Springer, Heidelberg, February 2014.

[AKMZ12] Joël Alwen, Jonathan Katz, Ueli Maurer, and Vassilis Zikas. Collusion-
preserving computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 124–143. Springer, Heidelberg,
August 2012.

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-
resilient signature schemes. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel:, editors, ACM CCS 15, pages 364–375. ACM Press, October 2015.

5 Since e(V, epk crs)
r1 · e(r′, epk crs)

r2 = e(V r1r′r2 , epk crs)
6 See https://github.com/miracl/amcl. We used the C-version of the library, con-

figured to use the BN254 curve. The program benchtest pair.c has been used to
retrieve the timings, executed on an Intel i5-4300U CPU.



[AsV08] Joël Alwen, abhi shelat, and Ivan Visconti. Collusion-free protocols in the
mediated model. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 497–514. Springer, Heidelberg, August 2008.

[BBDP01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.
Key-privacy in public-key encryption. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer, Heidelberg,
December 2001.

[BBG13] James Ball, Julian Borger, and Glenn Greenwald. Revealed: how US and
UK spy agencies defeat internet privacy and security. Guardian Weekly,
September 2013.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Kaisa Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 127–144. Springer, Heidelberg, May / June
1998.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous at-
testation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel,
editors, ACM CCS 04, pages 132–145. ACM Press, October 2004.

[BCL08] Ernie Brickell, Liqun Chen, and Jiangtao Li. A new direct anonymous attes-
tation scheme from bilinear maps. In Peter Lipp, Ahmad-Reza Sadeghi, and
Klaus-Michael Koch, editors, Trusted Computing - Challenges and Applica-
tions, First International Conference on Trusted Computing and Trust in
Information Technologies, Trust 2008, Villach, Austria, March 11-12, 2008,
Proceedings, volume 4968 of Lecture Notes in Computer Science, pages 166–
178. Springer, 2008.

[BCL09] Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified security notions of
direct anonymous attestation and a concrete scheme from pairings. Int. J.
Inf. Sec., 8(5):315–330, 2009.

[BD95] Mike Burmester and Yvo Desmedt. A secure and efficient conference key
distribution system (extended abstract). In Alfredo De Santis, editor, EU-
ROCRYPT’94, volume 950 of LNCS, pages 275–286. Springer, Heidelberg,
May 1995.

[BFG+13] David Bernhard, Georg Fuchsbauer, Essam Ghadafi, Nigel P. Smart, and
Bogdan Warinschi. Anonymous attestation with user-controlled linkability.
Int. J. Inf. Sec., 12(3):219–249, 2013.

[BL10] Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further reduc-
ing TPM resources. In Alessandro Acquisti, Sean W. Smith, and Ahmad-
Reza Sadeghi, editors, Trust and Trustworthy Computing, Third Interna-
tional Conference, TRUST 2010, Berlin, Germany, June 21-23, 2010. Pro-
ceedings, volume 6101 of Lecture Notes in Computer Science, pages 181–195.
Springer, 2010.

[BL11] Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pairing
for hardware authentication and attestation. IJIPSI, 1(1):3–33, 2011.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. Journal of Cryptology, 17(4):297–319, September 2004.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of sym-
metric encryption against mass surveillance. In Juan A. Garay and Rosario
Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19.
Springer, Heidelberg, August 2014.

[Bra00] Stefan A. Brands. Rethinking Public Key Infrastructures and Digital Cer-
tificates: Building in Privacy. MIT Press, Cambridge, MA, USA, 2000.



[BS01] Mihir Bellare and Ravi Sandhu. The security of practical two-party RSA
signature schemes. Cryptology ePrint Archive, Report 2001/060, 2001.
http://eprint.iacr.org/2001/060.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
http://eprint.iacr.org/2000/067.

[Can04] Ran Canetti. Universally composable signature, certification, and authenti-
cation. In 17th IEEE Computer Security Foundations Workshop, (CSFW-17
2004), 28-30 June 2004, Pacific Grove, CA, USA, page 219. IEEE Com-
puter Society, 2004.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology
ePrint Archive, Report 2016/086, 2016. http://eprint.iacr.org/2016/

086.
[CDE+] Jan Camenisch, Manu Drijvers, Alec Edgington, Anja Lehmann, Rolf Lin-

demann, and Rainer Urian. FIDO ECDAA algorithm, implementation
draft. https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/

fido-ecdaa-algorithm-v1.1-id-20170202.html.
[CDL16a] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attesta-

tion using the strong diffie hellman assumption revisited. In Michael Franz
and Panos Papadimitratos, editors, Trust and Trustworthy Computing -
9th International Conference, TRUST 2016, Vienna, Austria, August 29-
30, 2016, Proceedings, volume 9824 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2016.

[CDL16b] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally compos-
able direct anonymous attestation. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume
9615 of LNCS, pages 234–264. Springer, Heidelberg, March 2016.

[CF08] Xiaofeng Chen and Dengguo Feng. Direct anonymous attestation for next
generation TPM. JCP, 3(12):43–50, 2008.

[Che09] Liqun Chen. A DAA scheme requiring less TPM resources. In Feng Bao,
Moti Yung, Dongdai Lin, and Jiwu Jing, editors, Information Security and
Cryptology - 5th International Conference, Inscrypt 2009, Beijing, China,
December 12-15, 2009. Revised Selected Papers, volume 6151 of Lecture
Notes in Computer Science, pages 350–365. Springer, 2009.

[CHKM10] Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and Alfred Menezes.
Comparing two pairing-based aggregate signature schemes. Des. Codes
Cryptography, 55(2-3):141–167, 2010.

[CKY09] Jan Camenisch, Aggelos Kiayias, and Moti Yung. On the portability of
generalized Schnorr proofs. In Antoine Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 425–442. Springer, Heidelberg, April 2009.

[CL15] Jan Camenisch and Anja Lehmann. (Un)linkable pseudonyms for govern-
mental databases. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:,
editors, ACM CCS 15, pages 1467–1479. ACM Press, October 2015.

[CMS08] Liqun Chen, Paul Morrissey, and Nigel P. Smart. Pairings in trusted com-
puting (invited talk). In Steven D. Galbraith and Kenneth G. Paterson,
editors, PAIRING 2008, volume 5209 of LNCS, pages 1–17. Springer, Hei-
delberg, September 2008.

[CMY+16] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun Guo, and
Mingwu Zhang. Cryptographic reverse firewall via malleable smooth pro-
jective hash functions. In Jung Hee Cheon and Tsuyoshi Takagi, editors,



ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 844–876. Springer,
Heidelberg, December 2016.

[CPS10] Liqun Chen, Dan Page, and Nigel P. Smart. On the design and implemen-
tation of an efficient DAA scheme. In Dieter Gollmann, Jean-Louis Lanet,
and Julien Iguchi-Cartigny, editors, Smart Card Research and Advanced Ap-
plication, 9th IFIP WG 8.8/11.2 International Conference, CARDIS 2010,
Passau, Germany, April 14-16, 2010. Proceedings, volume 6035 of Lecture
Notes in Computer Science, pages 223–237. Springer, 2010.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups (extended abstract). In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 410–424. Springer, Heidelberg,
August 1997.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126–144. Springer, Heidelberg, August 2003.

[CV12] Ran Canetti and Margarita Vald. Universally composable security with
local adversaries. In Ivan Visconti and Roberto De Prisco, editors, SCN
12, volume 7485 of LNCS, pages 281–301. Springer, Heidelberg, September
2012.

[DMSD16] Yevgeniy Dodis, Ilya Mironov, and Noah Stephens-Davidowitz. Mes-
sage transmission with reverse firewalls—secure communication on cor-
rupted machines. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 341–372. Springer,
Heidelberg, August 2016.

[ElG86] Taher ElGamal. On computing logarithms over finite fields. In Hugh C.
Williams, editor, CRYPTO’85, volume 218 of LNCS, pages 396–402.
Springer, Heidelberg, August 1986.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

[Gre14] Glenn Greenwald. No place to hide: Edward snowden, the nsa, and the u.s.
surveillance state. Metropolitan Books, May 2014.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

[HPV16] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venki-
tasubramaniam. Composable security in the tamper-proof hardware model
under minimal complexity. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B, Part I, volume 9985 of LNCS, pages 367–399. Springer, Hei-
delberg, October / November 2016.

[Int13] International Organization for Standardization. ISO/IEC 20008-2: Infor-
mation technology - Security techniques - Anonymous digital signatures -
Part 2: Mechanisms using a group public key, 2013.

[Int15] International Organization for Standardization. ISO/IEC 11889: Informa-
tion technology - Trusted platform module library, 2015.

[Kat07] Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In Moni Naor, editor, EUROCRYPT 2007, vol-
ume 4515 of LNCS, pages 115–128. Springer, Heidelberg, May 2007.



[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party com-
putation. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of
LNCS, pages 335–354. Springer, Heidelberg, August 2004.

[MS15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse fire-
walls. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 657–686. Springer, Heidelberg, April
2015.

[OO90] Tatsuaki Okamoto and Kazuo Ohta. Divertible zero knowledge interac-
tive proofs and commutative random self-reducibility. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, EUROCRYPT’89, volume 434
of LNCS, pages 134–148. Springer, Heidelberg, April 1990.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592 of
LNCS, pages 223–238. Springer, Heidelberg, May 1999.

[PLS13] Nicole Perlroth, Jeff Larson, and Scott Shane. N.S.A. able to foil basic
safeguards of privacy on web. The New York Times, September 2013.

[Tru04] Trusted Computing Group. TPM main specification version 1.2, 2004.
[Tru14] Trusted Computing Group. Trusted platform module library specification,

family “2.0”, 2014.
[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-

stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

[YY97a] Adam Young and Moti Yung. Kleptography: Using cryptography against
cryptography. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 62–74. Springer, Heidelberg, May 1997.

[YY97b] Adam Young and Moti Yung. The prevalence of kleptographic attacks
on discrete-log based cryptosystems. In Burton S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS, pages 264–276. Springer, Heidelberg,
August 1997.



A Proof of Theorem 1

We now prove that the split-BLS construction presented in Section 4.4 indeed
satisfies our notion of secure split signatures.

Correctness. From running PreKeyGen, we get ssk1 ←$ Z∗q and ppk ← gssk1
2 .

CompleteKeyGen will check that ppk 6= 1G2
, which holds as ssk1 is taken from

Z∗q . It then takes ssk2 ←$ Z∗q and spk ← ppk ssk2 .

When signing, PreSign sets σ′ ← H(m)ssk1 . CompleteSign checks e(σ′, g2)
?
=

e(H(m), ppk) which holds for this σ′, and computes σ ← σ′ssk2 .
Verification checks e(σ, g2) = e(H(m), spk), which holds as σ = H(m)ssk1·ssk2

and spk = gssk1·ssk2
2 . Since both ssk1 and ssk2 are taken from Z∗q , they are both

unequal to 0 and ssk1 · ssk2 6= 0. As H maps to G∗1, this means σ 6= 1G.

Unforgeability-1. We reduce breaking unforgeability-1 to breaking the co-Diffie-
Hellman problem.7 Our reduction takes as input gα1 , gα2 , h ∈ G1, and must
compute hα. If α = 0, the reduction fails. A gives the pre-key ppk upon input
the system parameters. For some unknown ssk1, ppk = gssk1

2 . This reduction
simulates the (unknown) second key ssk2 = α/ssk1. We therefore set spk ←
gα2 = ppk ssk2 . Random oracle queries are answered with gr1 for r ←$ Zq, while
maintaining consistency, except for a random query m̄, where it returns h. When
A makes a CompleteSign query on a message m 6= m̄ and pre-signature σ′, first

check e(σ′, g2)
?
= e(H(m), ppk), and return ⊥ if this does not hold. Otherwise,

return σ ← H(m)α = (gα1 )r, where the reduction knows r from simulating the
random oracle.

When A outputs forgery (m∗, σ∗). With non-negligible probability, m∗ = m̄,
and we have e(σ∗, g2) = e(H(m), spk) = e(h, gα2 ), so σ∗ solves the computational
co-DH problem.

Unforgeability-2. We reduce breaking unforgeability-2 to breaking the co-Diffie-
Hellman problem.

Our reduction takes as input gα1 , gα2 , h ∈ G1, and must compute hα. If
gα1 = 1G1 or h = 1G1 the reduction fails. Give A input ppk = gα2 . When A makes
random oracle queries, answer them with gr1 with r ←$ Z∗q , while maintaining
consistency, except for a random query m̄, where it returns h. When A makes
a PreSign query on m, find r such that H(m) = gr1 from simulating the random
oracle and output signature σ ← (gα1 )r. If A makes a query with m = m̄, the
reduction fails.

When A outputs (m∗, σ∗, spk , ssk2) with VerKey(spar , ppk , spk , ssk2) = 1,
Vf(spar , spk , σ∗,m∗) = 1, and m was not queried, with non-negligible probability
we have m∗ = m̄ and therefore e(σ∗, g2) = e(h, spk). Since spk = gα2

ssk2 , we have

7 As the original BLS signatures were presented in a type II pairing setting, we prove
unforgeability-1 and unforgeability-2 using a sightly different version of the compu-
tational co-Diffie-Hellman assumption suitable for type III pairings. The assumption
we use is called co-DHP* and is formalized by Chatterjee et al. [CHKM10].



e(σ∗, g2) = e(h, gα2
ssk2). As σ∗ 6= 1G1

, we have ssk2 6= 0 and e(σ∗1/ssk2 , g2) =

e(h, gα2 ), so σ∗1/ssk2 = hα solves the co-CDH problem.

Key-Hiding. Any adversary that has non-negligible probability of winning the
key hiding game breaks the DDH assumption in G1.

The reduction receives input gα1 , g
β
1 , g

γ
1 . If gα1 = 1G1 , gβ1 = 1G1 , or γ = 1G1 ,

the reduction fails. It receives ppk ∈ G2 from A, after handing it the system
parameters. When A makes random oracle queries, answer them with gr1 with
r ←$ Z∗q , while maintaining consistency, except for a random query m̄, where

it returns gβ1 . When A makes a CompleteSign query on a message m 6= m̄ and

pre-signature σ′, first check e(σ′, g2)
?
= e(H(m), ppk), and return ⊥ if this does

not hold. Otherwise, return H(m)α = (gα1 )r, where the reduction knows r from
simulating the random oracle. If A makes a signing query on m̄ with a valid
pre-signature, the reduction fails.

When A outputs (m,σ′), and m 6= m̄, the reduction fails. If m = m̄, give the
adversary σ ← gγ1 . Continue answering the oracle queries as before.

Now, note that if γ = α·β, we have simulated the game with b = 0, and if not,
we simulated b = 1, so any adversary guessing b with non-negligible probability
can break DDH.

Key-Uniqueness. As we work in prime order groups, every element has a unique
discrete logarithm in Zq. If a signature on message m verifies under keys spk0 6=
spk1, we have e(σ, g2) = e(H(m), spk b) for b ∈ {0, 1}. Let H(m) be gr1 for some
r ∈ Z∗q , and let spk b = gxb

2 for some xb ∈ Zq, and as spk0 6= spk1, x0 6= x1. This
gives e(σ, g2) = e(g1, g2)r·xb . Let s be the discrete log of σ, this means s = r · x0
and s = r · x1, which contradicts r ∈ Z∗q .

Signature-Uniqueness. If two signatures σ0 6= σ1 on message m both verify
under key spk , we have e(σb, g2) = e(H(m), spk) for b ∈ {0, 1}. Let H(m) be gr1,
σb = gsb1 , and spk = gx2 , for some r ∈ Z∗q and s0, s1, x ∈ Z3

q. As σb 6= 1G1
(by

the verification check), we have s0 6= 0 and s1 6= 0. This gives sb = r · x, which
contradicts s0 6= s1.

B Auxiliary Ideal Functionalities

In this section, we formally define the ideal functionalities we use as subroutines
in our protocol.

B.1 Special Authenticated Communication between TPM and
Issuer

We use the authenticated channel from the TPM to the issuer via the host
functionalty Fauth∗ as defined in [CDL16b].



1. On input (SEND, sid , ssid,m1,m2, F ) from S. Check that sid = (S,R, sid ′)
for some R an output (REPLACE1, sid , ssid,m1,m2, F ) to S.

2. On input (REPLACE1, sid , ssid,m′2) from S, output (APPEND, sid , ssid,
m1,m

′
2) to F .

3. On input (APPEND, sid , ssid,m′′2 ) from F , output (REPLACE2, sid , ssid,
m1,m

′′
2 ) to S.

4. On input (REPLACE2, sid , ssid,m′′′2 ) from S, output (SENT, sid , ssid,
m1,m

′′′
2 ) to R.

Fig. 9. The special authenticated communication functionality Fauth∗.

B.2 Certification Authority

We use the ideal certification authority functionality Fca as defined in [Can04],
extended to allow one party to register multiple keys, i.e., we check sid = (P, sid ′)
for some sid ′ instead of checking sid = P .

1. Upon receiving the first message (Register, sid , v) from P , send
(Registered, sid , v) to the adversary; upon receiving ok from the adver-
sary, and if sid = (P, sid ′) and this is the first request from P , then record
the pair (P, v).

2. Upon receiving a message (Retrieve, sid) from party P ′, send (Retrieve, sid , P ′)
to the adversary, and wait for an ok from the adversary. Then, if there
is a recorded pair (sid , v) output (Retrieve, sid , v) to P ′. Else output
(Retrieve, sid ,⊥) to P ′.

Fig. 10. Ideal certification authority functionality Fca, extended from the one by
Canetti [Can04].

B.3 Common Reference String

For the crs functionality we use the 2005 version of UC [Can00]. This function-
ality is parametrized by a distribution D, from which the crs is sampled.



1. When receiving input (CRS, sid) from party P , first verify that sid = (P, sid ′)
where P is a set of identities, and that P ∈ P; else ignore the input. Next, if
there is no value r recorded then choose and record r ←$ D. Finally, send a
public delayed output (CRS, sid , r) to P .

Fig. 11. Ideal CRS functionality FDcrs by Canetti [Can00].

C Proof of Theorem 2 (Security of our DAA Scheme)

We now prove Theorem 2. We have to prove that our scheme realizes Fpdaa,
which means proving that for every adversary A, there exists a simulator S such
that for every environment E we have EXECΠ,A,E ≈ IDEALF,S,E .

To show that no environment E can distinguish the real world, in which it
is working with Πpdaa and adversary A, from the ideal world, in which it uses
Fpdaa with simulator S, we use a sequence of games. We start with the real
world protocol execution. In the next game we construct one entity C that runs
the real world protocol for all honest parties. Then we split C into two pieces, a
functionality F and a simulator S, where F receives all inputs from honest parties
and sends the outputs to honest parties. We start with a dummy functionality,
and gradually change F and update S accordingly, to end up with the full Fpdaa

and a satisfying simulator. First we define all intermediate functionalities and
simulators, and then we prove that they are all indistinguishable from each other.





C.1 Functionalities and Simulators

Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Output (FORWARD, (SETUP, sid), I) to S.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.
3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.

– Output (FORWARD, (JOIN, sid , jsid),Mi) to S.
4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.

– Output (FORWARD, (JOINPROCEED, sid , jsid), I) to S.

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn),Hj) to S.
6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, RL),V) to S.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output (FORWARD, (LINK, sid , σ,m, σ′,m′, bsn),V) to S.

Fig. 12. F for Game 3



When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F.
Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 13. Simulator for Game 3



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.
3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.

– Output (FORWARD, (JOIN, sid , jsid),Mi) to S.
4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.

– Output (FORWARD, (JOINPROCEED, sid , jsid), I) to S.

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn),Hj) to S.
6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Output (FORWARD, (VERIFY, sid ,m, bsn, σ, RL),V) to S.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output (FORWARD, (LINK, sid , σ,m, σ′,m′, bsn),V) to S.

Fig. 14. F for Game 4



When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F.
Setup
Honest I

– On input (SETUP, sid) from F.
• Parse sid as (I, sid ′) and give “I” input (SETUP, sid).
• When “I” outputs (SETUPDONE, sid), S takes its secret key isk and defines the

following algorithms.
∗ Define sig(((tsk , hsk), gpk),m, bsn) as follows: First, create a credential by

taking encryption key (epk , esk) ← EncKGen(). Encrypt the credential with
C ← Enc(epk , gpk), and sign the ciphertext with cred ′ ← EncSign(isk , epk , C).,
and decrypt credential cred ← DecSign(esk , cred ′). Next, the algorithm per-
forms the real world signing algorithm (performing both the tasks from the
host and the TPM).

∗ Define ver(σ,m, bsn) as the real world verification algorithm, except that the
private-key revocation check is ommitted.

∗ Define link(σ,m, σ′,m′, bsn) as the real world linking algorithm.
∗ Define identify(σ,m, bsn, τ) as follows: parse σ as (tag ,nym, πSIGN) and check

SSIG.Vf(τ,nym, (1, bsn)). If so, output 1, otherwise 0.
∗ Define ukgen as follows: Let (tpk , tsk) ← SSIG.PreKeyGen(), (gpk , hsk) ←

SSIG.CompleteKeyGen(tpk), and output ((tsk , hsk), gpk).
S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

Corrupt I

– S notices this setup as it notices I registering a public key with “Fca” with sid =
(I, sid ′).
• If the registered key is of the form (ipk , πisk ) and π is valid, S extracts isk from
πisk .

• S defines the algorithms sig, ver, link, identify, ukgen as when I is honest, but now
depending on the extracted key.

• S sends (SETUP, sid) to F on behalf of I.
– On input (SETUP, sid) from F.
• S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

– On input (SETUPDONE, sid) from F
• S continues simulating “I”.

Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 15. Simulator for Game 4



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Output (FORWARD, (JOIN, sid , jsid ,Mi),Hj) to S.
3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.

– Output (FORWARD, (JOIN, sid , jsid),Mi) to S.
4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.

– Output (FORWARD, (JOINPROCEED, sid , jsid), I) to S.

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn),Hj) to S.
6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 16. F for Game 5



When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F.
Setup
Honest I

– On input (SETUP, sid) from F.
• Parse sid as (I, sid ′) and give “I” input (SETUP, sid).
• When “I” outputs (SETUPDONE, sid), S takes its secret key isk and defines the

following algorithms.
∗ Define sig(((tsk , hsk), gpk),m, bsn) as follows: First, create a credential by

taking encryption key (epk , esk) ← EncKGen(). Encrypt the credential with
C ← Enc(epk , gpk), and sign the ciphertext with cred ′ ← EncSign(isk , epk , C).,
and decrypt credential cred ← DecSign(esk , cred ′). Next, the algorithm per-
forms the real world signing algorithm (performing both the tasks from the
host and the TPM).

∗ Define ver(σ,m, bsn) as the real world verification algorithm, except that the
private-key revocation check is ommitted.

∗ Define link(σ,m, σ′,m′, bsn) as the real world linking algorithm.
∗ Define identify(σ,m, bsn, τ) as follows: parse σ as (tag ,nym, πSIGN) and check

SSIG.Vf(τ,nym, (1, bsn)). If so, output 1, otherwise 0.
∗ Define ukgen as follows: Let (tpk , tsk) ← SSIG.PreKeyGen(), (gpk , hsk) ←

SSIG.CompleteKeyGen(tpk), and output ((tsk , hsk), gpk).
S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

Corrupt I

– S notices this setup as it notices I registering a public key with “Fca” with sid =
(I, sid ′).
• If the registered key is of the form (ipk , πisk ) and π is valid, S extracts isk from
πisk .

• S defines the algorithms sig, ver, link, identify, ukgen as when I is honest, but now
depending on the extracted key.

• S sends (SETUP, sid) to F on behalf of I.
– On input (SETUP, sid) from F.
• S sends (ALG, sid , sig, ver, link, identify, ukgen) to F.

– On input (SETUPDONE, sid) from F
• S continues simulating “I”.

Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 17. Simulator for Game 5



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– Output (FORWARD, (SIGN, sid , ssid ,Mi,m, bsn),Hj) to S.
6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.

– Output (FORWARD, (SIGNPROCEED, sid , ssid),Mi) to S.

Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 18. F for Game 6



When a simulated party “P” outputs m and no specific action is defined, send
(OUTPUT,P,m) to F.
Isolated Corrupt TPM
When a TPM Mi becomes isolated corrupted in the simulated real world, S defines a
local simulator SMi that simulates an honest host with the isolated corruptMi. Note
thatMi only talks to one host, who’s identity is fixed upon receiving the first message.
SMi is defined as follows.

– When SMi receives (JOINPROCEED, sid , jsid ,Hj) as Mi is isolated corrupt.
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “Hj” outputs (JOINED, sid , jsid), send (JOINPROCEED, sid , jsid) onMi’s

behalf to F.

Setup
Unchanged.
Join
Honest M, H, I

– On input (JOINPROCEED, sid , jsid ,Mi,Hj) from F.
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “Mi” outputs (JOIN, sid , jsid ,Hj), give “Mi” input (JOIN, sid , jsid).
• When “I” outputs (JOINPROCEED, sid , jsid ,Mi), output

(JOINPROCEED, sid , jsid) to F.
– On input (JOINCOMPLETE, sid , jsid).
• Give “I” input (JOINPROCEED, sid , jsid).
• When “Hj” outputs (JOINED, sid , jsid), output (JOINCOMPLETE, sid , jsid ,⊥) to
F.

Honest H, I, Corrupt M

– When S receives (JOIN, sid , jsid) from F as Mi is corrupt.
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “I” outputs (JOINPROCEED, sid , jsid ,Mi), send (JOIN, sid , jsid) onMi’s

behalf to F.
– On input (JOINPROCEED, sid , jsid ,Mi,Hj) from F.
• Output (JOINPROCEED, sid , jsid) to F.

– On input (JOINCOMPLETE, sid , jsid).
• Give “I” input (JOINPROCEED, sid , jsid).
• When “Hj” outputs (JOINED, sid , jsid), output (JOINCOMPLETE, sid , jsid ,⊥) to
F.

Honest M, H, Corrupt I

– On input (JOINPROCEED, sid , jsid ,Mi,Hj) from F.
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “Mi” outputs (JOIN, sid , jsid ,Hj), give “Mi” input (JOIN, sid , jsid).
• When “Hj” outputs (JOINED, sid , jsid), output (JOINPROCEED, sid , jsid) to F.

– When S receives (JOINPROCEED, sid , jsid ,Mi) from F as I is corrupt.
• Send (JOINPROCEED, sid , jsid) on I’s behalf to F.

– On input (JOINCOMPLETE, sid , jsid).
• output (JOINCOMPLETE, sid , jsid ,⊥) to F.

Fig. 19. First part of Simulator for Game 6



Honest M, I, Corrupt H

– S notices this join as “Mi” outputs (JOINPROCEED, sid , jsid ,Hj).
• Send (JOIN, sid , jsid ,Mi) on Hj ’s behalf to F.

– On input (JOINPROCEED, sid , jsid ,Mi,Hj) from F.
• Continue simulating “Mi” by giving it input (JOINPROCEED, sid , jsid).
• When “I” outputs (JOINPROCEED, sid , jsid ,Mi), extract gpk from πJOIN,H and

output (JOINPROCEED, sid , jsid) to F.
– On input (JOINCOMPLETE, sid , jsid) from F.
• output (JOINCOMPLETE, sid , jsid , gpk) to F.

– When S receives (JOINED, sid , jsid) from F as Hj is corrupt.
• Continue simulating “I” by giving it input (JOINPROCEED, sid , jsid).

Honest H, Corrupt M, I

– When S receives (JOIN, sid , jsid ,Mi) as Mi is corrupt.
• Send (JOIN, sid , jsid) on Mi’s behalf to F.

– On input (JOINPROCEED, sid , jsid ,Mi,Hj) from F.
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “Hj” outputs (JOINED, sid , jsid), output (JOINPROCEED, sid , jsid) to F.

– When S receives (JOINPROCEED, sid , jsid ,Mi) as I is corrupt.
• Send (JOINPROCEED, sid , jsid) on I’s behalf to F.

– On input (JOINCOMPLETE, sid , jsid) from F.
• Output (JOINCOMPLETE, sid , jsid ,⊥) to F.

Honest I, Corrupt M, H

– S notices this join as “I” outputs (JOINPROCEED, sid , jsid ,Mi).
• Extract gpk from πJOIN,H and output (JOINPROCEED, sid , jsid) to F.
• Pick some corrupt identity Hj , and send (JOIN, sid , jsid ,Mi) on Hj ’s behalf to
F.

– When S receives (JOINPROCEED, sid , jsid ,Hj) as Mi is corrupt.
• Send (JOINPROCEED, sid , jsid) on Mi’s behalf to F.

– On input (JOINPROCEED, sid , jsid ,Mi,Hj) from F.
• Output (JOINPROCEED, sid , jsid) to F.

– On input (JOINCOMPLETE, sid , jsid , gpk) from F.
• Output (JOINCOMPLETE, sid , jsid) to F.

– When S receives (JOINED, sid , jsid) as Hj is corrupt.
• Give “I” input (JOINPROCEED, sid , jsid).

Honest M, Corrupt H, I

– S notices this join as “Mi” outputs (JOINPROCEED, sid , jsid ,Hj).
• Send (JOIN, sid , jsid ,Mi) on Hj ’s behalf to F.

– On input (JOINPROCEED, sid , jsid ,Mi,Hj) from F.
• Output (JOINPROCEED, sid , jsid) to F.

– When S receives (JOINPROCEED, sid , jsid ,Mi) as I is corrupt.
• Send (JOINPROCEED, sid , jsid) on I’s behalf to F.

– On input (JOINCOMPLETE, sid , jsid) from F.
• Output (JOINCOMPLETE, sid , jsid ,⊥) to F.

– When S receives (JOINED, sid , jsid) as Hj is corrupt.
• Give “Mi” input (JOINPROCEED, sid , jsid).

Fig. 20. Second part of Simulator for Game 6



Honest H, I, Isolated corrupt M

– On input (JOINPROCEED, sid , jsid ,Mi,Hj).
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “Mi” outputs (JOINPROCEED, sid , jsid ,Hj), Give “Mi” input

(JOINPROCEED, sid , jsid).
• When “I” outputs (JOINPROCEED, sid , jsid ,Mi), output

(JOINPROCEED, sid , jsid) to F.
– On input (JOINCOMPLETE, sid , jsid).
• Give “I” input (JOINPROCEED, sid , jsid).
• When “Hj” outputs (JOINED, sid , jsid), output (JOINCOMPLETE, sid , jsid ,⊥) to
F.

Honest H, Isolated corrupt M, Corrupt I

– On input (JOINPROCEED, sid , jsid ,Mi,Hj).
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “Mi” outputs (JOINPROCEED, sid , jsid ,Hj), Give “Mi” input

(JOINPROCEED, sid , jsid).
• When “Hj” outputs (JOINED, sid , jsid), output (JOINPROCEED, sid , jsid) to F.

– When S receives (JOINPROCEED, sid , jsid ,Mi) as I is corrupt.
• Send (JOINPROCEED, sid , jsid) on I’s behalf to F.

– On input (JOINCOMPLETE, sid , jsid) from F.
• output (JOINCOMPLETE, sid , jsid ,⊥) to F.

Forwarded Input

– On input (FORWARD,m,P).
• Give “P” input m.

Fig. 21. Third part of Simulator for Game 6



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 22. F for Game 7



Isolated Corrupt TPM
When a TPM Mi becomes isolated corrupted in the simulated real world, S defines a
local simulator SMi that simulates an honest host with the isolated corruptMi. Note
thatMi only talks to one host, who’s identity is fixed upon receiving the first message.
SMi is defined as follows.

– When SMi receives (JOINPROCEED, sid , jsid ,Hj) as Mi is isolated corrupt.
• Give “Hj” input (JOIN, sid , jsid ,Mi).
• When “Hj” outputs (JOINED, sid , jsid), send (JOINPROCEED, sid , jsid) onMi’s

behalf to F.

– When SMi receives (SIGNPROCEED, sid , ssid ,m, bsn) as Mi is isolated corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), send (SIGNPROCEED, sid , ssid)

on Mi’s behalf to F.

Setup
Unchanged.
Join
Unchanged.
Sign
Honest M, H
Nothing to simulate.
Honest H, Corrupt M

– When S receives (SIGNPROCEED, sid , ssid ,m, bsn) as Mi is corrupt.
• Give “Hj” input (SIGN, sid , ssid ,Mi,m, bsn).
• When “Hj” outputs (SIGNATURE, sid , ssid , σ), send (SIGNPROCEED, sid , ssid)

on Mi’s behalf to F.

Honest H, Isolated corrupt M
Nothing to simulate.
Honest M, Corrupt H

– When “Mi” outputs (SIGNPROCEED, sid , ssid ,m, bsn).
• Send (SIGN, sid , ssid ,Mi,m, bsn) on Hj ’s behalf to F.
• When S receives (SIGNATURE, sid , ssid , σ) from F as Hj is corrupt, give “Mi”

input (SIGNPROCEED, sid , ssid).

Fig. 23. Simulator for Game 7



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 24. F for Game 8



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 25. Simulator for Game 8



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 26. F for Game 9



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 27. Simulator for Game 9



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor
τ ′ registered in Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Set f ← 0 if at least one of the following conditions hold:
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 28. F for Game 10



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 29. Simulator for Game 10



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor
τ ′ registered in Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys

where identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 30. F for Game 11



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 31. Simulator for Game 11



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor
τ ′ registered in Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys

where identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no tuple (τi,Mi,Hj) was found.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 32. F for Game 12



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 33. Simulator for Game 12



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor
τ ′ registered in Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys

where identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no tuple (τi,Mi,Hj) was found.
• Mi or Hj is honest but no entry 〈∗,m, bsn,Mi,Hj〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1.

– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 34. F for Game 13



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 35. Simulator for Game 13



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor
τ ′ registered in Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys

where identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no tuple (τi,Mi,Hj) was found.
• Mi or Hj is honest but no entry 〈∗,m, bsn,Mi,Hj〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1, and no pair (τi,Mi,Hj) for an honest Hj was

found.
– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– Set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 36. F for Game 14



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 37. Simulator for Game 14



Setup
1. Issuer Setup. On input (SETUP, sid) from issuer I

– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join
2. Join Request. On input (JOIN, sid , jsid ,Mi) from host Hj .

– Create a join session record 〈jsid ,Mi,Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid ,Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid ,Mi,Hj) to A and wait for input (JOINPROCEED, sid , jsid) from
A.

– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid ,Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid ,Mi,Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥.
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi,Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign
5. Sign Request. On input (SIGN, sid , ssid ,Mi,m, bsn) from Hj .

– If Hj is honest and no entry 〈Mi,Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid ,m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid ,Mi,Hj ,m, bsn, status〉 with status = request and update it to status ←

complete.
– If I is honest, check that 〈Mi,Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key:
• Retrieve (gsk , τ) from 〈Mi,Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ)←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi,Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk ,m, bsn), check ver(σ,m, bsn) = 1.
• Check identify(σ,m, bsn, τ) = 1 and that there is no (M′,H′) 6= (Mi,Hj) with tracing trapdoor
τ ′ registered in Members or DomainKeys with identify(σ,m, bsn, τ ′) = 1.

– Store 〈σ,m, bsn,Mi,Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .
Verify
7. Verify. On input (VERIFY, sid ,m, bsn, σ, RL) from some party V.

– Retrieve all tuples (τi,Mi,Hj) from 〈Mi,Hj , τi〉 ∈ Members and 〈Mi,Hj , ∗, ∗, τi〉 ∈ DomainKeys

where identify(σ,m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no tuple (τi,Mi,Hj) was found.
• Mi or Hj is honest but no entry 〈∗,m, bsn,Mi,Hj〉 ∈ Signed exists.
• There is a τ ′ ∈ RL where identify(σ,m, bsn, τ ′) = 1, and no pair (τi,Mi,Hj) for an honest Hj was

found.
– If f 6= 0, set f ← ver(σ,m, bsn).
– Add 〈σ,m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

Link
8. Link. On input (LINK, sid , σ,m, σ′,m′, bsn) from a party V.

– Output ⊥ to V if at least one signature (σ,m, bsn) or (σ′,m′, bsn) is not valid (verified via the
verify interface with RL = ∅).

– For each τi in Members and DomainKeys compute bi ← identify(σ,m, bsn, τi) and b′i ←
identify(σ′,m′, bsn, τi) and do the following:
• Set f ← 0 if bi 6= b′i for some i.
• Set f ← 1 if bi = b′i = 1 for some i.

– If f is not defined yet, set f ← link(σ,m, σ′,m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 38. F for Game 15



Isolated corrupt TPM
Unchanged.
Setup
Unchanged.
Join
Unchanged.
Sign
Unchanged.

Fig. 39. Simulator for Game 15



We now show that every game hop is indistinguishable from the previous.
Note that although we separate F and S, in reductions we can consider them to
be one entity, as this does not affect A and E .

Game 1: This is the real world.

Game 2: We let the simulator S receive all inputs and generate all outputs.
It does so by simulating all honest parties honestly. It simulates the oracles
honestly, except that it chooses encryption keys in the crs of which it knows
corresponding secret keys, allowing it to decrypt messages encrypted to the crs.
Clearly, this is equal to the real world.

Game 3: We now start creating a functionality F that receives inputs from
honest parties and generates the outputs for honest parties. It works together
with a simulator S. In this game, we simply let F forward all inputs to S, who
acts as before. When S would generate an output, it first forwards it to F, who
then outputs it. This game hop simply restructures Game 2, we have Game 3
= Game 2.

Game 4: F now handles the setup queries, and lets S enter algorithms that
F will store. F checks the structure of sid , and aborts if it does not have the
expected structure. This does not change the view of E , as I in the protocol
performs the same check, giving Game 4 = Game 3.

Game 5: F now handles the verify and link queries using the algorithsm that
S defined in Game 4. In Game 4, S defined the ver algorithm as the real world
with the revocation check ommitted. As F performs this check separately. The
link algorithm is equal to the real world algorithm, showing that using these
algorithms does not change the verification or linking outcome, so Game 5 =
Game 4.

Game 6: We now let F handle the join queries. S receives enough information
from F to correctly simulate the real world protocol. Only when a join query with
honest issuer and corrupt TPM and host takes place, S misses some information.
It must make a join query with F on the host’s behalf, but it does not know the
identity of the host. However, it is sufficient to choose an arbitrary corrupt host.
This results in a different host registered in Members, but F will not use this
information when the registered host is corrupt. Since S can always simulate the
real world protocol, we have Game 6 = Game 5.

Game 7: F now handles the sign queries. When one party creates two sig-
natures with different basenames, F signs with different keys, showing that the
signatures are unlinkable. S can simulate the real world protocol and block any
signatures that would not be successfully generated in the real world. F may
prevent a signature from being output, when the TPM and host did not yet
join, or when the signature generated by F does not pass verification. If the
TPM and host did not join, and the host is honest, the real world would also not
output a signature, as the host performs this check. The signatures F generate
will always pass verification, as the algorithms that S set in Game 4 will only



create valid signatures (by completeness of the split signatures, signatures on
encrypted messages, and zero-knoweldge proofs). This shows that F outputs a
signature if and only if the real world would outputs a signature.

What remains to show is that the signatures that F outputs are indistin-
guishable from the real world signatures. We make this change gradually. First,
all signatures come from the real world, and then we let F gradually create more
signatures, until all signatures come from F. Let Game 7.i.j denote the game
in which F creates all signatures for platforms with TPMs Mi′ with i′ < i, lets
S create the signatures if i′ > i, and for the platform with TPM Mi, the first
j distinct basenames are signed. We show that Game 7.i.j is indistinguishable
from Game 7.i.(j + 1), and by repeating this argument, we have Game 7 ≈
Game 6.

Proof of Game 7.i.j ≈ Game 7.i.(j+1) We make small changes to Game 7.i.j
and Game 7.i.(j + 1), and then show that the remaining difference can be re-
duced to the key hiding property of the split signatures.

First, we let the NIZK proofs in join and in the signatures be simulated,
which is indistinguishable by the zero-knowledge property of the proofs. Second,
we encrypt dummy values in join and sign, instead of encrypting cred and gpk .
Under the CPA security of the encryption scheme, this is indistinguishable.8 Note
that the host cannot decrypt his credential while reducing to the CPA security,
which means he cannot verify the credential and he cannot later use it to sign.
Proof πJOIN,I guarantees that the encrypted credential is valid, so it still aborts
when the issuer tries to send a invalid credential. The simulator simulating the
honest host can solve the second problem: since Game 4, the simulator knows
the issuer secret key and can therefore create an equivalent credential.

Now, the only remaning difference is the computation of tag and nym. In
Game 7.i.j, S computes these values using the same key as it joined with, and
in Game 7.i.(j + 1), F uses a fresh key.

We first show that the difference in nym is indistinguishable under the key
hiding property of the split signatures. S simulates the honest host without
knowing gpk . In the join, it uses a dummy ciphertext and simulates the proof.
Signatures with basename bsnj′ are handled as follows.

– j′ ≤ j: these signatures are created by F.
– j′ = j + 1: S gives the challenger of the key hiding game of split signatures

message bsnj′ , giving it the pseudonym for bsnj′ . As the split signatures are
unique, we can use this pseudonym for every signature with bsnj′ .

– j′ > j + 1: S uses OCompleteSign to compute tag and nym.

If the bit in the key hiding game is zero, nym is computed like in Game 7.i.j,
and if one, nym is computed like in Game 7.i.(j+1), so any environment distin-

8 Note that S previously held the trapdoor to the crs encryption key. S only uses this
to extract gpk in the join and gives it to F. Since F does not use this extracted value
yet, we can omit these extractions here, and use the CPA property of the encryption
scheme.



guishing the different ways to compute nym can break the key hiding property
of the split signatures.

What remains to show is that using a fresh key for every basename in the
computation of tag is also indistinguishable. Here we make the same reduction
to the key hiding property of split signatures, but now we make a reduction per
message that the platform signs with this basename.

Game 8: F now runs the CheckTtdCorrupt algorithm when S gives the extracted
gpk from platforms with a corrupt host. This checks that F has not seen valid
signatures yet that match both this key and existing key. If this happens, we
break the key-uniqueness property of the split signatures, so Game 8 ≈ Game
7.

Game 9: When F creates fresh domain keys when signing for honest platforms,
it checks that there are no signatures that match this key. Since S instantiated
the identify algorithm with the verification algorithm of the split signatures, this
would mean there already exists a valid signature under the freshly generated
key. Clearly, this breaks the unforgeability-1 property of the split signatures, so
Game 9 ≈ Game 8.

Game 10: F now performs additional tests on the signatures it creates, and
if any fails, it aborts. First, it checks whether the generated signature matches
the key it was generated with. With the algorithms S defined in Game 4, this
always holds. Second, F checks that there is no other platform with a key that
matches this signature. By the key uniqueness property, we cannot have two
keys matching one signature. The probability that the same key is registered by
someone else is negligible. As the gpk is always encrypted, by the CPA security
of the encryption scheme, the probability that some other party chooses the
same key is the probability that it guessed the key correctly without any further
information. The following lemma states that this is infeasible.

Lemma 1. Let Σ be a secure split signature scheme. No adversary, that chooses
ppk on input spar ← Σ.G(1τ ), has non-negligible probability of outputting spk,
with spk computed as (spk , ssk2) ← Σ.CompleteKeyGen(spar , ppk), where the
probability is taken over all random choices in G and CompleteKeyGen.

Proof. Suppose the adversary can guess spk with nonnegligible probability. Then
it has non-negligible probability of finding spk and corresponding secret keys
(ssk1, ssk2) by running the PreKeyGen and CompleteKeyGen algorithms. Now the
adversary can forge signatures, breaking unforgeability-1. As Σ is unforgeable-1,
no such adversary can exist.

Game 11: In verification, F now checks whether it knows multiple tracing keys
that match one signature. As S instantiated the identify with the verification of
split signatures, this cannot happen with nonneglibible probability by the key-
uniqueness property of the split signatures, Game 11 ≈ Game 10.

Game 12: When I is honest, F verifying a signature now checks whether
the signature matches some key of a platform that joined, and if not, rejects



the signature. Under the unforgeability of the signature scheme for encrypted
messages, this check will trigger only with negligible probability.

When reducing to the unforgeability of the signature scheme for encrypted
messages, we do not know the issuer secret key isk . S simulating I therefore
simulates proof π in the public key of the issuer. When S must create a credential
while simulating the join protocol, it now uses the signing oracle. From C2, it can
extract gpk using its knowledge of the crs trapdoor. It passes gpk to the signing
oracle, along with the ephemeral encryption key epk , which allows simulation
without knowing isk . F’s algorithms used to be based on the issuer secret key,
which we do not know in this reduciton. We let sig now also use the signing
oracle. Instead of encrypting gpk with epk , it passes these two values to the
signing oracle, and continues as before. Note that any gpk we pass to the signing
oracle is stored in Members or DomainKeys. Now, when we see a valid signature
that does not match any of the gpk values stored, we can extract a forgery:
Signatures have structure (tag ,nym, πSIGN), with

πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1 ∧
SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧ SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

If the signature does not match any of the keys (using the identify algorithm),
it means that nym is not a valid split signature under any of the gpk values for
which an oracle query has been made. By soundness of the proof, S can extract
a credential on the gpk value used, which will be a forgery.

As the signature scheme for encrypted messages is unforgeable, we have
Game 12 ≈ Game 11.

Game 13: F now rejects signatures on message m with basename bsn that
match the key of a platform with an honest TPM or honest host, but that
platform never signed m w.r.t. bsn. If signatures that would previously have
been accepted are now no longer accepted, we can break the unforgeability of
the split signatures.

We distinguish three cases: the matching key gpk is found in Members and the
host is honest, the matchking key is found in Members and the host is corrupt,
or gpk is found in DomainKeys.

[Case 1 – gpk in Members, honest host]. We make this change gradually, for each
TPM Mi individually.
S receives the system parameters, which it puts in the crs. For the case

that the matching key is in Members, S gives the TPM’s ppk to the challenger
when joining. It then has to simulate the host without knowing its part of the
secret key. When signing, the host receives the pre-signatures tag ′ and nym′

on messages (0,m, bsn) and (1, bsn) respectively. Now, when a signature σ on
message m w.r.t. basename bsn is found that matches the platform’s key while
the platform never signed m w.r.t. bsn, we can extract a forgery. By soundness
of the NIZK proof, we can extract tag with Vf(spar , spk , σ, (0,m, bsn)) = 1, and
we never queried OCompleteSign on (0,m, bsn), giving a forgery.



[Case 2 – gpk in DomainKeys, honest host]. Let Game 13.i.j denote the game
in which F prevents forgery for keys in DomainKeys of the platform with TPM
Mi′ and i′ < i, and prevents forgery under the keys in domainkeys with bsnj′ ,
j′ < j of the platform with TPM Mi lets S create the signatures if i′ > i,
and for the platform with TPM Mi, the first j distinct basenames are signed.
We show that Game 13.i.j is indistinguishable from Game 13.i.(j + 1) under
unforgeability-1 of the split signatures.
S receives the system parameters, which it puts in the crs. S now changes

the algorithms it gives to F, such that on input bsnj , it runs (ppk , tsk) ←
PreKeyGen(spar) and gives ppk to the challenger. S receives gpk , for which it
does not know the full secret key. When F wants to sign using gpk , it must create
tag and nym without knowing the second part of the secret key. It creates the
pre-signature using tsk , and completes the signature using OCompleteSign. Now,
when F notices a signature on message m w.r.t. basename bsn that the platform
never signed, it means it did not query OCompleteSign on (0,m, bsn), so we can
extract tag which is a forgery on (0,m, bsn).

If the host is corrupt, but the TPM is honest, we can reduce to the unforgeability-
2 property of split signatures. We again distinguish between a matching key in
Members and DomainKeys.

[Case 3 – gpk in Members, honest TPM, corrupt host]. We make this change
gradually, for each TPM Mi individually.
S receives the system parameters, which it puts in the crs. When S simulates

Mi joining, instead of running PreKeyGen, it uses the ppk as received from the
challenger. When S simulating the issuer receives gpk and π1 from the platform
withMi, it extracts hsk such that VerKey(spar , ppk , spk , hsk) = 1. Whenever S
must pre-sign using the unknown tsk , it calls OPreSign. When F sees a signature
matching this platform’s key gpk on message m w.r.t. basename bsn that Mi

never signed, extract tag , which is a valid signature on (0,m, bsn) under gpk .
Now the unforgeability-2 game is won by submitting ((0,m, bsn), tag , gpk , hsk).

Game 14: F now prevents revocation of platforms with an honest host. Note
that revocation requires a gpk value of the platform to be placed on the revo-
cation list. We now show that no environment has nonnegligible probability of
entering these values.

For platforms with an honest host, we can remove all information on gpk .
First, when we encrypt gpk , tag , or cred , we encrypt dummy values instead
and simulate the proofs. Second, we can replace the nym values by signatures
under different keys, by the key hiding property of the split signatures. Now, the
environment must simply guess gpk . By Lemma 1, the probability of guessing
the public key of a split signature scheme correctly is negligible, so Game 14 ≈
Game 13.

Game 15: F answering linking queries now uses its tracing information to
answer the queries. Previously, it compared nym and nym′, valid split signatures
on bsn under keys gpk and gpk ′ respectively. If nym = nym′, F answered 1, and
otherwise 0.



F now takes all the gpk values it knows and if it finds some gpk such that
one nym is valid under gpk , but nym′ is not, it outputs that the signatures
are not linked. Clearly, in this case we must have nym 6= nym′, so the linking
decision does not change. If F finds some gpk such that both nym and nym′ are
valid signatures on bsn under gpk , it outputs that the signatures are linked. By
signature uniqueness, we have nym = nym′, so again, the linking decision does
not change. This shows Game 15 ≈ Game 14.


