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Abstract

We give Proofs of Work (PoWs) whose hardness is based on a wide array of computational
problems, including Orthogonal Vectors, 3SUM, All-Pairs Shortest Path, and any problem that
reduces to them (this includes deciding any graph property that is statable in first-order logic).
This results in PoWs whose completion does not waste energy but instead is useful for the
solution of computational problems of practical interest.

The PoWs that we propose are based on delegating the evaluation of low-degree polynomials
originating from the study of average-case fine-grained complexity. Beyond being hard on the
average (based on worst-case hardness assumptions), we prove a direct product theorem for the
problem of evaluating our polynomials. For our context, this implies that our Proofs of Useful
Work cannot be sped up through batch evaluation across multiple instances.

For applications such as Bitcoin, which use PoWs on a massive scale, energy is typically
wasted in huge proportions. We give a framework that can utilize such otherwise wasteful work.

Note: An updated version of this paper is available at https://eprint.iacr.org/2018/559.
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1 Introduction

Proofs of Work (PoWs) were introduced [DN92] to enforce that a certain amount of energy was
expended for doing some task in an easily verifiable way. In most applications, PoWs force malicious
users to accrue a large workload, thus guarding against email spam, denial of service attacks, and,
most recently, double-spending in cryptocurrencies such as Bitcoin [Nak08]. Unfortunately, existing
PoW schemes are often disconnected from the task they are attached to so that the work expended
is not actually useful in accomplishing that task. More importantly, the work and energy expended
is generally not useful for anything except proving that work had in fact been done.

To this end, PoWs are wasteful of real resources and energy and, in the massive-use case
of Bitcoin, have even been called an “environmental disaster” [And13]. Two early attempts to
combat this are Primecoin [Kin13] and Permacoin [MJS+14]. The former suggests a Proof of
Work system whose outcome enables the search for chains of prime numbers, whereas the latter
repurposes Bitcoin mining resources to achieve distributed storage of archival data based on Proofs
of Retrievability (thus requiring clients to invest not just computational resources, but also storage).

Another line of work studies Proofs of Space [ABFG14, DFKP15, KK14], where a user must
dedicate a significant amount of disk space, instead of computing power, to perform their task.
This accomplishes a similar constraint on malicious activity to PoWs, since a group of users cannot
over-perform a task without having access to massive amounts of memory. However, as a typical
user has free disk space, such schemes will not similarly waste a resource like energy and pollute
the environment.

In this work we present an alternative to the above approaches: Proofs of Work whose work is
actually useful to solving practical computational problems.

1.1 Proofs of Work

At a high level, a Proof of Work involves three algorithms:

• Gen(1n) is a randomized algorithm that produces a challenge c.

• Solve(c) is an algorithm that solves the challenge c, producing a solution s.

• Verify(c, s) is a (possibly randomized) algorithm that verifies the solution s to c.

While Gen and Verify should run very quickly, there should be a notion of hardness for Solve’s
runtime. More specifically, for some pre-specified length of working time, say t(n), Solve should be
able to produce solutions that Verify accepts, but any attempted solutions produced by an algorithm
running in less time (e.g. t(n)1−ε for any ε > 0) should be rejected by Verify with high probability.
Thus valid solutions ‘prove’ that t(n) work was exerted in creating them. This hardness condition
should also typically be stronger, in that it is also not possible to batch work over a large number
of challenges. That is, more instance should imply proportionately more work.

Stated as is, however, these “solutions” don’t actually solve anything. One of the most com-
monly used PoWs, such as in Bitcoin, is simply to find a value s so that hashing it together with the
given challenge (e.g. with SHA-256) maps to anything with a certain amount of leading 0’s. Not
only is hardness for this based on the heuristic belief that SHA-256 seems to behave unpredictably,
but such an arbitrarily defined value s is useless.

1.2 The Challenge: Proofs of Useful Work

One may hope to improve over the hash-based PoW in usefulness by considering a practical problem
to begin with and allowing challenges to be instances of that problem. If solutions are easily
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verifiable we may believe that we have created a useful PoW scheme, but we must keep in mind
that we have two goals:

1. Hardness: Challenges can be issued such that responding to to them correctly is (condition-
ally) guaranteed to necessitate actual work.

2. Usefulness: Computational tasks can be delegated as challenges to the workers such that the
solution to the delegated task can be quickly and verifiably reconstructed from the workers’
response.

Achieving a PoW scheme that simultaneously attains both desiderata for a practical problem
runs into two issues then. The first is that if we delegate arbitrary instances of the practical problem
to be solved, hardness is no longer guaranteed as easy instances may be delegated; thus, some
“challenges” may not actually require work. The second issue is that if we generate the challenges
randomly we not only need an average-case hardness guarantee (which do not, in general, abound)
but we lose our usefulness in our ability to delegate chosen instances of the problem we hope to
have useful solutions for.

Prior work to this has only been concerned with one of these issues at a time. Hardness is
exactly captured by PoWs, which have largely forsaken usefulness except for very specific tasks,
such as heuristically recycling completed PoWs to be a weak source of randomness [BCG15] or to
mint coins in older cryptocurrencies [JJ99]. Usefulness, on the other hand, can be viewed through
the lens of verifiable delegation of computation [Wil16, BK16, GR17] which allows useful problem
instances to be delegated with quickly reconstructible solutions, yet has not been concerned with
any notion of average-case hardness.

The main challenge facing a designer of a Proof of Useful Work, then, is to marry hardness and
usefulness for as large as possible a class of functions f , and with as much control as possible on
the hardness parameter.

1.3 Our Results

We construct a Proof of Useful Work (uPoW) scheme based on the Orthogonal Vectors (OV)
problem, which is a well-studied problem that is conjectured to take n2−o(1) time to solve in the
worst-case [Wil15]. Further, the computation invested by workers in this scheme can be used to
solve the OV problem itself. Roughly, we show the following.

Informal Theorem. Suppose OV takes n2−o(1) time to decide. Given an instance x, it is possible
to (randomly) generate a challenge cx such that:

• A valid solution s to cx can be computed in Õ(n2) time.

• The validity of a candidate solution to cx can be verified in Õ(n) time.

• Any valid solution to cx requires n2−o(1) time to compute. (Hardness)

• Given a valid solution to cx, OV can be decided on the instance x in Õ(n) time. (Usefulness)

This is formally stated as Theorem 2 in Section 3, and the corresponding construction is Proto-
col 2. Theorem 2 is actually much more general – it applies analogously to generalizations of OV,
called k-OV, allowing us to set the gap between the time taken to generate/verify and the time
required to solve challenges to nk for any k, assuming the hardness of these generalized problems
(which is further implied by the Strong Exponential Time Hypothesis). This gives us fine-grained
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control over the hardness at the cost of having an interactive uPoW, but we show how interaction
can be removed in the Random Oracle Model (Section 5).

Theorem 2 is also stronger than the above informal statement in that it further guarantees that
it is not possible to batch work over a large number of challenges - a very important feature for
PoWs to have. That is, we achieve not just that a single challenge is hard to solve, but also that
finding valid solutions to a set of `(n) (for any ` that is polynomial in n) independently generated
challenges, possibly starting from different OV (resp. k-OV) instances, takes (`(n) · n2−o(1)) (resp.
(`(n) · nk−o(1))) time on average.

We prove this by proving a direct sum theorem (and further show that this can be strengthened
to a direct product theorem, which may be of independent interest) for the problem of computing
a certain low-degree polynomial fOVk. Roughly, the uPoW scheme is structured so that the
challenges are randomly generated inputs to fOVk, and the solutions are evalutations of fOVk at
these inputs (which are easy to verify and can be used to decide k-OV). Thus, Theorem 3 is the
result that fOVk’s evaluation cannot be batch-evaluated over multiple inputs on average.

Informal Theorem. Suppose k-OV takes nk−o(1) time to decide. For any polynomial `, and inputs
x1, . . . ,x`(n) of size n that are selected independently and uniformly at random, any algorithm that

computes all the fOVk(xi)’s correctly with probability 1/no(1) takes time `(n) · nk−o(1).

Note that this in particular implies a worst-case to average-case reduction from OV to fOV
(similar to the one shown in [BRSV17]), though strengthens it with a direct sum theorem.

Multiple instances of k-OV can now be delegated concurrently to be solved, while guaranteeing
that finding such solutions will be hard on average. Thus we attain a non-batchable Proof of Work
that is useful for k-OV.

1.4 The Usefulness of Our PoWs

It is important to note that, besides just OV, the problems 3SUM, All-Pairs Shortest Path (APSP)
[BRSV17], and many other problems [BK16, GR17, Wil16] can also be represented as low-degree
polynomials whose evaluations can be verified efficiently, and so almost immediately fit into our
protocol under assumptions of their hardness. One sufficient condition for a hard problem to have
the above properties is presented in [GR17], which studies doubly efficient interactive proofs for
these problems (and also for the related low-degree polynomials, enabling the requisite efficient
verification).

Further, any problem that quickly reduces to any of these conjectured hard problems can now
also use our uPoW scheme for delegating instances of that problem. Thus we achieve hardness (and
non-batchability) matching the conjectured worst-case hardness of whichever of these problems we
base our uPoW on, and usefulness for any problems reducible to them.

To this point, many types of graph problems already have been shown to quickly reduce to
these problems [AL13, WW10] and, of particular interest, the task of deciding whether or not a
graph has a certain property for any property that can be written in first-order logic is reducible to
(moderate-dimension) OV [GI16]. Thus, we further achieve uPoWs based on the hardness of OV
and its generalizations such that any problem that can be phrased as a first-order graph property
can be delegated.

We then have a rich framework for uPoWs: If you have a problem that is believed to be worst-
case hard for some time bound, then if you can express it as a low-degree polynomial you can
likely achieve a uPoW that will be useful for that problem and has a matching time bound for the
hardness of its challenges. Alternatively, if you have any practical problem at all (even if it’s easy
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or has no believed hardness assumptions) it may still fit our framework by having a fast reduction
to any existing problems that already have a uPoW.

One interesting point here is that, while many reductions to these problems so far have been to
bolster belief in the hardness of these problems (as was the motivation for showing OV complete
for all first-order graph properties [GI16]), this now gives an algorithmic motivation to reduce
interesting problems to them. By reducing to OV, 3SUM, or APSP, you can now delegate Proofs
of Useful Work. Finding classes of problems for which the latter two are complete now has a new
and particularly strong motivation.

Further, [BRSV17] gives low-degree polynomials for the Triangle-Collection and the Zero-Weight
Triangle problems of which 3SUM and APSP both reduce to both of these problems. This allows
a uPoW that is based on either of these to simultaneously be universally useful for any problems
reducing to 3SUM or APSP while also being hard so long as at least one of 3SUM or APSP are hard.
Note that the Triangle-Collection problem’s hardness is also supported by the Strong Exponential
Time Hypothesis for k-SAT (and so is also useful for k-SAT).

Our Proofs of Useful Work, then, may be viewed as a delegation of computation scheme for an
expandable class of practical problems while still maintaining their PoW properties that prevent
activities such as spam and double-spending. Moreover, the work we require can be distributed
across a community, similar to ‘mining pools’ in Bitcoin, and can be done in a manner robust
to Byzantine failures and noise (cf. [BK16]) and, further, identifies where the errors of malicious
community members occurred.

This lends itself nicely to applications of PoWs like for blockchains. We show what modifications
need to be made to our uPoWs and give a delegation scheme to outsource problems to the massive
computing organism of Bitcoin in Section 7. As a final note, we show that our uPoWs can be made
zero-knowledge in Appendix B. While this is the opposite direction of what one may want from
usefulness, it is not only interesting that this is possible but it can also enable interesting dynamics.
For example, Bitcoin workers may ‘go on strike while continuing to work’ by doing their uPoWs
in zero-knowledge, thus continuing to maintain the blockchain and receiving bitcoins for mining
blocks while also withholding their answers from the delegators.

2 Proofs of Useful Work

Proofs of useful work aim to achieve the following two desiderata simultaneously:

1. Hardness: Challenges can be issued such that responding to to them correctly is (condition-
ally) guaranteed to necessitate actual work.

2. Usefulness: Computational tasks can be delegated as challenges to the workers such that the
solution to the delegated task can be quickly and verifiably reconstructed from the workers’
response.

A Proof of Work on its own typically achieves just the hardness property. As mentioned in
Section 1.1, a PoW has a way to quickly generate challenges of desired difficulty such that a
solver is guaranteed to expend a certain amount of (non-batchable) work in producing an easily
verifiable solution.

Unfortunately, the generated challenges are typically random and detached from any fixed
delegatable instance x that someone may want to learn some f(x) for. Thus - on top of generating,
solving, and verifying challenges - we must further generate challenges dependent on x to define
a usefulness property: that solutions to challenges generated according to x can allow for the

4



reconstruction of f(x). We formalize this and give a definition of Proofs of Useful Work (uPoWs).
Syntactically, the definition involves four algorithms:

• Gen(x) is a randomized algorithm that takes an instance x and produces a challenge cx.

• Solve(cx) is an algorithm that solves the challenge cx, producing a solution sketch s.

• Verify(cx, s) is a randomized algorithm that verifies the solution sketch s to the challenge cx.

• Recon(cx, s) is an algorithm that given a valid s for cx reconstructs f(x).

Taken together, these algorithms should result in an efficient proof system whose proofs are hard to
find and useful. (Our hardness condition will be quite strong, including many arbitrary instances
at once to account against batchability. This applies to arbitrary - even easy - delegated instances).

Definition 1 (Proof of Useful Work). A (t(n), δ(n))-Proof of Useful Work (uPoW) for f consists
of four algorithms (Gen, Solve,Verify,Recon). The algorithms must satisfy the following properties:

Efficiency: For any |x| = n

• For any x, Gen(x) runs in time Õ(n).

• For any cx ← Gen(x), Solve(cx) runs in time Õ(t(n)).

• For any cx ← Gen(x) and any s, Verify(cx, s) runs in time Õ(n).

• For any cx ← Gen(x) and s← Solve(cx), Recon(cx, s) runs in time Õ(n).

Completeness: For any cx ← Gen(x) and any s← Solve(cx),

Pr [Verify(c, s) = accept ] = 1

Where the probability is taken over Verify’s randomness.

Soundness: For any s and cx ← Gen(x) such that Recon(cx, s) 6= f(x),

Pr [Verify(cx, s) = accept] < neg(n)

Where the probability is taken over Verify’s randomness and |x| = n.

Hardness: For any polynomial `, any x1, . . . ,x`(n) each of size n, any constant ε > 0, and any
algorithm Solve∗` that runs in time `(n) · t(n)1−ε when given `(n) challenges of size n as input,

Pr

[
∀i : Verify(ci, si) = accept

∣∣∣∣∣ (ci ← Gen(xi))i∈[`(n)]

(s1, . . . , s`(n))← Solve∗` (c1, . . . , c`(n))

]
< δ(n)

Where the probability is taken over Gen and Verify’s randomness.

Low-Variability: The ratio of the expected worst-case to best-case complexity of solving chal-
lenges should be small. Formally, let S be the set of all algorithms that, for every x, give
solutions that cause Verify to accept. Then,

max
x

min
Solve∗∈S

E [TIME(Solve∗(cx)) | cx ← Gen(x)]

min
x

min
Solve∗∈S

E [TIME(Solve∗(cx)) | cx ← Gen(x)]
≤ 1 + ε(n)

Where the expectation is taken over Gen and Solve∗’s randomness.
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[Manuel: This definition should capture what we were talking about in Tel Aviv. 1 + ε(n) will be the factor

more that the unlucky sap whose given a hard instance (to the height of the variability) will have to do as

opposed to someone who gets an easy instance (e.g. in the trivial uPoW case, the unlucky sap does 2` + w(n)

work while the lucky one does only 2` work where w(n) is the worst case complexity of the tacked on delegated

part; so the ratio would be 1 + w(n)/2`. What ε(n) is reasonable for this? How does that ε affect the trivial

uPoW’s need to rescale to match our desired ε? Is it enough? We achieve ε = 0 in our uPoWs. Maybe

just make it a no-variability condition and talk about why trivial solution is bad off the bat for having any

variability?]

We note that this definition implies (by combining completeness and soundness) the following
notion of usefulness:

Usefulness: For any cx ← Gen(x) and s← Solve(cx), we have

Recon(cx, s) = f(x).

If we ignore the condition of low-variability for now (we discuss it’s importance in Section 2.1),
a Proof of Useful Work, then, is a strengthening of the notions of both PoWs and (non-interactive)
verifiable delegation of computation. Namely, a PoW is a uPoW that doesn’t require soundness
(and thus usefulness), and a (non-interactive) verifiable delegation of computation scheme is a
uPoW that doesn’t require hardness.

For further context, without the hardness and usefulness condition we simply have a proof
system, similar to the one described in [Wil16] which proved evaluations of low-degree polynomials
(usefulness was implicit in this work). In [BRSV17], hardness is added to [Wil16]’s proof system
to obtain PoWs and, in [BK16, GR17], this proof system’s usefulness is explicitly explored to
obtain verifiable delegation of computation. We now provide a framework to add both hardness
and usefulness simultaneously to achieve Proofs of Useful Work.

Note that, as with the proof system, all of these definitions can - and often are in the delegation
of computation framework - be made interactive.

Further note of the definition that a PoW does not typically need a Recon algorithm (and
that any fixed choice of x would yield a valid PoW scheme) and that delegation of computation
does not typically need a Gen algorithm (or Gen can become a fixed mapping to any one of its
otherwise random outputs). We also reiterate that soundness is not required for a PoW: we don’t
necessarily care that a solution is correct so long as it took work (guaranteed in hardness) to
produce. However, soundness is now crucial for the delegation of computation as a way to tell
that the value we reconstruct is what we wanted and not some garbage value produced by a fake
solution (even if hardness guarantees that it took time to find the fake solution).

2.1 The Importance of Low-Variability

We now discuss why, in highly competitive and incentivized environments like that of cryptocur-
rencies, the low-variability criteria in the above uPoW definition becomes a necessity. For, say, just
preventing email spam, this condition may not be necessary since all we would care about there
is that sending an email requires some decided upon amount of work; amount of work varying by
polylog factors isn’t very important so long as we can lower and upper bound the work required
reasonably. In many cryptocurrencies, however, where groups of miners compete against each other
to be the first to solve PoWs, variability can lead to a complete lack of fairness and even Denial of
Service type attacks in the system.

As an illustrative example, let’s consider a trivial uPoW that satisfies all conditions but low-
variability. Namely, consider
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Remark 2.1. We note that variability is different than the variance of the amount of work that will
be needed as a random variable. [Manuel: Talk about difference here and note that low variance is generally

implicit and wanted and that SHA-256 having some variance is already an annoying problem, and that all of our

uPoWs actually have variance of 0.]

3 A Useful PoW for Orthogonal Vectors

We now present a Proof of Useful Work (uPoW) for the Orthogonal Vectors (OV) problem and its
generalization k-OV. The properties possessed by OV that enable this construction are also shared
by other problems mentioned earlier, including 3SUM and APSP as noted in [BRSV17] and also
for an array of other problems [BK16, GR17, Wil16]. Consequently, while we focus on OV, uPoWs
for them can be constructed along the lines of the one here. Further, these constructions would
immediately provide uPoWs for other problems that reduce to OV, 3SUM, etc. in a fine-grained
manner with little, if any, degradation of security. Of particular interest, deciding graph properties
that are statable in first-order logic all reduce to (moderate-dimension) OV [GI16] and so we obtain
uPoWs useful for any problem statable as a first-order graph property.

All the algorithms we consider henceforth – reductions, adversaries, etc. – are non-uniform
Word-RAM algorithms (with words of size O(log n) where n will be clear from context) unless
stated otherwise, both in our hardness assumptions and our constructions. Security against such
adversaries is necessary for PoWs to remain hard in the presence of pre-processing, which is typical
in the case of Bitcoin, for instance, where specialized hardware is often used. In the case of reduc-
tions, this non-uniformity is solely used to ensure that specific parameters determined completely
by instance size (such as the prime p(n) in Definition 4) are known to the reductions and delegators
do not need to compute them afresh for each problem they delegate.

Definition 2 (Orthogonal Vectors). The OV problem on vectors of dimension d (denoted OVd) is

to determine, given two sets U , V of n vectors from {0, 1}d(n) each, whether there exist u ∈ U and
v ∈ V such that 〈u, v〉 = 0 (over Z). If left unspecified, d is to be taken to be

⌈
log2 n

⌉
.

OV is commonly conjectured to require n2−o(1) to decide, for which many conditional fine-
grained hardness results are based on [Wil15], and has been shown to be true if the Strong Expo-
nential Time Hypothesis (SETH) holds [Wil05]. This hardness and the hardness of its generalization
to k-OV of requiring nk−o(1) time (which also holds under SETH) are what we base the hardness of
our uPoWs on. We now define k-OV.

Definition 3 (k-Orthogonal Vectors). For an integer k ≥ 2, the k-OV problem on vectors of

dimension d is to determine, given k sets (U1, . . . , Uk) of n vectors from {0, 1}d(n) each, whether
there exist us ∈ Us for each s ∈ [k] such that over Z,∑

`∈[d(n)]

u1` · · ·uk` = 0

We say that such a set of vectors is k-orthogonal. If left unspecified, d is to be taken to be
⌈
log2 n

⌉
.

While these problems are conjectured worst-case hard, there are currently no wide-held beliefs
for distributions that it may be average-case hard over. [BRSV17], however, defines a related
problem that is shown to be average-case hard when assuming the worst-case hardness of k-OV.
The average-case hard problem is that of evaluating the following polynomial:
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For any prime number p, we define the polynomial fOVkn,d,p : Fkndp → Fp as follows. Its inputs
are parsed in the manner that those of k-OV are: below, for any s ∈ [k] and i ∈ [n], usi represents
the ith vector in Us, and for ` ∈ [d], usi` represents its `th coordinate.

fOVkn,d,p(U1, . . . , Uk) =
∑

i1,...,ik∈[n]

∏
`∈[d]

(
1− u1i1` · · ·u

k
ik`

)

Note that the degree of this polynomial is kd. When given an instance of k-OV (from {0, 1}knd)
as input, fOVkn,d,p counts the number of tuples of k-orthogonal vectors (modulo p).

For small d (e.g. d =
⌈
log2 n

⌉
), this is a fairly low-degree polynomial. The following definition

gives the family of such polynomials parameterized by input size. This family was shown to be
hard to compute on uniformly random inputs if k-OV is hard in the worst-case [BRSV17].

Definition 4 (FOVk). Consider an integer k ≥ 2. Let p(n) be the smallest prime number larger

than nlogn, and d(n) =
⌈
log2 n

⌉
. FOVk is the family of functions

{
fOVkn,d(n),p(n)

}
.

Remark 3.1. We note that most of our results would hold for a much smaller choice of p(n) above
– anything larger than nk would do. The reason we choose p to be this large is to achieve negligible
soundness error in interactive protocols we shall be designing for this family of functions (see
Protocol 1). Another way to achieve this is to use large enough extension fields of Fp for smaller
p’s; this is in fact preferable as the value of p(n) as defined now is much harder to compute for
uniform algorithms.

While, assuming k-OV takes nk−o(1) time in the worst-case implies that evaluating polynomials
in FOV on points is just as hard on average, it is still easily delegate the evaluation of such points.

3.1 Preliminary Protocols

We describe here a protocol (Protocol 1) that can prove, given valid x and y, that y = fOVkn,d,p(x)
(and can even delegate that evaluation), which will be used as a sub-routine in our final uPoW pro-
tocol, and which will also find use in proving its security. This protocol is a (k-1)-round interactive
proof that, specifically, given U1, . . . , Uk ∈ Fndp and y ∈ Fp, proves that fOVkn,d,p(U1, . . . , Uk) = y.

The special case of k = 2 for OV was shown as a non-interactive (MA) protocol in [Wil16] and
this MA scheme was used to create PoWs based on OV, 3SUM, and APSP in [BRSV17], however with
randomly generated challenges that were not useful. The following interactive proof is essentially
the sum-check protocol, but in our case we need to pay close attention to the complexity of the
prover and the verifier and so use ideas from [Wil16].

We will set up the following definitions before describing the protocol. For each s ∈ [k], consider
the univariate polynomials φs1, . . . , φ

s
d : Fp → Fp, where φs` represents the `th column of Us – that

is, for i ∈ [n], φs`(i) = usi`. Each φs` has degree at most (n− 1). fOVkn,d,p can now be written as:

fOVkn,d,p(U1, . . . , Uk) =
∑

i1,...,ik∈[n]

∏
`∈[d]

(
1− u1i1` · · ·u

k
ik`

)
=

∑
i1,...,ik∈[n]

∏
`∈[d]

(
1− φ1` (i1) · · ·φk` (ik)

)
=

∑
i1,...,ik∈[n]

q(i1, . . . , ik)
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where q is defined for convenience as:

q(i1, . . . , ik) =
∏
`∈[d]

(
1− φ1` (i1) · · ·φk` (ik)

)
The degree of q is at most D = k(n − 1)d. Note that q can be evaluated at any point in

Fkp in time Õ(knd log p), by evaluating all the φs`(is)’s (these polynomials can be found using fast
interpolation techniques for univariate polynomials [Hor72]), computing each term in the above
product and then multiplying them.

For any s ∈ [k] and α1, . . . , αs−1 ∈ Fp, define the following univariate polynomial:

qs,α1,...,αs−1(x) =
∑

is+1,...,ik∈[n]

q(α1, . . . , αs−1, x, is+1, . . . , ik)

Every such qs has degree at most (n− 1)d – this can be seen by inspecting the definition of q.
With these definitions, the interactive proof is described as Protocol 1 below. The completeness
and soundness of this interactive proof is then asserted by Theorem 1, which is proven in Section 4.

Interactive Proof for FOVk:

• The prover sends the coefficients of a univariate polynomial q∗1 of degree at most (n− 1)d.

• The verifier checks that
∑

i1∈[n] q
∗
1(i1) = y. If not, it rejects.

• For s from 1 up to k − 2:

– The verifier sends a random αs ← Fp.
– The prover sends the coefficients of a polynomial q∗s+1,α1,...,αs

of degree at most (n−1)d.

– The verifier checks that
∑

is+1∈[n] q
∗
s+1,α1,...,αs

(is+1) = q∗s,α1,...,αs−1
(αs). If not, it rejects.

• The verifier picks αk−1 ← Fp and checks that q∗k−1,α1,...,αk−2
(αk−1) = qk−1,α1,...,αk−2

(αk−1),

computed using the fact that qk−1,α1,...,αk−2
(αk−1) =

∑
ik∈[n] qk,α1,...,αk−1

(ik). If not, it rejects.

• If the verifier hasn’t rejected yet, it accepts.

Protocol 1: Interactive Proof for FOVk.

Theorem 1. For any k ≥ 2, let d and p be as in Definition 4. Protocol 1 is a (k− 1)-round inter-
active proof for proving that y = FOVk(x). This protocol has perfect completeness and soundness

error at most
(
knd
p

)
. The prover runs in time Õ(nkd log p), and the verifier in time Õ(knd2 log p).

As observed earlier, Protocol 1 is non-interactive when k = 2. We then get the following
corollary for FOV.

Corollary 1. For k = 2, let d and p be as in Definition 4. Protocol 1 is an MA proof for proving

that y = FOV(x). This protocol has perfect completeness and soundness error at most
(
2nd
p

)
. The

prover runs in time Õ(n2), and the verifier in time Õ(n).

We now currently have a proof system with completeness and soundness along with efficiency
bounds on the prover and verifier. In the framework of uPoWs in Section 2, we still need a way to
extend this proof system to have hardness and usefulness if we are to obtain a uPoW.
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3.2 The uPoW Protocol

We now present Protocol 2, which we show to be a Proof of Useful Work for k-OV.

Proof of Useful Work for k-OV:

• Gen(x):

– Given an instance x ∈ {0, 1}knd, interpret x as an element of Fkndp (where p = p(n) is
as in Definition 4).

– Pick a random r ∈ Fkndp .

– Output the set of vectors cx = {yt = x + tr | t ∈ [kd+ 1]}.

• (Solve,Verify) work as follows given cx = {yt}:
– Solve computes zt = fOVkn,d,p(yt) and outputs the set s = {zt}t∈[kd+1].

– For each t in parallel: Solve and Verify run Protocol 1 with input (yt, zt).

– Verify accepts iff all of the above instances of Protocol 1 accept.

• Recon(cx, s):

– Interpret z1, . . . , zkd+1 as the evaluations of a univariate polynomial h(t) of degree kd
at t = 1, . . . , kd+ 1.

– Interpolate to find the coefficients of h and compute z = h(0).

– If z 6= 0, output 1, else 0 as the answer to the k-OV instance.

Protocol 2: Proof of Useful Work for k-OV.

Theorem 2. For any k ≥ 2, suppose k-OV takes nk−o(1) time to decide for any d = ω(log n).
Then, Protocol 2 is an (nk, δ)-Proof of Useful Work for k-OV for any function δ(n) > 1/no(1).

Remark 3.2. As is, this will be an interactive uPoW. In the special case of k = 2, Corollary 1 gives
us that we have a regular non-interactive uPoW. If we want to remove interaction for general k-OV,
however, we could use the MA proof in [Wil16] at cost of verification and reconstruction taking time
Õ(nk/2). To keep verification and reconstruction time at Õ(n), we instead show how to remove
interaction in the Random Oracle model in Section 5. This will allow us to tune hardness in that
we can choose k and thus the amount of work, nk−o(1), that must be completed while always only
needing Õ(n) time to reconstruct.

We will use Theorem 1 to argue for the completeness and soundness of Protocol 2. In order
to prove the hardness, we will need lower bounds on how well the problem that Solve is required
to solve can be batched. We first define what it means for a function to be non-batchable in the
average-case in a manner compatible with the hardness requirement. Note that this requirement is
stronger than being non-batchable in the worst-case.

Definition 5. Consider a function family F = {fn : Xn → Yn}, and a family of distributions
D = {Dn}, where Dn is over Xn. F is not (`, t, δ)-batchable on average over D if, for any
algorithm Batch that runs in time `(n)t(n) when run on `(n) inputs from Xn, when it is given as
input `(n) independent samples from Dn,

Pr
xi←Dn

[
Batch(x1, . . . , x`(n)) = (fn(x1), . . . , fn(x`(n)))

]
< δ(n)
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We will be concerned with the case where the batched time t(n) is less than the time it takes
to compute fn on a single instance. This sort of statement is what a direct sum theorem for F ’s
hardness would guarantee. Theorem 3, then, claims that we achieve this non-batchability for FOVk
and, as FOVk is one of the things that Solve is required evaluate on, we will be able to show the
desired hardness of Protocol 2. We prove Theorem 3 via a direct sum theorem in Appendix A, and
prove a weaker version for illustrative purposes in Section 6 along with a direct product theorem.

Theorem 3. For any k ≥ 2, suppose k-OV takes nk−o(1) time to decide for any d = ω(log n).
Then, for any constants c, ε > 0 and δ < ε/2, FOVk is not (nc, nk−ε, 1/nδ)-batchable on average
over the uniform distribution over its inputs.

We now put all the above together to prove Theorem 2 as follows.

Proof of Theorem 2. We prove that Protocol 2 satisfies the various requirements demanded of
a Proof of Useful Work for k-OV in turn.

Efficiency.
• Gen(x) simply computes (kd+ 1) linear combinations over Fknd to create all the elements of
cx and so takes the time of O(kd) basic operations on Fknd. As d = log2 n and p ≤ 2nlogn by
Bertrand-Chebyshev’s Theorem, this takes Õ(n) time.

• Solve computes fOVkn,d,p(yt) on (kd + 1) values of yt, each of which can be done in Õ(nk)
time. It then runs the prover in (kd + 1) instantiations of Protocol 1, each of which can be
done in Õ(nk) time by Theorem 1. So in all it takes takes Õ(nk(kd+ 1)) = Õ(nk) time.

• Verify runs the verifier in (kd+1) instantiations of Protocol 1, taking a total of Õ(n(kd+1)) =
Õ(n) time, again by Theorem 1.

• Recon does interpolation and evaluation of a univariate polynomial of degree kd over Fp,
which can be done in time Õ((kd)2), which is much less than n.

Usefulness. Define the univariate polynomial hx,r as hx,r(t) = fOVkn,d,p(x + tr). Note that

the degree of hx,r is at most the degree of fOVkn,d,p, which is kd. When Solve produces the correct

evaluations z1, . . . , zkd+1 of fOVkn,d,p at (x + r), . . . , (x + (kd + 1)r), these are also evaluations of
hx,r at 1, . . . , (kd+1). So when Recon in Protocol 2 interpolates to find coefficients of a polynomial,
what it finds is hx,r. Further, its constant coefficient is hx,r(0) = fOVkn,d,p(x). As p is large enough,

this value counts the number of k-orthogonal vectors in the k-OV instance x ∈ {0, 1}knd. So x has
k-orthogonal vectors iff this value is non-zero.

Completeness and Soundness. This follows immediately from the completeness and soundess
of Protocol 1 as an interactive proof for FOVk, as stated in Theorem 1, as this is the protocol that
Solve and Verify engage in, where soundness further uses the correctness of Recon as argued above.

Hardness. We proceed by contradiction. On a high level, we will assume that there is a set of
instances for which the hardness constraint of our protocol breaks on average and show that, given
these instances as non-uniform advice, we can then break FOVk’s average-case non-batchability:

Suppose there is an (interactive) algorithm Solve∗, a polynomial `, a set of k-OV instances
x1, . . . ,x`(n) ∈ {0, 1}knd, and an ε > 0 such that Solve∗ runs in time `(n)nk−ε and makes Verify

accept on all these instances with probability at least δ(n) that is 1/no(1). Let the fOV instances
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produced by Gen(xi) be
{
yit
}

, and the corresponding sets si produced by Solve∗ be
{
zit
}

. So Solve∗

succeeds as a prover in Protocol 1 for all the instances
{

(yit, z
i
t)
}

with probability at least δ(n).
By the negligible soundness of Protocol 1 guaranteed by Theorem 1, in order to do this, Solve∗

has to use the correct values fOVkn,d,p(y
i
t) for all zit’s with probability negligibly close to δ(n) and

definitely more than, say, δ(n)/2. In particular, with this probability, it has to explicitly compute

fOVkn,d,p at y1
1, . . . ,y

`(n)
1 , all of which are independent uniform points in Fkndp .

Such a Solve∗ can now be used as follows to compute fOVkn,d,p on any independently random

y1, . . . ,y`(n) ∈ Fkndp : Take the points x1, . . . ,x`(n) (on which Solve∗ succeeds as above) as non-
uniform advice. Now for each i ∈ [`(n)], instead of choosing a random “slope” r for a line passing
through yi (as Gen(yi) would do), we will draw the line connecting yi and easy instance xi and
have the challenge be the set of points,

{
yit
}

, on that line. Since yi is uniformly random, this is
simply a random line passing through xi. That is, a random challenge based on instance xi which
was assumed easy on average for Solve∗. Thus, Solve∗ computes fOVkn,d,p on all of these correctly
with probability greater than δ(n)/2.

Hence Solve∗ can be used to construct a non-uniform algorithm that runs in time `(n)nk−ε and
computes fOVkn,d,p correctly on all of y1, . . . ,y`(n) with probability at least δ(n)/2 (>> 1/nε/2)
when all of these are distributed independently and uniformly. But this is exactly what Theorem 3
says is impossible. So such a Solve∗ cannot exist, and this proves the hardness of Protocol 2.

Low-Variability. [Manuel: needs to be proved]

We have thus proven all the properties necessary and hence Protocol 2 is indeed an (nk, δ)-Proof
of Useful Work for k-OV for any δ(n) > 1/no(1).

4 Verifying FOVk

In this section, we prove Theorem 1 (stated in Section 3), which is about Protocol 1 being a valid
interactive proof for proving evaluations of FOVk. We use here terminology from the theorem
statement and protocol description. Recall the the input to the protocol is U1, . . . , Uk ∈ Fndp and

y ∈ Fp, and the prover wishes to prove that y = fOVkn,d,p(U1, . . . , Uk).

Completeness. If indeed y = fOVkn,d,p(U1, . . . , Uk), the prover can make the verifier in the pro-
tocol accept by using the polynomials (q1, q2,α1 , . . . , qk,α1,...,αk) in place of (q∗1, q

∗
2,α1

, . . . , q∗k,α1,...,αk
).

Perfect completeness is then seen to follow from the definitions of these polynomials and their
relation to q and hence fOVkn,d,p.

Soundness. Suppose y 6= fOVkn,d,p(U1, . . . , Uk). We now analyze the probability with which a
cheating prover could make the verifier accept.

To start with, note that the prover’s q∗1 has to be different from q1, as otherwise the check in the
second step would fail. Further, as the degree of these polynomials is less than nd, the probability
that the verifier will then choose an α1 such that q∗1(α1) = q1(α1) is less than nd

p .
If this event does not happen, then the prover has to again send a q∗2,α1

that is different from

q2,α1 , which again agree on α2 with probability less than nd
p . This goes on for (k−1) rounds, at the

end of which the verifier checks whether q∗k−1(αk−1) is equal to qk−1(αk−1), which it computes by
itself. If at least one of these accidental equalities at a random point has not occurred throughout
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the protocol, the verifier will reject. The probability that no violations occur over the (k−1) rounds
is, by the union bound, less than knd

p .

Efficiency. Next we discuss details of how the honest prover and the verifier are implemented,
and analyze their complexities. To this end, we will need the following algorithmic results about
computations involving univariate polynomials over finite fields.

Lemma 1 (Fast Multi-point Evaluation [Fid72]). Given the coefficients of a univariate polyno-
mial q : Fp → Fp of degree at most N , and N points x1, . . . , xN ∈ Fp, the set of evaluations
(q(x1), . . . , q(xN )) can be computed in time O(N log3N log p).

Lemma 2 (Fast Interpolation [Hor72]). Given N + 1 evaluations of a univariate polynomial q :
Fp → Fp of degree at most N , the coefficients of q can be computed in time O(N log3N log p).

To start with, both the prover and verifier compute the coefficients of all the φs` ’s. Note that,
by definition, they know the evaluation of each φs` on n points, given by {(i, usi`)}i∈[n]. This can be

used to compute the coefficients of each φs` in time Õ(n log p) by Lemma 2. The total time taken

is hence Õ(knd log p).
The proof of the following proposition specifies further details of the prover’s workings.

Proposition 1. The coefficients of the polynomial qs,α1,...,αs−1 can be computed in time Õ((nk−s+1d+
nd2) log p) given the above preprocessing.

• Fix some value of s, α1, . . . , αs−1.

• For each ` ∈ [d], compute the evaluation of φs` on nd points, say {1, . . . , nd}.

– Since its coefficients are known, the evaluations of each φs` on these nd points can be

computed in time Õ(nd log p) by Lemma 1, for a total of Õ(nd2 log p) for all the φs` ’s.

• For each setting of is+1, . . . , ik, compute the evaluations of the polynomial ρis+1,...,ik(x) =
q(α1, . . . , αs−1, x, is+1, . . . , ik), on the points {1, . . . , nd}.

– First substitute the constants α1, . . . , αs−1, is+1, . . . , ik into the definition of q.

– This requires computing, for each ` ∈ [d] and s′ ∈ [k] \ {s}, either φs
′
` (αs) or φs

′
` (is).

All of this can be done in time Õ(knd log p) by direct polynomial evaluations since the
coefficients of the φs

′
` ’s are known.

– This reduces q to a product of d univariate polynomials of degree less than n, whose
evaluations on the nd points can now be computed in time Õ(knd log p) by multiplying
the constants computed in the above step with the evaluations of φs

′
` on these points,

and subtracting from 1.

– The product of the evaluations can now be computed in time Õ(nd2 log p) to get what
we need.

• Add up the evaluations of ρis+1,...,ik pointwise over all settings of (is+1, . . . , ik).

– There are nk−s possible settings of (is+1, . . . , ik), and for each of these we have nd
evaluations. All the additions hence take Õ(nk−s+1d log p) time.

• This gives us nd evaluations of qs,α1,...,αs−1 , which is a univariate polynomial of degree at most

(n− 1)d. So its coefficients can be computed in time Õ(nd log p) by Lemma 2.

• It can be verified from the intermediate complexity computations above that all these oper-
ations together take Õ((nk−s+1d+ nd2) log p) time. This proves the proposition.
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Recall that what the honest prover has to do is compute q1, q2,α1 , . . . , qk,α1,...,αk−1
for the αs’s

specified by the verifier. By the above proposition, along with the preprocessing, the total time the
prover takes is:

Õ(knd log p+ (nkd+ nd2) log p) = Õ(nkd log p)

The verifier’s checks in steps (2) and (3) can each be done in Õ(n log p) time using Lemma 1.
Step (4), finally, can be done by using the above proposition with s = k in time Õ(nd2 log p). Even
along with the preprocessing, this leads to a total time of Õ(knd2 log p).

5 Removing Interaction

In this section we show how to remove the interaction in Protocol 2 via the Fiat-Shamir heuristic
and thus prove security in the Random Oracle model. In what follows, we take H to be a random
oracle that outputs an element of Fp, where p is as in Definition 4 and n will be clear from context.

Recall the definition of the polynomials q(i1, . . . , ik) and qs,α1,...,αs−1(x) from Section 3. The
non-interactive Proof of Useful Work for k-OV is described as Protocol 3.

Theorem 4. For any k ≥ 2, suppose k-OV takes nk−o(1) time to decide for any d = ω(log n).
Then, Protocol 3 is a non-interactive (nk, δ)-Proof of Useful Work for k-OV in the Random Oracle
model for any function δ(n) > 1/no(1).

Efficiency, correctness, usefulness (given soundness), and hardness of Protocol 3 follow from the
corresponding arguments about Protocol 2 in the proof of Theorem 2 in Section 3. The following
lemma implies that the protocol is sound as well, completing the proof of Theorem 4.

Lemma 3. For any k ≥ 2, if Protocol 2 is sound as a Proof of Useful Work for FOVk, then
Protocol 3 is sound as a non-interactive Proof of Useful Work for FOVk in the Random Oracle
model.

Note that in the above uPoW, we can cluster the sth oracle calls for each instance together, so
that only k oracle calls need to be made.

Proof. Let P be a cheating prover for the non-interactive uPoW that breaks soundness with non-
negligible probability ε(n). We will construct a prover, P ′, that then also breaks the interactive
uPoW soundness with non-negligible probability.

Notice that if P outputs a proof with a non-queried “challenge,” then by the Schwartz-Zippel
Lemma the probability the transcript is accepted is negligible. Thus, any cheating prover must
query for all “challenges.”

Suppose P makes at most m = poly(n) queries to the random oracle, H. We select k of the
m query indices, i1, . . . , ik. Let the verifier V (recall that our protocol is public coin) output the
k indendently drawn uniform challenges α1, . . . , αk on randomness r. We then program a random
oracle Hr to output αj on the ij query. Now, we define P ′ to be the interactive prover that is
consistent with the transcript of P . Notice that P ′ will fool V (r) with probability ε(n) (when
given access to Hr), conditioned on the fact that the ij ’s are chosen correctly (which happens

with probability (1/m)k). So, P ′ breaks soundness with probability ε′(n) = ε(n)
mk

, which is still
non-negligible given k is constant.

Moreover, the distribution of random oracles {H} is identical to the distribution of {Hr}r.
Therefore, P ′ cannot distinguish between the two cases. Thus, we can define P ′′ that simply flips
the coins for output themself and breaks soundness with probability ε′(n).
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A Non-interactive uPoW for k-OV

Gen(x):

• Given an instance x ∈ {0, 1}knd, interpret x as an element of Fkndp (where p = p(n) is as in
Definition 4).

• Pick a random r ∈ Fkndp .

• Output the set of vectors cx = {yt = x + tr | t ∈ [kd+ 1]}.

Solve(cx):

Given input cx = {yt}, for each y ∈ cx do the following:

• Compute zy = fOVkn,d,p(y).

• Compute coefficients of qy1 . Let τy1 = (zy, qy1 ).

• For s from 1 to k − 2:

– Compute αys = H(cx, τ
y
s ).

– Compute coefficients of qys+1 = qs+1,α1,...,αs
, with respect to y.

– Set τys+1 = (τys , q
y
s+1).

Output T = {τys+1}y∈cx

Verify(cx, T
∗):

Given T ∗ = {τy∗ = (zy∗, qy∗1 , qy∗2 , . . . , qy∗k−1)}, for each τy∗ ∈ T ∗ do the following:

• Check
∑
i1∈[n] q

y∗
1 (i1) = zy∗. If check fails, reject.

• Compute αy∗1 = H(cx, z
y∗, qy∗1 ).

• For s from 1 up to k − 2:

– Compute αy∗s = H(cx, z
y∗, qy∗1 , . . . , qy∗s ).

– Check that
∑
is+1∈[n] q

y∗
s+1(is+1) = qy∗s (αy∗s ). If check fails, reject.

• Compute αy
∗

k−1 = H(cx, z
y∗, qy∗1 , . . . , qy∗k−2).

• Check that qy∗k−1(is+1) =
∑
ik∈[n] q

y
k(ik). If check fails, reject.

If verifier has yet to reject, accept.

Recon(cx, {zyt}):
• Interpret zy1 , . . . , zykd+1

as the evaluations of a univariate polynomial h(t) of degree kd at
t = 1, . . . , kd+ 1.

• Interpolate to find the coefficients of h and compute z = h(0).

• If z 6= 0, output 1, else 0 as the answer to the k-OV instance.

Protocol 3: A Non-interactive uPoW for k-OV

6 A Direct Product Theorem for FOV
A direct sum theorem for a problem roughly states that solving m independent instances of a
problem takes m times as long as a single instance. The converse of this is attaining a non-trivial
speed-up when given a batch of instances. In this section we prove a direct sum theorem for the
problem of evaluating FOV and thus its non-batchability.

Direct product theorems are stronger results that state that, beyond being a direct sum theorem,
the probability of solving the m instances drops exponentially in m when only given the time it
would typically take for a single instance. We prove both a direct sum theorem and a direct product
theorem here.
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Direct sum and, especially, direct product theorems are typically elusive in complexity theory
and so our results, which we prove for generic problems with a certain set of properties, may
be of independent interest to the study of hardness amplification. That our results show that
batch-evaluating our multivariate low-degree polynomials is hard may be particularly surprising
since batch-evaluation for univariate low-degree polynomials is known to be easy [Fid72, Hor72]
and, further, [BK16, GR17, Wil16] show that batch-evaluating multivariate low-degree polynomials
(including our own) is easy to delegate. For more rigorous definitions of direct sum and direct
product theorems, see [She12].

6.1 A Direct Sum Theorem

In this section we prove the following weaker version of Theorem 3 on FOV’s non-batchability
(Theorem 3 is proven in Appendix A using an extension of the techniques employed here). The
notion of non-batchatbility used below is defined in Definition 5 in Section 3.

Theorem 5. For any k ≥ 2, suppose k-OV takes nk−o(1) time to decide for any d = ω(log n).
Then, for any constants c, ε > 0, FOVk is not (nc, nk−ε, 7/8)-batchable on average over the uniform
distribution over its inputs.

Throughout this section, F , F ′ and G are families of functions {fn : Xn → Yn}, {f ′n : X ′n → Y ′n}
and

{
gn : X̂n → Ŷn

}
, and D = {Dn} is a family of distributions where Dn is over X̂n.

Theorem 5 is the result of two properties possessed by FOVk. We define these properties below,
prove a more general lemma about functions that have these properties, and use it to prove this
theorem.

Definition 6. F is said to be (s, `)-downward reducible to F ′ in time t if there is a pair of
algorithms (Split,Merge) satisfying:

• For all large enough n, s(n) < n.

• Split on input an x ∈ Xn outputs `(n) instances from X ′s(n).

Split(x) = (x1, . . . , x`(n))

• Given the value of F ′ at these `(n) instances, Merge can reconstruct the value of F at x.

Merge(x, f ′s(n)(x1), . . . , f
′
s(n)(x`(n))) = fn(x)

• Split and Merge together run in time at most t(n).

If F ′ is the same as F , then F is said to be downward self-reducible.

Definition 7. F is said to be `-robustly reducible to G in time t if there is a pair of algorithms
(Split,Merge) satisfying:

• Split on input an x ∈ Xn (and randomness r) outputs `(n) instances from X̂n.

Split(x; r) = (x1, . . . , x`(n))

• For such a tuple (xi)i∈[`(n)] and any function g∗ such that g∗(xi) = gn(xi) for at least 2/3 of
the xi’s, Merge can reconstruct the function value at x as:

Merge(x, r, g∗(x1), . . . , g
∗(x`(n))) = fn(x)

16



• Split and Merge together run in time at most t(n).

• Each xi is distributed according to Dn, and the xi’s are pairwise independent.

The above is a more stringent notion than the related non-adaptive random self-reducibility as
defined in [FF93]. We remark that to prove what we need, it can be shown that it would have been
sufficient if the reconstruction above had only worked for most r’s.

Lemma 4. Suppose F , F ′ and G have the following properties:

• F is (sd, `d)-downward reducible to F ′ in time td.

• F ′ is `r-robustly reducible to G over D in time tr.

• G is (`a, ta, 7/8)-batchable on average over D, and `a(sd(n)) = `d(n).

Then F can be computed in the worst-case in time:

td(n) + `d(n)tr(sd(n)) + `r(sd(n))`d(n)ta(sd(n))

We note, that the condition `a(sd(n)) = `d(n) above can be relaxed to `a(sd(n)) ≤ `d(n) at the
expense of a factor of 2 in the worst-case running time obtained for F . We now show how to prove
Theorem 5 using Lemma 4, and then prove the lemma itself.

Proof of Theorem 5. Fix any k ≥ 2. Suppose, towards a contradiction, that for some c, ε > 0,
FOVk is (nc, nk−ε, 7/8)-batchable on average over the uniform distribution. In our arguments we
will refer to the following function families:

• F is k-OV with vectors of dimension d =
(

k
k+c

)2
log2 n.

• F ′ is k-OV with vectors of dimension log2 n.

• G is FOVk (over Fkndp for some p that definitely satisfies p > n).

Let m = nk/(k+c). Note the following two properties :

• n
mc/k

= m

• d =
(

k
k+c

)2
log2 n = log2m

We now establish the following relationships among the above function families.

Proposition 2. F is (m,mc)-downward reducible to F ′ in time Õ(mc+1).

Splitd, when given an instance (U1, . . . , Uk) ∈ {0, 1}k(n×d), first divides each Ui into mc/k parti-
tions Ui1, . . . , Uimc/k ∈ {0, 1}

m×d. It then outputs the set of tuples
{

(U1j1 , . . . , Ukjk) | ji ∈ [mc/k]
}

.

Each Uij is in {0, 1}m×d and, as noted earlier, d = log2m. So each tuple in the set is indeed an
instance of F ′ of size m. Further, there are (mc/k)c = mc of these.

Note that the original instance has a set of k-orthogonal vectors if and only if at least one of the
mc smaller instances produced does. So Merged simply computes the disjunction of the F ′ outputs
to these instances.

Both of these can be done in time O(mc · k ·md+mc) = Õ(mc+1).

Proposition 3. F ′ is 12kd-robustly reducible to G over the uniform distribution in time Õ(m).
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Notice that for any U1, . . . , Uk ∈ {0, 1}m×d, we have that k-OV(U1, . . . , Uk) = fOVkm(U1, . . . , Uk).
So it is sufficient to show such a robust reduction from G to itself. We do this now.

Given input x ∈ Fkndp , Splitr picks two uniformly random x1,x2 ∈ Fkndp and outputs the set of
vectors

{
x + tx1 + t2x2 | t ∈ {1, . . . , 12kd}

}
. Recall that our choice of p is much larger than 12kd

and hence this is possible. The distribution of each of these vectors is uniform over Fkndp , and they
are also pairwise independent as they are points on a random quadratic curve through x.

Define the univariate polynomial gx,x1,x2(t) = fOVkm(x + tx1 + t2x2). Note that its degree
is at most 2kd. When Merger is given (y1, . . . , y12kd) that are purported to be the evaluations of
fOVkm on the points produced by Split, these can be seen as purported evaluations of gx,x1,x2 on
{1, . . . , 12kd}. This can, in turn, be treated as a corrupt codeword of a Reed-Solomon code, which
under these parameters has distance 10kd.

The Berlekamp-Welch algorithm can be used to decode any codeword that has at most 5kd cor-
ruptions, and if at least 2/3 of the evaluations are correct, then at most 4kd evaluations are wrong.
Hence Merger uses the Berlekamp-Welch algorithm to recover gx,x1,x2 , which can be evaluated at
0 to obtain fOVkn(x).

Thus, Splitr takes Õ(12kd · kmd) = Õ(m) time to compute all the vectors it outputs. Merger
takes Õ((12kd)3) time to run Berlekamp-Welch, and Õ(12kd) time to evaluate the resulting poly-
nomial at 0. So in all both algorithms take Õ(m) time.

By our assumption at the beginning, G is (nc, nk−ε, 7/8)-batchable on average over the uniform
distribution. Together with the above propositions, this satisfies all the requirements in the hy-
pothesis of Lemma 4, which now tells us that F can be computed in the worst-case in time:

Õ(mc+1 +mc ·m+ 12kd ·mc ·mk−ε) = Õ(mc+1 +mc+k−ε)

= Õ(nk(c+1)/(k+c) + nk(k+c−ε)/(k+c))

= Õ(nk−ε
′
)

for some ε′ > 0. But this is what the hypothesis of the theorem says is not possible. So FOVk
cannot be (nc, nk−ε, 7/8)-batchable on average, and this argument applies for any c, ε > 0.

Proof of Lemma 4. Given the hypothesised downward reduction (Splitd,Merged), robust reduc-
tion (Splitr,Merger) and batch-evaluation algorithm Batch for F , fn can be computed as follows
(for large enough n) on an input x ∈ Xn:

• Run Splitd(x) to get x1, . . . , x`d(n) ∈ X
′
sd(n)

.

• For each i ∈ [`d(n)], run Splitr(xi; ri) to get xi1, . . . , xi`r(sd(n)) ∈ X̂sd(n).

• For each j ∈ [`r(sd(n))], run Batch(x1j , . . . , x`d(n)j) to get the outputs y1j , . . . , y`d(n)j ∈ Ŷsd(n).

• For each i ∈ [`d(n)], run Merger(xi, ri, yi1, . . . , yi`r(sd(n))) to get yi ∈ Y ′sd(n).

• Run Merged(x, y1, . . . , y`d(n)) to get y ∈ Yn, and output y as the alleged fn(x).

We will prove that with high probability, after the calls to Batch, enough of the yij ’s produced
will be equal to the respective gsd(n)(xij)’s to be able to correctly recover all the f ′sd(n)(xi)’s and

hence fn(x).
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For each j ∈ [`r(sd(n))], define Ij to be the indicator variable that is 1 if Batch(x1j , . . . , x`d(n)j)
is correct and 0 otherwise. Note that by the properties of the robust reduction of F ′ to G, for a
fixed j each of the xij ’s is independently distributed according to Dsd(n) and further, for any two
distinct j, j′, the tuples (xij) and (xij′) are independent.

Let I =
∑

j Ij and m = `r(sd(n)). By the aforementioned properties and the correctness of
Batch, we have the following:

E[I] ≥ 7

8
m

Var[I] ≤ 7

64
m

Note that as long as Batch is correct on more than a 2/3 fraction of the j’s, Merger will get all
of the yi’s correct, and hence Merged will correctly compute fn(x). The probability that this does
not happen is bounded using Chebyshev’s inequality as:

Pr

[
I ≤ 2

3
m

]
≤ Pr

[
|I − E[I]| ≥

(
7

8
− 2

3

)
m

]
≤ Var[I]

(5m/24)2

≤ 63

25 ·m
<

3

m

As long as m > 9, this probability of failure is less than 1/3, and hence fn(x) is computed
correctly in the worst-case with probability at least 2/3. If it is the case that `r(sd(n)) = m
happens to be less than 9, then instead of using Merger directly in the above algorithm, we would
use Merge′r that runs Merger several times so as to get more than 9 samples in total and takes the
majority answer from all these runs.

The time taken is td(n) for the downward reduction, tr(sd(n)) for each of the `d(n) robust
reductions on instances of size sd(n), and `d(n)ta(sd(n)) for each of the `r(sd(n)) calls to Batch on
sets of `d(n) = `a(sd(n)) instances, summing up to the total time stated in the lemma.

6.2 A Direct Product Theorem

Definition 8. cOV denotes the problem of outputting the coefficients of the polynomial RU,V (·),
given (U, V ).

Futhermore, cOVm denotes the m-wise cartesian product of the cOV relation.

From previous work, we have the following lemmas about cOV.

Lemma 5. There exists an algorithm V that runs in time Õ(n) such that

Pr[V (U, V,R∗) = 1|R∗ 6≡ RU,V ] < 2− polylog(n).

Recall the following definition:

Definition 9. A problem F = {fn} is (t(n), δ(n))-(io)-hard on average over D = {Dn} if A is an
algorithm that runs in time t(n) on Supp(Dn), then for large enough (infintely many) n:

Pr
x←Dn

[A(x) = fn(x)] < δ(n).
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Lemma 6. Assuming the orthogonal vectors conjecture, cOV is (n2−ε, 2/3)-hard on average over
the uniform distribution, for all constant ε > 0.

Armed with the above definitions, we observe the following parametrized direct product Lemma.
Coarse variants of the Lemma are common knowledge, implying for example that weak one-way
functions imply strong ones.

Lemma 7. Suppose a relation R is (T, δ) = (T (n), δ(n))-hard on D, samplable in time TD = TD(n)
and can be verified in time TV = TV (n) by an algorithm V with soundness error probability γ(n)
(and perfect completeness).

If for m(n) = m it is the case that 16γ
1−δ <

(
1+δ
2 )m

m2 ≤ 1, then Rm is (T ′(n), ε(n))-hard on Dm,

where ε ≥ 2(1+δ2 )m and T ≤ εT
−4 ln( 1−δ

4
)
− logm−mTD − TV .

(Note that instances in Rm are of size mn.)

Before proving the Lemma, notice that in conjunction with Lemmas 5 and 6 we immediately
arrive that the following Theorem which allows us to trade time for hardness:

Theorem 6. If m3(n) = O(n1−α), (5/6)m(n) ≤ ε/2, and m2t(n)
ε(n) = O(n2−β) for α, β > 0; then

cOVm is (t(n), ε(n))-hard on average over the uniform distribution.
In particular for m = log2 n, cOVm is (n2−α, n−β)-hard on average over the uniform distribution

for any α, β > 0 such that β − α < 0.

Put differently, any subquadratic algorithm for cOVlog2 n has success probability negligible in
log n.

Proof. Let ε(n) ≥ 2(1+δ(n)2 )m(n) and 16γ
1−δ <

(
1+δ
2 )m

m2 ≤ 1. Suppose for the sake of contradiction that

A runs in time TA(n) ≤ ε(n)T (n)

−4 ln( 1−δ(n)
4

)
− logm(n)−mTD(n)− TV (n), and

Pr
X←Dmn

[(X, A(X)) ∈ Rm] ≥ ε.

Consider A′ that does the following on input X:

1. Draw random i ∈ [m].

2. Call A on (X1, . . . , Xi−1, X,Xi+1, . . . , Xm) to get (Y1, . . . , Ym), where the m−1 Xjs are drawn
independently from Dn.

3. Output Yi.

Let S ⊂ Supp(Dn) such that

S = {X ∈ Supp(Dn)|Pr[(X,A′(X)) ∈ R] ≥ ζ(n)},

where ζ = βm

4m2 and β = 1+δ
2 . Notice that 0 ≤ 4γ

1−δ < ζ < βm

2m2 ≤ 1/2.
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Now we want to show that PrX←Dn [X ∈ S] > β. Suppose this is not the case: PrDn [X ∈ S] ≤ β.
Then,

Pr
D

[(X, A(X) ∈ R] ≤ Pr[(X, A(X) ∈ Rm ∧ ∃i(Xi /∈ S)] + Pr[(X, A(X) ∈ Rm ∧ ∀i(Xi ∈ S)]

≤
m∑
i=1

Pr[(X, A(X) ∈ Rm|Xi /∈ S] + Pr[∀i(Xi ∈ S)]

≤
m∑
i=1

mPr[(Xi, A
′(Xi) ∈ R|Xi /∈ S] +

m∏
i=1

Pr[Xi ∈ S]

≤ m2ζ + βm,

where the second to last inequalities follows from the fact that A′ puts Xi in the ith location with
probability 1/m.

By our assumption on and definition of parameters,

m2ζ + βm < m2 ε

2m2
+
ε

2
= ε.

This contradicts the assumption on A. Thus, PrX←Dn [X ∈ S] > β.
Using this fact we show how to use A (and A′) to violate the hardness of R. Consider A′′ that

does the following on input X:

• For i = 1 to ` =
− ln( 1−δ

4
ζ :

– Call A′(X).

– If V (X,A′(X)) = 1, return A′(X) and halt.
Otherwise, continue.

• If all trials fail, output ⊥.

Now we analyze the success probability of A′′. Notice that A′′ fails if V makes a mistake or A′

never succeeds.

Pr
D

[(X,A′′(X)) /∈ R] ≤ Pr[(X,A′′(X)) /∈ R|X ∈ S] + Pr[X /∈ S]

≤ Pr[∀i ∈ [`]((X,A′(X)) /∈ R|X ∈ S] + Pr[∃i ∈ [`](V fails ith trial)|X ∈ S]

+ Pr[X /∈ S]

≤ (1− ζ)` + `γ + 1− β.

Again by our choice of parameters,

(1− ζ)` + `γ + (1− β) ≤ eln(
1−δ
4

) +
− ln( 1−δ

4
)

ζ γ + 1−δ
2

< 1−δ
4 + 1−δ

4 + 1−δ
2

= 1− δ.

Now, we observe that the reduction is efficient enough, TA′′ < T , to contradict the hardness of
R:

TA′′ ≤ `(TA′ + TV ) = `(logm+mTD + TA + TV ) ≤ T,

by the assumption on A.
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7 A Blockchain Scheme

Bitcoin uses PoWs on a massive scale. In this light, having Proofs of Useful Work is much desired
from the perspective of decreasing environmental costs and also from the perspective of having
an enormous, incentivized computing community already in existence that can be fed problems to
solve.

Unfortunately, a generic uPoW does not immediately fit into the framework in which Bitcoin
uses them. Namely, PoWs or uPoWs used in Bitcoin should be rendered invalid if Bitcoin transac-
tions are altered. We give a brief overview of how PoWs are currently used and then describe how
our uPoWs can be incorporated to a Blockchain-like mechanism.

Bitcoin’s main innovation is a system implementing a public ledger on which transactions are
recorded: the blockchain. The blockchain is a discretized timeline of transactions in which each
discrete group of transactions is called a block and the blocks are then chained together by each
block containing a hash of its previous block (enforcing its temporal structure). The role of PoWs
in this framework is that for a malicious user to ‘rewrite history’ or change a block, they must
produce a PoW that is sensitive to changes in the block. Thus, creating dishonest blocks requires
work and, since the blockchain is always decided by majority, PoWs ensure that any adversarial
community cannot reliably succeed without having the majority of computing power in the entire
system.

A main point to notice here is that the PoW must be sensitive to changes in the block that the
proof is made for. To account for this we show how our uPoWs can be made to be sensitive to
such changes and give a scheme for which a blockchain based system such as Bitcoin can use our
uPoWs to operate while dually serving as a source of computation for delegators.

As seen in Figure 1, there is a public board that delegators post problems to. We currently
write each problem in the form (f,x) where f is either an arithmetic circuit or simply a label of a
commonly requested problem, such as OV, that the workers are familiar with and x is the instance
being delegated to find f(x) for (we assume for now that our practical problems are already in the
form of evaluating a low-degree polynomial). When a worker needs to perform a PoW, they grab
a problem from the board according to any type of priority scheduling and keep it to mine their
next block.

Notice that the worker currently has the actual delegated instance x. Using a Random Oracle
H, the worker will generate the challenge cx themselves as usual except substituting r = H(current
block) for the randomness usually used to generate the challenge: cx = {x + rt | t ∈ [D + 1]},
where r = H(current block). For a truly Random Oracle H, r will be random and this becomes
a standard challenge for a uPoW. Further, any altercations to the current block being mined will
produce an entirely new random challenge and so a new uPoW will have to be made for changed
blocks. Thus we attain uPoWs that are sensitive to changes in the block.

Note that this also means that if a party fails to mine a block before another party successfully
does, they can still use the same problem (f,x) on a new block they attempt to mine as the
challenge will be ‘re-randomized’ with respect to H and so parties will hold on to their problems
until they complete a uPoW with it.

Substituting a standard cryptographic hash function such as SHA-256 for H, this falls very
much in line with what Bitcion currently does. Current Bitcoin PoWs are essentially to find a
nonce so that, when hashed along with the current block, the hash value has a prescribed number
of leading 0’s. Thus these current (useless) PoWs also rely on SHA-256 behaving as a Random
Oracle (and this is also used to chain blocks together by hashing the previous block). We follow
this approach in using H to generate our randomness for generation.

A block then, as seen in Figure 1, is composed of
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Figure 1: We present a framework for Blockchain to use uPoWs. Delegators post to a public
Problem Board from which workers grab problems to mine a block with by producing a Proof of
Useful Work that they attach to the block.

1. The hash of the previous block,

2. The transactions that the block is recording,

3. The problem (f,x) the block claims to have a proof for, and

4. The uPoW for f on challenge cx = {x +H(current block)t | t ∈ [D + 1]}.

To verify a block as a valid addition to the blockchain, a user simply checks that the hash
of the previous block is correct, that the problem (f, x) hadn’t been previously solved (this is to
ensure that each PoW is useful in that no two people redundantly have the same problem and
that miners constantly pull new problems from the problem board), and that the PoW is valid by
deterministically computing the cx challenge with H and then checking the uPoW for it. Further,
the delegator upon seeing the uPoW can quickly reconstruct f(x) by uPoW’s usefulness property.

We then have uPoWs for Bitcoin. As is common now, workers can still create ‘mining pools’
and parallelize the work amongst their pool and, in fact, our framework naturally enhances this
joint effort to be robust to errors and Byzantine failures, even identifying non-cooperative members
of the mining pool (this uses the fact that the solution sketch to our uPoWs are recovered by means
of decoding a Reed-Muller code for which there is good error-correction for [BK16]). Further, while
the total combined work done by a mining pool is still guaranteed to be of a certain amount by
uPoW’s Hardness condition, the time a delegator has to wait may be significantly shorter as they
parallelize their work amongst themselves.
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A A Stronger Direct Sum Theorem for FOV
In this section, we prove a stronger direct sum theorem (and, thus, non-batchability evaluation)
for FOVk. That is, we prove Theorem 3.

In particular, it is sufficient to define a notion of batchability for parametrized families of
functions with a monotonicity constraint. In our case, monotonicity will essentially say “adding
more vectors of the same dimension and field size does not make the problem easier.” This is
a natural property of most algorithms. Namely, it is the case if for any fixed d, p, FOVkn,d,p is
(n, t, δ)− batchable.

Instead, we simply generalize batchability in a parametrized fashion for FOVkn,d,p.

Definition 10. A parametrized class, Fρ, is not (`, t, δ)-batchable on average overDρ, a parametrized
family of distributions if, for any fixed parameter ρ and algorithm Batchρ that runs in time `(ρ)t(ρ)
when it is given as input `(ρ) independent samples from Dρ,

Pr
xi←Dρ

[
Batch(x1, . . . , x`(ρ)) = (fρ(x1), . . . , fρ(x`(ρ)))

]
< δ(ρ).

Remark A.1. We use a more generic parameterization of Fρ by ρ rather than just n since we need
the batch evaluation procedure to have the property that it should still run quickly as n shrinks,
as we use downward self-reducibility of FOVkn,d,p, even when p and d remain the same.

We now show how a generalization of the list decoding reduction from [BRSV17] yields strong
batch evaluation bounds. Before we begin, we will present a few Lemmas from the literature to
make certain bounds explicit.

First, we present an inclusion-exclusion bound from [CPS99] on the polynomials consistent with
a fraction of m input-output pairs, (x1, y1), . . . , (xm, ym). We include a laconic proof here with the
given notation for convenience.

Lemma 8 ([CPS99]). Let q be a polynomial over Fp, and define Graph(q) := {(i, q(i)) | i ∈ [p]}.
Let c > 2, δ/2 ∈ (0, 1), and m ≤ p such that m > c2(d−1)

δ2(c−2) for some d. Finally, let I ⊆ [p] such that

|I| = m. Then, for any set S = {(i, yi) | i ∈ I}, there are less than dc/δe polynomials q of degree
at most d that satisfy |Graph(q) ∩ S| ≥ mδ/2.

Corollary 2. Let S be as in Lemma 8 with I = {m+1, . . . , p}, for any m < p. Then for m > 9d/δ2,
there are at most 3/δ polynomials, q, of degree at most d such that |Graph(q) ∩ S| ≥ mδ/2.

Proof. Reproduced from [CPS99] for convenience; see original for exposition.
Suppose there exist at least dc/δe such polynomials. Consider a subset of exactly N = dc/δe
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such polynomials, F . Define Sf := {(i, f(i)) ∈ Graph(f) ∩ S}, for each f ∈ F .

m ≥

∣∣∣∣∣∣
⋃
f∈F

Sf

∣∣∣∣∣∣ ≥
∑
f∈F
|Sf | −

∑
f,f ′∈F :f 6=f ′

|Sf ∩ Sf ′ |

≥ Nmδ

2
− N(N − 1)(d− 1)

2

>
N

2

(
mδ − c(d− 1)

δ

)
≥ c

2δ

(
mδ − c(d− 1)

δ

)
=
cm

2
− c2(d− 1)

2δ2

= m+
1

2

(
(c− 2)m− c2(d− 1)

δ2

)
> m.

Now, we give a theorem based on an efficient list-decoding algorithm, related to Sudan’s, from
Roth and Ruckenstein. [RR00]

Lemma 9 ([RR00]). List decoding for [n, k] Reed-Solomon (RS) codes over Fp given a code word
with almost n−

√
2kn errors (for k > 5), can be performed in

O
(
n3/2k−1/2 log2 n+ (n− k)2

√
n/k + (

√
nk + log q)n log2(n/k)

)
operations over Fq.

Plugging in specific parameters and using efficient list decoding, we get the following corollary
which will be useful below.

Corollary 3. For parameters n ∈ N and δ ∈ (0, 1), list decoding for [m, k] RS over Fp where
m = Θ(d log n/δ2), k = Θ(d), p = O(n2), and d = Ω(log n) can be performed in time

O

(
d2 log5/2 nArith(n)

δ5

)
,

where Arith(n) is a time bound on arithmetic operations over prime fields size O(n).

Theorem 7. Suppose k-OV takes nk−o(1) time to decide for any d = ω(log n), for any k ≥ 2.
Then, for any positive constants c, ε > 0 and 0 < δ < ε/2, FOVk is not

(ncpoly(d, log(p)), nk−εpoly(d, log(p)), n−δpoly(d, log(p)))

-batchable on average over the uniform distribution over its inputs.

Proof. Let k = 2c′ + c and p > nk. Suppose for the sake of contradiction that FOVn,d,p is
(ncpoly(d, log(p)), n2c

′+c−εpoly(d, log(p)), n−c
′
poly(d, log(p)))-batchable on average over the uniform

distribution.
Letm = nk/(k+c), as before. By Proposition 2, k-OV with vectors of dimension d = ( k

k+c))
2 log2 n

is (m,mc)-downward reducible to k-OV with vectors of dimension log2(n), in time Õ(mc+1).
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For each j ∈ [mc] Xj = (U j1, . . . , U jk) ∈ {0, 1}kmd is the instance of boolean-valued orthogonal

vectors from the above reduction. Now, consider splitting these lists in half, U ji = (U ji0 , U
ji
1 )

(i ∈ [k]), such that (U j1a1 , . . . , U
jk
ak ) ∈ {0, 1}kmd/2 for a ∈ {0, 1}k. Interpret a as binary number in

{0, . . . , 2k − 1}. Then, define the following 2k sub-problems:

Aa = ((U j1a1 , . . . , U
jk
ak

)), ∀a ∈ {0, . . . , 2k − 1}

Notice that given solutions to fOVkd on {Aa}a∈{0,1}k we can trivially construct a solution to OVkd
on Xj .

Now, draw random Bj , Cj ∈ Fkmd/2p and consider the following degree 2k polynomial in x:

Dj(x) =

2k∑
i=1

δi(x)Ai−1 + (Bj + xCj)

2k∏
i=1

(x− i),

where δi is the unique degree 2k − 1 polynomial over Fp that takes value 1 at i ∈ [2k] and 0 on all
other values in [2k]. Notice that Dj(i) = Ai−1 for i ∈ [2k].

Let r > 2k+1d/δ2 logm. Dj(2
k + 1), Dj(6), . . . , Dj(r + 2k). By the properties of Batch and

because the Dj(·)’s are independent, D1(i), . . . , Dmc(i) are independent for any fixed i. Thus,

Batch(D1(i), . . . , Dmc(i)) = fOVk(D1(i)), . . . , fOV
k(Dmc(i))

for δr/2 i’s with probability at least 1− 4
δr = 1− 1/polylog(m), by Chebyshev.

Now, because δr/2 >
√

16dr, we can run the list decoding algorithm of Roth and Rucken-
stein, [RR00], to get a list of all polynomials with degree ≤ 2k+1d that agree with at least δr/2 of
the values. By Corollary 2, there are at most L = 3/δ such polynomials.

By a counting argument, there can be at most 2kd
(
L
2

)
= O(dL2) points in Fp on which any two

of the L polynomials agree. Because p > nk > 2kd
(
L
2

)
, we can find such a point, `, by brute-force

in O(L · dL2 log3(dL2) log p) time, via batch univariate evaluation [Fid72]. Now, to identify the
correct polynomials fOVk(Dj(·)), one only needs to determine the value fOVk(Dj(`)). To do so,
we can recursively apply the above reduction to all the Dj(`)s until the number of vectors, m, is
constant and fOVk can be evaluated in time O(d log p).

Because each recursive iteration cuts m in half, the depth of recursion is log(m). Addition-
ally, because each iteration has error probability < 4/(δr), taking a union bound over the log(m)
recursive steps yields an error probability that is ε < 4 logm/(δr).

We can find the prime p via O(logm) random guesses in {mk + 1, . . . , 2mk} with overwhelming
probability. By Corollary 3, taking r = 8d logm/δ2, Roth and Ruckenstein’s algorithm takes
time O(d2/δ5 log5/2mArith(mk)) in each recursive call. The brute force procedure takes time
O(d/δ3 log3(d/δ2) logm), which is dominated by list decoding time. Reconstruction takes time
O(logm) in each round, and is also dominated. Thus the total run time is

T = O(mc(mk−εd log2m/δ2 + d2/δ5 log7/2mArith(mk))),

with error probability ε < 4 logmδ/d.

B Zero-Knowledge Proofs of Work

We combine our PoW with ElGamal encryption and a zero-knowledge proof of discrete logarithm
equality to get an non-repudiatable, non-transferable proof of work from the Decisional Diffie-
Hellman assumption on Schnorr groups.
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Protocol. Let Zp be a Schnorr group such of size p = qm+ 1 ≤ 2polylog(n) such that DDH holds
with generator g. (Assuming the DDH problem is hard for o(|G|1/2)-time probabilistic algorithms
on a group G, we can take |G| ≈ n4.) Let (E,D) denote an ElGamal encryption system on G.

• Challenge is issued as before: (U, V )← Z2nd
q .

• Prover generates a secret key x ← Zp−1, and sends encryptions of the coeffecients of the
challenge response over the subgroup size q to Verifier with the public key (g, h = gx):

E(R∗(·);S(·)) = E(mr∗0; s0), . . . ,E(mr∗nd−1; snd−1)

= (gs0 , gr
∗
0hxs0), . . . , (gsnd−1 , gmr

∗
nd−1hxsnd−1).

Prover additionally draws t← Zp−1 and sends a1 = gt, a2 = ht.

• Verifier draws random z ← Zq and challenge c← Z∗p and sends to Prover.

• Prover sends w = t+ cS(z) to verifier.

• Verifier evaluates y = fOVV (φ1(z), . . . , φd(z)) to get gmy. Then, homomorphically evaluates
E(R∗;S) on z so that E(R∗(z);S(z)) equals(

(gs0)(gs1)z · · · (gsnd−1)z
d
, (gr

∗
0hs0)(gmr

∗
1hs1)z · · · (gmr

∗
nd−1hsnd−1)z

d
)

= (u1, u2)

Then, Verifier accepts if and only if

gw = a1(u1)
c & hw = a2(u2/g

my)c.

Recall that the success probability of a subquadratic prover (in the non-zero-knowledge case)
does not have negligible success probability. Thus the above should be performed on k = polylog(n)
instances simultaneously and the verifier should accept iff an only if all instances accept.

Remark B.1. Note that the above protocol is public coin. Therefore, we can apply the Fiat-Shamir
heuristic, and use a random oracle on partial transcripts to make the protocol non-interactive.

More explicitly, let H be a random oracle. Then:

• Prover computes

(g, h),

E(R∗;S),

a1 = gt, a2 = ht,

z = H(U, V, g, h,E(R∗;S), a1, a2),

c = H(U, V, g, h,E(R∗;S), a1, a2, z),

w = t+ cS(z)

and sends (g, h,E(R∗;S), a1, a2, w).

• Verifier calls random oracle twice to get

z = H(U, V, g, h,E(R∗;S), a1, a2), c = H(U, V, g, h,E(R∗;S), a1, a2, z).

Then, the verifier homomorphically evaluates E(R∗;S)(z) = (u1, u2), it then computes the
value y = fOVV (φ1(z), . . . , φd(z)). Finally, accepts if and only if

gw = a1(u1)
c & hw = a2(u2/g

my)c.

29



Correctness. From before, if R∗ ≡ RU,V as is the case for an honest prover, then for any z ∈ Zq
we have R∗(z) = RU,V (z) = fOVV (φ1(z), . . . , φd(z)). Moreover

gw = gt+cS(z) = gt(gS(z))c = a1

(
(gs0)(gs1)z · · · (gsnd−1)z

d
)c
,

and

hw = ht+cS(z)

= ht(g0hS(z))c

= a2

(
(gr
∗
0hs0)(gmr

∗
1hs1)z · · · (gmr

∗
nd−1hsnd−1)z

d
g−fOVV (φ1(z),...,φd(z))

)c
.

Soundness. Suppose Prover runs in subquadratic time, then with high probability R∗ 6≡ RU,V ,
and so for random z, R∗(z) 6= fOVV (φ1(z), . . . , φd(z)) with overwhelming probability. Suppose
this is the case in what follows, namely: R∗(z) = y∗ 6= y = fOVV (φ1(z), . . . , φd(z)). In particular,

logg u1 6= logh u2/g
fOVV (φ1(z),...,φd(z)).

Note that u1, u2/g
fOVV (φ1(z),...,φd(z)) can be calculated from the Prover’s first message.

As is standard, we will fix the prover’s first message and (assuming y 6= y∗) rewind any two
accepting transcripts with distinct challenges to show that logg u1 = logh u2/g

y. Fix a1, a2 as above
and let (c, w), (c′, w′) be the two transcripts. Recall that if a transcript is accepted, gw = a1u

c
1 and

hw = a2(u2/g
y)c. Then,

gw−w
′

= uc−c
′

1 ⇒ logg u1 =
w − w′

c− c′
= logh u2/g

y ⇐ hw−w
′

= (u2/g
y)c−c

′
.

Therefore, because u1 6= u2/g
y there can be at most one c for which a Prover can convince the

verifier. Such a c is chosen with negligible probability.

Honest Verifier Zero Knowledge. Given the verifier’s challenge z, c, we can simulate the
transcript of an honest prover as follows:

• Draw public key (g, h).

• Compute the ElGamal Encryption Eg,h(R′;S) where R′ is the polynomial with constant term
fOVV (φ1(z), . . . , φd(z)) and zeros elsewhere.

• Draw random w.

• Compute a1 = gw

gcS(z)
and aw = hw

hcS(z)
.

• Output ((g, h), a1, a2, z, c, w).

Notice that do to the semantic security of ElGamal, the transcript output is computationally
indistinguishable from that of an honest Prover. Moreover, the simulator runs in Õ(nd) time, the
time to compute R′, encrypt, evaluate S and exponentiate. Thus, the protocol is (honest verifier)
zero-knowledge.

As mentioned, the Fiat-Shamir heuristic can remove interaction in the Random Oracle model
and thus remove the condition that the verifier must be honest via the forking lemma.

Efficiency. The honest prover runs in time Õ(n2), because the nd encryptions can be performed in
time polylog(n) each. The verfier takes Õ(nd) time as well. Note that the homomorphic evaluation
requires O(d log zd) = O(d2 log z) = polylog(d) exponentiations and d = polylog(n) multiplications.
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