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Abstract

Recently, Wang (2016) introduced a random linear code based quantum resistant public encryption
scheme RLCE which is a variant of McEliece encryption scheme. In this paper, we introduce a revised
version of the RLCE encryption scheme. The revised RLCE schemes are more efficient than the original
RLCE scheme. Specifically, it is shown that RLCE schemes have smaller public key sizes compared
to binary Goppa code based McEliece encryption schemes for corresponding security levels. The paper
further investigates message padding schemes for RLCE to achieve IND-CCA2 security. Practical RLCE
parameters for the security levels of 128, 192, and 256 are recommended. Furthermore, we point out that
the algorithm proposed by Sendrier (ISIT 2005) for encoding extra information symbols within error
locations of McEliece encryption scheme is incorrect.
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1 Introduction

With rapid development for quantum computing techniques, our society is concerned with the security of
current Public Key Infrastructures (PKI) which are fundamental for Internet services. The core compo-
nents for current PKI infrastructures are based on public cryptographic techniques such as RSA and DSA.
However, it has been shown that these public key cryptographic techniques could be broken by quantum
computers. Thus it is urgent to develop public key cryptographic systems that are secure against quantum
computing.

Since McEliece encryption scheme [22] was introduced more than thirty years ago, it has withstood
many attacks and still remains unbroken for general cases. It has been considered as one of the candi-
dates for post-quantum cryptography since it is immune to existing quantum computer algorithm attacks.
The original McEliece cryptographic system is based on binary Goppa codes. Several variants have been
introduced to replace Goppa codes in the McEliece encryption scheme though most of them have been
broken. Up to the writing of this paper, secure McEliece encryption schemes include MDPC/LDPC code
based McEliece encryption schemes [1, 23], Wang’s RLCE [32], and the original binary Goppa code based
McEliece encryption scheme.

Recently, Wang’s RLCE [32] presents a systematic approach of designing public key encryption schemes
using any linear code. For example, one can use (generalized) Reed-Solomon codes to design McEliece
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based RLCE encryption scheme. Wang [32] used heuristics to show that the RLCE scheme is as secure as
decoding random linear codes. The most powerful message recovery attacks (not key recovery attacks) on
McEliece cryptosystem is the information-set decoding attack which was introduced by Prange [27]. Bern-
stein, Lange, and Peters [4] presented an exact complexity analysis on information-set decoding attacks
against McEliece cryptosystem over binary linear codes. Peters [25] presented an exact complexity analy-
sis on information-set decoding attacks against McEliece cryptosystem over GF(pm). Based on the exact
complexity analysis of information-set decoding attacks, Wang [32] recommended example parameters for
RLCE scheme.

In this paper, we propose a few variants of the RLCE scheme which will increase the message commu-
nication bandwidth, reduce the public key size, and improve the encryption and decryption performance.
Experimental results are reported for different RLCE scheme parameter sizes. The paper will also analyze
the security of RLCE scheme by investigating attacks on dual codes of RLCE public keys. We further
investigate message padding schemes for RLCE to be secure against adaptive chosen ciphertext attacks
(IND-CCA2).

Unless specified otherwise, we will use q = pm where p = 2 or p is a prime. Our discussion will be
based on the field GF(q) through out this paper. Bold face letters such as a,b, e, f, g are used to denote
row or column vectors over GF(q). It should be clear from the context whether a specific bold face letter
represents a row vector or a column vector.

2 McEliece, Niederreiter, and RLCE Encryption schemes

For given parameters n, k and t, the McEliece scheme [22] chooses an (n, k, 2t + 1) linear Goppa code C.
Let Gs be the k × n generator matrix for the code C. Select a random dense k × k nonsingular matrix S and
a random n × n permutation matrix P. Then the public key is G = S GsP and the private key is Gs. The
following is a description of encryption and decryption processes.

Mc.Enc(G,m, e). For a message m ∈ {0, 1}k, choose a random vector e ∈ {0, 1}n of weight t and compute the
cipher text c = mG + e

Mc.Dec(S ,Gs, P, c). For a received ciphertext c, first compute c′ = cP−1 = mS G. Next use an error-
correction algorithm to recover m′ = mS and compute the message m as m = m′S −1.

For given parameters n, k, and t, the Niederreiter’s scheme [24] chooses an (n, k, 2t + 1) linear code C.
Let Hs be an (n − k) × n parity check matrix of C. Select a random (n − k) × (n − k) nonsingular matrix S
and a random n × n permutation matrix P. Then the public key is H = S HsP and the private key is S ,Hs, P.
The encryption and decryption processes are as follows.

Nied.Enc(H,m). For a message m ∈ GF(q)n of weight t, compute the cipher text c = mHT of length n − k.

Nied.Dec(S ,Hs, P, c). For a received ciphertext c = mPT HT
s S T , compute c(S T )−1 = mPT HT

s . Use an
error-correction algorithm to recover m′ = mPT and compute the message m = m′(PT )−1.

The protocol for the RLCE Encryption scheme by Wang [32] consists of the following three processes:
RLCE.KeySetup, RLCE.Enc, and RLCE.Dec.

RLCE.KeySetup(n, k, d, t, r). Let n, k, d, t > 0, and r ≥ 1 be given parameters such that n−k+1 ≥ d ≥ 2t +1.
Let Gs = [g0, · · · , gn−1] be a k × n generator matrix for an [n, k, d] linear code such that there is an efficient
decoding algorithm to correct at least t errors for this linear code given by Gs.

1. Let C0,C1, · · · ,Cn−1 ∈ GF(q)k×r be k × r matrices drawn uniformly at random and let

G1 = [g0,C0, g1,C1 · · · , gn−1,Cn−1] (1)
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be the k × n(r + 1) matrix obtained by inserting the random matrices Ci into Gs.

2. Let A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) be dense nonsingular (r + 1) × (r + 1) matrices chosen uniformly
at random and let A = diag[A0, · · · , An−1] be an n(r + 1) × n(r + 1) nonsingular matrix.

3. Let S be a random dense k × k nonsingular matrix and P be an n(r + 1)× n(r + 1) permutation matrix.

4. The public key is the k × n(r + 1) matrix G = S G1AP and the private key is (S ,Gs, P, A).

RLCE.Enc(G,m, e). For a row vector message m ∈ GF(q)k, choose a random row vector e = [e0, . . . , en(r+1)−1] ∈
GF(q)n(r+1) such that the Hamming weight of e is at most t. The cipher text is c = mG + e.

RLCE.Dec(S ,Gs, P, A, c). For a received cipher text c = [c0, . . . , cn(r+1)−1], compute

cP−1A−1 = mS G1 + eP−1A−1 = [c′0, . . . , c
′
n(r+1)−1]

where A−1 = diag[A−1, · · · , A−1
n−1]. Let c′ = [c′0, c

′
r+1, · · · , c

′
(n−1)(r+1)] be the row vector of length n selected

from the length n(r + 1) row vector cP−1A−1. Then c′ = mS Gs + e′ for some error vector e′ ∈ GF(q)n. Let
e′′ = eP−1 = [e′′0 , · · · , e

′′
n(r+1)−1] and e′′i = [e′′i(r+1), . . . , e

′′
i(r+1)+r] be a sub-vector of e′′ for i ≤ n − 1. Then

e′[i] is the first element of e′′i A−1
i . Thus e′[i] , 0 only if e′′i is non-zero. Since there are at most t non-zero

sub-vectors e′′i , the Hamming weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm,
one can compute m′ = mS and m = m′S −1. Finally, calculate the Hamming weight w = weight(c −mG).
If w ≤ t then output m as the decrypted plaintext. Otherwise, output error.

3 The dual RLCE scheme

It is straightforward to show that McEliece encryption scheme is equivalent to Niederreiter encryption
scheme. That is, for each McEliece encryption scheme public key, one can derive a Niederreiter encryption
scheme public key and, for each Niederreiter encryption scheme public key, one can derive a McEliece
encryption scheme public key. One can break the Mcelience encryption scheme (respectively the Nieder-
reiter encryption scheme) if and only if one can break the corresponding Niederreiter encryption scheme
(respectively, the McEliece encryption scheme). In this section, we show that a similar equivalent result
may not hold for RLCE schemes. We first try to give a natural candidate construction of Niederreiter RLCE
scheme and show it is challenging (or infeasible) to design an efficient decryption algorithm. Thus it is not
clear whether there exists an efficient equivalent Niederreiter RLCE encryption scheme corresponding to the
McEliece RLCE encryption scheme.

RLCEdual.KeySetup(n, k, d, t, r). For an (n, k, 2t + 1) linear code C, let Hs = [h0, · · · ,hn−1] be an (n− k)× n
parity check matrix of C. The keys are generated using the following steps.

1. Let C0,C1, · · · ,Cn−1 ∈ GF(q)(n−k)×r be (n − k) × r matrices drawn uniformly at random and let

H1 = [h0,C0, g1,C1 · · · ,hn−1,Cn−1] (2)

be the (n − k) × n(r + 1) matrix obtained by inserting the random matrices Ci into Hs.

2. Let A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) be dense nonsingular (r + 1) × (r + 1) matrices chosen uniformly
at random and let A = diag[A0, · · · , An−1] be an n(r + 1) × n(r + 1) nonsingular matrix.

3. Let S be a random dense k × k nonsingular matrix and P be an n(r + 1)× n(r + 1) permutation matrix.
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4. The public key is the (n − k) × n(r + 1) matrix H = S H1AP and the private key is (S ,Hs, P, A).

RLCEdual.Enc(H,m). For a row message m ∈ GF(q)n(r+1) of weight t, compute the ciphertext c = mHT .

Candidate decryption algorithms? For a received ciphertext c = mHT , we have c(S T )−1 = mPT AT HT
1 .

Since the weight of mPT AT is at most 2t, we can decrypt the ciphertext c only if we had an efficient 2t-error-
correcting algorithm for the code defined by the parity check matrix H1. Since the matrices C0,C1, · · · ,Cn−1
are selected at random, it is unknown whether there is an efficient error correcting algorithm for the code
defined by the parity check matrix H1. In the following, we describe the natural candidate algorithm for
decrypting the ciphertext and show that this algorithm will not work. Let Gs = [g0, · · · , gn−1] be the k × n
generator matrix for the linear code C such that GsHT

s = 0. Furthermore, let D0,D1, · · · ,Dn−1 be k × r
matrices, such that D0CT

0 + D1CT
1 + · · ·+ Dn−1CT

n−1 = 0 (for example, one may take D0 = D1 = · · · = Dn−1 =

0). Let G1 = [g0,D0, · · · , gn−1,Dn−1], and G = G1(AT )−1(PT )−1. Then

GHT = G1(AT )−1(PT )−1PT AT HT
1 S T = G1HT

1 = 0.

For a received ciphertext c with c(S T )−1 = mPT AT HT
1 , one can find a vector a ∈ GF(q)n(r+1) such that

c(S T )−1 = aHT . Then we have (a − mPT AT )HT = 0. Since the space spanned by the rows of H is
of dimension n − k, the orthogonal space to the space spanned by the rows of H is of dimension nt + k.
However, the space spanned by the rows of G only has dimension k. Thus only with a negligible probability,
the vector a −mPT AT is in the code space generated by the rows of G. In other words, the above candidate
decryption algorithm will succeed only with a negligible probability.

The arguments in the preceding paragraph shows that it is hard to design an equivalent Niederreiter
encryption scheme for RLCE scheme. This provides certain evidence for the robustness of RLCE scheme.

4 Revised encryption scheme RLCE

In this section, we introduce a revised RLCE scheme to improve the message bandwidth and to reduce
the public key size. The main difference between the revised scheme and the original scheme in [32] is
that the revised scheme inserts random columns after randomly selected columns in the generator matrix.
Specifically the revised RLCE scheme proceeds as follows.

RLCE.KeySetup(n, k, d, t,w). Let n, k, d, t > 0, and w ∈ {1, · · · , n} be given parameters such that n − k + 1 ≥
d ≥ 2t + 1. Let Gs be a k × n generator matrix for an [n, k, d] linear code C such that there is an efficient
decoding algorithm to correct at least t errors for this linear code given by Gs. Let P1 be a randomly chosen
n × n permutation matrix and GsP1 = [g0, · · · , gn−1].

1. Let r0, r1, · · · , rw−1 ∈ GF(q)k be column vectors drawn uniformly at random and let

G1 = [g0, · · · , gn−w, r0, · · · , gn−1, rw−1] (3)

be the k × (n + w) matrix obtained by inserting column vectors ri into Gs.

2. Let A0, · · · , Aw−1 ∈ GF(q)2×2 be dense nonsingular 2×2 matrices chosen uniformly at random and let
A = diag[1, · · · , 1, A0, · · · , Aw−1] be an (n + w) × (n + w) nonsingular matrix.

3. Let S be a random dense k × k nonsingular matrix and P2 be an (n + w) × (n + w) permutation matrix.

4. The public key is the k × (n + w) matrix G = S G1AP2 and the private key is (S ,Gs, P1, P2, A).
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RLCE.Enc(G,m, e). For a row vector message m ∈ GF(q)k, choose a random row vector e = [e0, . . . , en+w−1] ∈
GF(q)n+w such that the Hamming weight of e is at most t. The cipher text is c = mG + e.

RLCE.Dec(S ,Gs, P1, P2, A, c). For a received cipher text c = [c0, . . . , cn+w−1], compute

cP−1
2 A−1 = mS G1 + eP−1

2 A−1 = [c′0, . . . , c
′
n+w−1].

Let c′ = [c′0, c
′
1, · · · , c

′
n−w, c

′
n−w+2, · · · , c

′
n+w−2] be the row vector of length n selected from the length n + w

row vector cP−1
2 A−1. Then c′P−1

1 = mS Gs + e′ for some error vector e′ ∈ GF(q)n where the Hamming
weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm, one can compute m′ = mS and
m = m′S −1. Finally, calculate the Hamming weight w = weight(c −mG). If w ≤ t then output m as the
decrypted plaintext. Otherwise, output error.

Remark 1: From the construction of RLCE scheme, it is clear that if we set w = n, then the revised RLCE
scheme is the same as the original RLCE scheme with r = 1. It is recommended to use w ≥ (n− k)/2 though
a smaller w is also acceptable. The details for selecting the value of w will be presented in the next section.
Remark 2. It should be noted that the private key does not need to hold the entire matrix A−1. It is sufficient
to hold the first column of A−1

i for each i = 0, · · · ,w.

5 Systematic Decoding RLCE schemes

In the revised RLCE encryption scheme discussed in Section 4, one recovers the message by recovering
m′ = mS first and then calculates the message m = m′S −1. To avoid these expensive operations, we can
require that the public key is systematic and restrict the permutation P2 in such a way that it only permutes
the last n + w− k columns of S G1A and keep the order of the first k columns of S G1A unchanged. Note that
with the above restriction, if the public key is in echelon format, then the matrix S GsP1 is in echelon format
also. In other words, S is the matrix that makes S GsP1 in echelon format.

With the revision in the preceding paragraph, one only needs to recover the codeword mS Gs (equiva-
lently, the error values e′) instead of the values mS . Furthermore, the matrix S −1 is no longer used in the
decryption process. Thus one does not need to include S −1 within the private key and reduce the private key
size significantly. By requiring w ≤ n − k (which is recommended), the steps of the RLCE scheme remain
unchanged except the following revised decryption process.

Systematic-decoding-RLCE.Dec(Gs, P1, P2, A, c). For a received cipher text c = [c0, . . . , cn+w−1], com-
pute

cP−1
2 A−1 = mS G1 + eP−1

2 A−1 = [c′0, . . . , c
′
n+w−1] = [c0, . . . , ck−1, c′k, . . . , c

′
n+w−1].

Let c′ = [c0, c1, · · · , ck−1, · · · , c′n−w, c
′
n−w+2, · · · , c

′
n+w−2] be the row vector of length n selected from the length

n + w row vector cP−1
2 A−1. Then c′P−1

1 = mS Gs + e′ for some error vector e′ ∈ GF(q)n where the Hamming
weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm, one recovers e′ from c′P−1

1 .
Since c′ = mS GsP1 + e′P1 and S GsP1 is in echelon format, the message m equals to the first k elements in
the vector c′ − e′P1. Finally, calculate the Hamming weight w = weight(c −mG). If w ≤ t then output m
as the decrypted plaintext. Otherwise, output error.

6 Security analysis

Similar to most cryptographic systems, each type of McElience schemes may contain some weak keys and
one should avoid using these weak keys when setting up the scheme. For example, [21] pointed out some
weak keys for binary Goppa code based McElience schemes. The second straightforward observation is that
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one can modify an McElience encryption scheme ciphertext c = mG + e without knowing the message m.
For example, one can obtain a valid ciphertext for a message m + m′ by setting c′ = c + m′G. This kind of
attacks could be defeated by using IND-CCA2-secure message padding schemes which will be discussed in
the next Section.

In the following sections, we carry out some heuristic analysis of the encryption scheme RLCE. We first
show that if w is too small then, for certain codes C such as the generalized Reed-Solomon code, the filtration
attacks may be mounted to identify a small portion of the sub-matrix S [gw, · · · , gn−1] from the public key G
where Gs = [g0, · · · , gn−1]P−1

1 is the private generator matrix for C. Thus the parameter w should be large
enough so that one may not be able to recover any columns of S [gw, · · · , gn−1] or the recovered columns of
S [gw, · · · , gn−1] will not help for breaking the scheme.

6.1 Filtration attacks

Using distinguisher techniques [12], Couvreur et al. [9] designed a filtration technique to attack GRS code
based McEliece scheme. The filtration technique was further developed by Couvreur et al [10] to attack
wild Goppa code based McEliece scheme. In the following, we briefly review the filtration attack in [10].
For two codes C1 and C2 of length n, the star product code C1 ∗ C2 is the vector space spanned by a ∗ b for
all pairs (a,b) ∈ C1 ×C2 where a ∗ b = [a0b0, a1b1, · · · , an−1bn−1]. For C1 = C2, C1 ∗ C1 is called the square
code of C1. It is showed in [10] that

dimC1 × C2 ≤

{
n, dimC1 dimC2 −

(
dim(C1 ∩ C1)

2

)}
. (4)

Furthermore, the equality in (4) is attained for most randomly selected codes C1 and C2 of a given length and
dimension. Note that for C = C1 = C2 and dimC = k, the equation (4) becomes dimC∗2 ≤ min

{
n,

(
k+1

2

)}
.

Couvreur et al [10] showed that the square code of an alternant code of extension degree 2 may have
an unusually low dimension when its actual rate is larger than its designed rate. Specifically, Couvreur et al
created a family of nested codes (called a filtration) defined as follows:

Ca(0) ⊇ Ca(1) ⊇ · · · ⊇ Ca(q + 1). (5)

where a ∈ {0, · · · , n−1}. Roughly speaking, Ca( j) consists of codewords of C corresponding to polynomials
which have a zero of order j at position a. The first two elements of this filtration are just punctured and
shortened versions of C and the rest of them can be computed from C by computing star products and
solving linear systems. The support values α0, · · · , αn−1 (the private key) for the Goppa code could be
recovered using this nested family of codes efficiently.

The crucial part of the filtration technique is the efficient algorithm to compute the nested family of
codes in (5). If the underlying linear code is a generalized Reed-Solomon code, the first step in Couvreur et
al. [9] and Couvreur et al [10] is to identify the column positions that do not contain mixed randomness. If
we set w = n− k, then this first step will not work since the matrix [gw, · · · , gn−1] is a full-rank square matrix
which is equivalent to any full-rank random square matrix. On the other hand, if w < n−k, then the filtration
attacks may be used to recover some portion of the sub-matrix S [gw, · · · , gn−1] from the public key. Once
these column positions are recovered, Couvreur et al. [9] proposed to use Sidelnikov and Shestakov attack
to break the scheme. However, this attack cannot continue since one does not have enough non-random
columns to carry out Sidelnikov and Shestakov attack. The details will be presented in the next section. For
the columns with mixed randomness, the linear equations constructed in Couvreur et al [10] could not be
solved and the nested family (5) could not be computed correctly. After the non-random column positions
are identified, one may also mount attacks against the columns with randomness using the attacks from [9].
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That is, one mount the attack against the shortened [w, k] linear code C′ which is obtained by excluding
identified non-random columns. This attack will be successful only if one can find a related code C′1 for
C′ of dimension k such that the dimension of the square code of C′1 has a dimension significantly less than
min

{
w,

(
k+1

2

)}
.

The analysis in the preceding paragraph shows that the filtration attacks could be used to recover at most
n − w − k to n − w non-random columns. One may use these non-random columns to obtain a length n − w
and dimension k shortened code. We distinguish the following two cases:

• w > n − k. In this case, the obtained shortened code has length n − w < k. Thus one cannot decode
the shortened code for any given ciphertext.

• w ≤ n−k. In this case, we have n−w ≥ k. Thus the obtained shortened code is an [n−w, k] linear code.
For a ciphertext c, let c′ be a shortened ciphertext of length n−w by restricting c to these non-random
columns. In case that there are at most n−w−k

2 errors within c′, then one can decode c′ efficiently using
the shortened [n − w, k] linear code. Note that the probability for c′ to contain at most n−w−k

2 errors is
bounded by the following value:

Pn,w,t =

∑ n−w−k
2

i=0

(
n−w

i

)(
w

t−i

)(
n
t

) (6)

Thus the value of w should be chosen in such a way that for the given security parameter κ, we should
have Pn,w,t ≤ 2−κ.

6.2 Sidelnikov-Shestakov’s attack

Let α = (α0, . . . , αn−1) be n distinct elements of GF(q) and let v = (v0, . . . , vn−1) be nonzero (not neces-
sarily distinct) elements of GF(q). The generalized Reed-Solomon (GRS) code of dimension k, denoted by
GRS k(α, v), is defined by the following subspace.

GRS k(α, v) = {(v0 f (α0), . . . , vn−1 f (αn−1)) : f (x) ∈ GF(q)[x]k)}

where GF(q)[x]k is the set of polynomials in GF(q)[x] of degree less than k. GF(q)[x]k is a vector space of
dimension k over GF(q). For each code word c = (v0 f (α0), . . . , vn−1 f (αn−1)), f (x) = a0 +a1x+. . .+ak−1xk−1

is called the associate polynomial of the code word c that encodes the message (a0, . . . , ak−1) ∈ GF(q)k.
GRS k(α, v) is an [n, k, d] MDS code where d = n − k + 1.

Niederreiter’s scheme [24] replaces the binary Goppa codes in McEliece scheme using GRS codes. The
first attack on Niederreiter scheme is presented by Sidelnikov and Shestakov [30]. In Sidelnikov-Shestakov
attack, one recovers an equivalent private key (α′, v′) from a public key G for the code GRS k(α, v) as follows.
For the given public key G, one first computes the systematic form E(G) = [I|G′] (also called echelon form)
using Gaussian elimination. An equation system is then constructed from E(G) to recover a decryption key.

E(G) =


1 0 · · · 0 b0,k · · · b0,n−1
0 1 · · · 0 b1,k · · · b1,n−1
...

...
. . .

...
...

. . .
...

0 0 · · · 1 bk−1,k · · · bk−1,n−1

 (7)

For the ith row bi of E(G), assume the associated polynomial is fi(x). Since the only non-zero elements are

7



bi,i, bi,k+1, · · · , bi,n−1, we have
v0 fi(α0) = 0
· · ·

vi fi(αi) = 1
· · ·

vn−1 fi(αn−1) = bi,n−1

(8)

Thus fi can be written as

fi(x) = ci ·

k∏
j=1, j,i

(x − α j) (9)

for some ci , 0. By the fact that
GRS k(α, v) = GRS k(aα + b, cv) (10)

for all a, b, c ∈ GF(q) with ab , 0, we may assume that α0 = 0 and α1 = 1. In the following, we try to
recover α2, · · · , αn−1. Using equation (9), one can divide the row entries in (7) by the corresponding nonzero
entries in another row to get several equations. For example, if we divide entries in row i0 by corresponding
nonzero entries in row i1, we get

bi0, j

bi1, j
=

v j fi0(α j)
v j fi1(α j)

=
ci0(α j − αi1)
ci1(α j − αi0)

(11)

for j = k, · · · , n − 1. First, by taking i0 = 0 and i1 = 1, equation (11) could be used to recover αk, · · · , αn−1
by guessing the value of c0

c1
which is possible when q is small. By letting i0 = 0 and i1 = 2, · · · , k − 1

respectively, equation (11) could be used to recover αi1 . Sidelnikov and Shestakov [30] also showed that the
values of v can then be recovered by solving some linear equation systems based on α0, · · · , αn−1.

The crucial step in Sidelnikov and Shestakov attack is to use the echelon form E(G) = [I|G′] of the public
key to get minimum weight codewords that are co-related to each other supports. In the encryption scheme
RLCE, w columns of the public key matrix G contain mixed randomness. Using the filtration attacks, one
may identify n − w − k to n − w non-random columns and use the recovered non-random columns to form
a k × (n − w − i0) matrix GN for some i0 ≤ k. Then one can compute an echelon form E(GN) for GN that
contains n − w − i0 columns. From the echelon form, one can establish equations (8) and (9). However, for
appropriately chosen w, there are not enough columns from E(GN) for one to build enough equations (11)
to recover α0, · · · , αn−1. In particular, if w ≥ n − k − i0, no equations in (11) could be established. Thus
Sidelnikov and Shestakov attack could not be mounted on the RLCE scheme for appropriately chosen w.

6.3 Algebraic attacks

Faugere, Otmani, Perret, and Tillich [13] developed an algebraic attack against quasi-cyclic and dyadic
structure based compact variants of McEliece encryption scheme. In a high level, the algebraic attack from
[13] tries to find x∗ = [α0, · · · , αn−1], y∗ =

[
1

g(α0) , · · · ,
1

g(αn−1)

]
∈ GF(q)n such that

Vt(x∗, y∗) =


1 1 · · · 1
α1

0 α1
1 · · · α1

n−1
...

...
. . .

...

αt
0 αt

1 · · · αt
n−1




1
g(α0)

. . .
1

g(αn−1)

 (12)

is the parity check matrix for the underlying alternant codes of the compact variants of McEliece encryption
scheme. Vt(x∗, y∗) can then be used to break the McEliece scheme. Note that this Vt(x∗, y∗) is generally
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different from the private parity check matrix Vt(x, y). The parity check matrix Vt(x∗, y∗) was obtained by
solving an equation system constructed from

Vt(x∗, y∗)GT = 0, (13)

where G is the public key. The authors of [13] employed the special properties of quasi-cyclic and dyadic
structures (which provide additional linear equations) to rewrite the equation system obtained from (13) and
then calculate Vt(x∗, y∗) efficiently.

It is challenging to mount the above mentioned algebraic attacks on the RLCE encryption scheme.
Assume that the RLCE scheme is based on a Reed-Solomon code. Let G be the public key and (S ,Gs, A, P)
be the private key. The parity check matrix for a Reed-Solomon code is in the format of

Vt(α) =


1 α α2 · · · αn−1

1 α2 α4 · · · α2(n−1)

...
...

...
. . .

...

1 αt+1 α2(t+1) · · · α(t+1)(n−1)

 . (14)

The algebraic attack in [12, 13] requires one to obtain a parity check matrix Vt(α∗) for the underlying
Reed-Solomon code from the public key G, where α∗ may be different from α. Assume that Vt(α∗) =

[v0, · · · , vn−1] ∈ GF(q)(t+1)×n is a parity check matrix for the underlying Reed-Solomon code. Let V ′t (α∗) ∈
GF(q)(t+1)×(n+w) be a (t + 1) × (n + w) matrix obtained from Vt(α∗) by inserting w column vectors 0 after
each of the first w column of Vt(α∗). That is,

V ′t (α∗) = [v0, 0, v1, 0, · · · , vn−1]. (15)

Then we have
V ′t (α∗)GT

1 = V ′t (α∗)[g0, r0, · · · , gn−1]T

= Vt(α∗)[g0, · · · , gn−1]T

= Vt(α∗)GT
s

= 0.

(16)

We cannot build an equation system for the unknown V ′t (α∗) from the public key G = S G1AP directly
since the identity (16) only shows the relationship between V ′t (α∗) and G1. In other words, in order to build
an equation system for V ′t (α∗), one also needs to use unknown variables for the non-singular matrix A and
the permutation matrix P. That is, we have

V ′t (α∗)(A−1)T (P−1)TGT = V ′t (α∗)(GP−1A−1)T = V ′t (α∗)GT
1 S T = 0. (17)

with an unknown α∗, an unknown matrix A = diag[A0, · · · , Aw−1, 1, · · · , 1] which consists of w dense non-
singular 2×2 matrices Ai ∈ GF(q)2×2, and an unknown permutation matrix P. In order to find a solution α∗,
one first needs to take a potential permutation matrix P−1 to reorganize columns of the public key G. Then,
using the identity V ′t (α∗)(A−1)T (P−1)TGT = 0, one can build a degree (t + 1)(n − 1) + 1 equation system of
k(t+1) equations in 4w+1 unknowns. In case that k(t+1) ≥ 4w+1, one may use Buchberger’s Gröbner basis
algorithms as in [13] to find a solution α∗. However, this kind of algebraic attacks are infeasible due to the
following two challenges. First the number of permutation matrices P is too large to be handled practically.
Secondly, even if one can manage to handle the large number of permutation matrices P, the Gröbner basis
are impractical for such kind of equation systems since the Buchberger’s algorithm cannot solve nonlinear
multicariate equation systems with more than 20 variables in practice (see, e.g., Courtois et al [8]).
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6.4 Information-Set Decoding

As mentioned in the introduction section, the most powerful message recovery attack (not private key re-
covery attack) on McEliece encryption schemes is the information-set decoding attack. The state-of-the-art
information-set decoding attack for non-binary McEliece scheme is the one presented in Peters [25], which
integrated optimized Lee-Brickell’s algorithm [19], Stern’s algorithm [31], and Leon’s minimum-weight-
word-finding algorithm [20]. Peters’s attack [25] also integrated analysis techniques for information-set
decoding attacks on binary McEliece scheme discussed in [4]. For the RLCE encryption scheme, the
information-set decoding attack is based on the number of columns in the public key G instead of the
number of columns in the private key Gs. For the same error weight t, the probability to find error-free coor-
dinates in n + w coordinates is different from the probability to find error-free coordinates in n coordinates.
Specifically, the cost of information-set decoding attacks on an [n, k, t; w]-RLCE scheme is equivalent to the
cost of information-set decoding attacks on a standard [n + w, k; t]-McEliece scheme. It should be pointed
out that the information set decoding attack is closely related to the finding low-weight codeword attacks.

6.5 Known partial plaintext [7]

For McEliece Encryption scheme, we have c = mG + e. Let l, r be two positive integers such that k = l + r.

Assume that m = [ml,mr] and G =

[
Gl

Gr

]
. Then we have

c = mG + e = [ml,mr]
[

Gl

Gr

]
+ e = mlGl + mrGr + e. (18)

Thus if one knows the value of ml, the identity (18) becomes c−mlGl = mrGr +e which could be much easy
to decode than the original codeword c since r < k. The known-partial-plaintext-attack could be defeated
using appropraite message padding for IND-CCA2-security that will be discussed in Section 7.

6.6 Related message attack [5]

Assume that c1 = m1G + e1 and c2 = m2G + e2. Furthermore, assume that the adversary knows the relation
between m1 and m2. For example, assume that m = m1 + m2 and that the adversary knows the value of m.
Then we have c1 + c2 − mG = e1 + e2. Since e1 and e1 are different and both of them have low weight t,
it could be easy for the adversary to recover both e1 and e1 by trying all combinations. Even if one cannot
enumerate all combinations to recover either e1 or e1, one can use the 0 entries within e1 + e2 as a hint to
speed up the information set decoding algorithm for recovering m1 from c1 = m1G + e1. A special case of
this attack is the attack on two ciphertexts of the identical message encrypted using different error vectors.
The related-message-attack could be defeated using appropraite message padding for IND-CCA2 security
that will be discussed in Section 7.

6.7 Reaction attack [16]

In this attack, one assumes that an McEliece decryption oracle outputs an error message each time when the
given ciphertext contains too many errors to decrypt. For a given ciphertext c, the adversary first randomly
selects positions to add errors until the decryption oracle complains. That is, the adversary first obtains a
ciphertext c′ that contains maximum errors that the decryption oracle could handle. Then the adversary
selects a random position i and add errors to this position. If the decryption oracle could decrypt the re-
sulting ciphertext, it means that c′ contains error at this position. Otherwise, this position is error-free. The
adversary continues this process until she obtains k error-free positions for the ciphertext c. These error-free
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positions could be used to recover the plaintext message for the ciphertext c. The reaction-attack could be
defeated using appropraite message padding for IND-CCA2 security that will be discussed in Section 7.

6.8 Reaction-attack based side channel attacks

Message padding schemes for IND-CCA2 security in Section 7 could be used to defeat the reaction attack.
However, for a ciphertext that contains too many errors to decrypt and for a ciphertext with padding errors
that decrypts successfully, the decryption oracle normally uses different amount of times. Thus an adversary
may introduce errors in some positions of the ciphertext and observe the amount of time used for the de-
cryption oracle to report errors. This will allow the adversary to distinguish whether the original ciphertext
contains errors in these positions or not. The observed results could be used as in the reaction attack to
recover the plaintext. In order to defeat such kind of reaction-attack based side-channel attacks, appropriate
delays should be introduced in a decryption process of padded RLCE schemes so that the decryption process
takes the same amount of times to report errors for padding errors and for decoding errors.

7 Message encoding and IND-CCA2 security

We mentioned several attacks on RLCE schemes in the preceding section. To avoid these attacks, it is
necessary to use message padding schemes so that the encryption scheme is secure against adaptive chosen
ciphertext attacks (IND-CCA2). In the following subsections, we present message padding schemes to make
McEliece encryption scheme secure against adaptive chosen ciphertext attacks.

7.1 Message bandwidth

We first analyze the amount of information that could be encoded within each ciphertext. Let (n, k, t,w) be
the parameters where the public key is of dimension k × (n + w) and GF(2m) is the underlying finite field.
There are three approaches to encode messages within the ciphertext.

1. basicEncoding: Encode informaiton within the vector m ∈ GF(q)k and the ciphertext is c = mG + e.
In this case, we can encode mLen = mk bits information within each ciphertext.

2. mediumEncoding: In addition to basicEncoding, further information is encoded in the non-zero
entries of e. That is, let ei1 , · · · , eit ∈ GF(q) \ {0} be the non-zero elements within e and encode further
information within ei1 , · · · , eit . In this case, we can encode mLen = m(k + t) bits information within
each ciphertext. Strictly speaking, the encoded information is less than m(k + t) bits since ei j cannot
be zeros.

3. advancedEncoding: In addition to mediumEncoding, further information are encoded within within
the choice of non-zero entries within e. Since there are

(
n+w

t

)
candidates for the choice of non-zero

entries within e, we can encode mLen = m(k + t)+
⌊
log2

(
n+w

t

)⌋
bits information within each ciphertext.

The basicEncoding approach is straightforward. For the mediumEncoding, after one recovers the vector
m, one needs to compute mG − c to obtain the values of ei1 , · · · , eit . For the advancedEncoding approach,
we need to compute an invertible function

ϕ : Wn+w,t ↔

{
i : 1 ≤ i ≤

(
n + w

t

)}
(19)

11



where Wn+w,t ( GF(2)n+w is the set of all (n + w)-bit binary string of weight t. For the invertible function ϕ
in (19), one may use the enumerative source encoding construction in Cover [11]:

ϕ : Wn+w,t ←→

[
0,

(
n + w

t

)]
where ϕ(i1, · · · , it) =

(
it−1

t

)
+ · · · +

(
i1−1

1

)
and 0 ≤ i1 < i2 < · · · < it < n + w are the positions of ones. The

function ϕ could be evaluated with the cost of O
((

log2

⌈(
n+w

t

)⌉)2
)

operations (see, e.g., Sendrier [28]).
It should be noted that Sendrier [28] proposed a more efficient Golomb’s run-length encoding construc-

tion of ϕ. Sendrier [28] claimed that their construction satisfies the condition in (19). However it can be
shown that the construction in [28] is not a map. That is, for some elements x ∈

{
i : 1 ≤ i ≤

(
n+w

t

)}
, there

does not exist y ∈ Wn+w,t such that x = ϕ(y) (see Section 8 for details).

7.2 Existing message encoding approaches

Several authors proposed to use message encoding (padding) approach to achieve IND-CCA2 security for
McEliece encryption schemes. For example, Kobara and Imai [18] recommended the use of Pointcheval’s
generic conversion [26] or Fujisak-Okamato’s generic conversion [14] to achieve adaptive chosen ciphertext
security (IND-CCA2) for McEliece encryption scheme. Furthermore, they also proposed three new message
encoding approaches to achieve adaptive chosen ciphertext security (IND-CCA2) for McEliece encryption
scheme. Let H1,H2 be random oracles (e.g., they could be pseudo-random-bits generators or hash functions)
that output random strings of appropriate lengths and let r1, r2 be randomly selected strings with appropriate
length. Then the encryption processes with message padding schemes could be informally described as
follows.

• Pointcheval padding: c = Mc.Enc(G, r1,H1(m||r2))||(H2(r1) ⊕ (m||r2)).

• Fujisak-Okamato padding: c = Mc.Enc(G, r1,H1(m||r1))||(H2(r1) ⊕m).

• Kobara-Imai’s α-padding: c = Mc.Enc(G, y1,H1(m||r1))||y2 where y1||y2 = H2(H1(m||r1)) ⊕ (m||r1).

• Kobara-Imai’s β-padding: c = y1||Mc.Enc(G, y2,H1(r1)) where y1||y2 = (r ⊕ H1(H2(r) ⊕m))||(H2(r) ⊕
m).

• Kobara-Imai’s γ-padding: c = y3||Mc.Enc(G, y1, y2) where y3||y2||y1 = (r⊕H1(H2(r)⊕(m||const)))||(H2(r)⊕
(m||const)).

Among these padding schemes, Pointcheval padding and Fujisak-Okamato padding require extra strings
added after the McEliece ciphertext. This increases the ciphertext length and it is not a preferred choice for
bandwidth efficiency. Though Kobara and Imai provided proof of security for their three padding schemes,
it is not clear how to select the message and random bit lengths for a specific security strength. In particular,
further analysis may be required to analyze the exact security corresponding to various parameter selections
for Kobara-Imai padding schemes.

7.3 RLCE message padding schemes RLCEspad and RLCEpad

In this section, we assume that the message bandwidth is mLen-bits for each ciphertext. We present two
efficient padding schemes for the RLCE encryption scheme. Our padding schemes are adapted from the
well analyzed Optimal Asymmetric Encryption Padding (OAEP) for RSA/Rabin encryption schemes and
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its variants OAEP+ [29] and SAEP+ [6]. The first simple padding scheme RLCEspad is a one-round of
a Feistel network that is similar to SAEP+. RLCEspad could be used to encrypt short messages (e.g.,
mLen/4-bits) and is sufficient for applications such as symmetric key transportation using the RLCE public
key encryption scheme. The second padding scheme RLCEpad is a two-round Feistel network that is similar
to OAEP+. RLCEpad could be used to encrypt messages that are almost as long as mLen-bits.

We assume that messages are binary strings. After padding, they will be converted to field elements
and/or other information in the RLCE scheme (e.g., the information contained in the error vector e if medi-
umEncoding or advancedEncoding is used). For a RLCE setup process RLCE.KeySetup(n, k, d, t,w), let the
k × (n + w) matrix G be a public key and (S ,Gs, P1, P2, A) be a corresponding private key. Assume that
scheme is over a finite field GF(2m). The RLCEspad proceeds as follows.

RLCEspad(mLen, k1, k2, k3): Let k1, k2, k3 be parameters such that k1 + k2 + k3 =
⌈
mLen

8

⌉
, k1 + k2 < k3, and

8k1 ≤ mLen/4. Let ν = 8(k1 + k2 + k3) − mLen. Let H1 be a random oracle that takes any-length inputs and
outputs k2-bytes and let H2 be a random oracle that takes any-length inputs and outputs (k1 + k2)-bytes. Let
m ∈ {0, 1}8k1 be a message to be encrypted, r0 ∈ {0, 1}8k3−ν be a randomly selected sequence, and r = r0||0ν.
We distinguish the following three cases:

• basicEncoding: Select a random e ∈ GF(q)n+w of weight t and set

y = ((m||H1(m, r, e)) ⊕ H2(r, e)) ||r. (20)

Convert y to an element y1 ∈ GF(q)k. Let the ciphertext be c = y1G + e.

• mediumEncoding: Select random 0 ≤ l0 < l1 < · · · < lt−1 < n + w − 1 and let e0 = l0||l1 · · · ||lt−1 ∈

{0, 1}16t. Set
y = ((m||H1(m, r, e0)) ⊕ H2(r, e0)) ||r. (21)

Convert y to an element (y1, e1) ∈ GF(q)k+t where y1 ∈ GF(q)k and e1 ∈ GF(q)t. Let e ∈ GF(q)n+w

such that e[li] = e1[i] for 0 ≤ i < t and e[ j] = 0 for j , li. Let the ciphertext be c = y1G + e.

• advancedEncoding: Set y = ((m||H1(m, r)) ⊕ H2(r)) ||r. Convert y to an element y1 ∈ GF(q)k and a
vector e ∈ GF(q)n+w of weight t. Let the ciphertext be c = y1G + e.

The mediumEncoding based RLCEspad is shown graphically in Figure 1.

Figure 1: mediumEncoding based RLCEspad

m H1(m,r,e0) r

k1 k2 k3

H2(r,e0)�

�(m,	H1(m,r,e0))					H2(r,e0) r

H2

Assuming the hardness of decoding RLCE ciphertexts, a similar proof as in [6] could be used to show
that RLCE-RLCEspad scheme is secure against IND-CCA2 attacks. As an example with κc = 128 bits secu-
rity RLCE scheme (600, 464, 68) over GF(210) in Table 2, we use k1 = k2 = 160-bytes for mediumEncoding
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and k1 = k2 = 170-bytes for advancedEncoding. Thus, we can encrypt k1 = 160-bytes of information for
mediumEncoding and k1 = 170-bytes of information for advancedEncoding per RLCE-RLCEspad cipher-
text.

Our next padding scheme RLCEpad is based on OAEP+ and proceeds as follows.

RLCEpad(mLen, k1, k2, k3, t): Let k1, k2, k3 be parameters such that k1 + k2 + k3 =
⌈
mLen

8

⌉
, min {k2, k3} ≥ κc

where κc is the security parameter. Let H1 be a random oracle that takes any-length inputs and outputs k2
bytes, H2 be a random oracle that takes any-length inputs and outputs k1 + k2 bytes, and H3 be a random
oracle that takes any-length inputs and outputs k3 bytes. Let m ∈ {0, 1}8k1 be a message to be encrypted,
r0 ∈ {0, 1}8k3−ν be a randomly selected sequence, and r = r0||0ν. We distinguish the following three cases:

• basicEncoding: Select a random e ∈ GF(q)n+w,t of weight t and set

y = ((m||H1(m, r, e)) ⊕ H2(r, e)) ||r ⊕ H3(((m||H1(m, r, e)) ⊕ H2(r, e))) (22)

Convert y to an element y1 ∈ GF(q)k. Let the ciphertext be c = y1G + e.

• mediumEncoding: Select random 0 ≤ l0 < l1 < · · · < lt−1 < n + w − 1 and let e0 = l0||l1 · · · ||lt−1 ∈

{0, 1}16t. Set

y = ((m||H1(m, r, e0)) ⊕ H2(r, e0)) ||r ⊕ H3(((m||H1(m, r, e0)) ⊕ H2(r, e0))) (23)

Convert y to an element (y1, e1) ∈ GF(q)k+t where y1 ∈ GF(q)k and e1 ∈ GF(q)t. Let e ∈ GF(q)n+w

such that e[li] = e1[i] for 0 ≤ i < t and e[ j] = 0 for j , li. Let the ciphertext be c = y1G + e.

• advancedEncoding: Set

y = ((m||H1(m, r)) ⊕ H2(r)) ||r ⊕ H3(((m||H1(m, r)) ⊕ H2(r))) (24)

Convert y to an element y1 ∈ GF(q)k and a vector e ∈ GF(q)n+w of weight t. Let the ciphertext be
c = y1G + e.

The mediumEncoding based RLCEspad is shown graphically in Figure 2.

Figure 2: mediumEncoding based RLCEpad

m H1(m,r,e0) r

k1 k2 k3
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(m,	H1(m,r,e0))	� H2(r,e0) r �H3((m,	H1(m,r,e0))�H2(r,e0))

H2

H3((m,	H1(m,r,e0))�H2(r,e0))
H3 �
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Assuming the hardness of decoding RLCE ciphertexts, a similar proof as in [29] could be used to show
that RLCE-RLCEpad scheme is secure against IND-CCA2 attacks. The proof in [29] shows that, for a given
security parameter κc, it is sufficient to choose k2, k3 with

max
{

1
qk2

,
1

qk3

}
≤

1
2κc

. (25)

As an example with κc = 128 bits security RLCE scheme (600, 464, 68) over GF(210) in Table 2, we use
k2 = k3 = 32-bytes for both mediumEncoding and advancedEncoding. Thus, we can encrypt k1 = 601-
bytes of information for mediumEncoding and k1 = 641-bytes of information for advancedEncoding per
RLCE-RLCEpad ciphertext.
Remark 1: In RLCE encryption scheme, either error positions e0 or error vector e is used in the RLCEs-
pad/RLCEpad process and the message recipient needs to have the exact e0 or e for message decoding. In
case that the randomly generated error values contain zero field elements, the corresponding error positions
will be unavailable for the recipient. To avoid this potential issue, the message encryption process needs to
guarantee that error values should never be zero. A simple approach to address this challenge is that, when
calculated error values (using the given random value r) contain zero field elements, one revises the random
value r to a new value and tries the padding approach again. This process continues until all error values are
non-zero.
Remark 2: In our scheme, we use k1 + k2 + k3 =

⌈
mLen

8

⌉
. Alternatively, one may use k1 + k2 + k3 =

⌊
mLen

8

⌋
and adjust the schemes correspondingly.

8 Run length encoding (RLE)

For RLCE advancedEncoding scheme, one encodes information within the error vectors. Sendrier [28]
uses Golomb’s run length encoding to construct a linear algorithm for the map between

[
0,

(
n
t

)]
and Wn,t.

However, this map is not a bijection. Thus it cannot be used to map numbers
[
0,

(
n
t

)]
to constant weight

words. First, we briefly discuss run length encoding. We start with a simple example of encoding a run of
zeros using four-bit binary sequences. A sequence: 0141091102010301 could be encoded as

(1110)(1001)(0000)(1111 0101)(1111 1111 0000)

where we used 32-bits to encode a sequnce of 78-bits. The above scheme could be improved by using
non-fixed length encoding for the length of a run. In Golomb’s RLE, let d be an appropriately chosen non-
negative integer and fd : {0, 1, · · · , d} → {0, 1}∗ be a prefix-free code with fd(d) = 1. Then a zero run of
length n = qd + r can be encoded as 1q fd(r). As an example, let d = 5 and fd be defined as:

f5(∅) = 0, f5(0) = 001, f5(00) = 010, f5(000) = 0110, f5(0000) = 0111, f5(00000) = 1.

With this RLE, the sequence
00000 0001 00000 00001 1 0001 01

can be encoded as 101101011100110001. In other words, a 26-bit sequence is encoded to a 18-bit sequence.
Assume that 0 has a probability p ≥ 1

2 . Then Golomb RLE is optimal when d =
⌈
−1

log2 p

⌉
. Note that

(1 − p)d ∼ 1
2 is the probability for any string of zeroes to have length ≥ d.

For t << n, the set Wn,t contains binary sequences with majority 0. Thus Golomb RLE could be
used to encde elements of Wn,t. Specifically, each sequence 0δ110δ2 · · · 10δt+1 ∈ Wn,t could be encoded as
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f (δ1) · · · f (δt). However the encoded words cannot be one-to-one mapped to numbers in the range
[
0,

(
n
t

)]
.

Sendrier [28] showed that if one considers the probability

P1(s) = Prob(δ1 = s) = Pn,t(s) =

(
n−s−1

t−1

)(
n
t

)
and the conditional probability

P j+1(s) = Prob(δ j+1 = s|δ1, · · · , δ j) = Pn−δ1−···−δ j− j,t− j(s),

one may dynamically construct an efficient fully decodable encoding ϕ in (19). Unfortunately, this claim is
not true. In the following, we point out the issues within the map by [28]. The construction in [28] proceeds
as follows.

1. At step 1, let d1 be the smallest integer such that
∑

s≥d1 P1(s) < 1/2 and use fd1 to encode δ1.

2. At step j + 1, d j+1 is calculated using the conditional probability P j+1(s). Use fd j+1 to encode δ j+1.

The above encoding process gives an algorithm to convert each constant weight string in Wn,t to a binary
string. Sendrier [28] claimed without a proof that given sufficient input bits, the inverse of the above algo-
rithm can convert any binary string to constant weight strings in Wn,t using the prefix-free coding

fd(i) =

{
base2(i, u − 1) if 0 ≤ i < 2u − d
base2(i + 2u − d, u − 1) if 2u − d ≤ d

where 2u−1 < d ≤ 2u and base2(x, l) denotes the l least significant bits of x. However, this claim is not
true. For given parameters n and t, let x be a binary string such that x contain no prefix from the set
{ fd1(y) : |y|≤ d1}. Then it is straightforward to show that no element in Wn,t is mapped to x. In other
words, for the information symbol x, there is no way to encode it as an error vector in Wn,t. Since the
above construction map is one-to-one and |Wn,t|=

(
n
t

)
, this implies that for many elements x ∈ Wn,t, we have

ϕ(x) <
[
0,

(
n
t

)]
.

9 Recommended parameters and performance evaluation

Taking into account of the cost of Sidelnikov-Shestakov attacks, the cost of recovering McEliece encryption
scheme secret keys from the public keys, and the cost of recovering plaintext messages from ciphertexts
using the information-set decoding (ISD) methods, we generated a recommended list of parameters for
RLCE scheme in Table 1. In Table 1, κc denotes the conventional security strength. For example, κc = 128
means an equivalent security of AES-128. For the naive ISD, one first uniformly selects k columns from the
public key and checks whether it could be inversed. If it could be inversed, one multiplies the inverse with the
corresponding ciphertext values in these coordinates that corresponds to the k columns of the public key. If
these coordinates contain no errors in the ciphertext, one recovers the plain text. To be conservative, we may
assume that randomly selected k columns from the public key is invertible. For each k × k matrix inversion,
Strassen algorithm takes O(k2.807) field operations (though Coppersmith-Winograd algorithm takes O(k2.376)
field operations in theory, it may not be practical for the matrices involved in RLCE encryption schemes).
Thus the naive information-set decoding algorithm takes more than 2κ

′
c steps to find k-error free coordinates

where, by Sterling’s approximation,

κ′c = log2


(
n+w

k

)
k2.807(

n+w−t
k

)  + O(1) ' (n + w)I
(

k
n + w

)
− (n + w − t)I

(
k

n + w − t

)
+ log2(k2.807) + O(1) (26)
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and I(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy of x. There are several improved ISD
algorithms in the literature. These improved ISD algorithms allow a small number of error positions inside
of the ciphertext values corresponding to the selected k coordinates or select k′ > k columns of the public
key matrix for a small number k′ − k or both. The values of κc in Table 1 are mainly calculated using the
PARI/GP script from Peters [25]. Normally, we have κc = κ′c − 6 + o(1). For the recommended parameters,
the default underlying linear code is assumed to be any MDS code (e.g., generalized Reed-Solomon code)
over GF(q) where q = 2dlog2 ne or q = 212 (for convenient data conversion over 32 or 64 bit computers). For
generalized Reed-Solomon code, the natural construction requires n = q − 1. However, generalized Reed-
Solomon code could be shortened to length n < q− 1 codes by interpreting the unused q− 1− n information
symbols as zeros. For the value of w, we consider the following two cases: w = n − k and w = n−k

2 . For the
purpose of comparison, we also list the recommended parameters from [4] for the binary Goppa code based
McEliece encryption scheme.

To reduce the public key sizes, the authors in [4, 25] proposed the use of semantic secure message coding
approach so that one can store the public key as a systematic generator matrix. For a McEliece encryption
scheme over GF(q), one needs to store k(n − k) elements from GF(q) for a systematic generator matrix
public key instead of nk elements from GF(q) for a non-systematic generator matrix public key. For RLCE
encryption scheme over GF(q), the systematic generator matrix public key is k(n + w − k) log q bits. It is
observed that RLCE schemes with all parameters have smaller public key sizes than binary Goppa code
based McEliece scheme. Specifically, for a security level of 128 bits, the public key for the RLCE scheme
with w = n − k is 154KB, the public key for the RLCE scheme with w = n−k

2 is 62KB while the binary
Goppa code based McEliece encryption scheme has a public key size of 187.7KB.

The value κq in Table 1 denotes the quantum security strength under quantum information-set decoding
using Grover’s algorithm (see, e.g., Bernstein [3]). For a function f : {0, 1}n → {0, 1} with the property that
there is an x0 ∈ {0, 1}n such that f (x0) = 1 and f (x) = 0 for all x , x0, Grover’s algorithm finds the value x0
using π

4

√
2n Grover iterations and O(n) qubits. Specifically, Grover’s algorithm converts the function f to a

reversible circuit C f and calculates

|x〉
C f
−→ (−1) f (x)|x〉

in each of the Grover iterations, where |x〉 is an n-qubit register. Thus the total steps for Grover’s algorithm
is bounded by π|C f |

4

√
2n.

For RLCE scheme, quantum information-set decoding could be carried out similarly as in Bernstein’s
[3]. One first uniformly selects k columns from the public key and checks whether it could be inversed. If
it could be inversed, one multiplies the inverse with the ciphertext. If these coordinates contain no errors in
the ciphertext, one recovers the plain text. Though Grover’s algorithm requires that the function f evaluate
to 1 on only one of the inputs, there are several approaches (see, e.g., Grassl et al [15]) to cope with cases
that f evaluates to 1 on multiple inputs.

For a randomly selected k columns of the RLCE encryption scheme public key, the probability that the

ciphertext contains no errors in these positions is approximately (n+w−t
k )

(n+w
k ) . Thus the quantum ISD algorithm

requires
√(

n+w
k

)
/
(
n+w−t

k

)
Grover iterations. For each Grover iteration, the function f needs to carry out the

following computations:

1. Computes the inverse of a k× k submatrix Gsub of the public key. This takes O(k2.807) field operations
if Strassen algorithm is used.

2. Check that the selected k positions contain no errors in the ciphertext. This takes O((n + w)k) field
operations.
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It is expensive for circuits to use look-up tables for field multiplications. Using Karatsuba algorithm, Kepley
and Steinwandt [17] constructed a field element multiplication circuit with gate counts of 7 · (log2 q)1.585. In
a summary, the above function f for the RLCE quantum ISD algorithm could be evaluated using a reversible
circuit C f with at most O(7((n + w)k + k2.807)(log2 q)1.585) gates. To be conservative, we may assume that a
randomly selected k columns from the public key is invertible. Thus Grover’s quantum algorithm requires
approximately

7
(
(n + w)k + k2.807

)
(log2 q)1.585

√√√√ (
n+w

k

)(
n+w−t

k

) (27)

steps for the simple ISD algorithm against RLCE encryption scheme. Advanced quantum ISD techniques
may be developed based on improved ISD algorithms. However our analysis shows that the reduction on the
quantum security is marginal. In the proposed parameters κq in Table 1, we used conservative estimations
by taking into these advanced quantum ISD attacks together with the estimate in (27).

Table 1: RLCE parameters: “600, 464, 68, 10, 154KB”’ represents n = 600, k = 464, t = 68, q = 210. The bold face
security parameters correspond to NIST post call for proposal security parameters

κc κq RLCE (w = n − k) RLCE
(
w = n−k

2

)
binary Goppa code [4]

60 48 255,155,50,8,30KB 200,120,40,8,12.89KB 1024, 524, 50, 19.8KB
80 58 360,200, 80, 9, 101KB 300,140,80,9, 36.91KB 1632, 1269, 34, 56.2KB
128 85 600,464,68,10,154KB 511,381,65,9,82KB 2960, 2288, 57, 188KB
128 85 600,440,80,12,206KB 502,378,62, 12,103KB
160 100 780,580,100,10,212KB 620,440,90,10,177KB 3100,2300,80,302KB
160 100 760,540,110,12, 348KB 620,440,90,12,174KB
192 120 1000,790,105,10,405KB 800,600,100,10,220KB 4624, 3468, 97, 490KB
192 120 990,780,105, 12, 480KB 790,590,100,12,259KB
256 150 1300,800,250,11, 1.05MB 1023,663,180,10,437KB 6624, 5129, 117, 900KB
256 150 1300,800,250,12, 1.14MB 1023,663,180,12,524KB

Parameters in Table 1 could be used for any MDS code based RLCE scheme. In practice, one may also
use non-MDS codes such as LDPC codes, Polar codes, and other to construct RLCE schemes. In addition
to QC-LDPC codes [1], other LDPC codes could be used to design RLCE scheme also. Polar code based
McEliece encryption scheme has been broken in [2] using the fact that, for given parameters n, k, there
is only one (n, k) polar code. However, secure polar code based McEliece encryption schemes could be
designed using RLCE scheme. Since decoding algorithm for polar codes can produce as close as possible
codeword from any given binary string, it may be possible to design efficient digital signature schemes using
polar code based RLCE scheme.

Table 2 lists the message bandwidth and message padding scheme parameters for the recommended
schemes. For each security strength (κc, κq), the odd-ID is for RLCE (w = n − k) and the even-ID is for
RLCE

(
w = n−k

2

)
. In case that ν = 8(k1 + k2 + k3) − mLeni > 0, the last ν-bits of the k3-bytes random seed

r should be set to zero and the last ν-bit of the encoded string y is discarded. For RLCEspad with ν > 0,
the encoding and decoding process are straightforward. For RLCEpad with ν > 0, the decoding process
produces an encoded string y with last ν-bits missing. After using H3 to hash the first part of y resulting in
k3-bytes hash output, one discards the last ν-bits from the hash output and ⊕ the remaining (8k3 − ν)-bits
with the second half of y to obtain the (8k3 − ν)-bits of r without the ν-bits zero trailer.

Table 3 lists the performance results for RLCE encryption scheme that was tested with MacOS Sierra
on a MacBook Pro (Retina 2013 model) with 2.4 GHz Intel Core i5. The first column contains the encryp-
tion scheme ID from Table 2. The second column contains the time needed for a public/private key pair
generation. The third two-column group contains the time needed for one ciphertext encryption. The fourth
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Table 2: Padding parameters (odd-ID schemes use w = n − k and even-ID schemes use w = n−k
2 ): bE for basicEncod-

ing, mE for mediumEncoding and aE for advancedEncoding

ID κc κq n k t m sys sk sk pk mLen
RLCEspad RLCEpad

k1(k2) k3 k1 k2(k3)

1 60 48 255 155 50 8 32467 56802 31001
bE 1240 38 79 135 10
mE 1640 50 105 185 10
aE 1848 55 122 211 10

2 60 48 200 120 40 8 15402 30042 14401
bE 960 30 60 100 10
mE 1280 38 84 140 10
aE 1436 44 92 160 10

3 80 58 360 200 80 9 74308 119708 72001
bE 1800 56 113 195 15
mE 2520 75 165 285 15
aE 2842 85 185 326 15

4 80 58 300 140 80 9 39580 61910 37801
bE 1260 39 80 128 15
mE 1980 60 128 218 15
aE 2262 70 143 243 15

5 128 85 600 464 68 10 160767 430815 157761
bE 4640 145 290 516 32
mE 5320 160 345 601 32
aE 5647 170 365 641 32

6 128 85 511 381 65 9 85864 249932 83583
bE 3429 107 215 365 32
mE 4014 125 252 438 32
aE 4306 134 270 475 32

7 128 85 600 440 80 12 214663 505943 211201
bE 5280 165 330 596 32
mE 6240 190 400 716 32
aE 6608 200 427 763 32

8 128 85 502 378 62 12 107966 323048 105463
bE 4536 141 285 503 32
mE 5280 160 340 596 32
aE 5561 170 356 632 32

9 160 100 780 580 100 10 294088 715748 290001
bE 5800 181 363 645 40
mE 6800 210 430 770 40
aE 7265 220 469 829 40

10 160 100 620 440 90 10 151508 394388 148501
bE 4400 137 276 470 40
mE 5300 160 343 583 40
aE 5689 170 372 632 40

11 160 100 760 540 110 12 360933 799413 356401
bE 6480 202 406 730 40
mE 7800 240 495 895 40
aE 8296 250 538 958 40

12 160 100 620 440 90 12 181453 472733 178201
bE 5280 165 330 580 40
mE 6360 190 415 715 40
aE 6749 200 444 764 40

13 192 120 1000 790 105 10 419630 1201335 414751
bE 7900 246 496 892 48
mE 8950 270 579 1023 48
aE 9464 290 604 1088 48

14 192 120 800 600 100 10 228703 679903 225001
bE 6000 187 376 654 48
mE 7000 215 445 779 48
aE 7452 230 472 836 48

15 192 120 990 780 105 12 496653 1410813 491401
bE 9360 292 586 1074 48
mE 10620 330 668 1232 48
aE 11133 345 702 1296 48

16 192 120 790 590 100 12 269468 792798 265501
bE 7080 221 443 789 48
mE 8280 255 525 939 48
aE 8731 270 552 996 48

17 256 150 1300 800 250 11 1108453 1990053 1100001
bE 8800 275 550 980 60
mE 11550 360 724 1324 60
aE 12596 390 795 1455 60

18 256 150 1023 663 180 10 452832 1003620 447526
bE 6630 207 415 709 60
mE 8430 260 534 934 60
aE 9162 285 576 1026 60

19 256 150 1300 800 250 12 1208803 2170403 1200001
bE 9600 300 600 1080 60
mE 12600 390 795 1455 60
aE 13646 425 856 1586 60

20 256 150 1023 663 180 12 542773 1203453 537031
bE 7956 248 499 875 60
mE 10116 260 745 1145 60
aE 10848 285 787 1237 60
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two-column group contains kilo-bytes of plaintext message that could be encrypted within one second. The
fifth two-column group contains the time needed for one ciphertext decryption and the last two-column
group contains kilo-bytes of plaintext message that could be decrypted within one second. The message size
refers to pre-padded message size.

Table 3: RLCE performance on MacOS 2.4GHz Intel Core i5

ID sec/key seconds/encryption KB per/sec seconds/decryption KB/sec
RLCEspad RLCEpad RLCEspad RLCEpad RLCEspad RLCEpad RLCEspad RLCEpad

1 0.059447 0.004360 0.004599 79.426 278.611 0.009634 0.00967 35.944 132.454
2 0.027372 0.002630 0.003003 100.060 322.892 0.006711 0.006857 39.213 141.400
3 0.158536 0.007747 0.007864 67.048 250.983 0.024781 0.025218 20.961 78.269
4 0.073822 0.004287 0.004810 96.936 313.905 0.028472 0.029469 14.595 51.233
5 1.038965 0.018558 0.018448 59.709 225.630 0.037294 0.038537 29.713 108.009
6 0.596978 0.011261 0.011613 76.876 261.217 0.022252 0.022106 38.904 137.222
7 1.025386 0.019920 0.019850 66.059 249.816 0.142494 0.152560 9.235 32.504
8 0.645071 0.013388 0.012052 82.771 342.491 0.112433 0.115949 9.856 35.599
9 2.369620 0.031716 0.031144 45.856 171.230 0.070691 0.070083 20.574 76.092
10 1.119982 0.016762 0.016368 66.109 246.678 0.053734 0.050209 20.622 80.417
11 2.141296 0.029142 0.028558 57.037 217.050 0.204380 0.204203 8.132 30.354
12 1.140381 0.017647 0.017313 74.567 286.019 0.164515 0.161873 7.998 30.591
13 5.370898 0.046863 0.047414 39.902 149.428 0.083115 0.078595 22.498 90.145
14 2.451222 0.027551 0.028979 54.045 186.175 0.059952 0.061553 24.837 87.650
15 4.904205 0.044599 0.048186 51.245 177.071 0.193810 0.199046 11.792 42.866
16 2.436107 0.025108 0.026074 70.339 249.415 0.178947 0.182934 9.869 35.549
17 9.316449 0.087165 0.086902 28.604 105.516 0.312599 0.309396 7.976 29.637
18 4.677360 0.042546 0.043558 42.323 148.506 0.130921 0.129737 13.754 49.859
19 9.410073 0.086897 0.086147 31.083 116.972 0.532154 0.516498 5.076 19.510
20 4.794430 0.042819 0.044252 42.053 179.198 0.344813 0.338056 5.222 23.457

Table 4 lists the performance results for RLCE encryption scheme that was tested with Dell Optiplex
9010 Desktop Computer with Intel(R) Core(TM) i7-3770 CPU @3.40GHz and 16GB RAM. It runs Cygwin
within Windows 10.

10 Conclusions

In this paper, we presented techniques for designing general random linear code based public encryption
schemes using any linear code. The proposed scheme generally has smaller public key sizes compared to
binary Goppa code based McEliece encryption schemes. Furthermore, the proposed schemes could use any
linear codes such as (generalized) Reed-Solomon code, LDPC code, Turbo code, or Polar code. Heuristics
and experiments encourages us to think that the proposed schemes are immune against existing attacks on
linear code based encryption schemes such as Sidelnikov-Shestakov attack, filtration attacks, and algebraic
attacks. For related documents, see Wang [33, 34].
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