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Abstract

Recently, Wang (2016) introduced a random linear code based quantum resistant public encryption
scheme RLCE which is a variant of McEliece encryption scheme. In this paper, we introduce a revised
version of the RLCE encryption scheme. The revised RLCE schemes are more efficient than the original
RLCE scheme. Specifically, it is shown that RLCE schemes have smaller public key sizes compared
to binary Goppa code based McEliece encryption schemes for corresponding security levels. The paper
further investigates message padding schemes for RLCE to achieve IND-CCA2 security. Practical RLCE
parameters for the classical security levels of 128, 192, and 256 and for the quantum security levels of
85, 100, 120, and 150 are recommended. Software packages available at http://quantumca.org/

Key words: Random linear codes; McEliece encryption scheme; linear code based encryption scheme;
message padding schemes; adaptive chosen ciphertext security.

1 Introduction

Since McEliece encryption scheme [22] was introduced more than thirty years ago, it has withstood many
attacks and still remains unbroken for general cases. It has been considered as one of the candidates for
post-quantum cryptography since it is immune to existing quantum computer algorithm attacks. The origi-
nal McEliece cryptographic system is based on binary Goppa codes. Several variants have been introduced
to replace Goppa codes in the McEliece encryption scheme though most of them have been broken. Up to
the writing of this paper, secure McEliece encryption schemes include MDPC/LDPC code based McEliece
encryption schemes [1, 23], Wang’s RLCE [31], and the original binary Goppa code based McEliece en-
cryption scheme.

Recently, Wang’s RLCE [31] presents a systematic approach of designing public key encryption schemes
using any linear code. For example, one can use generalized Reed-Solomon (GRS) codes to design McEliece
based RLCE encryption scheme. In this paper, we propose variants of the RLCE scheme which will increase
the message communication bandwidth, reduce the public key size, and improve the encryption and decryp-
tion performance. Experimental results are reported for different RLCE scheme parameter sizes. The paper
will also analyze the security of RLCE scheme by investigating attacks on dual codes of RLCE public keys.
We further investigate message padding schemes for RLCE to be secure against adaptive chosen ciphertext
attacks (IND-CCA2).

Unless specified otherwise, we will use q = pm where p = 2 or p is a prime. Our discussion will be
based on the field GF(q) through out this paper. Bold face letters such as a,b, e, f, g are used to denote
row or column vectors over GF(q). It should be clear from the context whether a specific bold face letter
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represents a row vector or a column vector. Let k < n ≤ q. The generalized Reed-Solomon code GRSk(x, y)
of dimension k is defined as

GRSk(x, y) =
{
(y0 p(x0), · · · , yn−1 p(xn−1)) : p(x) ∈ GF(q)[x], deg(p) < k

}
where x = (x0, · · · , xn−1) ∈ GF(q)n is an n-tuple of distinct elements and y = (y0, · · · , yn−1) ∈ GF(q)n is an
n-tuple of nonzero (not necessarily distinct) elements.

2 McEliece, Niederreiter, and RLCE Encryption schemes

For given parameters n, k and t, the McEliece scheme [22] chooses an (n, k, 2t + 1) linear Goppa code C.
Let Gs be the k × n generator matrix for the code C. Select a random dense k × k nonsingular matrix S and
a random n × n permutation matrix P. Then the public key is G = S GsP and the private key is Gs. The
following is a description of encryption and decryption processes.

Mc.Enc(G,m, e). For a message m ∈ {0, 1}k, choose a random vector e ∈ {0, 1}n of weight t and compute the
cipher text c = mG + e

Mc.Dec(S ,Gs, P, c). For a received ciphertext c, first compute c′ = cP−1 = mS G. Next use an error-
correction algorithm to recover m′ = mS and compute the message m as m = m′S −1.

For given parameters n, k, and t, the Niederreiter’s scheme [24] chooses an (n, k, 2t + 1) linear code C.
Let Hs be an (n − k) × n parity check matrix of C. Select a random (n − k) × (n − k) nonsingular matrix S
and a random n × n permutation matrix P. Then the public key is H = S HsP and the private key is S ,Hs, P.
The encryption and decryption processes are as follows.

Nied.Enc(H,m). For a message m ∈ GF(q)n of weight t, compute the cipher text c = mHT of length n − k.

Nied.Dec(S ,Hs, P, c). For a received ciphertext c = mPT HT
s S T , compute c(S T )−1 = mPT HT

s . Use an
error-correction algorithm to recover m′ = mPT and compute the message m = m′(PT )−1.

The protocol for the RLCE Encryption scheme by Wang [31] consists of the following three processes:
RLCE.KeySetup, RLCE.Enc, and RLCE.Dec.

RLCE.KeySetup(n, k, d, t, r). Let n, k, d, t > 0, and r ≥ 1 be given parameters such that n−k+1 ≥ d ≥ 2t +1.
Let Gs = [g0, · · · , gn−1] be a k × n generator matrix for an [n, k, d] linear code such that there is an efficient
decoding algorithm to correct at least t errors for this linear code given by Gs.

1. Let C0,C1, · · · ,Cn−1 ∈ GF(q)k×r be k × r matrices drawn uniformly at random and let

G1 = [g0,C0, g1,C1 · · · , gn−1,Cn−1] (1)

be the k × n(r + 1) matrix obtained by inserting the random matrices Ci into Gs.

2. Let A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) be dense nonsingular (r + 1) × (r + 1) matrices chosen uniformly
at random and let A = diag[A0, · · · , An−1] be an n(r + 1) × n(r + 1) nonsingular matrix.

3. Let S be a random dense k × k nonsingular matrix and P be an n(r + 1)× n(r + 1) permutation matrix.

4. The public key is the k × n(r + 1) matrix G = S G1AP and the private key is (S ,Gs, P, A).

RLCE.Enc(G,m, e). For a row vector message m ∈ GF(q)k, choose a random row vector e = [e0, . . . , en(r+1)−1] ∈
GF(q)n(r+1) such that the Hamming weight of e is at most t. The cipher text is c = mG + e.

2



RLCE.Dec(S ,Gs, P, A, c). For a received cipher text c = [c0, . . . , cn(r+1)−1], compute

cP−1A−1 = mS G1 + eP−1A−1 = [c′0, . . . , c
′
n(r+1)−1]

where A−1 = diag[A−1, · · · , A−1
n−1]. Let c′ = [c′0, c

′
r+1, · · · , c

′
(n−1)(r+1)] be the row vector of length n selected

from the length n(r + 1) row vector cP−1A−1. Then c′ = mS Gs + e′ for some error vector e′ ∈ GF(q)n. Let
e′′ = eP−1 = [e′′0 , · · · , e

′′
n(r+1)−1] and e′′i = [e′′i(r+1), . . . , e

′′
i(r+1)+r] be a sub-vector of e′′ for i ≤ n − 1. Then

e′[i] is the first element of e′′i A−1
i . Thus e′[i] , 0 only if e′′i is non-zero. Since there are at most t non-zero

sub-vectors e′′i , the Hamming weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm,
one can compute m′ = mS and m = m′S −1. Finally, calculate the Hamming weight w = wt(c − mG). If
w ≤ t then output m as the decrypted plaintext. Otherwise, output error.

3 The dual RLCE scheme

It is straightforward to show that McEliece encryption scheme is equivalent to Niederreiter encryption
scheme. That is, for each McEliece encryption scheme public key, one can derive a Niederreiter encryption
scheme public key and, for each Niederreiter encryption scheme public key, one can derive a McEliece
encryption scheme public key. One can break the McEliece encryption scheme (respectively the Nieder-
reiter encryption scheme) if and only if one can break the corresponding Niederreiter encryption scheme
(respectively, the McEliece encryption scheme). In this section, we show that a similar equivalent result
may not hold for RLCE schemes. We first try to give a natural candidate construction of Niederreiter RLCE
scheme and show it is challenging (or infeasible) to design an efficient decryption algorithm. Thus it is not
clear whether there exists an efficient equivalent Niederreiter RLCE encryption scheme corresponding to the
McEliece RLCE encryption scheme.

RLCEdual.KeySetup(n, k, d, t, r). For an (n, k, 2t + 1) linear code C, let Hs = [h0, · · · ,hn−1] be an (n− k)× n
parity check matrix of C. The keys are generated using the following steps.

1. Let C0,C1, · · · ,Cn−1 ∈ GF(q)(n−k)×r be (n − k) × r matrices drawn uniformly at random and let

H1 = [h0,C0, g1,C1 · · · ,hn−1,Cn−1] (2)

be the (n − k) × n(r + 1) matrix obtained by inserting the random matrices Ci into Hs.

2. Let A0, · · · , An−1 ∈ GF(q)(r+1)×(r+1) be dense nonsingular (r + 1) × (r + 1) matrices chosen uniformly
at random and let A = diag[A0, · · · , An−1] be an n(r + 1) × n(r + 1) nonsingular matrix.

3. Let S be a random dense k × k nonsingular matrix and P be an n(r + 1)× n(r + 1) permutation matrix.

4. The public key is the (n − k) × n(r + 1) matrix H = S H1AP and the private key is (S ,Hs, P, A).

RLCEdual.Enc(H,m). For a row message m ∈ GF(q)n(r+1) of weight t, compute the ciphertext c = mHT .

Candidate decryption algorithms? For a received ciphertext c = mHT , we have c(S T )−1 = mPT AT HT
1 .

Since the weight of mPT AT is at most 2t, we can decrypt the ciphertext c only if we had an efficient 2t-error-
correcting algorithm for the code defined by the parity check matrix H1. Since the matrices C0,C1, · · · ,Cn−1
are selected at random, it is unknown whether there is an efficient error correcting algorithm for the code
defined by the parity check matrix H1. In the following, we describe the natural candidate algorithm for
decrypting the ciphertext and show that this algorithm will not work. Let Gs = [g0, · · · , gn−1] be the k × n
generator matrix for the linear code C such that GsHT

s = 0. Furthermore, let D0,D1, · · · ,Dn−1 be k × r
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matrices, such that D0CT
0 + D1CT

1 + · · ·+ Dn−1CT
n−1 = 0 (for example, one may take D0 = D1 = · · · = Dn−1 =

0). Let G1 = [g0,D0, · · · , gn−1,Dn−1], and G = G1(AT )−1(PT )−1. Then

GHT = G1(AT )−1(PT )−1PT AT HT
1 S T = G1HT

1 = 0.

For a received ciphertext c with c(S T )−1 = mPT AT HT
1 , one can find a vector a ∈ GF(q)n(r+1) such that

c(S T )−1 = aHT . Then we have (a − mPT AT )HT = 0. Since the space spanned by the rows of H is
of dimension n − k, the orthogonal space to the space spanned by the rows of H is of dimension nt + k.
However, the space spanned by the rows of G only has dimension k. Thus only with a negligible probability,
the vector a −mPT AT is in the code space generated by the rows of G. In other words, the above candidate
decryption algorithm will succeed only with a negligible probability.

The arguments in the preceding paragraph shows that it is hard to design an equivalent Niederreiter
encryption scheme for RLCE scheme. This provides certain evidence for the robustness of RLCE scheme.

4 Revised encryption scheme RLCE

In this section, we introduce a revised RLCE scheme to improve the message bandwidth and to reduce
the public key size. The main difference between the revised scheme and the original scheme in [31] is
that the revised scheme inserts random columns after randomly selected columns in the generator matrix.
Specifically the revised RLCE scheme proceeds as follows.

RLCE.KeySetup(n, k, d, t,w). Let n, k, d, t > 0, and w ∈ {1, · · · , n} be given parameters such that n − k + 1 ≥
d ≥ 2t + 1. Let Gs be a k × n generator matrix for an [n, k, d] linear code C such that there is an efficient
decoding algorithm to correct at least t errors for this linear code given by Gs. Let P1 be a randomly chosen
n × n permutation matrix and GsP1 = [g0, · · · , gn−1].

1. Let r0, r1, · · · , rw−1 ∈ GF(q)k be column vectors drawn uniformly at random and let

G1 = [g0, · · · , gn−w, r0, · · · , gn−1, rw−1] (3)

be the k × (n + w) matrix obtained by inserting column vectors ri into Gs.

2. Let A0, · · · , Aw−1 ∈ GF(q)2×2 be dense nonsingular 2×2 matrices chosen uniformly at random and let
A = diag[1, · · · , 1, A0, · · · , Aw−1] be an (n + w) × (n + w) nonsingular matrix.

3. Let S be a random dense k × k nonsingular matrix and P2 be an (n + w) × (n + w) permutation matrix.

4. The public key is the k × (n + w) matrix G = S G1AP2 and the private key is (S ,Gs, P1, P2, A).

RLCE.Enc(G,m, e). For a row vector message m ∈ GF(q)k, choose a random row vector e = [e0, . . . , en+w−1] ∈
GF(q)n+w such that the Hamming weight of e is at most t. The cipher text is c = mG + e.

RLCE.Dec(S ,Gs, P1, P2, A, c). For a received cipher text c = [c0, . . . , cn+w−1], compute

cP−1
2 A−1 = mS G1 + eP−1

2 A−1 = [c′0, . . . , c
′
n+w−1].

Let c′ = [c′0, c
′
1, · · · , c

′
n−w, c

′
n−w+2, · · · , c

′
n+w−2] be the row vector of length n selected from the length n + w

row vector cP−1
2 A−1. Then c′P−1

1 = mS Gs + e′ for some error vector e′ ∈ GF(q)n where the Hamming
weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm, one can compute m′ = mS
and m = m′S −1. Finally, calculate the Hamming weight w = wt(c − mG). If w ≤ t then output m as the
decrypted plaintext. Otherwise, output error.
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Remark 1. If w = n, then the revised RLCE scheme is the same as the original RLCE scheme with r = 1.
It is recommended to use w ≥ (n − k)/2 though a smaller w is also acceptable.
Remark 2. If the (n + w) × (n + w) matrix A is taken as the identity matrix I(n+w)×(n+w), then the revised
RLCE scheme is the same as the Wieschebrink’s encryption scheme [33].
Remark 3. It is sufficient to only include the first column of A−1

i for each i = 0, · · · ,w in the private key.

5 Systematic Decoding RLCE schemes

In the revised RLCE encryption scheme, one first recovers m′ = mS and then calculates the message
m = m′S −1. To simplify the message recovering process, one can use echelon format public keys and
restrict the permutation P2 to the last n + w− k columns of S G1A. In case that w ≤ n− k, this implies that the
matrix S GsP1 is in echelon format. Thus S is the matrix that converts GsP1 to echelon format. By requiring
w ≤ n − k, the RLCE scheme remains unchanged except the following revised decryption process.

SYS-DEC-RLCE.Dec(Gs, P1, P2, A, c). For a received cipher text c = [c0, . . . , cn+w−1], compute

cP−1
2 A−1 = mS G1 + eP−1

2 A−1 = [c′0, . . . , c
′
n+w−1] = [c0, . . . , ck−1, c′k, . . . , c

′
n+w−1].

Let c′ = [c0, c1, · · · , ck−1, · · · , c′n−w, c
′
n−w+2, · · · , c

′
n+w−2] be the row vector of length n selected from the length

n + w row vector cP−1
2 A−1. Then c′P−1

1 = mS Gs + e′ for some error vector e′ ∈ GF(q)n where the Hamming
weight of e′ ∈ GF(q)n is at most t. Using the efficient decoding algorithm, one recovers e′ from c′P−1

1 .
Since c′ = mS GsP1 + e′P1 and S GsP1 is in echelon format, the message m equals to the first k elements in
the vector c′ − e′P1. Finally, calculate the Hamming weight w = wt(c −mG). If w ≤ t then output m as the
decrypted plaintext. Otherwise, output error.
Remark. For systematic decoding RLCE scheme, one does not need to include S −1 within the private key.

6 Security analysis

Loidreau and Sendrier [21] pointed out some weak keys for binary Goppa code based McEliece schemes
and similar weak keys for RLCE schemes should not be used. For RLCE schemes, one can obtain a valid
ciphertext for a message m + m′ by letting c′ = c + m′G without knowing the message m. This kind of
attacks could be defeated by using IND-CCA2-secure message padding schemes which will be discussed
in this paper. Faugere, Otmani, Perret, and Tillich [9] developed an algebraic attack against quasi-cyclic
and dyadic structure based compact variants of McEliece encryption scheme. Wang [31] showed that the
algebraic attacks will not work against the RLCE encryption scheme. A straightforward modification of
the analysis in [31] can be used to show that the algebraic attacks will not work against the revised RLCE
scheme either. In the following sections, we carry out heuristic security analyses on the revised RLCE
scheme. We first show how to choose appropriate parameters n, k,w to defeat Sidelnikov-Shestakov attacks
and filtration attacks against RLCE schemes.

6.1 Sidelnikov-Shestakov’s attack

Niederreiter’s scheme [24] replaces the binary Goppa codes in McEliece scheme by GRS codes. Sidelnikov
and Shestakov [29] broke Niederreiter scheme by recovering an equivalent private key (x′, y′) from a public
key G for the code GRSk(x, y). For the given public key G, one computes the echelon form E(G) = [I|G′]
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using Gaussian elimination.

E(G) =


1 0 · · · 0 b0,k · · · b0,n−1
0 1 · · · 0 b1,k · · · b1,n−1
...

...
. . .

...
...

. . .
...

0 0 · · · 1 bk−1,k · · · bk−1,n−1

 (4)

Assume the ith row codeword bi of E(G) encodes a message pi(x) = a0 + a1x + · · · + ak−1xk−1. Then

y0 pi(x0) = 0, · · · , yi pi(xi) = 1, · · · , yn−1 pi(xn−1) = bi,n−1 (5)

Since the only non-zero elements are bi,i, bi,k+1, · · · , bi,n−1, pi can be written as

pi(x) = ci ·

k∏
j=1, j,i

(x − x j) (6)

for some ci , 0. By the fact that GRSk(x, y) = GRSk(ax + b, cy) for all a, b, c ∈ GF(q) with ab , 0, we may
assume that x0 = 0 and x1 = 1. In the following, we try to recover x2, · · · , xn−1. Using equation (6), one can
divide the row entries in (4) by the corresponding nonzero entries in another row to get several equations.
For example, if we divide entries in row i0 by corresponding nonzero entries in row i1, we get

bi0, j

bi1, j
=

y j pi0(x j)
y j pi1(x j)

=
ci0(x j − xi1)
ci1(x j − xi0)

(7)

for j = k, · · · , n − 1. First, by taking i0 = 0 and i1 = 1, equation (7) could be used to recover xk, · · · , xn−1 by
guessing the value of c0

c1
which is possible when q is small. By letting i0 = 0 and i1 = 2, · · · , k−1 respectively,

equation (7) could be used to recover xi1 . Sidelnikov and Shestakov [29] showed that the values of y can
then be recovered by solving some linear equation systems based on x0, · · · , xn−1.

In the RLCE scheme, 2w columns of the public key matrix G are randomized. In case that the filtration
attack in the next Section can identify the n − w non-randomized columns, one can permute the columns of
G to obtain a new matrix GN such that the first n − w columns are the non-randomized columns. Then one
can compute an echelon form E(GN) for GN . Since the last 2w columns are randomized, they could not be
used to establish any of the equations in Sidelnikov and Shestakov attack. We distinguish the following two
cases:

1. If w ≥ n − k, then one cannot establish enough equations within (5) to obtain the equation (6). Thus
no equations in (7) could be established and Sidelnikov and Shestakov attack could not continue.

2. If n − k > w, equations (7) may only be used to recover the values of x0, · · · , xn−w−1. If it has a negli-
gible probability for one to guess the remaining values xn−w, · · · , xn−1, then Sidelnikov and Shestakov
attack will not be successful. The probability for one to guess the remaining values xn−w, · · · , xn−1
correctly is bounded by 1/

(
q−n+w+1

w

)
w!.

Thus for a security parameter κ, the RLCE parameters should be chosen in such a way that

w ≥ n − k or
(
q − n + w + 1

w

)
w!≥ 2κ. (8)
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6.2 Filtration attacks

Couvreur et al. [7] designed a filtration technique to attack GRS code based McEliece scheme. For two codes
C1 and C2 of length n, the star product code C1 ∗C2 is the vector space spanned by a ∗ b for all pairs (a,b) ∈
C1 × C2 where a ∗ b = [a0b0, a1b1, · · · , an−1bn−1]. For the square code C2 = C ∗ C of C, we have dimC2 ≤

min
{
n,

(
dimC+1

2

)}
. For an [n, k] GRS code C, let a,b ∈ GRSk(x, y) where a = (y0 p1(x0), · · · , yn−1 p1(xn−1))

and a = (y0 p2(x0), · · · , yn−1 p2(xn−1)). Then a ∗ b = (y2
0 p1(x0)p2(x0), · · · , y2

n−1 p1(xn−1)p2(xn−1)). Thus
GRSk(x, y)2 ⊆ GRS2k−1(x, y ∗ y) where we assume 2k − 1 ≤ n. This property has been used in [7] to
recover the non-random columns in Wieschebrink’s public key [33].

Let G be the generator matrix for an (n, k, d, t,w) RLCE encryption scheme based on a GRS code. Let C
be the code generated by the rows of G. LetD1 be the code with a generator matrix D1 obtained from G by
replacing the randomized 2w columns with all-zero columns and letD2 be the code with a generator matrix
D2 obtained from G by replacing the n−w non-randomized columns with zero columns. Since C ⊂ D1 +D2
and the pair (D1,D2) is an orthogonal pair, we have C2 ⊂ D2

1 +D2
2. It follows that

2k − 1 ≤ dimC2 ≤ min {min{2k − 1, n − w} + 2w, n + w} . (9)

In case that k ≥ n − w, no matter whether the filtration technique can recover the non-randomized n − w
GRS columns or not, the recovered non-randomized GRS columns are useless for the adversary since the
n−w GRS columns are equivalent to a basis of a n−w dimensional subspace. In the following, we consider
filtration attacks against RLCE schemes with k < n − w.

First assume that min{2k − 1, n−w}+ 2w ≤ n + w and 2k ≤ n−w. That is, n ≥ 2k − 1 + w. Let Ci be the
punctured C code at position i. We distinguish the following two cases:

• Column i of G is a randomized column. In this case, the expected dimension for C2
i is 2k + 2w − 2.

• Column i of G is a non-randomized column. In this case, the expected dimension for C2
i is 2k+2w−1.

This shows that if n ≥ 2k − 1 + w, then the filtration techniques could be used to identify the randomized
columns within the public key G. For the case of n < 2k − 1 + w, one can use the shortened code based
filtration techniques in Couvreur et al. [7] to recover the non-randomized n − w GRS columns.

Once non-randomized n − w GRS columns are recovered, one can use Sidelnikov-Shestakov attack to
compute an equivalent private key for the underlying [n, k] GRSk code. The condition (8) in the preceding
section shows how to choose RLCE parameters in such a way that it is computationally infeasible to use
Sidelnikov-Shestakov attacks to calculate an equivalent private key for the underlying [n, k] GRSk code.

Alternatively, one may use Sidelnikov-Shestakov attacks to calculate a private key for the punctured
[n − w, k] GRSk code consisting of the recovered non-randomized GRS columns and then list-decode the
punctured [n − w, k] GRSk code. We first review some results for GRS list-decoding. The error distance
of a received word y ∈ GF(q)n to a code C is defined as ∆(y,C) = min{wt(y − x) : x ∈ C}. For a vector
y ∈ GF(q)n, y’s Hamming ball of radius r is B(y; r) = {y′ : wt(y − y′) ≤ r}. For an MDS [n, k, d] code C and
a vector y ∈ GF(q)n, B(y; r) contains at most one codeword from C if r ≤ d/2. If d/2 < r ≤ n −

√
n(k − 1),

B(y; r) ∩ C is contains at most polynomial many elements and the list-decoding algorithm by Guruswami
and Sudan [13] can be used to efficiently output all elements in B(y; r)∩C. If the radius is stretched further,
B(y; r) ∩ C may contain exponentially many codewords.

For an RLCE ciphertext c, let c′ be the punctured ciphertext of length n − w by restricting c to the
punctured [n − w, k] GRSk code. In case that there are at most n − w −

√
(n − w)(k − 1) errors in c′, one

can decode the shortened [n − w, k] GRSk code using the list-decoding algorithm by Guruswami and Sudan
[13]. Note that the probability for c′ to contain at most n − w −

√
(n − w)(k − 1) errors is bounded by the
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hypergeometric cumulative distribution function

Pn,w,t =

∑n−w−
√

(n−w)(k−1)
i=0

(
n−w

i

)(
2w
t−i

)(
n+w

t

) (10)

Thus the parameters should be chosen in such a way that for the given security parameter κ,

w ≥ n − k or Pn,w,t ≤ 2−κ. (11)

Justesen and Hoholdt [15] showed the following theorem.

Theorem 6.1 (Justesen and Hoholdt [15]) For an [n, k] Reed-Solomon code C and an integer δ < n− k, the
expected size of B(u; δ) ∩ C is

(
n

n−δ

)
/qn−δ−k for randomly chosen u ∈ GF(q)n.

By theorem 6.1, we may further require that the RLCE parameters are chosen in such a way that the
expected size of B(u; δ) ∩ C is large than 2κ, where δ is the number of expected errors that the ciphertext
c′ contains. However, this may not be necessary following Guruswami and Rudra’s result [12] that GRS
list decoding algorithm that solves the general problem of polynomial reconstruction (like the Guruswami-
Sudan algorithm) cannot go beyond the square root bound.

6.3 Information-Set Decoding

As mentioned in the introduction, the most powerful message recovery attack on McEliece encryption
schemes is the information-set decoding attack. The state-of-the-art information-set decoding attack for
non-binary McEliece scheme is the one presented in Peters [25], which integrated optimized Lee-Brickell’s
algorithm [19], Stern’s algorithm [30], and Leon’s minimum-weight-word-finding algorithm [20]. Peters’s
attack [25] also integrated analysis techniques for information-set decoding attacks on binary McEliece
scheme discussed in [3]. For the RLCE encryption scheme, the information-set decoding attack is based on
the number of columns in the public key G instead of the number of columns in the private key Gs. For the
same error weight t, the probability to find error-free coordinates in n + w coordinates is different from the
probability to find error-free coordinates in n coordinates. Specifically, the cost of information-set decoding
attacks on an [n, k, t; w]-RLCE scheme is equivalent to the cost of information-set decoding attacks on a
standard [n + w, k; t]-McEliece scheme. It should be pointed out that the information set decoding attack is
closely related to the finding low-weight codeword attacks.

6.4 Known partial plaintext [6]

For McEliece Encryption scheme, we have c = mG + e. Let l, r be two positive integers such that k = l + r.

Assume that m = [ml,mr] and G =

[
Gl

Gr

]
. Then we have

c = mG + e = [ml,mr]
[

Gl

Gr

]
+ e = mlGl + mrGr + e. (12)

Thus if one knows the value of ml, the identity (12) becomes c−mlGl = mrGr +e which could be much easy
to decode than the original codeword c since r < k. The known-partial-plaintext-attack could be defeated
using appropriate message padding for IND-CCA2-security that will be discussed in Section 7.
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6.5 Related message attack [4]

Assume that c1 = m1G + e1 and c2 = m2G + e2. Furthermore, assume that the adversary knows the relation
between m1 and m2. For example, assume that m = m1 + m2 and that the adversary knows the value of m.
Then we have c1 + c2 − mG = e1 + e2. Since e1 and e1 are different and both of them have low weight t,
it could be easy for the adversary to recover both e1 and e1 by trying all combinations. Even if one cannot
enumerate all combinations to recover either e1 or e1, one can use the 0 entries within e1 + e2 as a hint to
speed up the information set decoding algorithm for recovering m1 from c1 = m1G + e1. A special case of
this attack is the attack on two ciphertexts of the identical message encrypted using different error vectors.
The related-message-attack could be defeated using appropriate message padding for IND-CCA2 security
that will be discussed in Section 7.

6.6 Reaction attack [14]

In this attack, one assumes that an McEliece decryption oracle outputs an error message each time when the
given ciphertext contains too many errors to decrypt. For a given ciphertext c, the adversary first randomly
selects positions to add errors until the decryption oracle complains. That is, the adversary first obtains a
ciphertext c′ that contains maximum errors that the decryption oracle could handle. Then the adversary
selects a random position i and add errors to this position. If the decryption oracle could decrypt the re-
sulting ciphertext, it means that c′ contains error at this position. Otherwise, this position is error-free. The
adversary continues this process until she obtains k error-free positions for the ciphertext c. These error-free
positions could be used to recover the plaintext message for the ciphertext c. The reaction-attack could be
defeated using appropraite message padding for IND-CCA2 security that will be discussed in Section 7.

6.7 Reaction-attack based side channel attacks

Message padding schemes for IND-CCA2 security in Section 7 could be used to defeat the reaction attack.
However, for a ciphertext that contains too many errors to decrypt and for a ciphertext with padding errors
that decrypts successfully, the decryption oracle normally uses different amount of times. Thus an adversary
may introduce errors in some positions of the ciphertext and observe the amount of time used for the de-
cryption oracle to report errors. This will allow the adversary to distinguish whether the original ciphertext
contains errors in these positions or not. The observed results could be used as in the reaction attack to
recover the plaintext. In order to defeat such kind of reaction-attack based side-channel attacks, appropriate
delays should be introduced in a decryption process of padded RLCE schemes so that the decryption process
takes the same amount of times to report errors for padding errors and for decoding errors.

7 Message encoding and IND-CCA2 security

We mentioned several attacks on RLCE schemes in the preceding section. To avoid these attacks, it is
necessary to use message padding schemes so that the encryption scheme is secure against adaptive chosen
ciphertext attacks (IND-CCA2). In the following subsections, we present message padding schemes to make
McEliece encryption scheme secure against adaptive chosen ciphertext attacks.

7.1 Message bandwidth

We first analyze the amount of information that could be encoded within each ciphertext. Let (n, k, t,w) be
the parameters where the public key is of dimension k × (n + w) and GF(2m) is the underlying finite field.
There are three approaches to encode messages within the ciphertext.
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1. basicEncoding: Encode information within the vector m ∈ GF(q)k and the ciphertext is c = mG + e.
In this case, we can encode mLen = mk bits information within each ciphertext.

2. mediumEncoding: In addition to basicEncoding, further information is encoded in the non-zero
entries of e. That is, let ei1 , · · · , eit ∈ GF(q) \ {0} be the non-zero elements within e and encode further
information within ei1 , · · · , eit . In this case, we can encode mLen = m(k + t) bits information within
each ciphertext. Strictly speaking, the encoded information is less than m(k + t) bits since ei j cannot
be zeros.

3. advancedEncoding: In addition to mediumEncoding, further information are encoded within within
the choice of non-zero entries within e. Since there are

(
n+w

t

)
candidates for the choice of non-zero

entries within e, we can encode mLen = m(k + t)+
⌊
log2

(
n+w

t

)⌋
bits information within each ciphertext.

The basicEncoding approach is straightforward. For the mediumEncoding, after one recovers the vector
m, one needs to compute mG − c to obtain the values of ei1 , · · · , eit . For the advancedEncoding approach,
we need to compute an invertible function

ϕ : Wn+w,t ↔

{
i : 1 ≤ i ≤

(
n + w

t

)}
(13)

where Wn+w,t ( GF(2)n+w is the set of all (n + w)-bit binary string of weight t. For the invertible function ϕ
in (13), one may use the enumerative source encoding construction in Cover [8]:

ϕ : Wn+w,t ←→

[
0,

(
n + w

t

)]
where ϕ(i1, · · · , it) =

(
it−1

t

)
+ · · · +

(
i1−1

1

)
and 0 ≤ i1 < i2 < · · · < it < n + w are the positions of ones. The

function ϕ could be evaluated with the cost of O
((

log2

⌈(
n+w

t

)⌉)2
)

operations (see, e.g., Sendrier [27]).

7.2 Existing message encoding approaches

Several authors proposed to use message encoding (padding) approach to achieve IND-CCA2 security for
McEliece encryption schemes. For example, Kobara and Imai [18] recommended the use of Pointcheval’s
generic conversion [26] or Fujisak-Okamato’s generic conversion [10] to achieve adaptive chosen ciphertext
security (IND-CCA2) for McEliece encryption scheme. Furthermore, they also proposed three new message
encoding approaches to achieve adaptive chosen ciphertext security (IND-CCA2) for McEliece encryption
scheme. Let H1,H2 be random oracles (e.g., they could be pseudo-random-bits generators or hash functions)
that output random strings of appropriate lengths and let r1, r2 be randomly selected strings with appropriate
length. Then the encryption processes with message padding schemes could be informally described as
follows.

• Pointcheval padding: c = Mc.Enc(G, r1,H1(m||r2))||(H2(r1) ⊕ (m||r2)).

• Fujisak-Okamato padding: c = Mc.Enc(G, r1,H1(m||r1))||(H2(r1) ⊕m).

• Kobara-Imai’s α-padding: c = Mc.Enc(G, y1,H1(m||r1))||y2 where y1||y2 = H2(H1(m||r1)) ⊕ (m||r1).

• Kobara-Imai’s β-padding: c = y1||Mc.Enc(G, y2,H1(r1)) where y1||y2 = (r ⊕ H1(H2(r) ⊕m))||(H2(r) ⊕
m).
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• Kobara-Imai’s γ-padding: c = y3||Mc.Enc(G, y1, y2) where y3||y2||y1 = (r⊕H1(H2(r)⊕(m||const)))||(H2(r)⊕
(m||const)).

Among these padding schemes, Pointcheval padding and Fujisak-Okamato padding require extra strings
added after the McEliece ciphertext. This increases the ciphertext length and it is not a preferred choice for
bandwidth efficiency. Though Kobara and Imai provided proof of security for their three padding schemes,
it is not clear how to select the message and random bit lengths for a specific security strength. In particular,
further analysis may be required to analyze the exact security corresponding to various parameter selections
for Kobara-Imai padding schemes.

7.3 RLCE message padding schemes RLCEspad and RLCEpad

In this section, we assume that the message bandwidth is mLen-bits for each ciphertext. We present two
efficient padding schemes for the RLCE encryption scheme. Our padding schemes are adapted from the
well analyzed Optimal Asymmetric Encryption Padding (OAEP) for RSA/Rabin encryption schemes and
its variants OAEP+ [28] and SAEP+ [5]. The first simple padding scheme RLCEspad is a one-round of
a Feistel network that is similar to SAEP+. RLCEspad could be used to encrypt short messages (e.g.,
mLen/4-bits) and is sufficient for applications such as symmetric key transportation using the RLCE public
key encryption scheme. The second padding scheme RLCEpad is a two-round Feistel network that is similar
to OAEP+. RLCEpad could be used to encrypt messages that are almost as long as mLen-bits.

We assume that messages are binary strings. After padding, they will be converted to field elements
and/or other information in the RLCE scheme (e.g., the information contained in the error vector e if medi-
umEncoding or advancedEncoding is used). For a RLCE setup process RLCE.KeySetup(n, k, d, t,w), let the
k × (n + w) matrix G be a public key and (S ,Gs, P1, P2, A) be a corresponding private key. Assume that
scheme is over a finite field GF(2m). The RLCEspad proceeds as follows.

RLCEspad(mLen, k1, k2, k3): Let k1, k2, k3 be parameters such that k1 + k2 + k3 =
⌈
mLen

8

⌉
, k1 + k2 < k3, and

8k1 ≤ mLen/4. Let ν = 8(k1 + k2 + k3) − mLen. Let H1 be a random oracle that takes any-length inputs and
outputs k2-bytes and let H2 be a random oracle that takes any-length inputs and outputs (k1 + k2)-bytes. Let
m ∈ {0, 1}8k1 be a message to be encrypted, r0 ∈ {0, 1}8k3−ν be a randomly selected sequence, and r = r0||0ν.
We distinguish the following three cases:

• basicEncoding: Select a random e ∈ GF(q)n+w of weight t and set

y = ((m||H1(m, r, e)) ⊕ H2(r, e)) ||r. (14)

Convert y to an element y1 ∈ GF(q)k. Let the ciphertext be c = y1G + e.

• mediumEncoding: Select random 0 ≤ l0 < l1 < · · · < lt−1 < n + w − 1 and let e0 = l0||l1 · · · ||lt−1 ∈

{0, 1}16t. Set
y = ((m||H1(m, r, e0)) ⊕ H2(r, e0)) ||r. (15)

Convert y to an element (y1, e1) ∈ GF(q)k+t where y1 ∈ GF(q)k and e1 ∈ GF(q)t. Let e ∈ GF(q)n+w

such that e[li] = e1[i] for 0 ≤ i < t and e[ j] = 0 for j , li. Let the ciphertext be c = y1G + e.

• advancedEncoding: Set y = ((m||H1(m, r)) ⊕ H2(r)) ||r. Convert y to an element y1 ∈ GF(q)k and a
vector e ∈ GF(q)n+w of weight t. Let the ciphertext be c = y1G + e.

The mediumEncoding based RLCEspad is shown graphically in Figure 1.
Assuming the hardness of decoding RLCE ciphertexts, a similar proof as in [5] could be used to show

that RLCE-RLCEspad scheme is secure against IND-CCA2 attacks. As an example with κc = 128 bits secu-
rity RLCE scheme (600, 464, 68) over GF(210) in Table 2, we use k1 = k2 = 160-bytes for mediumEncoding

11



Figure 1: mediumEncoding based RLCEspad

m H1(m,r,e0) r

k1 k2 k3

H2(r,e0)�

�(m,	H1(m,r,e0))					H2(r,e0) r

H2

and k1 = k2 = 170-bytes for advancedEncoding. Thus, we can encrypt k1 = 160-bytes of information for
mediumEncoding and k1 = 170-bytes of information for advancedEncoding per RLCE-RLCEspad cipher-
text.

Our next padding scheme RLCEpad is based on OAEP+ and proceeds as follows.

RLCEpad(mLen, k1, k2, k3, t): Let k1, k2, k3 be parameters such that k1 + k2 + k3 =
⌈
mLen

8

⌉
, min {k2, k3} ≥ κc

where κc is the security parameter. Let H1 be a random oracle that takes any-length inputs and outputs k2
bytes, H2 be a random oracle that takes any-length inputs and outputs k1 + k2 bytes, and H3 be a random
oracle that takes any-length inputs and outputs k3 bytes. Let m ∈ {0, 1}8k1 be a message to be encrypted,
r0 ∈ {0, 1}8k3−ν be a randomly selected sequence, and r = r0||0ν. We distinguish the following three cases:

• basicEncoding: Select a random e ∈ GF(q)n+w,t of weight t and set

y = ((m||H1(m, r, e)) ⊕ H2(r, e)) ||r ⊕ H3(((m||H1(m, r, e)) ⊕ H2(r, e))) (16)

Convert y to an element y1 ∈ GF(q)k. Let the ciphertext be c = y1G + e.

• mediumEncoding: Select random 0 ≤ l0 < l1 < · · · < lt−1 < n + w − 1 and let e0 = l0||l1 · · · ||lt−1 ∈

{0, 1}16t. Set

y = ((m||H1(m, r, e0)) ⊕ H2(r, e0)) ||r ⊕ H3(((m||H1(m, r, e0)) ⊕ H2(r, e0))) (17)

Convert y to an element (y1, e1) ∈ GF(q)k+t where y1 ∈ GF(q)k and e1 ∈ GF(q)t. Let e ∈ GF(q)n+w

such that e[li] = e1[i] for 0 ≤ i < t and e[ j] = 0 for j , li. Let the ciphertext be c = y1G + e.

• advancedEncoding: Set

y = ((m||H1(m, r)) ⊕ H2(r)) ||r ⊕ H3(((m||H1(m, r)) ⊕ H2(r))) (18)

Convert y to an element y1 ∈ GF(q)k and a vector e ∈ GF(q)n+w of weight t. Let the ciphertext be
c = y1G + e.

The mediumEncoding based RLCEspad is shown graphically in Figure 2.
Assuming the hardness of decoding RLCE ciphertexts, a similar proof as in [28] could be used to show

that RLCE-RLCEpad scheme is secure against IND-CCA2 attacks. The proof in [28] shows that, for a given
security parameter κc, it is sufficient to choose k2, k3 with

max
{

1
qk2

,
1

qk3

}
≤

1
2κc

. (19)
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Figure 2: mediumEncoding based RLCEpad
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As an example with κc = 128 bits security RLCE scheme (600, 464, 68) over GF(210) in Table 2, we use
k2 = k3 = 32-bytes for both mediumEncoding and advancedEncoding. Thus, we can encrypt k1 = 601-
bytes of information for mediumEncoding and k1 = 641-bytes of information for advancedEncoding per
RLCE-RLCEpad ciphertext.
Remark 1: In RLCE encryption scheme, either error positions e0 or error vector e is used in the RLCEs-
pad/RLCEpad process and the message recipient needs to have the exact e0 or e for message decoding. In
case that the randomly generated error values contain zero field elements, the corresponding error positions
will be unavailable for the recipient. To avoid this potential issue, the message encryption process needs to
guarantee that error values should never be zero. A simple approach to address this challenge is that, when
calculated error values (using the given random value r) contain zero field elements, one revises the random
value r to a new value and tries the padding approach again. This process continues until all error values are
non-zero.
Remark 2: In our scheme, we use k1 + k2 + k3 =

⌈
mLen

8

⌉
. Alternatively, one may use k1 + k2 + k3 =

⌊
mLen

8

⌋
and adjust the schemes correspondingly.

8 Recommended parameters and performance evaluation

Taking into account of the condition (8) for avoiding Sidelnikov-Shestakov attacks, the condition (11) for
avoiding filtration attacks, the cost of recovering McEliece encryption scheme secret keys from the public
keys, and the cost of recovering plaintext messages from ciphertexts using the information-set decoding
(ISD) methods, we generated a recommended list of parameters for RLCE scheme in Table 1. In Table 1, κc

denotes the conventional security strength. For example, κc = 128 means an equivalent security of AES-128.
For the naive ISD, one first uniformly selects k columns from the public key and checks whether it could be
inversed. If it could be inversed, one multiplies the inverse with the corresponding ciphertext values in these
coordinates that corresponds to the k columns of the public key. If these coordinates contain no errors in the
ciphertext, one recovers the plain text. To be conservative, we may assume that randomly selected k columns
from the public key is invertible. For each k × k matrix inversion, Strassen algorithm takes O(k2.807) field
operations (though Coppersmith-Winograd algorithm takes O(k2.376) field operations in theory, it may not be
practical for the matrices involved in RLCE encryption schemes). Thus the naive information-set decoding
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algorithm takes more than 2κ
′
c steps to find k-error free coordinates where, by Sterling’s approximation,

κ′c = log2


(
n+w

k

)
k2.807(

n+w−t
k

)  + O(1) ' (n + w)I
(

k
n + w

)
− (n + w − t)I

(
k

n + w − t

)
+ log2(k2.807) + O(1) (20)

and I(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy of x. There are several improved ISD
algorithms in the literature. These improved ISD algorithms allow a small number of error positions inside
the ciphertext values corresponding to the selected k coordinates or select k′ > k columns of the public
key matrix for a small number k′ − k or both. The values of κc in Table 1 are mainly calculated using the
PARI/GP script from Peters [25]. Normally, we have κc = κ′c − 6 + o(1). For the recommended parameters,
the default underlying linear code is assumed to be any MDS code (e.g., GRS code) over GF(q) where
q = 2dlog2 ne or q = 212 (for convenient data conversion over 32 or 64 bit computers). For GRS codes, the
natural construction requires n = q − 1. However, GRS codes could be shortened to length n < q − 1 codes
by interpreting the unused q − 1 − n information symbols as zeros. For the value of w, we recommend
w = n − k. For the purpose of comparison, we also list the recommended parameters from [3] for the binary
Goppa code based McEliece encryption scheme.

To reduce the public key sizes, the authors in [3, 25] proposed the use of semantic secure message coding
approach so that one can store the public key as a systematic generator matrix. For a McEliece encryption
scheme over GF(q), one needs to store k(n − k) elements from GF(q) for a systematic generator matrix
public key instead of nk elements from GF(q) for a non-systematic generator matrix public key. For RLCE
encryption scheme over GF(q), the systematic generator matrix public key is k(n + w − k) log q bits. It is
observed that RLCE schemes with all parameters have smaller public key sizes than binary Goppa code
based McEliece scheme. Specifically, for a security level of 128 bits, the public key for the RLCE scheme
with w = n − k is 154KB while the binary Goppa code based McEliece encryption scheme has a public key
size of 187.7KB.

The value κq in Table 1 denotes the quantum security strength under quantum information-set decoding
using Grover’s algorithm (see, e.g., Bernstein [2]). An RLCE scheme is said to have quantum security level
κq if the expected running time (or circuit depth) to decrypt an RLCE ciphertext using Grover’s algorithm
based ISD is 2κq . For a function f : {0, 1}l → {0, 1} with the property that there is an x0 ∈ {0, 1}l such that
f (x0) = 1 and f (x) = 0 for all x , x0, Grover’s algorithm finds the value x0 using π

4

√
2l Grover iterations and

O(l) qubits. Specifically, Grover’s algorithm converts the function f to a reversible circuit C f and calculates

|x〉
C f
−→ (−1) f (x)|x〉

in each of the Grover iterations, where |x〉 is an l-qubit register. Thus the total steps for Grover’s algorithm
is bounded by π|C f |

4

√
2l.

For RLCE scheme, quantum information-set decoding could be carried out similarly as in Bernstein’s
[2]. One first uniformly selects k columns from the public key and checks whether it could be inversed. If
it could be inversed, one multiplies the inverse with the ciphertext. If these coordinates contain no errors in
the ciphertext, one recovers the plain text. Though Grover’s algorithm requires that the function f evaluate
to 1 on only one of the inputs, there are several approaches (see, e.g., Grassl et al [11]) to cope with cases
that f evaluates to 1 on multiple inputs.

For a randomly selected k columns of the RLCE encryption scheme public key, the probability that the

ciphertext contains no errors in these positions is approximately (n+w−t
k )

(n+w
k ) . Thus the quantum ISD algorithm

requires
√(

n+w
k

)
/
(
n+w−t

k

)
Grover iterations. For each Grover iteration, the function f needs to carry out the

following computations:
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1. Compute the inverse of a k × k submatrix Gsub of the public key. This takes O(k2.807) field operations
if Strassen algorithm is used.

2. Check that the selected k positions contain no errors in the ciphertext. This takes O((n + w)k) field
operations.

It is expensive for circuits to use look-up tables for field multiplications. Using Karatsuba algorithm, Kepley
and Steinwandt [17] constructed a field element multiplication circuit with gate counts of 7 · (log2 q)1.585.
In a summary, the above function f for the RLCE quantum ISD algorithm could be evaluated using a
reversible circuit C f with O(7((n + w)k + k2.807)(log2 q)1.585) gates. To be conservative, we may assume that
a randomly selected k columns from the public key is invertible. Thus Grover’s quantum algorithm requires
approximately

7
(
(n + w)k + k2.807

)
(log2 q)1.585

√√√√ (
n+w

k

)(
n+w−t

k

) (21)

steps for the simple ISD algorithm against RLCE encryption scheme. Advanced quantum ISD techniques
may be developed based on improved ISD algorithms. However our analysis shows that the reduction
on the quantum security is marginal. The reader is also referred to a recent report [16] for an analysis
of quantum ISD based on improved ISD algorithms. In the proposed parameters κq in Table 1, we used
conservative estimations by taking into these advanced quantum ISD attacks together with the estimate in
(21). Parameters in Table 1 could be used for any MDS code based RLCE scheme.

Table 1: RLCE parameters: “600, 464, 68, 10, 154KB”’ represents n = 600, k = 464, t = 68, q = 210

κc κq RLCE (w = n − k) binary Goppa code [3]
128 85 600,464,68,10,154KB 2960, 2288, 57, 188KB
128 85 600,440,80,12,206KB
160 100 780,580,100,10,212KB 3100,2300,80,302KB
160 100 760,540,110,12, 348KB
192 120 1000,790,105,10,405KB 4624, 3468, 97, 490KB
192 120 990,780,105, 12, 480KB
256 150 1300,800,250,11, 1.05MB 6624, 5129, 117, 900KB
256 150 1300,800,250,12, 1.14MB

Table 2 lists the message bandwidth and message padding scheme parameters for the recommended
schemes. In case that ν = 8(k1 + k2 + k3)− mLeni > 0, the last ν-bits of the k3-bytes random seed r should be
set to zero and the last ν-bit of the encoded string y is discarded. For RLCEspad with ν > 0, the encoding
and decoding process are straightforward. For RLCEpad with ν > 0, the decoding process produces an
encoded string y with last ν-bits missing. After using H3 to hash the first part of y resulting in k3-bytes hash
output, one discards the last ν-bits from the hash output and ⊕ the remaining (8k3 − ν)-bits with the second
half of y to obtain the (8k3 − ν)-bits of r without the ν-bits zero trailer.

Table 3 lists the performance results for RLCE encryption scheme that was tested with MacOS Sierra
on a MacBook Pro (Retina 2013 model) with 2.4 GHz Intel Core i5. The first column contains the encryp-
tion scheme ID from Table 2. The second column contains the time needed for a public/private key pair
generation. The third two-column group contains the time needed for one ciphertext encryption. The fourth
two-column group contains kilo-bytes of plaintext message that could be encrypted within one second. The
fifth two-column group contains the time needed for one ciphertext decryption and the last two-column
group contains kilo-bytes of plaintext message that could be decrypted within one second. The message size
refers to pre-padded message size.

15



Table 2: Padding parameters: bE for basicEncoding, mE for mediumEncoding and aE for advancedEncoding

ID κc κq n k t m sys sk sk pk mLen
RLCEspad RLCEpad

k1(k2) k3 k1 k2(k3)

0 128 85 600 464 68 10 160767 430815 157761
bE 4640 145 290 516 32
mE 5320 160 345 601 32
aE 5647 170 365 641 32

1 128 85 600 440 80 12 214663 505943 211201
bE 5280 165 330 596 32
mE 6240 190 400 716 32
aE 6608 200 427 763 32

2 160 100 780 580 100 10 294088 715748 290001
bE 5800 181 363 645 40
mE 6800 210 430 770 40
aE 7265 220 469 829 40

3 160 100 760 540 110 12 360933 799413 356401
bE 6480 202 406 730 40
mE 7800 240 495 895 40
aE 8296 250 538 958 40

4 192 120 1000 790 105 10 419630 1201335 414751
bE 7900 246 496 892 48
mE 8950 270 579 1023 48
aE 9464 290 604 1088 48

5 192 120 990 780 105 12 496653 1410813 491401
bE 9360 292 586 1074 48
mE 10620 330 668 1232 48
aE 11133 345 702 1296 48

6 256 150 1300 800 250 11 1108453 1990053 1100001
bE 8800 275 550 980 60
mE 11550 360 724 1324 60
aE 12596 390 795 1455 60

7 256 150 1300 800 250 12 1208803 2170403 1200001
bE 9600 300 600 1080 60
mE 12600 390 795 1455 60
aE 13646 425 856 1586 60

Table 4 lists the performance results for RLCE encryption scheme that was tested with Dell Optiplex
9010 Desktop Computer with Intel(R) Core(TM) i7-3770 CPU @3.40GHz and 16GB RAM. It runs Cygwin
within Windows 10.

9 Conclusions

In this paper, we presented techniques for designing general random linear code based public encryption
schemes using any linear code. The proposed scheme generally has smaller public key sizes compared to
binary Goppa code based McEliece encryption schemes. Furthermore, the proposed schemes could use
any linear codes such as GRS code, LDPC code, Turbo code, or Polar code. Heuristics and experiments
encourage us to think that the proposed schemes are immune against existing attacks on linear code based
encryption schemes such as Sidelnikov-Shestakov attack, filtration attacks, and algebraic attacks. For related
documents, see Wang [32].
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