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Abstract. Randomness plays an important role in multiple applications in cryptog-
raphy. It is required in fundamental tasks such as key generation, masking and
hiding values, nonces and initialization vectors generation. Pseudo-random number
generators have been studied by numerous authors, either to propose clear security
notions and associated constructions or to point out potential vulnerabilities. In
this systematization of knowledge paper, we present the three notions of generators
that have been successively formalized: standard generators, stateful generators and
generators with input. For each notion, we present expected security properties,
where adversaries have increasing capabilities (including access to partial information
on the internal variables) and we propose secure and efficient constructions, all based
on the block cipher AES. In our description of generators with input, we revisit the
notions of accumulator and extractor and we point out that security crucially relies
on the independence between the randomness source and the seeds of the accumulator
and the extractor. To illustrate this requirement, we identify a potential vulnerability
of the NIST standard CTR_DRBG.

Keywords Pseudo-random number generation, Security Models, Entropy.

1 Introduction
1.1 Security Notions
The first simple notion is for a standard pseudo-random number generator
(standard PRNG). A secure standard pseudo-random number generator is formalized
as an extending function, that on input a random bit string (called a seed), outputs a
longer bit string which is indistinguishable from random. The output of the algorithm
cannot be perfectly random, as there are fewer seeds than possible outputs, so one can
define a security objective for this algorithm as follows: no computationally-bounded
adversary, which does not know the seed, can distinguish an output from the uniform.
The model is described in Section 2.
The generation of a random seed can be amortized allowing the computation of
several outputs with the same seed. As the algorithm is deterministic, this implies
that the algorithm also modifies the seed for each output. This class of algorithm
can also be defined precisely with a formal security game and is referred to as a
stateful pseudo-random number generator. Its security is formalized by the
indistinguishability from random of all the outputs generated from a secret seed.
In this situation, as the seed is reused, the generator needs to store it between the
generation of two outputs. This design has been implemented in a large number of
systems, including hardware security modules. Several attacks have been mounted
against some generators, that rely on the predictability of the seed or on the potential
leakage of the memory of the generator. The memory of the generator (usually
named its internal state) is its most critical part, as an adversary that has access to it
can predict the future outputs of the generator. Bellare and Yee [BY03] proposed a
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2 SoK: Security Models for Pseudo-Random Number Generators

dedicated security model to assess Forward Security: it should be infeasible to recover
any information on previous states or previous output blocks from the compromise
of the current state. In addition, several works studied the extension of the [BY03]
model in the presence of leakage. In this paper, we present two constructions that
extend the original construction of [BY03], satisfying different notions of leakage and
reaching different security levels. All these models and associated constructions are
described in Section 3.
A second solution to amortize the use of a random seed is to allow the algorithm
to continuously collect new inputs in addition to the seed and produce outputs
that depend on the previous inputs. This class of algorithm is referred to as a
pseudo-random number generator with input. In this situation, the idea is
to use the largest amount of possible events from the environment of the generator,
gather them together in the internal state S of the generator and produce outputs
that are indistinguishable from random. An expected property of the generator is
that it accumulates the successive inputs properly, so that each new input is taken
into account. The compromise of the internal state is still critical in this situation,
however, as new inputs are collected continuously, the generator may recover from a
compromise if enough inputs are collected. Moreover, as inputs may be influenced by
an adversary, a second expected property is that the generator preserves its state
against such inputs.
The formalization of the expected security properties of a pseudo-random number
generator with input has been a challenging task. We present in Section 4 the
successive models for pseudo-random number generators with inputs that have been
proposed. A major contribution of these security model is the formalization of both
these recovering and preserving properties.
Eventually, in Section 5, we present recent extensions of the robustness model that
have been proposed to capture different classes of adversaries. First we present an
extension related to premature next attacks, applicable in situations in which the
state of the pseudo-random number generator with input has not accumulated a
sufficient amount of entropy and is asked to produce some outputs. Then we present
an extension related to memory attacks, which refers to situations where an adversary
can recover or modify a significant fraction of the secret stored in memory, even if
those secrets have never been involved in any computation, contrary to the class of
attacks that rely on computation. Finally we present an extension related to leakage
security, which contrary to memory attacks leads to leakage of sensitive information
because measurements can be made during generator operations.

1.2 PRNG Models
Gutmann [Gut98], and Kelsey et al. [KSWH98] gave useful guidelines for the design
of secure pseudo-random number generators with input. In these guidelines, they all
considered a generator as a pair of algorithms, one to collect inputs and a second one
to generate outputs. Desai, Hevia and Yin [DHY02], modelled secure pseudo-random
number generators with input as a pair of algorithms: the Seed Generation algorithm
and the Output Generation algorithm. This model assumes the existence of an entropy
pool, different from the internal state, in which randomness is accumulated, that
is used to refresh the internal state of the generator. Viega [Vie03] analyzed the
use of AES in counter mode to build a secure generator and the issue of entropy
accumulation. Barak, Shaltiel and Tromer [BST03] proposed a security model where
an adversary can have some control on the randomness source. This model explicitly
explains the importance of a randomness extractor as a core component of a generator
and proposes an analysis of the public parameter seed which is inherent to this
component. An elegant and remarkable work by Barak and Halevi [BH05] modelled
pseudo-random number generators with input as a pair of algorithms (refresh, next)
and defined a new security property called robustness based on the design guidelines
of [KSWH98]: this property assesses the behavior of a generator after the compromise
of its internal state, but fails to capture the small and gradual entropy accumulation
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present in most real-life implementations. In [DPR+13], Dodis et al. extended
the work of [BH05] and formalized the accumulation process of a pseudo-random
number generator with input. They introduced the notion of a controlled Distribution
Sampler, that allows an adversary to control the distribution of the inputs that
are collected by a generator and a new property of entropy accumulation. Three
extensions of the previous model have been then proposed. In [DSSW14], Dodis et
al. extended the model to capture the premature next attack, in which the generator
has accumulated an unsufficient amount of entropy and is asked to produce some
outputs. In [CR14], Cornejo and Ruhault extended the model to capture memory
attacks and in [ABP+15], Abdalla et al. extended the model to capture leakage.

1.3 Potential Weaknesses
The lack of insurance about the generated random numbers can cause serious damages
in cryptographic protocols, and vulnerabilities can be exploited by adversaries to
mount concrete attacks. One striking example is the failure in the Debian Linux
distribution [CVE], where a commented code in the OpenSSL generator led to
insufficient entropy gathering and allowed an adversary to conduct brute force
guessing attacks against cryptographic keys.
Concerning system generators, an analysis of Linux generators dev/random and
dev/urandom was done in 2006 by Gutterman, Pinkas and Reinman in [GPR06],
where they presented an attack for which a fix has been published. Lenstra et
al. [LHA+12] showed that a non-negligible percentage of RSA keys share prime
factors. Heninger et al. [HDWH12] presented an analysis of the behavior of Linux
generators that explains the generation of low entropy keys when these keys are
generated at boot time and the findings of Lenstra et al. The Windows pseudo-
random number generator with input CryptGenRandom was analyzed in 2006 by
Dorrendorf, Gutterman and Pinkas in [DGP07]; the authors showed an attack on
the forward security of the generator implemented in Windows 2000, for which a
fix has been published. In [DPR+13], Dodis et al. gave a precise assessment of the
security of the two Linux pseudo-random number generators with input: /dev/random
and /dev/urandom. In particular, they showed several attacks proving that these
generators are not robust because they do not accumulate entropy properly. These
attacks are due to the vulnerabilities of the entropy estimator and the internal mixing
function of the generators.
Concerning application generators, Argyros and Kiayias [AK12] showed practical
attacks on web applications exploiting randomness vulnerabilities in PHP applica-
tions. Michaelis, Meyer and Schwenk [MMS13] described and analyzed several Java
implementations; they have also identified some weaknesses. More recently, a flaw
in the Android pseudo-random number generator, identified by Kim, Han and Lee
in [KHL13], has been actively exploited against Android-based Bitcoin wallets [SEC].
In [CR14], Cornejo and Ruhault gave an in-depth analysis of generator implemen-
tations from widely used providers in real-life applications: OpenSSL, OpenJDK,
Android, Bouncycastle and IBM. Their analysis revealed new vulnerabilities of these
generators due to the implementation of their internal state in several fields that are
not updated securely. In [ST15], Shrimpton and Terashima gave a complete analysis
of the Intel Secure Key hardware generator ISK-RNG, which has been included in
Intel processors since late 2011. Their analysis provides concrete security bounds for
the forward security and the backward security of the two implemented instructions
RDRAND and RDSEED. Finally, in [GT16], Gazi and Tessaro proposed an extension of
the original sponge-based generator of [BDPV10] in the model of [DPR+13].
Concerning standards, the previous version of the NIST specification [BK15] con-
tained a pseudo-random number generator named Dual_EC_DRBG that has been
known to admit a serious potential back door in the event that an attacker generates
the standard algorithm parameters, a potential vulnerability that has been announced
by Shumow and Ferguson at the Crypto rump session in 2007. In [CFN+14], Check-
oway et al. mounted practical attacks against TLS/SSL connections established by
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software libraries implementing this generator using the back door, assuming that an
attacker knows a trapdoor for the parameters. In December 2015, Juniper Networks
announced that unknown attackers had added unauthorized code to ScreenOS, the
operating system for their NetScreen VPN routers, related to an implementation
of Dual_EC_DRBG (see [CMG+16] for details). Recent works study the use of
potentially backdoored generators ([DGG+15, DPSW16]).
This illustrates the need for precise evaluation of pseudo-random number generators
based on clear security requirements. Several notions and associated security models
exist, which we detail in this paper.

1.4 Formalization
Let X be a random variable over a sample set S. Then X defines a probability
distribution PX : S → [0, 1], where PX(x) := Pr[X = x] called the distribution
of the random variable X. The random variable is also called a source on S. We
denote by X both the random variable X and the distribution of the random variable
X. Let n > 0 be an integer, the uniform distribution over the sample set {0, 1}n

is denoted Un. We denote X $← {0, 1}n when X is uniformly distributed over {0, 1}n.
Let X and Y be two random variables. Then X and Y are independent if for all x
and y, Pr[(X = x) and (Y = y)] = Pr[X = x] ·Pr[Y = y]. Let n > 0 be an integer and
let X and Y be two random variables over the sample set {0, 1}n. The statistical
distance between X and Y is equal to: SD(X,Y ) = 1

2
∑

x
|Pr[X = x]−Pr[Y = x]|.

The random variables X and Y are said ε-close if SD(X,Y ) ≤ ε.
Let X be a source on S. The min-entropy of X is H∞(X) = minx∈S{− log Pr[X =
x]}. A source X is a k-source if H∞(X) ≥ k. A k-source of length n has an entropy
rate equal to k/n. Let Z be a source on S. The worst-case min-entropy of X
conditioned on Z is H∞(X|Z) = − log ([maxx,z Pr[X = x|Z = z]]).
Let p and n be integers, such that p > n. A hash function is a function h : {0, 1}p →
{0, 1}n. A hash functions family H = {hX : {0, 1}p → {0, 1}n, X ∈ {0, 1}s} is ε-
universal if for any inputs x1 6= x2 ∈ {0, 1}p we have: Pr

X
$
←{0,1}s

[hX(x1) =
hX(x2)] ≤ ε. Let H = {hX : I → [X · I]n}, where all operations are in F2p and [y]n
denotes the first n bits of y. ThenH is 1/2n-universal [BST03]. Let Ī := (Id−1, . . . , I0)
be the concatenation of d samples in {0, 1}p and let H ′ = {h′X : Ī →

∑d−1
j=0 Ij ·X

j},
where all operations are in F2p . Then H ′ is (d/2n)-universal [DPR+13].
In this paper, we describe security models in the code-based game playing framework
of [BR06]. In this framework, a security game involves a challenger and an adversary,
denoted A. The challenge of the adversary is to distinguish between two experiments,
which are both indexed by a Boolean bit b. Interactions between the challenger
and the adversary are modeled with procedures. A security game GAME has an
initialize procedure, procedures to respond to adversary oracle queries, and a finalize
procedure. A security game GAME is executed with an adversary A as follows. First,
the challenger executes procedure initialize, and its outputs are given as inputs to A.
Then A executes, its oracle queries being answered by the corresponding procedures
of GAME. When A terminates, its output becomes the input to the finalize procedure.
The output of the finalize procedure is called the output of the security game GAME,
and we denote the output of the adversary as GAMEA. Finally we denote the event
that this output takes value y as GAMEA ⇒ y and we define the advantage of A in
GAME as AdvGAME

A = 2× Pr[GAMEA ⇒ 1]− 1.

1.5 Accumulators and Extractors
Randomness is concretely generated from sources which are potentially biased, where
the only known information is that they may contain some amount of randomness, or
they are k-sources. We therefore need two family of maps: (a) on the one hand, maps
that given a set of sources, accumulates the randomness that these sources collectively
contain; these maps are named accumulators and (b) on the second hand, maps
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that extracts the randomness that is actually contained in these sources, and produce
an output which is close to uniform. These maps are named extractors.
Extractors and accumulators are special cases of a more general notion, named
condensers. Informally, a (k, k′)-condenser is a function that given a k-source as
input, outputs a k′-source: when the output is close to uniform, it is an extractor
and when k′ = k, it is an accumulator. The design of the generators ISAAC
in [Jen96] and Fortuna in [FSK10] uses the notion of accumulator, however without
a clear formalization. In addition, an accumulator is implicitly contained in a large
family of generators, including Linux dev/random, Windows CryptGenRandom, and
the OpenSSL generator. Definition 1 is adapted from [DRV12] and [Che09]. In this
paper, we focus on situations for which independence between the public parameter
seed and the randomness source is guaranteed and where extraction and accumulation
are possible for all k-sources and for all adversaries (usually called strong extractors
and strong accumulators). In Section 6, we discuss this choice, as it has practical
impacts: in particular, we show that the generator described in [BK15], named
CTR_DRBG, and proposed as a standard by the NIST, can be broken because
of potential correlation between one public parameter of the specification and the
randomness source.
Definition 1 ([DRV12, Che09]). A function Cond : {0, 1}p × {0, 1}s → {0, 1}n is a
(k, k′, ε)-condenser if for all probabilistic adversaries A which sample a distribution
X of entropy H∞(X) ≥ k, the distributions (seed,Cond(X, seed)) is ε-close to some
(seed, R), where H∞(R|seed) ≥ k′, seed $← {0, 1}s and X is independent of seed. If
k′ = k, it is called a (k, ε)-accumulator and if k′ = n, it is called a (k, ε)-extractor.
Definition 1 can be expressed in terms of a family of universal hash functions family
(Sect. 1.4). The hash function family H is a (k, ε)-extractor if for any random variable
I over {0, 1}p with H∞(I) ≥ k, the distributions (X,hX(I)) and (X,Un) are ε-close
for all X, or a (k, ε)-accumulator if for any random variable I over {0, 1}p with
H∞(I) ≥ k, the distribution hX(I) is ε-close to some R, where H∞(R|X) ≥ k.
The Leftover Hash Lemma1 constructs extractors and accumulators from universal
hash functions families. This lemma was first formally stated in [HILL99]. Note that
the usual version of Lemma 1 presents the extraction; here we give a more general
version that extends to accumulation, adapted from [DRV12] and [Che09].
Lemma 1 ([HILL99, DRV12, Che09]). Assume that the hash function family H = {h :
{0, 1}p → {0, 1}n} is ρ-universal where ρ = (1+α)2−n for some α ≥ 0. Then, for any
k, k′ ≥ 0, it is also a (k, k′, ε)-condenser, where ε = 1

2

√
2k′−k + 2k′−n(1 + α)− 1. In

particular, for k′ = k and k < n, it is a (k, ε)-accumulator, where ε = 1
2

√
2k−n(1 + α)

and for k′ = n and k > n, it is a (k, ε)-extractor, where ε = 1
2

√
2n−k + α.

Let H = {hX : I → [X · I]n}, where all operations are in F2p and [y]n denotes
the first n bits of y. Then H is 1/2n-universal and a (k, ε)-extractor, where ε =
1
2

√
2n−k [BST03]. Let Ī := (Id−1, . . . , I0) be the concatenation of d samples in {0, 1}p

and let H ′ = {h′X : Ī →
∑d−1

j=0 Ij ·X
j}, where all operations are in F2p . Then H ′ is

(d/2n)-universal and a (k, ε)-accumulator, where ε = 1
2 ·
√
d2k−n [DGMP92, dB93,

DPR+13].

2 Standard Pseudo-Random Number Generators
Blum and Micali [BM82] and Yao [Yao82] defined security for a standard pseudo-
random number generator. Based on this seminal work, Bellare and Yee [BY03]
formalized security.
Definition 2 ([BM82, Yao82, BY03]). Let s and ` be integers such that ` > s. A
(s, `)-standard pseudo-random number generator is a function G : {0, 1}s → {0, 1}`,
that takes as input a bit string S of length s and outputs a bit string R of length `.

1For completeness, we give the complete proof in Appendix B.
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Consider the security game PR described in Fig. 1. In this security game, the
challenger generates a random secret input K and challenges the adversary A on
its capacity to distinguish the output of the pseudo-random number generator from
random.

proc. initialize proc. next-ror proc. finalize(b∗)
S

$← {0, 1}n; R0 ← G(S) IF b = b∗ RETURN 1
b

$← {0, 1}; R1
$← {0, 1}` ELSE RETURN 0

RETURN Rb

Figure 1: Procedures in Security Game PR

Definition 3 ([BM82, Yao82, BY03]). Let n and ` be integers such that ` > n. A
(n, `)-standard pseudo-random number generator is (t, ε)-secure if for any adversary
A running in time at most t, the advantage of A in game PR is at most ε.

Recall that a block cipher is a function E : {0, 1}n × {0, 1}` → {0, 1}` such that
for each S ∈ {0, 1}n and M ∈ {0, 1}`, the function ES : {0, 1}` → {0, 1}` defined
by ES(M) = E(S,M) is a permutation on {0, 1}`. In this paper, we will propose
constructions based on the block cipher AES [AES01] and prove the security of these
constructions by reduction to the security of the following pseudo-random number
generator. Let S $← {0, 1}n, where n ∈ {128, 256} and q ≥ 1. Consider the (n, qn)-
pseudo-random number generator G defined by G(S) = AESS(1)|| · · · ||AESS(q).
Then, following the ‘PRF/PRP Switching Lemma’2 of Bellare et al. [BDJR97], we
have that G is a (t, q(q−1)

2n+1 )-secure pseudo-random generator, under the assumption
that the block cipher AES is indistinguishable from a pseudo-random permutation.
Note that in this paper, we present constructions in different security models that all
rely on the use on the block cipher AES. The proposed constructions could be adapted
to another block cipher, however as security bounds are obtained by reduction to
the security of AES as a secure standard pseudo-random number generator, these
security bounds shall be adapted. We chose the block cipher AES because it is widely
implemented and provides hardware and software efficiency.

3 Stateful Generators
Bellare and Yee [BY03] proposed a notion of stateful pseudo-random number generators
where the maximal number of outputs the pseudo-random number generator is allowed
to produce (named qn hereafter) is a parameter of the generator. This notion is
illustrated in Fig. 2 and formalized in Definition 4.

key S0 next S1

R1

next . . . next Sqn

Rqn

Figure 2: Stateful Pseudo-Random Number Generator [BY03]

Definition 4 ([BY03]). A stateful pseudo-random number generator is a pair of
algorithms (key, next) and an integer qn, where key is a probabilistic algorithm which
takes no input and outputs an initial state S ∈ {0, 1}n, next is a deterministic
algorithm which, given the current state S, outputs a pair (S′, R)← next(S) where
S′ is the new state and R ∈ {0, 1}` is the output and qn is the maximal number of
outputs the pseudo-random number generator is allowed to produce.

2For completeness, this lemma is presented in Appendix A.
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Consider the security game SPR described in Fig. 3. In this security game, the
challenger generates a random initial secret S and challenges the adversary A on its
capacity to distinguish the real output of the pseudo-random number generator from
random. The difference with game PR is that here successive calls to next-ror will
produce different outputs, that should all be indistinguishable from random.

proc. initialize proc. next-ror proc. finalize(b∗)
S

$← key; (S,R0)← next(S) IF b = b∗ RETURN 1
b

$← {0, 1} R1
$← {0, 1}` ELSE RETURN 0

OUTPUT Rb

Figure 3: Procedures in Security Game SPR

Definition 5 ([Pie09, JP14]). A stateful pseudo-random number generator G = (key,
next, qn) is called (t, qn, ε)-secure, if for any adversary A running in time at most t,
making qn calls to next-ror, the advantage of A in game SPR is at most ε.

In [BY03] Bellare and Yee proposed an extension of the previous model, where a
stateful pseudo-random number generator should be designed so that it is infeasible to
recover any information on previous states or previous outputs from the compromise
of the current state. To formalize this property, they proposed a dedicated security
model where an adversary A chooses dynamically when to compromise the current
state S. After this compromise, all future outputs are compromised, as they all
deterministically depend on the compromised state, however, the expected security
property (named Forward Security) is that the past outputs are computationally
indistinguishable from random.

proc. initialize proc. get-state proc. next-ror proc. finalize(b∗)
S

$← key; OUTPUT S (S,R0)← next(S) IF b = b∗ RETURN 1
b

$← {0, 1} R1
$← {0, 1}` ELSE RETURN 0

OUTPUT Rb

Figure 4: Procedures in Security Game FWD

Consider the security game FWD described in Fig. 4. In this security game, the
challenger generates a random initial secret input S and challenges the adversary A
on its capacity to distinguish the real output of the pseudo-random number generator
from random. In addition to the usual procedures, the adversary A has access to a
procedure get-state in which A has access to the current value of the internal state S.

Definition 6 ([BY03]). A stateful pseudo-random number generator G = (key, next,
qn) is called (t, qn, ε)-forward-secure, if for any adversary A running in time at most
t, making at most qn calls to next-ror, followed by one call to get-state, which is the
last call A is allowed to make, the advantage of A in game FWD is at most ε.

key next
Require: ∅ Require: S
Ensure: S Ensure: S′, R

1: S $← {0, 1}128 1: S′ = AESS(1)
2: return S 2: R = AESS(2)

3: return (S′, R)

Figure 5: FWD: A Secure Construction

Consider the stateful pseudo-random number generator G, defined with algorithms
(key, next) described in Fig. 5. It uses the (t, 2−128)-secure standard generator G
defined by G(S) = AESS(1)||AESS(2). Following [BY03], we have that G is a
(t, 264, 2−128)-forward secure stateful pseudo-random number generator.
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An important assumption for the security of stateful pseudo-random number gen-
erators is the secrecy of the state. However, in practice there are situations where
the state can be compromised. For example, side-channel attacks exploit the fact
that every cryptographic algorithm is ultimately implemented on a physical device
and an implementation enable observations which can be made and measured, such
as the amount of power consumption or the time taken. To capture this, leakage
security of a stateful pseudo-random number generator (key, next) has been defined.
The main idea is to model the leakage of information with a leakage function, that is
named f . It is important to note that without restrictions on the leakage function,
no security can be guaranteed (one simple attack would be to leak the complete
state or the next output of the generator). Yet a fundamental issue in the context
of leakage-resilient cryptography is to define reasonable restrictions on the leakage
functions. The following assumptions are considered:

• (1) Only computation leaks: only the data being manipulated in a compu-
tation can leak during this computation [MR04].

• (2) Bounded leakage per iteration: the length of the output of the leakage
functions, expressed in bits and taken globally, is bounded with a parameter
λ [Pie09, YSPY10, FPS12, YS13].

• (3) Non-Adaptive Leakage: leakage functions are not adaptively chosen by
the adversary before each invocation, but are fixed [YSPY10, FPS12, YS13].

• (4) Simulatable leakage: if an adversary cannot tell the difference between
the real leakage function and a simulated leakage function (from a simulator
that does not know the secret state of the generator) then the real leakage
function does not reveal any information about the state [SPY13]. Note that as
pointed out in [SPY13], this assumption implies that the leakage function is
unbounded, as every new measurement gives more information.

To illustrate this, we present below two constructions, that are extensions of the pre-
vious forward-secure construction from Fig. 5. The first construction from [YSPY10]
satisfies assumptions 1, 2 and 3 and has a low security level, while the second con-
struction from [LMO+14] satisfies in addition assumption 4 and has a high security
level.
Consider the security game LPR(f) described in Fig. 6. The objective of the adversary
A is to distinguish the output of the generator at one round from a uniformly
distributed random value, given the successive outputs and leakages for the previous
rounds. Formally, the security game extends SPR (Figu. 3), with the additional
procedure leaknext.

proc. initialize
S

$← key;
b

$← {0, 1}

proc. leaknext{
L← f(S)
(S,R)← next(S)

}
OUTPUT (L,R)

proc. next-ror
(S,R0)← next(S)
R1

$← {0, 1}`
RETURN Rb

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

Figure 6: Procedures in Security Game LPR(f)

Definition 7. Let f be a leakage function of output length λ. A stateful pseudo-
random number generator G = (key, next) is (t, qn, ε, f)-leakage resilient for the
leakage function f if for any attacker A running in time at most t, making qn calls
to next-ror/ leaknext, the advantage of A in game LPR(f) is at most ε.



1 9

key next
Require: ∅ Require: Si
Ensure: S0,P0,P1 Ensure: Si+1, Ri+1

1: S0
$← {0, 1}128 1: Si+1 = AESSi(P`ρ(i))

2: P0,P1
$← {0, 1}256 2: Ri+1 = AESSi(Prρ(i))

3: return S0,P0,P1 3: return (Si+1, Ri+1)

Figure 7: LPR(f): Construction from [YSPY10]

Consider the stateful pseudo-random number generator G described in Fig. 7. Al-
gorithm key outputs a secret S0 ∈ {0, 1}128, which is kept secret, and two pub-
lic values P0 ∈ {0, 1}256 and P1 ∈ {0, 1}256. The two public values are used in
an alternative way to update the internal state and to produce output, we de-
note ρ(i) = i mod 2 to indicate which public value is used. We also decompose
P0 ∈ {0, 1}256 (resp. P1 ∈ {0, 1}256) in two 128-bits blocks, denoted P`0, Pr0 (resp.
P`1, Pr1). The generator uses the (t, 2−128)-secure standard generator G defined by
G(Si) = AESSi(P`ρ(i)||AESSi(P`ρ(i), seen as a (t, 2, 2−128)-weak pseudo-random func-
tion3. Note that each AES operation is done either on the leftmost part or on the
rightmost part of each public value (hence the notation P`0 or Pr0). In [YSPY10],
Yu et al. proved that under assumptions (1) (2) and (3) above, the security of G
is measured by ε = qnε

1/12
G and λ ≤ log(ε−1/6

G ), which depend on the security of G
as a (t, 2, 2−128)-weak pseudo-random function (εG) and on the maximal number of
calls to next (qn). Hence G is a (t, 4, 2−8, f)-leakage resilient stateful pseudo-random
number generator, where λ = 21.

key next
Require: ∅ Require: Si
Ensure: S0,P0,P1,P2 Ensure: Si+1, Ri+1

1: S0
$← {0, 1}128 1: Si+1 = AESSi(P`ρ(i))

2: P0,P1,P2
$← {0, 1}384 2: αi = AESSi(Pmρ(i))

3: return S0,P0,P1,P2 3: Ri+1 = AESαi(Prρ(i))
4: return (Si+1, Ri+1)

Figure 8: LPR(f): Construction from [LMO+14]

In [SPY13] Standaert, Pereira and Yu considered the security of the generator
described in Fig. 7 in the context of simulatable leakage (assumption (4) above).
They obtained tighter bounds for this construction, namely, they proved that the
security degrades linearly with the number of rounds. However, in [LMO+14], Longo
Galea et al. exhibited a distinguisher against the simulator of Standaert et al. and
propose to enforce the above construction with an extra call to AES and an extra
public value. Their construction is described in Fig. 8. Algorithm key outputs a
secret S0 ∈ {0, 1}128, and three public values P0 ∈ {0, 1}384, P1 ∈ {0, 1}384 and
P2 ∈ {0, 1}384. The three public values are used in an alternative way to update the
internal state and to produce output, we denote ρ(i) = i mod 3 to indicate which
public value is used. As before, we decompose P0 ∈ {0, 1}384 (resp. P1 ∈ {0, 1}384,
P2 ∈ {0, 1}384) into three 128-bits blocks, denoted P`0, Pm0 , Pr0 (resp. P`1, Pm1 , Pr1
and P`2, Pm2 , Pr2). As before, each AES operation is done on the leftmost part or on
the middle part or on the rightmost part of each public value (hence the notation
P`0, Pm0 or Pr0). In [LMO+14], Longo Galea et al. proved that this construction is a
(t, 264, 2−63, f)-leakage resilient stateful pseudo-random number generator, where f
is simulatable and unbounded.

3For completeness, the definition of a weak pseudo-random function is given in Appendix A.
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4 Generators with Input
4.1 Model of Desai, Hevia and Yin
Desai, Hevia and Yin [DHY02] proposed a security model for pseudo-random number
generators with input where the internal state is split into two parts: a first part
named K (the key) and second part named S (the state). In their model, a pseudo-
random number generator with input is a stateful and iterative algorithm, which at
each invocation produces some output bits as a function of the current value of Kn
S and an auxiliary input I and which updates the state S. They proposed several
security properties, which capture the potential compromise of the state S, the key
K or the auxiliary input I. The generator operations are illustrated in Fig. 9, in
accordance with Definition 8.

key S1 next

K

I1

S2

I2

R1

next

Iqn

. . . next Sqn+1

Rqn

Figure 9: Pseudo-Random Number Generator with Input [DHY02]

Definition 8 ([DHY02]). A pseudo-random number generator with input is a pair of
algorithms (key, next), where key is a probabilistic algorithm that takes no input and
outputs a key K ∈ {0, 1}n and an initial state S ∈ {0, 1}n, next is a deterministic
algorithm that, given the current state S, the keyK and an auxiliary input I ∈ {0, 1}p,
outputs a pair (S′, R) ← next(S,K, I), where S′ ∈ {0, 1}n is the new state and
R ∈ {0, 1}` is the output.
They denoted their attacks as CIA, for Chosen-Input Attack, CSA, for Chosen-State
Attack and KKA, for Known-Key Attack. Under CIA, the key is hidden, the states
are known, but not chosen, and the auxiliary input may be chosen by the adversary.
The attack CSA is similar, except that the auxiliary inputs are not allowed to be
chosen while the states may now be chosen. The attack KKA is different: it allows
the key to be known. However, under the attack KKA, the states are hidden and the
auxiliary inputs are not allowed to be chosen. All security games are described in
Fig. 10.

proc. initialize proc. getinput proc. get-state proc. next-ror
(K,S) $← key; OUTPUT Ii OUTPUT S (S,R0)← next(S,K, Ii)
(I1, · · · , Iqr )

$← ({0, 1}p)qn ; R1
$← {0, 1}`

i← 1; proc. setinput(I∗) proc. set-state(S∗) i← i+ 1
b

$← {0, 1}; Ii ← I∗ S ← S∗ OUTPUT Rb

proc. finalize(b∗) proc. get-key
IF b = b∗ RETURN 1 OUTPUT K
ELSE RETURN 0

Figure 10: Procedures in Security Games CIA,CSA and KKA

Definition 9 ([DHY02]). A pseudo-random number generator with input (key, next)
is called (t, qn, ε)-secure against Chosen Input Attack (resp. Chosen State Attack or
Known Key Attack), if for any adversary A running in time at most t, which generates
at most qn outputs, the advantage of A in game CIA, (resp. CSA, KKA) is at most ε,
where A can call getinput and next-ror, in CIA, A cannot call get-key or set-state and
can call get-state and setinput, in CSA, A cannot call get-key or setinput and can call



1 11

get-state and set-state and in KKA, A cannot call get-state, set-state or setinput and
can call get-key.

setup key next
Require: ∅ Require: ∅ Require: X,K, S, I
Ensure: X Ensure: K,S Ensure: S′, R

1: X $← {0, 1}128 1: K $← {0, 1}128 1: U = K ·X2 + S ·X + I

2: return X 2: S $← {0, 1}128 2: S′ = AESU (1)
3: return K,S 3 :R = AESU (2)

4: return (S′, R)

Figure 11: CIA, CSA, KKA: A Secure Construction

In [DHY02], Desai et al. proposed constructions secure against CSA, CIA and KKA,
which are based on existing standard specifications (ANSI X9.17 [ANS85] and
FIPS [DSS00]). However, to prove security, they rely on the capability of the ad-
versary to ‘cause collisions in the inputs to the functions computing the outputs or
the next states’. However, the independence between successive inputs can not be
completely guaranteed and we are not confident with the bounds presented in these
constructions. Therefore we present a new construction, based on an accumulator
(Def. 1), secure against CSA, CIA and KKA. Consider the pseudo-random number
generator G = (setup, key, next) defined in Fig. 11 where the input, key, state lengths
are equal (128 bits). The generator requires that in addition to the key and next
algorithms, a third algorithm named setup is defined, to generate a random pub-
lic parameter X ∈ {0, 1}128, which is the seed of an accumulator (Def. 1). Note
that this algorithm is not required in Definition 8, but since the generator uses an
accumulator, it is necessary to complete the description. The generator uses the
function (K,S, I)→ K ·X2 + S ·X + I as a (128, 2−128)-accumulator of seed X and
the (t, 2−128)-secure standard generator G defined by G(U) = AESU (1)||AESU (2).
The security of G is measured by ε = qn(εG + εH), where εG measures the security
of G and εH measures the security of the accumulator. Hence with qn = 264, G is
(t, 264, 2−63) secure against CIA, CSA and KKA.

4.2 Model of Barak, Shaltiel and Tromer
Barak, Shaltiel and Tromer [BST03] modeled the following scenario: a manufacturer
designs a device whose output is supposed to be a randomness source. Ideally, one
would like the adversary not to be able to influence the distribution of the randomness
source at all. However, in a realistic setting an adversary can have some control
over the environment in which the device operates (temperature, voltage, frequency,
timing, etc.), and it is possible that changes in this environment affect the source.
In their model, they assumed that the adversary can define a set of k-sources that
will provide the inputs. This model also considers that the generator definition shall
describe the underlying randomness extractor, as formalized in Definition 1 and
therefore an algorithm setup is used, to provide the public parameter seed associated
with the extractor.
Definition 10 ([BST03]). A pseudo-random number generator with input is a pair
of algorithms G = (setup, next), where setup is a probabilistic algorithm that outputs
a public parameter seed ∈ {0, 1}s and next is a deterministic algorithm that, given
seed and an input I ∈ {0, 1}p, outputs R← next(seed, I) ∈ {0, 1}`.
Consider the security game described in Fig. 12. The game is parametrized by a
family of distributions F , that is adversarially provided. During procedure initialize,
the challenger parses F as {Dj , j ∈ J} and calls setup to generate seed, which is given
to A. During procedure next-ror, A chooses a distribution Dj ∈ F , the challenger
samples an input I of distribution Dj , generates the real output (R0 = next(seed, I)),
picks a random string (R1) and returns the challenge Rb to A. Definition 11 formalizes
security.
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proc. initialize proc. next-ror(j) proc. finalize(b∗)
seed $← setup; I

$← Dj IF b = b∗ RETURN 1
parse F as {Dj , j ∈ J} R0 ← next(seed, I) ELSE RETURN 0
b

$← {0, 1}; R1
$← {0, 1}n

OUTPUT seed RETURN Rb

Figure 12: Procedures in Security Game RES(F)

Definition 11 ([BST03]). A pseudo-random number generator with input G :
(setup, next) is (t, qn, ε)-resilient for the family F if for any adversary A running
in time t, which generates at most qn outputs, the advantage of A in game RES(F)
it at most ε.

setup next
Require: r Require: X, I
Ensure: X Ensure: R

1: X $← {0, 1} 512
r 1: R = [X · I]128

2: return X 2: return R

Figure 13: RES(F): A Secure Construction

Consider the pseudo-random number generator with input G defined in Fig. 13, where
r is the entropy rate of the entropy source. It uses the 2−128-universal hash function
family F : {hX : I → [X · I]128} as a (k, εH)-extractor, where εH = 1

2

√
2128−k.

In [BST03] Barak et al. demonstrated that the security of G is measured by ε = qnεH .
Hence with qn = 264 and a source containing at least 512 bits of entropy we obtain
that G is (t, 2−64)-resilient for the family F . As explained in [BST03], the length of
the public parameter X shall be estimated depending on the environment and the
entropy rate: for a low entropy rate (e.g. equal to 1

4 ), we need to set p = s = 2048,
while for a high entropy rate (e.g. equal to 3

4 ), we can set p = s = 683. Hence the
drawback of this model is that one has to identify an entropy source and estimate its
entropy rate.

4.3 Robustness
Barak and Halevi [BH05] proposed a security model for pseudo-random number
generators with input that clearly states that the entropy extraction process and the
output generation process are completely different in nature, where entropy extraction
is information-theoric and generation is cryptographic. As a consequence, these two
operations should be separated and analyzed independently. The generator operations
are illustrated in Fig. 14, in accordance with Definition 12.

Definition 12 ([BH05]). A pseudo-random number generator with input is a pair
of algorithms (refresh, next) where refresh is a deterministic algorithm that, given
the current state S ∈ {0, 1}n and an input I ∈ {0, 1}p, outputs a new state S′ ←
refresh(S, I) where S′ ∈ {0, 1}n is the new state and next is a deterministic algorithm
that, given the current state S, outputs a pair (S′, R)← next(S) where S′ ∈ {0, 1}n
is the new state and R ∈ {0, 1}` is the output of the generator.

S

I

refresh S′ S next S′

R

Figure 14: Pseudo-Random Number Generator with Input [BH05]
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In their security model (described in Fig. 15), they captured the potential compromise
of the internal state S and of the inputs used to refresh the internal state. They
considered an adversary A that has access to the system where the generator is run,
and can (a) get the output of the generator, (b) modify the data that is used to
refresh the internal state of the generator and (c) have access to and modify the
internal state of the generator. The adversary A has always two choices to refresh
the generator, either with an input with high entropy, or with an input that A totally
controls. In the first case, A uses procedure good-refresh: A chooses the distribution
from the family F , and generates an input of the chosen distribution and finally
the challenger applies algorithm refresh with the previously generated input. In the
second case, A uses procedure bad-refresh: A chooses an input that is directly used
with algorithm refresh. The security model uses a new important Boolean parameter,
named corrupt, which is set to true when the generator is compromised and set to
false otherwise. This parameter is part of the security game and is not a component of
the generator. Note that the next-ror procedure differs from the equivalent procedure
in the previous security models. Here, as the challenger maintains the flag corrupt, a
challenge between the real output and a random one is sent to A only if corrupt = false.
If corrupt = true, the adversary can mount an attack on the real output, so A will
certainly distinguish it from a random one. Definition 13 formalizes security.

proc. initialize proc. good-refresh(j) proc. set-state(S∗) proc. next-ror
seed $← setup; I

$← Dj ; corrupt← true (S,R0)← next(S)
S ← 0n; S ← refresh(S, I); S ← S∗ IF corrupt = true,
corrupt← true; corrupt← false; OUTPUT R0 RETURN R0

b
$← {0, 1}; ELSE

parse F as {Dj , j ∈ J} proc. bad-refresh(I) R1
$← {0, 1}`

OUTPUT seed IF corrupt = true OUTPUT Rb
S ← refresh(S, I);

proc. finalize(b∗) ELSE ⊥
IF b = b∗ RETURN 1
ELSE RETURN 0

Figure 15: Procedures in Security Game ROB(F)

Definition 13 ([BH05]). A pseudo-random number generator with input G : (refresh,
next) is (t, qn, qr, ε)-robust for the family F if for any adversary running in time t,
making at most qr calls to D-refresh and qn calls to next-ror, the advantage of A in
game ROB(F) is at most ε.

setup refresh next
Require: r Require: X, I, S Require: S
Ensure: X Ensure: S′ Ensure: S′, R

1: X $← {0, 1} 512
r 1: U = [X · I]128 1: S′ = AESS(1)

2: return X 2: S′ = S ⊕ U 2: R = AESS(2)
3: return S′ 3: return (S′, R)

Figure 16: ROB(F): A Secure Construction

Consider the pseudo-random number generator with input G = (setup, refresh, next)
defined in Fig. 16. The generator requires that in addition to the refresh and next
algorithms, a third algorithm setup is defined, to generate a random public parameter
X that is the seed of an extractor. Note that this parameter is not mandatory in
Definition 12, but as we will explain in Section 4.4, this parameter is necessary to
provide a complete description of the generator. We denote r the entropy rate of the
entropy source. It uses the 2−128-universal hash function family {hX : I → [X · I]128}
as a (k, εH)-extractor, where εH = 1

2

√
2128−k and the (t, 2−128)-secure standard

generator G defined by G(S) = AESS(1)||AESS(2). In [BH05] Barak and Halevi
demonstrated that the security of G is measured by ε = qrεH+qnεG, where εG = 2−128
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is the security of G and εH = 1/2
√

2128−k is the extractor security. With powerful
adversaries (qr = qn = 264) and a source containing at least 512 bits of entropy, G is
(t, 264, 264, 2−63)-robust . Hence we face the same issue as for RES(F) regarding the
entropy rate of the entropy source.

4.4 Robustness, Preserving and Recovering Security
Dodis et al. [DPR+13] proposed a security model in which the definition of a pseudo-
random number generator with input requires that, in addition to refresh and next
algorithms, an algorithm named setup is set. This algorithm generates a public
parameter seed, which will be used to provide a seed for an extractor and a seed
for an accumulator (Definition 1). This is illustrated in Fig. 17 and formalized in
Definition 14.

setup

seed

S

I

refresh S′ S next S′

R

Figure 17: PRNG with Input [DPR+13]

Definition 14 ([DPR+13]). A pseudo-random number generator with input is a
triple of algorithms G = (setup, refresh, next) where setup is a probabilistic algorithm
that outputs a public parameter seed ∈ {0, 1}s, refresh is a deterministic algorithm
that, given seed ∈ {0, 1}s, a state S ∈ {0, 1}n and an input I ∈ {0, 1}p, outputs a
new state S′ ← refresh(seed, S, I) ∈ {0, 1}n and next is a deterministic algorithm that,
given seed ∈ {0, 1}s and a state S ∈ {0, 1}n, outputs a pair (S′, R) ← next(seed, S)
where S′ ∈ {0, 1}n is the new state and R ∈ {0, 1}` is the output.
To define security, Dodis et al. split the adversary into two entities: an adversary A
whose task is (intuitively) to distinguish the outputs of the generator from random,
and a distribution sampler D whose task is to produce inputs I1, I2, . . . , which have
high entropy collectively, but help A in breaking the security of the generator. The
distribution sampler aims at modeling potentially adversarial environment where the
generator operates. To ensure independence of the randomness sources with seed,
they require that the distribution sampler is set independently of seed and once D is
set, the adversary A has access to seed. This separation between A and D clarifies
the requirement of independence between the adversary and seed: as independence is
only required between seed and the randomness source to build a strong randomness
extractor, they enforce independence between seed and the ‘part’ of the adversary
that has control over the randomness source and they let the ‘other part’ have access
to seed. The above discussion justifies Definition 15.
Definition 15 (Distribution Sampler). Let G = (setup, refresh, next) be a pseudo-
random number generator with input. A distribution sampler D for G is a state-
ful and probabilistic algorithm which, given the current state σ, outputs a tuple
(σ′, I, γ, z) where: σ′ is the new state for D, I ∈ {0, 1}p is the next input for
the refresh algorithm, γ is some fresh entropy estimation of I, z is the leakage
about I given to the adversary A. Let denote by qr the upper bound on num-
ber of executions of D in the security games. Then D is legitimate if H∞(Ik |
I1, . . . , Ik−1, Ik+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr ) ≥ γk for all k ∈ {1, . . . , qr} where
(σk, Ik, γk, zk) = D(σk−1) for k ∈ {1, . . . , qr} and σ0 = 0.
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proc. initialize(D) proc. D-refresh proc. get-state proc. next-ror
seed $← setup; (σ, I, γ, z) $← D(σ) c← 0 (S,R0)← next(seed, S)
σ ← 0; S ← refresh(seed, S, I) OUTPUT S R1

$← {0, 1}`
S ← 0n; c← c+ γ IF c < γ∗ THEN c← 0
c← 0; IF c < γ∗ ELSE OUTPUT Rb

b
$← {0, 1}; c← min(c+ γ, n) proc. set-state(S∗)

OUTPUT seed OUTPUT (γ, z) c← 0
S ← S∗

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

Figure 18: Procedures in Security Game ROB(γ∗)

Dodis et al. [DPR+13] formalized three security properties: recovering security,
preserving security and robustness. Informally, this new robustness property captures
that entropy can be accumulated at a low pace in the internal state of the generator
to reach a complete recovery (contrary to the previous robustness model where a full
recovery is done with a high entropy input). To model this property, they decomposed
it into two simpler properties: recovering security ensures that entropy is properly
accumulated and preserving security ensures that the accumulated entropy does not
decrease. The fundamental result of [DPR+13] is that taken together, recovering and
preserving security imply robustness4.
The robustness security game uses procedures described in Fig. 18. The game is
parametrized by γ∗, that measures the minimal entropy that the pseudo-random
number generator shall have accumulated when security is expected. It uses D-refresh
procedure where the distribution sampler D is run, and its output I is used to refresh
the current state S, the amount of fresh entropy γ is added to the entropy counter
c and the values of γ and the leakage z are also returned to A; next-ror procedure,
where it provides A with either the real-or-random challenge (provided that c ≥ γ∗)
or the true generator output, a ‘premature’ call before c crosses the γ∗ resets the
counter c to 0, since then A might learn something about the (low-entropy) state S
in this case; get-state/set-state procedures, that provide A with the ability to either
learn the current state S, or set it to any value S∗ and in either case c is reset to 0.
Definition 16 formalizes security.

Definition 16 ([DPR+13]). A pseudo-random number generator with input G =
(setup, refresh, next) is called (t, qr, qn, qs, γ∗, ε)-robust, if for any adversary A running
in time at most t, making at most qr calls to D-refresh, qn calls to next-ror/get-next
and qs calls to get-state/set-state, and any legitimate distribution sampler D inside
the D-refresh procedure, the advantage of A in game ROB(γ∗)is at most ε.

setup refresh next
Require: ∅ Require: X, I, S Require: S,X ′
Ensure: X,X ′ Ensure: S′ Ensure: S′, R

1: X $← {0, 1}1024 1: S′ = S ·X + I 1: U = [X ′ · S]256

2: X ′ $← {0, 1}1024 2: return S′ 2: S′ = AESU (1)|| · · · ||AESU (8)
3: return X,X ′ 3: R = AESU (9)

4: return (S′, R)

Figure 19: ROB: A Secure Construction

Let q > 0, m > 0, n > 0 and γ∗ > 0. Consider:

• The (t, εG)-secure pseudo-random generator G defined by G(U) = AESU (1)
|| · · · || AESU (q), where U ∈ {0, 1}m and εG = q(q−1)

2m+1 .

4For completeness, this result is fully described in Appendix C.
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• The (m, εH′)-accumulator, where εH′ = 1
2 ·
√
qr2m−n defined by the (qr/2n)-

universal hash function family {h′X : Ī →
∑qr−1

j=0 Ij ·Xj}.

• The (γ∗, εH)-extractor, where εH = 1
2

√
2n−γ∗ , defined by the 2−n-universal

hash function family {hX : I → [X · I]n}.
• The pseudo-random number generator G = (setup, refresh, next) defined in

Fig. 19.

The security of G is obtained by [DPR+13], where Dodis et al. demonstrated that it
is ((t′, qr, qn, qs), γ∗, ε)-robust, where ε = qn(2εG + q2

r(εH + εH′) + 2−n+1). Taking
into account powerful adversaries (qn = qr = qs = 264) we obtain m = 256, n = 1024,
γ∗ = 900 and q = 9. Hence G is ((t, 264, 264, 264), 900, 2−128)-robust: G offers 128 bits
security provided 900 bits have been accumulated in its internal state, of length 1024
bits. Note that we considered an adversary with high capabilities (264), therefore the
obtained bounds are higher than the one from [DPR+13].

5 Extensions of the Robustness Model
5.1 Security Against Premature Next
In [DSSW14], Dodis et al. extended the robustness model to address the premature
next attack. This general attack, first explicitly mentioned in [KSWH98] is applicable
in situations in which the state of the pseudo-random number generator with input has
not accumulated a sufficient amount of entropy and is asked to produce some outputs
R via legitimate next calls. Inspired by the design of the Fortuna pseudo-random
number generator [FSK10], they partition the incoming entropy into multiple entropy
pools and then use these pools at vastly different rates when producing outputs, in
order to guarantee that at least one pool will eventually accumulate enough entropy
to guarantee security before it is emptied via a premature next call. They complement
the construction presented in Fig. 19 with a secure scheduler, whose task is to fill the
different pools of entropy to ensure that at least one pool contains enough entropy to
defeat this attack.

proc. initialize(D) proc. D-refresh proc. get-state proc. next-ror
seed $← setup; (σ, I, γ, z) $← D(σ) c← 0, corrupt← true; (S,R0)← next(seed, S)
σ ← 0; S ← refresh(seed, S, I) T ← 0, T ∗ ← 0 R1

$← {0, 1}`
S ← 0n; c← c+ γ OUTPUT S IF c < γ∗,
c← 0; T ← T + 1 RETURN R0

b
$← {0, 1}; IF c ≥ γ∗ ELSE

corrupt← true IF T ∗ = 0 OUTPUT Rb
OUTPUT seed T ∗ ← T proc. set-state(S∗)

IF T ≥ β · T ∗ c← 0, corrupt← true
proc. finalize(b∗) corrupt← false T ← 0, T ∗ ← 0
IF b = b∗ RETURN 1 OUTPUT (γ, z) S ← S∗

ELSE RETURN 0

Figure 20: Procedures in Security Game NROB(γ∗, β)

The model extension is described in Fig. 20. In this model extension, a premature
next call is not considered an unrecoverable state corruption, and premature calls do
not reset the entropy counter. The price for this is a new parameter named β ≥ 1. In
particular, in the modified game, the game does not immediately declare the state to
be uncorrupted when the entropy counter c goes above the threshold γ∗. Instead,
the game keeps a new counter T that records the number of calls previously done
to D-refresh since the last set-state or get-state call (or since the start of the game).
When c goes beyond γ∗, it sets T ∗ ← T and the state becomes uncorrupted only after
T ≥ β · T ∗ (of course, provided A made no additional calls to set-state or get-state).
In [DSSW14], Dodis et al. introduced a new parameter named wmax, that is an
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upper bound on the collected entropy for each input. In our description, we omit this
parameter, because as mentioned in [DSSW14], it is mainly useful for the security
proof.

Definition 17 (Security of PRNG with input against Premature Next [DSSW14]).
A pseudo-random number generator with input G = (setup, refresh, next) is called
(T = (t, qr, qn, qs), γ∗, ε, β)-premature next robust, if for any attacker A running in
time at most t, making at most qr calls to D-refresh, qn calls to next-ror/get-next and
qs calls to get-state/set-state, and any legitimate distribution sampler D inside the
D-refresh procedure, the advantage of A in game NROB(γ∗, β) is at most ε

SC
Require: skey, τ
Ensure: τ ′, in, out

1: IF τ 6= 0 mod 512, THEN out←⊥
2: ELSE out← max{out : τ = 0 mod 2τ+9}
3: in← int([AESskey(τ)]5)
4: τ ′ ← τ + 1 mod 232

5: OUTPUT (τ ′, in, out)

Figure 21: NROB: A Secure Scheduler

In [DSSW14], Dodis et al. proposed a construction inspired by the design of the
Fortuna pseudo-random number generator [FSK10]. The idea is to use a pool of 32
robust pseudo-random number generators, two of whom are chosen pseudo-randomly,
one to collect entropy and the other one to generate outputs. The choice of the
two generators is done through the function SC (for secure scheduler), which uses
the block cipher AES as a pseudo-random function and public parameters skey and
τ . For the exact formalization of a scheduler, we refer to [DSSW14]; in this paper,
we focus on the instantiation with common primitives. The secure scheduler SC is
described in Fig. 21. We denote int([X]5) the function that converts the five leftmost
bits of X to an integer in {0, · · · , 31}.

setupG refreshi nexti
Require: ∅ Require: X, I, Si Require: Si, X ′
Ensure: X,X ′ Ensure: S′ Ensure: S′i, R

1: X $← {0, 1}1024 1: S′i = Si ·X + I 1: U = [X ′ · Si]256

2: X ′ $← {0, 1}1024 2: return S′i 2: S′i = AESU (0)|| · · · ||AESU (7)
3: return X,X ′ 3: R = AESU (8)||AESU (9)

4: return (S′i, R)

setup refresh next
Require: ∅ Require: X, I, S Require: S
Ensure: X,X ′, skey Ensure: S′ Ensure: S′, R

1: X,X ′ ← setupG 1: parse seed as (key, seed) 1: parse S as (τ, Sρ, (Si)31
i=0)

2: skey $← {0, 1}128 2: parse S as (τ, Sρ, (Si)31
i=0) 2: Sρ = AESSτ (1)||AESSρ(2)

3: return X,X ′, skey 3: (τ, in, out)← SC(key, τ) 3: R = AESSρ(3)||AESSρ(4)
4: Sin ← refreshin(X,Sin, I) 4: return (S′, R)
5: (Sout, R)← nextout(X ′, Sout)
6: Sρ ← Sρ ⊕R
7: return S′ = (τ, Sρ, (Si)31

i=0)

Figure 22: NROB: A Secure Construction (Gi, G)

Let i be an integer. Consider the pseudo-random number generator family Gi =
(setupi, refreshi, nexti) described in Fig. 22 (top). Each generator is exactly the same
as the one described in Fig. 19, except that the output of Gi has length 256 bits
(instead of 128 bits for the construction of Fig. 19), all generators have the same setup
function, denoted setupG). Consider finally the pseudo-random number generator
G = (setup, refresh, next) described in Fig. 22 (bottom). It uses 32 different generators
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Gi, i = 1, · · · , 32, the scheduler SC, has output length equal to 256 bits. Its internal
state is equal to the concatenation of the 32 internal states of the generators Gi
(Si), each of length 1024 bits, a block Sρ of length 256 bits, an integer τ of length
32 bits, two integers in, out ∈ {0 · · · 31}. Parameters X,X ′ and skey are public.
In [DSSW14], Dodis et al. proved that the pseudo-random number generator with
input G defined above is ((t, 232, 232, 232), 900, 2−128, 4)-premature next robust.

5.2 Security against Memory Attacks
In [CR14], Cornejo and Ruhault proposed a modification of the robustness security
model to identify exactly the part of S that an adversary needs to compromise to
attack a pseudo-random number generator with input. To capture this idea, they
considered the internal state as a concatenation of several binary strings (named
hereafter its decomposition). They modelled the adversarial capability of an adversary
A with two new functions namedM-get andM-set that allow A to set or get a part
of the internal state of the pseudo-random generator with input defined with a mask
M. They assumed that the adversary A knows the decomposition of S and is able
to chooseM adaptively. The only differences between their security game and the
original game ROB is that they replaced the procedures get-state and set-state, with
new procedures M-get-state and M-set-state, allowing the adversary to get/set a
part the internal state identified by the mask.

proc. initialize(D)
seed $← setup;
σ ← 0;
S

$← {0, 1}n;
c← n;
corrupt← true;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF c < γ∗

c← min(c+ γ, n)
OUTPUT (γ, z)

proc.M-set-state(S,M, J)
S ←M-set(S,M, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

proc.M-get-state(S, J)
c← max(0, c− λ)
IF c < γ∗,
c← 0

OUTPUT M-get(S, J)

proc. next-ror
(S,R0)← next(S)
IF c < γ∗,
c← 0
OUTPUT R0

ELSE

R1
$← {0, 1}`

OUTPUT Rb

Figure 23: Procedures in Security Game MROB(γ∗, λ)

Definition 18 (Decomposition). A decomposition of a binary string S ∈ {0, 1}n is
a sequence of disjoint binary strings (S1, · · · , Sk), such that S = [S1|| · · · ||Sk]. Two
binary strings S and M have the same decomposition if M = [M1|| · · · ||Mk] and
|Si| = |Mi| for i ∈ {1, · · · , k}.
Definition 19 (M-get / M-set). Function M-get takes as input a couple (S, J),
where S = [S1|| · · · ||Sk] and J ⊂ {1, · · · , k}, then M-get(S, J) = (Sj)j∈J . Func-
tion M-set takes as input a triple (S,M, J), where S,M ∈ {0, 1}n have the same
decomposition S = [S1|| · · · ||Sk],M = [M1|| · · · ||Mk] and J ⊂ {1, · · · , k}, then
M-set(S,M, J) = S, where Sj = Mj , for j ∈ J .
These functions are adversarially provided, and their goal is to let A choose the mask
M over the internal state. Note that if the mask is too large (so that G becomes
insecure), the security game will require that new input is collected. These procedures
model the memory attacks against the generator.
The security model is adapted from the security game ROB(γ∗) from Sect. 4.4. The
integer γ∗ defines the minimum entropy that is required in S for the generator to
be secure. Integer c estimates the amount of collected entropy. The integer λ ≤ n
defines the size of the maskM. Boolean flag corrupt is set to true if c < γ∗ and false
otherwise. Boolean b is used to challenge the adversary A. The security game uses
procedures described in Fig. 23. The procedure initialize sets the parameter seed with
a call to algorithm setup, the internal state S of the generator, as well as parameters
c and b. Note that they initially set c to n and S to a random value, to avoid giving
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any knowledge of S to the adversary A. After all oracle queries, A outputs a bit b∗,
given as input to the procedure finalize, which compares the response of A to the
challenge bit b. Procedure D-refresh is the same as in the security game ROB(γ∗),
procedureM-set-state is used by A to set a part of S. First A calls functionM-set
to update a part of the internal state. Then the counter value c is decreased by λ,
the size of the maskM (c← c−λ) and as in the initial set-state procedure, if c < γ∗,
c is reset to 0. ProcedureM-get-state is used by A to get a part of S. First A calls
the functionM-get. Then the counter value c is decreased by λ, the size of the mask
M (c ← c − λ) and as in the initial get-state procedure, if c < γ∗, c is reset to 0.
Procedure next-ror is the same as in the security game ROB(γ∗).

Definition 20 (Security of a Pseudo-Random Number Generator with Input against
Memory Attacks [CR14]). A pseudo-random number generator with input G = (setup,
refresh, next) is called (T = (t, qr, qn, qs), γ∗, ε)-robust against memory attacks, if for
any adversary A running in time at most t, the advantage of A in game MROB(γ∗, λ)
is at most ε.

It is possible to construct a robust pseudo-random number generator with input (Defi-
nition 16) that never resists a single bit corruption. Consider G = (setup, refresh, next)
a robust pseudo-random number generator with input and denote S its internal state.
Consider G′ = (setup′, refresh′, next′) a second pseudo-random number generator with
input. The internal state of G′ is defined with S′ = S||b where b is a single bit. The
generator G′ is defined with the following algorithms:

• refresh′(S′, I) = refresh(S, I)||1 (i.e. S ← refresh(S, I) and b← 1)

• next′(S′) = next(S) if b = 1, next′(S′) = 0 if b = 0

Then generator G′ is robust since, as soon as one refresh procedure is executed the
bit b is set to 1 and the generator G′ works exactly as G does when the internal state
is not compromised. However, it is obviously not secure under a corruption of the
single bit b. Note that a similar attack can be applied against the premature next
robust construction presented in Fig. 22 as a compromise of the part of the internal
state named Sτ makes the output of the generator predictable.
In [CR14], Cornejo and Ruhault proposed an extension of the construction described
in Fig. 19. Their proved that if the length of the internal state is increased with
λ, then the generator is robust against memory attacks. However, note that this
simple extension works because the internal state is composed of one full block that
cannot be divided into smaller blocks. An interesting work would be to extend
the construction described in Fig. 22 because this construction explicitly requires a
specific decomposition of the internal state between blocks.

5.3 Leakage Security
In [ABP+15], Abdalla et al. proposed a modification of the robustness security model
to capture the potential leakage of sensitive information. In the robustness security
model ROB, the distribution sampler D generates the external inputs used to refresh
the generator and already gives the adversary A some information about how the
environment of the generator leaks when it generates these inputs. This information
is modelled by z. In order to model information leakage during the executions of
the algorithms refresh and next, they give the adversary the choice of the leakage
functions, that they globally name f , associated to each algorithm, or even each small
block. Since they restrict our model to non-adaptive leakage, they ask the adversary
to choose them beforehand. So the leakage functions are provided as input to the
initialize procedure by the adversary (see Fig. 24). Then, each leakage function will
be implicitly used by two new procedures named leak-refresh and leaknext that, in
addition to the usual outputs, also provide some leakage L about the manipulated
data.

Procedures leak-refresh and leaknext are detailed below:
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proc. initialize(D, f)
seed $← setup
σ ← 0;
S ← 0;
c← 0;
b

$← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh
(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
IF compromised

c← min(c+ γ, n)
OUTPUT (γ, z)

proc. leak-refresh
(σ, I, γ, z) $← D(σ){
L← f(S, I, seed)
S ← refresh(S, I; seed)

}
c← max{0, c− λ}
IF cγ∗

c← 0
OUTPUT (L, γ, z)

proc. get-state
c← 0;
OUTPUT S

proc. set-state(S∗)
c← 0;
S ← S∗

proc. leaknext{
L← f(S, seed)
(S,R)← next(S; seed)

}
IF cγ∗

c← 0
ELSE

c← α
OUTPUT (L,R)

proc. next-ror
(S,R0)← next(S)
IF cγ∗,
c← 0
RETURN R0

ELSE

R1
$← {0, 1}`

RETURN Rb

Figure 24: Procedures in the Security Game LROB(γ∗, λ)

• The procedure leak-refresh runs the refresh algorithm but additionally provides
some information leakage L on the input (S, I) and seed. As for the next-ror-
queries, the leakage can reveal information about a insecure internal state before
the effectiveness of the refresh, and then c is reduced by λ bits. And if c drops
below the threshold γ∗, it is reset to 0. Note that if the D-refresh algorithm
is complex, several leakage functions can be defined at every step, but the
global leakage is limited to λ bits, hence the notation {. . .}, since they can be
interleaved.

• The procedure leaknext runs the next algorithm but additionally provides some
information leakage L on the input S and seed, according to the leakage function
f provided to the initialize procedure. If the generator is in a secure state, then
the new entropy estimate c is set to α, otherwise, it is reset to 0 (as for the
next-ror). If the next algorithm is complex, several leakage functions can be
defined at each step, but the global leakage is limited to λ bits (hence the
notation {. . .}).

We thus have two new parameters: λ, that bounds the output length of the leakage
function and α, that models the minimal expected entropy of S after a leaknext
(next with leakage) call, in a secure case, when the entropy of the internal state was
assumed greater than γ∗.
As in the security game ROB, attackers have two parts: a distribution sampler and
a classical attacker with the former only used to generate seed-independent inputs
(potentially partially biased) from device activities. The threshold γ∗ has to be slightly
higher in this model, because for a similar next algorithm, we need to accumulate a
bit more of entropy to maintain security even in presence of leakage. Typically, it has
to be increased by λ. After detailing the new security game, we can define the notion
of leakage-resilient robustness of a pseudo-random number generator with input.
Definition 21 (Leakage-Resilient Robustness of Pseudo-Random Number Generator
with Input [ABP+15]). A pseudo-random number generator with input G = (setup,
refresh, next) is called (t, qr, qn, qs, γ∗, λ, ε)-leakage-resilient robust, if for any adversary
A running in time t, that first generates a legitimate distribution sampler D (for
the D-refresh/ leak-refresh procedure), that subsequently makes at most qr calls to
D-refresh/leak-refresh, qn calls to next-ror/leaknext, and qs calls to get-state/set-state
with a leakage bounded by λ, the advantage of A in game LROB(γ∗, λ) is at most ε.
Unfortunately, even a secure standard pseudo-random generator is not enough to
resist information leakage. As shown in [MOP07] and later in [BGS15], several
calls to AES with known inputs and one single secret key may lead to very efficient
side-channel attacks that can help to recover the secret key. Because of the numerous



1 21

executions of AES with the same key, one can perform a differential power analysis
(DPA) attack. Then, for the construction of Fig. 19, during a leaknext, even with a
safe state, the DPA can reveal the secret key of the internal AES, that is also used to
generate the new internal state from public plaintexts. This internal state, after the
leaknext, can thus be recovered, whereas it is considered as safe in the security game.
A next-ror challenge can then be easily broken.
Therefore Abdalla et al. [ABP+15] pointed out that one needs a stronger notion of
security than the usual security of a standard pseudo-random number generator for
G, namely a leakage-resilient and secure standard pseudo-random number generator
(Definition 22): it takes as input a perfectly random m-bit string U , and generates an
(n+ `)-bit output T = (S,R) that looks random. Even in case of leakage, S should
have enough entropy.

Definition 22 (Leakage-Resilient and Secure Standard Pseudo-Random Number
Generator [ABP+15]). A standard pseudo-random number generator G : {0, 1}m →
{0, 1}N is (α, λ)-leakage-resilient and (t, ε)-secure if it is first a (t, ε)-secure standard
pseudo-random number generator, but in addition, for any adversary A, running
within time t, that first outputs a leakage f with λ-bit outputs, there exists a source
that outputs pairs (L, T ) ∈ {0, 1}λ×{0, 1}N , so that the entropy of T , conditioned on
L being greater than α, and the advantage with which A can distinguish (f(U),G(U))
from (L, T ) is bounded by ε.

With this new property, they proposed three extensions of the construction of
Fig. 19 that are leakage-resilient robust. An interesting work would be to extend the
construction described in Fig. 22 because this construction explicitly requires several
computations of AES that may be vulnerable to side-channel attacks.

6 Discussion: (In)dependence of seed
6.1 Impossibility Results
The robustness model from [DPR+13] has a limitation: the seed dependence of the
distribution used to generate inputs. The proposed constructions crucially rely on the
independence between the distribution sampler and seed, and impossibility results
show that full seed dependence is impossible.
There is a direct attack when independence between the randomness source and the
seed is not guaranteed for the secure robust construction described in Fig. 19. In
the secure construction, seed is composed of two parts (X,X ′), where X,X ′ ∈ F2n ,
the input I ∈ F2n and the state S ∈ F2n . Consider the distribution sampler D
where Ij is sampled uniformly from {0, Xj−qr}. Let us consider an adversary A
against the security of the generator that chooses the distribution D, and that
makes the following oracle queries in the security game ROB: one call to set-state(0),
qr calls to D-refresh , one call to next-ror. After qr calls to D-refresh, the state
of the generator is equal to: S = Xqr−1I1 + Xqr−2I2 + · · · + Iqr . Then, as each
term Xqr−jIj can only be equal to 0 or 1 the state S can only be equal to 0 or
1, although the inputs I1, · · · , Iqr collectively contain qr bits of entropy. Hence
the adversary A breaks the robustness of the generator. One may argue that this
kind of attack is only possible because this construction does not use cryptographic
primitives, however, as we show in the following impossibility result, it does not
suffice to build a refresh algorithm upon cryptographic primitives (as opposed to
the polynomial hash function) to be secure against such attack. Indeed, an explicit
impossibility result can also be pointed out for the generator described in [BK15],
named CTR_DRBG, and proposed as a standard by the NIST. As before, if we allow
the distribution sampler to depend on seed, the adversary can mount an attack
against the robustness of the generator. Here the critical point is that the parameter
seed is not defined in the specification [BK15], hence an assumption shall be made on
its definition. A carefull analysis of the specification shows that a public parameter
K = 0x00010203040506070809101112131415 is defined in the specification, which is
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used exactly for randomness extraction. If we allow the distribution sampler D to
sample an input that depends on K, the adversary A can mount an attack against
the robustness of the generator. For completeness, as this attack is new, it is fully
described in Appendix D.

6.2 Potential Solutions
Two promising solutions concern (a) the restriction of the capabilities of the adversary
and (b) the allowance of a certain level of dependence of seed.
The first solution is to restrict the capabilities of the adversary A to force its running
time to be less than the running time of the extractor Extract. This idea was formalized
by Trevisan and Vadhan in [TV00]. In this work, they show how seed-dependent
randomness extraction is possible from a samplable distribution, provided that the
complexity of the extractor is larger than the complexity of the adversary A that
generates the source X. In line with this, Dodis, Ristenpart and Vadhan [DRV12]
showed that sufficiently strong collision-resistant hash functions are seed-dependent
condensers.
The second solution is to allow a certain level of dependence between the randomness
source and seed. In [DSSW14], Dodis et al. introduced a realistic model that effectively
allows a certain level of seed dependence. They complemented the robustness model
allowing the attacker A and the distribution sampler D to define a new distribution
sampler D′ correlated with seed. The idea is that the inputs that are accumulated in
the internal state of the generator shall be generated by the sampler D, while the
inputs that are controlled by the adversary can be correlated and therefore use the
second sampler D′. They proved that the original construction of [DPR+13] can be
extended in this model with the same parameters.

7 Conclusion
In this systematization of knowledge, we presented the main security models that
have been formalized to define and assess the security of pseudo-random number
generators. We presented three notions of generators, standard generators: stateful
generators and generators with input; for each notion, we presented expected security
properties. We proposed for each security model a secure and efficient construction
based on AES and a polynomial hash function. We explained the link with the
notions of accumulator and extractor that are used to collect entropy sources and to
generate outputs. Security notions presented rely on the independence between the
randomness source and the seeds of the accumulator and the extractor. To illustrate
this requirement, we presented an attack against one NIST specification under the
assumption that this independence is not ensured. We finally presented potential
solutions where some level of dependence is accepted. We presented extensions of the
robustness model, a promising work would be to extend the premature next robust
construction in the context of memory attacks and leakage.
Our paper is summarized in Table 1. For each model, we provide (a) the definition
(b) the attacker capabilities (c) the dependence on a standard pseudo-random number
generator, a randomness extractor, a randomness accumulator or a secure scheduler
and (d) the operations that are necessary in each secure construction.
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Table 1: Security Properties of Pseudo-Random Number Generators

Ref. Definition Property Attacker Capabilities Construction Operations (*)
G Ext Acc SC refresh next

[BY03] 1 : S ← key FWD next-ror, get-state 6 AES (2)
2 : (S′, R)← next(S)

[LMO+14] 1 : S ← key LPR(f) next-ror, leaknext 6 AES (3)
2 : (S′, R)← next(S)

[DHY02] 1 : (K,S)← key CIA getinput, get-state, setinput + (3), × (2),
2 : (S′, R)← next(S,K, I) CSA getinput, get-state, set-state 6 6 AES (2)

KKA getinput, get-key
[BST03] 1 : seed← setup RES(F) next-ror 6 × (1), [ ] (1)

2 : R← next(seed, I)
[BH05] 1 : S′ ← refresh(S, I) ROB(F) good-refresh, bad-refresh, 6 6 × (1), [ ] (1), AES (2)

2 : (S′, R)← next(S) get-state, next-ror ⊕ (1)
[DPR+13] 1 : seed← setup ROB(γ∗) D-refresh, set-state, get-state 6 6 6 × (1), + (1) × (1), [ ] (1),

2 : S′ ← refresh(seed, S, I) next-ror AES (9)
3 : (S′, R)← next(seed, S)

[DSSW14] 1 : seed← setup NROB(γ∗, β) D-refresh, set-state, get-state 6 6 6 6 + (1), × (2), AES (4)
2 : S′ ← refresh(seed, S, I) next-ror ⊕ (1), [ ] (2),
3 : (S′, R)← next(seed, S) AES (11)

6: The construction involves a secure standard generator G, a strong extractor Ext, a strong accumulator Acc or a secure scheduler SC.
*: Secure constructions for each property involves multiplications (×), additions (+), XOR (⊕), truncations ([ ]), AES computations (AES).
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Appendix
A Pseudo-Random Functions and Permutations
We recall the definitions of a pseudo-random function from [BKR94]. A pseudo-
random function is a family of functions such that no adversary can computationally
distinguish the input/output behavior of a random instance from this family from
the input/output behavior of a random function.

Hence in this security model the adversary can give inputs to the function and gets
the corresponding output in a black-box way. Intuitively, as explained in [BKR94],
the pseudo-randomness of a function family is its ‘distance’ from the ensemble of the
family of all functions. This notion was originally proposed by Goldreich, Goldwasser
and Micali [GGM86]. They explain the notion with the following intuitive example.
Consider the set Fk of all functions from {0, 1}k to {0, 1}k. This set has cardinality
2k.2

k

, hence to describe a (random) function from this set, we would need k.2k bits,
which is impractical. Suppose now that we select a set of cardinality 2k, denoted
F̂k and such that F̂k ⊂ Fk. This allows to build a family of functions, where each
function is indexed with a unique index in {0, 1}k. The family F̂k is pseudo-random
if no adversary can computationally distinguish the functions from F̂k from the
functions in Fk. Let first formalize the notion of Keyed Family of Functions in
Definition 23.

Definition 23 (Keyed Family of Functions). A keyed family of functions is a map
F : {0, 1}s × {0, 1}` → {0, 1}L, where (a) {0, 1}s is the key space of F and s is the
key length (b) {0, 1}` is the domain of F and ` is the input length and (c) {0, 1}L is
the range of F and L is the output length

Hence in a Keyed Family of Functions, each function is specified by a short, random
key. As explained, the security objective we give is that the function behaves like a
random one, in the sense that a computationally bounded adversary that is given
the key cannot distinguish the input-output behavior of the function from a random
function. This property is formalized with the security game PRF described in Fig. 25.

proc. initialize
K

$← {0, 1}s;
funtab← ∅
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror(x)
R0 ← F(x,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}L
y ← funtab[x]
R1 ← y
RETURN Rb

Figure 25: Procedures in Security Game PRF

In this security game, the challenger first generates a random key K $← {0, 1}s and a
bit b $← {0, 1}, then the adversary A uses procedure funct-ror with chosen inputs. For
each input, the challenger generates a real output with function F or a random output
and challenges A on its capability to distinguish the output of F from random. Note
that the challenger constructs a lookup table funtab for the random outputs to ensure
that the evaluation of equal inputs gives equal outputs: funtab is first initialized with
∅; then at each oracle call, if the value does not exists in the lookup table funtab, it
is randomly created, otherwise it is directly given as a random output.

Definition 24 (Pseudo-Random Function). A keyed family of functions F : {0, 1}s×
{0, 1}` → {0, 1}L is a (t, q, ε)-pseudo-random function if for any adversary A running
in time at most t, that makes q calls to procedure funct-ror, the advantage of A in
game PRF is at most ε.
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Hence a pseudo-random function is a function which cannot be distinguished from a
random function by any efficient distinguisher. Sometimes, however, the full power of
a pseudo-random function is not needed and it is sufficient that the function cannot
be distinguished when queried on random values. Such objects are referred to as weak
pseudo-random functions. The associated security game WPRF is the same as PRF,
except that the inputs of the pseudo-random function F in the funct-ror procedure are
not adversarially chosen but are picked at random by the challenger. The procedures
are presented in Fig. 26.

proc. initialize
K

$← {0, 1}s;
funtab← ∅
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror
x

$← {0, 1}s
R0 ← F(x,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}L
y ← funtab[x]
R1 ← y
RETURN (x,Rb)

Figure 26: Procedures in Security Game WPRF

Definition 25 (Weak Pseudo-Random Function). A keyed family of functions
F : {0, 1}s × {0, 1}` → {0, 1}L is a (t, q, ε)-weak pseudo-random function if for any
adversary A running in time at most t, that makes q calls to procedure funct-ror, the
advantage of A in game WPRF is at most ε.

proc. initialize()
K

$← {0, 1}n;
funtab← ∅;
T← ∅;
b

$← {0, 1};

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. funct-ror(x)
R0 ← F(xi,K)
IF funtab[x] =⊥,

funtab[x] $← {0, 1}n \ T
T = T ∪ funtab[xi]

y ← funtab[x]
R1 ← y
RETURN Rb

Figure 27: Procedures in Security Game PRP

In a Keyed Family of Functions, each function is specified by a short, random key.
One can similarly define a Keyed Family of Permutations, where each function is a
permutation.

We can define an objective similar to that for pseudo-random functions, in the sense
that a computationally bounded adversary that is given the key cannot distinguish
the input-output behavior of the permutation from a random one. This property is
formalized with the security game PRP described in Fig. 27.
Definition 26 (Pseudo-Random Permutation). A keyed family of permutations
F : {0, 1}p × {0, 1}n → {0, 1}p is a (t, q, ε)-pseudo-random permutation if for any
adversary A running in time at most t, that makes q calls to procedure funct-ror, the
advantage of A in game PRP is at most ε.
The following Lemma, referred to the ‘PRF/PRP Switching Lemma’ shows the relation
an advantage in game PRF and an advantage in game PRP. See [GB01] for a complete
proof of this Lemma.
Lemma 2. Let n ≥ 1 be an integer. Let A be an adversary that makes at most q
queries. Then:

|AdvPRF
A − AdvPRP

A | ≤
q(q − 1)

2n+1 .
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B Proof of the Leftover Hash Lemma
The proof we present is adapted from [DRV12] and [Che09]. Fix any I 6= I ′ ∈ {0, 1}p,
with H∞(I) ≥ k and H∞(I ′) ≥ k. Fix X ∈ {0, 1}s independently of I and I ′ and
R ∈ {0, 1}n, with H∞(R|X) ≥ k′. First consider the statistical distance between
(X,hX(I)) and (X,R). We introduce a second notion of distance between two random
variables X and Y : ∆2(X,Y ) =

√∑
x
|Pr[X = x] Pr[Y = x]|, and we define the

collision probability of a random variable X as the probability that two independent
samples of X are equal: CP(X) =

∑
x

Pr[X = x]2.

We can bound the statistical distance between (X,hX(I)) and (X,R) by their ∆2

distance: SD((X,hX(I)), (X,Um)) ≤ 1
2

√
2s · 2k′ · ∆2((X,hX(I)), (X,R)), and we

have ∆2((X,hX(I))2 = ∆2((X,hX(I)), (X,R))2 + 2−k
′−s.

Now as ∆2((X,hX(I))2 ≤ CP(X) · (PrI [I = I ′] + PrX [I 6= I ′ | hX(I) = hX(I ′) ],
and as I and I ′ are sampled independently of X, as H∞(I) ≥ k and H∞(I ′) ≥ k and
as H is 2−n · (1 + α)-universal, we have that:

∆2((X,hX(I))2 ≤ 2−s · (2−k + 2−n · (1 + α)),

and finally the statistical distance between (X,hX(I)) and (X,R) is bounded by:

1
2
√

2s · 2k′
√

2−s−k + 2−s−n(1 + α)− 2−s−k′ .

Following, the hash functions family H is a strong (k, k′, ε)-condenser, where:

ε = 1
2
√

2k′−k + 2k′−n(1 + α)− 1 .

Then setting k′ = m, the hash functions family H = {hX : {0, 1}p → {0, 1}n}X∈{0,1}s ,
is a (k, ε)-strong extractor for ε = 1

2

√
2n−k + α and setting k′ = k, the hash functions

family H = {hX : {0, 1}p → {0, 1}n}X∈{0,1}s , is a (k, ε)-strong accumulator for
ε = 1

2

√
2k−n(1 + α) .
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C Recovering and Preserving Security
The notion of recovering security considers an adversary that compromises the state to
some arbitrary value S0, either by asking for the state (get-state), setting it (set-state)
or with the output (next-ror) when the internal state is unsafe. Afterwards, sufficient
calls to D-refresh are made to increase the entropy estimate c above the threshold
γ∗. The recovering process should make the bit b involved in the next-ror procedure
indistinguishable: when the internal state is considered to be secure, the output
randomness R should look indistinguishable from random.

Formally, we consider the security game RECOV for a pseudo-random number ge-
nerator with input (setup, refresh, next), whose procedures are described in Fig. 28.

proc. initialize(D)
seed $← setup;
σ0 ← 0;
b

$← {0, 1};
FOR k = 1TO qrDO

(σk, Ik, γk, zk)← D(σk−1)
END FOR
k ← 0;
OUTPUT seed, (γk, zk)k=1,...,qr

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. getinput
k ← k + 1
OUTPUT Ik

proc. set-state(S∗)
S ← S∗

c← 0

proc. D-refresh
k ← k + 1;
S = refresh(S, Ik);
IF c < γ∗,
c = min(c+ γk, n)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b)),
(Ik+1, . . . , Iqr )

Figure 28: Procedures in Security Game RECOV(qr, γ∗)

The security game RECOV is described as follow, with an adversary A, a sampler D,
and bounds qr, γ∗:

1. The challenger generates a seed seed $← setup and a bit b $← {0, 1} uniformly
at random. It sets σ0 = 0 and for k = 1, . . . , qr, it computes (σk, Ik, γk, zk)←
D(σk−1), initializes k = 0 and sets c = 0. It then gives back the seed and the
values γ1, . . . , γqr and z1, . . . , zqr to the adversary.

2. The adversary gets access to an oracle getinput which on each invocation
increments k := k + 1 and outputs Ik.

3. At some point the adversary A calls the procedure set-state: it sets a chosen
internal state S∗ ∈ {0, 1}n. It then chooses an integer d such that k + d ≤ qr
and γk+1 + · · ·+γk+d ≥ γ∗, then calls D-refresh d times: this procedure updates
the state S := refresh(S, Ik+j) and updates c← c+ γk sequentially.

4. Eventually, the challenger sets (S(0), R(0))← next(S) and generates (S(1), R(1)) $←
{0, 1}n+`. It then gives (S(b), R(b)) to the adversary, together with the next
inputs Ik+1, . . . , Iqr (if k was the number of refresh-queries asked up to this
point);

5. The adversary A outputs a bit b∗.

The output of the game is the output of the finalize oracle at the end, which is 1 if
the adversary correctly guesses the challenge bit, and 0 otherwise. Note that the
challenge concerns the total output of the next algorithm. We define the advantage
of the adversary A and sampler D in the above game as |2 Pr[b∗ = b]− 1|.

Definition 27 (Recovering Security). A pseudo-random number generator with
input (setup, refresh, next) is said (t, qr, γ∗, ε)-recovering if for any adversary A and
sampler D, both running in time t, the advantage of A in Game RECOV(qr, γ∗) is at
most ε.
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The preserving security notion considers a secure internal state. After several calls
to D-refresh with known (and even chosen) inputs, the internal state should remain
secure. An initial state S is generated with entropy n. Then it is refreshed with
arbitrary many calls to D-refresh. This is the preserving process, which should make
the bit b involved in the next-ror procedure indistinguishable: since the internal state
is considered as secure, the output randomness R should look indistinguishable from
random.

Formally, we consider the security game PRES for a pseudo-random number generator
with input (setup, refresh, next), whose procedures are described in Fig. 29.

proc. initialize(D)
seed $← setup;
S

$← {0, 1}n;
b

$← {0, 1};
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh(I)
S = refresh(S, I)

proc. next-ror
(S(0), R(0))← next(S)
(S(1), R(1)) $← {0, 1}n+`

RETURN (S(b), R(b))

Figure 29: Procedures in Security Game PRES

The security game PRES is described as follow, with an adversary A and a sampler
D:

1. The challenger generates an initial state S $← {0, 1}n, a seed seed← setup, and
a bit b $← {0, 1} uniformly at random. It gives back the seed to the adversary;

2. The adversary A gets seed and can ask as many queries as it wants to the oracles
D-refresh but with chosen inputs I to the D-refresh-queries. The D-refresh
procedure simply applies the refresh algorithm to the current state and the
input.

3. Eventually, the challenger sets (S(0), R(0))← next(S) and generates (S(1), R(1))
$← {0, 1}n+`. It then gives (S(b), R(b)) to the adversary.

4. The adversary A outputs a bit b∗.

The output of the game is the output of the finalize oracle at the end, which is 1 if
the adversary correctly guesses the challenge bit, and 0 otherwise. Note that the
challenge concerns the total output of the next algorithm. We define the advantage
of the adversary A in the above game as |2 Pr[b∗ = b]− 1|.
Definition 28 (Preserving Security). A pseudo-random number generator with input
(setup, refresh, next) is said (t, ε)-preserving if for any adversary A and sampler D,
both running in time t, the advantage of A in the game PRES is at most ε.
Dodis et al. [DPR+13] proved that the recovering and preserving security notions
together imply the full notion of robustness. This result is of paramount importance
as it allows to prove the full robustness of a given construction with the notions
of recovering and preserving, that are in practice easier to assess. This result has
been used intensively to construct a robust generator, and also in the different model
extensions.
Theorem 1. If a pseudo-random number generator with input (setup, refresh, next)
has both (t, qr, γ∗, εr)-recovering security and (t, εp)-preserving security, then it is
((t′, qr, qn, qs), γ∗, qn(εr + εp))-robust where t′ ≈ t.
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D Potential Vulnerability of NIST CTR_DRBG
We identify a potential vulnerability of the generator described in [BK15], named
CTR_DRBG, and published as a standard by the NIST. As before, if we allow the
distribution sampler to depend on seed, the adversary can mount an attack against
the robustness of the generator. Here the critical point is that the parameter seed
is not defined in the specification [BK15], hence an assumption shall be made on
its definition. A carefull analysis of the specification shows that it defines a public
parameter K = 0x00010203040506070809101112131415, which is used exactly for
randomness extraction (through a ‘derivation function’ that we describe below). If
we allow the distribution sampler D to sample an input that depends on K, the
adversary A can mount an attack against the robustness of the generator.

Let us first describe the operations of CTR_DRBG. The complete description of
CTR_DRBG is given in [BK15]; here we give a shorter description that focuses on
important facts. Also note that the generator uses a block cipher (bc) during its
operations. In our description, we assume that the block cipher is AES_128. We
verified that our attack works independently of this choice. We intentionally simplified
the description of CTR_DRBG:

• The specification separates the input used to refresh the generator into two
components: the ‘source entropy input’ and the ‘additional input’, the former
being used to refresh the internal state during output generation. Note that
this is close to the security model of Desai et al. [DHY02], described in Sect. 4.1.
As noted in the following sections, we prefer to consider the complete list of
inputs as a single entity, therefore we will drop the ‘additional input’ parameter
in our descriptions and only consider that there is one class of input, the ‘source
entropy input’. This is equivalent to set the ‘additional input’ to ∅ in the
descriptions.

• The specification considers two cases, depending on the use of a ‘derivation
function’ named Block_Cipher_df. The difference between these two cases is
the following: for a given input, either the input is directly used ‘as is’ or the
input is first transformed with an internal function (the so-called ‘derivation
function’) and then afterwards used by the generator. Whenever an algorithm
uses the function Block_Cipher_df, the algorithm is named ‘with derivation’.
In our descriptions, we only keep the algorithms ‘with derivation’ as our attacks
are related to the use of this function.

• A ‘Setup’ function and an ‘Instantiate’ function are defined, that are used to
initialize the internal state of the generator. In our description, we do not take
into account these algorithms, as we focus on the algorithm used to refresh the
internal state of the generator (named the ‘Reseed function’ in the specification)
and the algorithm used to generate output (named the ‘Generate function’ in
the specification). We omit these functions because our attack relies on a state
compromise and for any initialization value, the adversary has access to it.

The internal state of CTR_DRBG is composed of three parts, S = (V,K, ctr) where:
|V | = 128, |K| = 128 and ctr is a counter that indicates the number of requests for
pseudo-random bits since instantiation or reseeding. The values of V and K are
the critical values of the internal state (i.e., V and K are the ‘secret values’ of the
internal state).

CTR_DRBG Reseed Algorithm

The Reseed algorithm is described in Fig. 30. It takes as input the current values
for V , K, and ctr, and the input I. The output from the Reseed function is the new
working state, the new values for V , K, and ctr. Two Reseed algorithms are defined,
one using a derivation function Block_Cipher_df, one not using this function. As
noted before, we focus on the one using the derivation function.
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CTR_DRBG Reseed
Require: S = (V,K, ctr), I
Ensure: S′ = (V ′,K ′, ctr′)

1: (K ′, V ′) = CTR_DRBG_update(Block_Cipher_df(I, 256),K, V )
2: ctr′ = 1
3: return (V ′,K ′, ctr′)

Figure 30: NIST CTR_DRBG Reseed

CTR_DRBG Generate Algorithm

The Generate algorithm is described in Fig. 31. It takes as input the current values
for V , K, ctr and n, the number of pseudo-random bits to be returned. It outputs
R, the pseudo-random bits returned, and the new values for V , C, and ctr. Two
Generate algorithms are defined, one using a derivation function Block_Cipher_df,
one not using this function. As noted before, we focus on the one using the derivation
function.

CTR_DRBG Generate
Require: S = (V,K, ctr), n
Ensure: S′ = (V ′,K ′, ctr′), R

1: U = ∅
2: while len(U) < n
3: V ′ = V ′ + 1 mod 2128

4: U = [U ||AES_ECB_Encrypt(K′,V′)]
5: endwhile
6: R = [U ]n
7: (K ′, V ′) = CTR_DRBG_Update(Ia,K ′, V ′)
8: ctr′ = ctr + 1
9: return (V ′,K ′, ctr′), R

Figure 31: NIST CTR_DRBG Generate

CTR_DRBG_Update Algorithm

The two previous algorithms both rely on an internal algorithm, named CTR_DRBG
_Update, described in Fig. 32. It takes as input I, the data to be used, the current
value of K and V , and outputs the new value for K and V .

CTR_DRBG Update
Require: V , K, I
Ensure: V ′, K ′

1: U = ∅
2: while len(U) < (k + 128)
3: V ′ = V + 1 mod 2128

4: U = [[U ||AES_ECB_Encrypt(K,V′)]k+128 ⊕ I]
5: K ′ = [U ]k
6: V ′ = [U ]128
7: endwhile
8: return (V ′,K ′)

Figure 32: NIST CTR_DRBG_Update

Block_Cipher_df Function

The derivation function Block_Cipher_df is used in the previous algorithms. It is
described in Fig. 33. This function uses the public parameter K = 0x000102030405
06070809101112131415 as a key to encrypt the input of the generator.
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NIST CTR_DRBG Block_Cipher_df
Require: I, n
Ensure: R

1: L = len(I)/8, N = len(n)/8, S = [L||N ||I||0x80]
2: while len(S) mod 128 6= 0
3: S = S||0x00
4: endwhile
5: U = ∅, i = 0, K = 0x00010203040506070809101112131415
6: while len(U) < 256
7: IV = i||0, U = [U ||BCC(K, IV ||S)], i = i+ 1
8: endwhile
9: K = [U ]128, X = [U ]128, V = ∅
10: while len(V ) < (k + 128)
11: X = AES_ECB_Encrypt(K,X)
12: V = [V ||X]
13: endwhile
14: return R = [V ]128

Figure 33: NIST Block_Cipher_df

BCC Function

The BCC function is used in the previous algorithms. It is described in Fig. 34. This
function operates a bloc cipher AES_ECB_Encrypt, which corresponds to the block
cipher AES in ECB mode, and chains the successive outputs.

NIST CTR_DRBG BCC
Require: K, I, |I| mod 128 = 0
Ensure: R, |R| = 128

1: U = 0
2: n = |I|/128
3: parse I as [Bn, · · · , B1]
4: for i = 1 to n
5: I = Bi ⊕ U
6: U = AES_ECB_Encrypt(K, I)
7: endfor
14: return R = U

Figure 34: NIST CTR_DRBG BCC

Attack against the robustness of CTR_DRBG

Let us now describe the attack against the security of CTR_DRBG in the security
game ROB (Sect. 4.4). Define the 32-byte distribution D. On input a state i, D
updates its state to i+ 1 and
outputs a 32-byte input Ii: (i+1; [Ii0, · · · , Ii31])← D(i); where I0, · · · , I15 are random
and I16, · · · , I31 = AES_ECB_Decrypt(K, I0, · · · , I15), where K = 0x00 · · · 15 (i.e.
D is legitimate with γi = 128, in accordance with Def. 15).
Let us consider an adversary A against the security of the generator that chooses
the distribution D, and that makes the following oracle queries in the security game
ROB: one get-state, one D-refresh with I0, one next-ror. Then (following algorithm
notations):

• After get-state, S, K and ctr are known.

• After D-refresh, the Reseed algorithm is first applied: the new state is the
output of CTR_DRBG_update(Block_Cipher_df(I0, 256),K, V ) and ctr = 1.
Let us describe the algorithm Block_Cipher_df(I0, 256): on input I0 and 256,
Block_Cipher_df calculates L = 32, N = 32, S = [32||32||I0||0x80] and then
S = [32||32||I0||0x80||0x00|| · · · ||0x00]. Next, it calculates BCC(K, IV ||S), for
IV = 0||0 and IV = 1||0, with K = 0x00 · · · 15, then sets U = BCC(K, 1||0||S)
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||BCC(K, 0||0||S), K = [U ]128, X = [U ]128. Let us describe the algorithm
BCC(K, IV ||S): on input S = [32||32||I0||0x80||0x00|| · · · ||0x00], IV = 0||0
and K = 0x00 · · · 15, it parses S as B4, B3, B2, B1 and calculates I = B1, U =
AES_ECB_Encrypt(K, I), I = B2⊕U , U = AES_ECB_Encrypt(K, I), I = B3⊕
U , U = AES_ECB_Encrypt(K, I), I = B4 ⊕ U , U = AES_ECB_Encrypt(K, I).
However, the input distribution is such that B3 = AES_ECB_Decrypt(K,B2)
and therefore the output of algorithm BCC is known to A. Hence the output
of algorithm Block_Cipher_df is also known to A and also the output of the
Reseed algorithm, although the initial input was of high entropy.

• After next-ror, the output of the generator is computed from a known state and
is therefore predictable.

In this last next-ror-oracle query, A obtains a 16-byte string that is predictable,
whereas this event should occur with probability 2−128. Therefore A can distinguish
an output of CTR_DRBG from random in the game ROB(γ∗), for all γ∗ and this
pseudo-random number generator with input is not robust.
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