
Quantum Information Set Decoding Algorithms

Ghazal Kachigar1 and Jean-Pierre Tillich2

1 Institut de Mathématiques de Bordeaux
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Abstract. The security of code-based cryptosystems such as the McEliece cryptosystem
relies primarily on the difficulty of decoding random linear codes. The best decoding algo-
rithms are all improvements of an old algorithm due to Prange: they are known under the
name of information set decoding techniques. It is also important to assess the security of
such cryptosystems against a quantum computer. This research thread started in [21] and
the best algorithm to date has been Bernstein’s quantising [5] of the simplest information set
decoding algorithm, namely Prange’s algorithm. It consists in applying Grover’s quantum
search to obtain a quadratic speed-up of Prange’s algorithm. In this paper, we quantise other
information set decoding algorithms by using quantum walk techniques which were devised
for the subset-sum problem in [6]. This results in improving the worst-case complexity of
20.06035n of Bernstein’s algorithm to 20.05869n with the best algorithm presented here (where
n is the codelength).
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1 Introduction

As humanity’s technological prowess improves, quantum computers have moved from the realm
of theoretical constructs to that of objects whose consequences for our other technologies, such as
cryptography, must be taken into account. Indeed, currently prevalent public-key cryptosystems
such as RSA and ECDH are vulnerable to Shor’s algorithm [25], which solves factorisation and the
discrete logarithm problem in polynomial time. Thus, in order to find a suitable replacement, it has
become necessary to study the impact of quantum computers on other candidate cryptosystems.
Code-based cryptosystems such as the McEliece [19] and the Niederreiter [20] cryptosystems are
such possible candidates.

Their security essentially relies on decoding a linear code. Recall that the decoding problem
consists, when given a linear code C and a noisy codeword c + e, in recovering c, where c is an
unknown codeword of C and e an unknown error of Hamming weight w. A (binary) linear code C

of dimension k and length n is specified by a full rank binary matrix H (i.e. a parity-check matrix)
of size (n− k)× n as

C = {c ∈ Fn2 : HcT = 0}.

Since H(c + e)T = HcT + HeT = HeT the decoding problem can be rephrased as a syndome
decoding problem

Problem 1 (Syndrome Decoding Problem). Given H and sT = HeT , where |e| = w, find e.

This problem has been studied since the sixties and despite significant efforts on this issue [22,
26, 10, 2, 17, 7, 4, 18] the best algorithms for solving this problem [4, 18] are exponential in the
number of errors that have to be corrected: correcting w errors in a binary linear code of length n
and dimension k has with the aforementioned algorithms a cost of Õ(2α(

k
n ,
w
n )n) where α(R,ω) is
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positive when R and ω are both positive. All these algorithms use in a crucial way the original idea
due to Prange [22] and are known under the name of Information Set Decoding (ISD) algorithms:
they all take advantage of the fact that there might exist a rather large set of positions containing
an information set of the code3 that is almost error free.

All the efforts that have been spent on this problem have only managed to decrease slightly
this exponent α(R,ω). The following table gives an overview of the average time complexity of
currently existing classical algorithms when w is the Gilbert-Varshamov distance dGV(n, k) of

the code. This quantity is defined by dGV(n, k)
4
=nH−12

(
1− k

n

)
where H2 is the binary entropy

function H2(x)
4
=−x log2(x)−(1−x) log2(1−x) and H−12 its inverse defined from [0, 1] to [0, 12 ]. It

corresponds to the largest distance for which we may still expect a unique solution to the decoding
problem. If we want uniqueness of the solution, it can therefore be considered as the hardest

instance of decoding. In the following table, ωGV is defined by the ratio ωGV
4
= dGV(n, k)/n.

Author(s) Year max
0≤R≤1

α(R,ωGV) to 4 dec. places

Prange [22] 1962 0.1207
Dumer [10] 1991 0.1164
MMT [17] 2011 0.1114
BJMM [4] 2012 0.1019
MO [18] 2015 0.0966

The question of using quantum algorithms to speed up ISD decoding algorithms was first put
forward in [21]. However, the way Grover’s algorithm was used in [21, Subsec. 3.5] to speed up
decoding did not allow for significant improvements over classical ISD algorithms. Later on, it
was shown by Bernstein in [5] that it is possible to obtain much better speedups with Grover’s
algorithm: by using it for finding an error-free information set, the exponent of Prange’s algorithm
can indeed be halved.

This paper builds upon this way of using Grover’s search algorithm, as well as the quantum
algorithms developped by Bernstein, Jeffery, Lange and Meurer in [6] to solve the subset sum prob-
lem more efficiently. The following table summarises the ingredients and average time complexity
of the algorithm of [5] and the new quantum algorithms presented in this paper.

Author(s) Year Ingredients max
0≤R≤1

α(R,ωGV) to 5 dec. places

Bernstein [5] 2010 Prange+Grover 0.06035
This paper 2017 Shamir-Schroeppel+Grover+QuantumWalk 0.05970
This paper 2017 MMT+“1+1=0”+Grover+QuantumWalk 0.05869

A quick calculation shows that the complexity exponent of our best quantum algorithm,MMTQW ,
fulfils αMMTQW ≈ αDumer

2 + 4.9 × 10−4. Thus, our best quantum algorithm improves in a small
but non-trivial way on [5]. Several reasons will be given throughout this paper on why it has been
difficult to do better than this.

Notation. Throughout the paper, we denote by |e| the Hamming weight of a vector e. We use the
same notation for denoting the cardinality of a set, i.e. |S | denotes the cardinality of the set S .
The meaning of this notation will be clear from the context and we will use calligraphic letters to
denote sets: S , I,M , . . . . We use the standard O (), Ω (), Θ () notation and use the less standard
Õ (), Ω̃ (), Θ̃ () notation to mean “O (), Ω (), Θ (), when we ignore logarithmic factors”. Here all
the quantities we are interested in are functions of the codelength n and we write f(n) = Õ (g(n))

for instance, when there exists a constant k such such that f(n) = O
(
g(n) logk(g(n))

)
.

3 An information set of a linear code C of dimension k is a set I of k positions such that when given
{ci : i ∈ I} the codeword c of C is specified entirely.
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2 Quantum search algorithms

2.1 Grover search

Grover’s search algorithm [12, 13, 8] is an optimal algorithm for solving the following problem with
a quadratic speed-up compared to the best-possible classical algorithm.

Problem 2 (Unstructured search problem). Given a set E and a function f : E → {0, 1}, find an
x ∈ E such that f(x) = 1.

In other words, we need to find an element that fulfils a certain property, and f is an oracle
for deciding whether it does. Moreover, in the new results presented in this paper, f will be a
quantum algorithm. If we denote by ε the proportion of elements x of E such that f(x) = 1,
Grover’s algorithm solves the problem above using O( 1√

ε
) queries to f , whereas in the classical

setting this cannot be done with less than O( 1
ε ) queries. Furthermore, if the algorithm f executes

in time Tf on average, the average time complexity of Grover’s algorithm will be O(
Tf√
ε
).

2.2 Quantum Walk

Random Walk. Unstructured search problems as well as search problems with slightly more but
still minimal structure may be recast as graph search problems.

Problem 3 (Graph search problem). Given a graph G = (V ,E) and a set of vertices M ⊂ V , called
the set of marked elements, find an x ∈ M .

The graph search problem may then be solved using random walks (discrete-time Markov chains)
on the vertices of the graph. From now on, we will take the graph to be undirected, connected,
and d-regular, i.e. such that each vertex has exactly d neighbours.

Markov chain. A Markov chain is given by an initial probability distribution v and a stochastic
transition matrix M . The transition matrix of a random walk on a graph (as specified above) can
be derived from the graph’s adjacency matrix in the following manner: as the graph is undirected
and d-regular, its adjacency matrix is symmetric and each of its rows has exactly d entries equal
to one, all others being equal to zero. Dividing each one-entry of this matrix by d will give a
stochastic matrix which will be taken as the transition matrix M .

Eigenvalues and the spectral gap. A closer look at the eigenvalues and the eigenvectors of M is
needed in order to analyse the complexity of a random walk on a graph.
The eigenvalues will be noted λi and the corresponding eigenvectors vi. We will admit the follow-
ing points (see [9]): (i) all the eigenvalues lie in the interval [−1, 1], (ii) 1 is always an eigenvalue
and a corresponding eigenvector is called stationary distribution, (iii) when the graph is undi-
rected, connected and d-regular, there is exactly one stationary distribution which is the uniform
distribution u. We will suppose that the eigenvalues are ordered from largest to smallest, so that
λ1 = 1 and v1 = u. An important value associated with the transition matrix of a Markov chain is

its spectral gap, defined as δ
4
= 1−maxi=2,...,d |λi|. We have the following theorem concerning the

spectral gap.

Theorem 1 (Convergence to uniform distribution). For all η > 0, ||Mkv − u|| < η for
k = Õ(1/δ), where v is the initial probability distribution.

Finding a marked element by running a Markov chain on the graph just consists in
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Algorithm 1: RandomWalk

Input: G = (E ,V ), M ⊂ V , initial probability distribution v
Output: An element e ∈ M

1 Setup : Sample a vertex x according to v and initialise the data structure.
2 repeat

3 Check : if current vertex x is marked then
4 return x
5 else
6 repeat
7 Update : Take one step of the random walk and update data structure accordingly.
8 until x is sampled according to the uniform distribution
9

Let Ts be the cost of Setup, Tc be the cost of Check and Tu be the cost of Update. By
Theorem 1, we see that we need to take Õ(1/δ) steps of the random walk to sample x according to

the uniform distribution. Furthermore, if we note ε := |M |
|V | the proportion of marked elements, it is

readily seen that the algorithm ends after O(1/ε) iterations of the outer loop. Thus the complexity
of classical random walk is Ts+ 1

ε

(
Tc + 1

δTu
)
. Several quantum versions of random walk algorithms

have been proposed by many authors, notably Ambainis [1], Szegedy [27], and Magniez, Nayak,
Roland and Santha [16]. A survey of these results can be found in [23]. For our purposes, it is
important to note that these quantum walk algorithms have the following complexity:

Ts +
1√
ε

(
Tc +

1√
δ
Tu

)
(1)

Johnson graphs and product graphs. With the exception of Grover’s search algorithm seen
as a quantum walk algorithm, to date an overwhelming majority of quantum walk algorithms are
based on Johnson graphs or a variant thereof. The decoding algorithms which shall be presented
in this paper rely on cartesian products of Johnson graphs. All of these objects are defined in this
section and some important properties are mentioned.

Definition 1 (Johnson graphs). A Johnson graph J(n, r) is an undirected graph whose vertices
are the subsets containing r elements of a set of size n, with an edge between two vertices S and
S′ iff |S∩S′| = r−1. In other words, S is adjacent to S′ if S′ can be obtained from S by removing
an element and adding a new element in its place.

It is clear that J(n, r) has
(
n
r

)
vertices and is r(n− r)-regular. Its spectral gap is given by

δ =
n

r(n− r)
. (2)

Definition 2 (Cartesian product of graphs). Let G1 = (V1,E1) and G2 = (V2,E2) be two
graphs. Their cartesian product G1 ×G2 is the graph G = (V ,E) where:

1. V = V1 × V2, i.e. V = {v1v2 | v1 ∈ V1, v2 ∈ V2}
2. E = {(u1u2, v1v2) | (u1 = v1 ∧ (u2, v2) ∈ E2) ∨ ((u1, v1) ∈ E1 ∧ u2 = v2)}

The spectral gap of products of Johnson graphs is given by

Theorem 2 (Cartesian product of Johnson graphs). Let J(n, r) = (V ,E), m ∈ N and
Jm(n, r) := ×mi=1J(n, r) = (Vm,Em). Then:

1. Jm(n, r) has
(
n
r

)m
edges and is md-regular where d = r(n− r).

2. We will write δ(J) resp. δ(Jm) for the spectral gaps of J(n, r) resp. Jm(n, r). Then:
δ(Jm) ≥ 1

mδ(J)

For a proof of this statement, see the appendix.
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3 Generalities on classical and quantum decoding

We first recall how the simplest ISD algorithm [22] and its quantised version [5] work and then
give a skeleton of the structure of more sophisticated classical and quantum versions.

3.1 Prange’s algorithm and Bernstein’s algorithm

Recall that the goal is to find e of weight w given sT = HeT , where H is an (n− k)× n matrix.
In other words, the problem we aim to solve is finding a solution to an underdetermined linear
system of n− k equations in n variables and the solution is unique owing to the weight condition.
Prange’s algorithm is based on the following observation: if it is known that k given components
of the error vector are zero, the error positions are among the n − k remaining components. In
other words, if we know for sure that the k corresponding variables are not involved in the linear
system, then the error vector can be found by solving the resulting linear system of n−k equations
in n− k variables in polynomial time.

The hard part is finding a correct size-k set (of indices of the components). Prange’s algorithm
samples such sets and solves the resulting linear equation until an error vector of weight w is found.

The probability for finding such a set is of order Ω

(
(n−kw )
(nw)

)
and therefore Prange’s algorithm has

complexity

O

( (
n
w

)(
n−k
w

)) = Õ
(

2αPrange(R,ω)n
)

where

αPrange(R,ω) = H2(ω)− (1−R)H2

(
ω

1−R

)
by using the well known formula for binomials(

n

w

)
= Θ̃

(
2H2(wn )n

)
.

Bernstein’s algorithm consists in using Grover’s algorithm to find a correct size-k set. Indeed, an
oracle for checking that a size-k set is correct can be obtained by following the same steps as in
Prange’s algorithm, i.e. deriving and solving a linear system of n− k equations in n− k variables
and returning 1 iff the resulting error vector has weight w. Thus the complexity of Bernstein’s
algorithm is the square root of that of Prange’s algorithm, i.e. αBernstein =

αPrange

2 .

3.2 Generalised ISD algorithms

More sophisticated classical ISD algorithms [26, 10, 11, 7, 17, 4, 18] generalise Prange’s algorithm in
the following way: they introduce a new parameter p and allow p error positions inside of the size-k
set (henceforth denoted by S ). Furthermore, from Dumer’s algorithm onwards, a new parameter
` is introduced and the set S is taken to be of size k + `. This event happens with probability

P`,p
4
=

(k+`p )(n−k−`w−p )
(nw)

. The point is that

Proposition 1. Assume that the restriction of H to the columns belonging to the complement of
S is a matrix of full rank, then

(i) the restriction e′ of the error to S is a solution to the syndrome decoding problem

H ′e′
T

= s′
T
. (3)

with H ′ being an `× (k + `) binary matrix, |e′| = p and H ′, s′ that can be computed in poly-
nomial time from S , H and s;
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(ii) once we have such an e′, there is a unique e whose restriction to S is equal to e′ and which
satisfies HeT = sT . Such an e can be computed from e′ in polynomial time.

Remark: The condition in this proposition is met with very large probability when H is chosen
uniformly at random: it fails to hold with probability which is only O(2−`).

Proof. Without loss of generality assume that S is given by the k+` first positions. By performing
Gaussian elimination, we look for a square matrix U such that

UH =

(
H ′ 0`
H” In−k−`

)
That such a matrix exists is a consequence of the fact that H restricted to the last n − k − `
positions is of full rank. Write now e = (e′, e”) where e′ is the word formed by the k + ` first
entries of e. Then

UsT = UHeT =

(
H ′e′

T

H”e′
T

+ e”T

)
.

If we write UsT as (s′, s”)T , where s′T is the vector formed by the ` first entries of UsT , then we

recover e from e′ by using the fact that H”e′
T

+ e”T = s”T . ut

From now on, we denote by Σ and h the functions that can be computed in polynomial time that
are promised by this proposition, i.e.

s′ = Σ(s,H,S )

e = h(e′)

In other words, all these algorithms solve in a first step a new instance of the syndrome decoding
problem with different parameters. The difference with the original problem is that if ` is small,
which is the case in general, there is not a single solution anymore. However searching for all (or
a large set of them) can be done more efficiently than just brute-forcing over all errors of weight
p on the set S . Once a possible solution e′ to (3) is found, e is recovered as explained before.
The main idea which avoids brute forcing over all possible errors of weight p on S is to obtain
candidates e′ by solving an instance of a generalised k-sum problem that we define as follows.

Problem 4 (generalised k-sum problem). Consider an Abelian group G , an arbitrary set E , a map
f from E to G , k subsets V0, V1, . . . , Vk−1 of E , another map g from Ek to {0, 1}, and an element
S ∈ G . Find a solution (v0, . . . , vk−1) ∈ V0 × . . .Vk−1 such that we have at the same time

(i) f(v0) + f(v1) · · ·+ f(vk−1) = S (subset-sum condition);
(ii) g(v0, . . . , vk−1) = 0 ((v0, . . . , vk−1) is a root of g).

Dumer’s ISD algorithm, for instance, solves the 2-sum problem in the case where

G = F`2, E = Fk+`2 , f(v) = H ′vT

V0 = {(e0, 0(k+`)/2) ∈ Fk+`2 : e0 ∈ F(k+`)/2
2 , |e0| = p/2}

V1 = {(0(k+`)/2, e1) ∈ Fk+`2 : e1 ∈ F(k+`)/2
2 , |e1| = p/2}

and g(v0, v1) = 0 if and only if e = h(e′) is of weight w where e′ = v0 +v1. A solution to the 2-sum
problem is then clearly a solution to the decoding problem by construction. The point is that the
2-sum problem can be solved in time which is much less than |V0| · |V1|. For instance, this can

clearly be achieved in expected time |V0|+ |V1|+ |V0|·|V1|
|G| and space |G | by storing the elements v0

of V0 in a hashtable at the address f(v0) and then going over all elements v1 of the other set to

check whether or not the address S−f(v1) contains an element. The term |V0|·|V1|
|G| accounts for the

expected number of solutions of the 2-sum problem when the elements of V0 and V1 are chosen
uniformly at random in E (which is the assumption what we are going to make from on). This is
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precisely what Dumer’s algorithm does. Generally, the size of G is chosen such that |G | = Θ (|Vi|)
and the space and time complexity are also of this order.

Generalised ISD algorithms are thus composed of a loop in which first a set S is sampled and
then an error vector having a certain form, namely with p error positions in S and w − p error
positions outside of S , is sought. Thus, for each ISD algorithm A, we will denote by SearchA the
algorithm whose exact implementation depends on A but whose specification is always
SearchA : S , H, s, w, p → {e | e has weight p on S and weight w − p on S and sT = HeT } ∪
{NULL}, where S is a set of indices, H is the parity-check matrix of the code and s is the
syndrome of the error we are looking for. The following pseudo-code gives the structure of a
generalised ISD algorithm.

Algorithm 2: ISD Skeleton

Input: H, s, w, p
Output: e of weight w such that sT = HeT

1 repeat
2 Sample a set of indices S ⊂ {1, ..., n}
3 e← SearchA(S , H, s, w, p)

4 until |e| = w
5 return e;

Thus, if we note PA the probability, dependent on the algorithm A, that the sampled set S is
correct and that A finds e 4, and TA the execution time of the algorithm SearchA, the complexity of

generalised ISD algorithms is O
(
TA
PA

)
. To construct generalised quantum ISD algorithms, we use

Bernstein’s idea of using Grover search to look for a correct set S . However, now each query made
by Grover search will take time which is essentially the time complexity of SearchA. Consequently,
the complexity of generalised quantum ISD algorithms is given by the following formula:

O

(
TA√
PA

)
= O

√T 2
A

PA

 . (4)

An immediate consequence of this formula is that, in order to halve the complexity exponent of
a given classical algorithm, we need a quantum algorithm whose search subroutine is “twice” as
efficient.

4 Solving the generalised 4-sum problem with quantum walks and
Grover search

4.1 The Shamir-Schroeppel idea

As explained in Section 3, the more sophisticated ISD algorithms solve during the inner step
an instance of the generalised k-sum problem. The issue is to get a good quantum version of the
classical algorithms used to solve this problem. That this task is non trivial can already be guessed
from Dumer’s algorithm. Recall that it solves the generalised 2-sum problem in time and space
complexity O (V ) when V = |V0| = |V1| = Θ(|G |). The problem is that if we wanted a quadratic
speedup when compared to the classical Dumer algorithm, then this would require a quantum
algorithm solving the same problem in time O

(
V 1/2

)
, but this seems problematic since naive

ways of quantising this algorithm stumble on the problem that the space complexity is a lower
bound on the time complexity of the quantum algorithm. This strongly motivates the choice of
ways of solving the 2-sum problem by using less memory. This can be done through the idea of
Shamir and Schroeppel [24]. Note that the very same idea is also used for the same reason to speed
up quantum algorithms for the subset sum problem in [6, Sec. 4]. To explain the idea, suppose

4 In the case of Dumer’s algorithm, for instance, even if the restriction of e to S is of weight p, Dumer’s
algorithm may fail fail to find it since it does not split evenly on both sides of the bipartition of S .
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that G factorises as G = G0×G1 where |G0| = Θ(|G1|) = Θ(|G |1/2). Denote for i ∈ {0, 1} by πi the
projection from G onto Gi which to g = (g0, g1) associates gi.

The idea is to construct f(V0) and f(V1) themselves as f(V0) = f(V00) + f(V01) and f(V1) =
f(V10) + f(V11) in such a way that the Vij ’s are of size O(V 1/2) and to solve a 4-sum problem
by solving various 2-sum problems. In our coding theoretic setting, it will be more convenient to
explain everything directly in terms of the 4-sum problem which is given in this case by

Problem 5. Assume that k + ` and p are multiples of 4. Let

G = F`2, E = Fk+`2 , f(v) = H ′vT

V00
4
= {(e00, 03(k+`)/4) ∈ Fk+`2 : e00 ∈ F(k+`)/4

2 , |e00| = p/4}

V01
4
= {(0(k+`)/4, e01, 0(k+`)/2) ∈ Fk+`2 : e01 ∈ F(k+`)/4

2 , |e01| = p/4}

V10
4
= {(0(k+`)/2, e10, 0(k+`)/4) ∈ Fk+`2 : e10 ∈ F(k+`)/4

2 , |e10| = p/4}

V11
4
= {(03(k+`)/4, e11) ∈ Fk+`2 : e11 ∈ F(k+`)/4

2 , |e11| = p/4}

and S be some element in G . Find (v00, v01, v10, v11) in V00 × V01 × V10 × V11 such that f(v00) +
f(v01) + f(v10) + f(v11) = S and h(v00 + v01 + v10 + v11) is of weight w.

Let us explain now how the Shamir-Schroeppel idea allows us to solve the 4-sum problem in time
O (V ) and space O

(
V 1/2

)
when the Vij ’s are of order O

(
V 1/2

)
, |G | is of order V and when G

decomposes as the product of two groups G0 and G1 both of size Θ
(
V 1/2

)
. The basic idea is to

solve for all possible r ∈ G1 the following 2-sum problems

π1(f(v00)) + π1(f(v01)) = r (5)

π1(f(v10)) + π1(f(v11)) = π1(S)− r (6)

Once these problems are solved we are left with O
(
V 1/2V 1/2/V 1/2

)
= O

(
V 1/2

)
solutions to the

first problem and O
(
V 1/2

)
solutions to the second. Taking any pair (v00, v01) solution to (5) and

(v10, v11) solution to (6) yields a 4-tuple which is a partial solution to the 4-sum problem

π1(f(v00)) + π1(f(v01)) + π1(f(v10)) + π1(f(v11)) = r + π1(S)− r = π1(S).

Let V ′0 be the set of all pairs (v00, v01) we have found for the first 2-sum problem (5), whereas V ′1
is the set of all solutions to (6). To ensure that f(v00) + f(v01) + f(v10) + f(v11) = S we just have
to solve the following 2-sum problem

π0(f(v00)) + π0(f(v01))︸ ︷︷ ︸
f ′(v00,v01)

+π0(f(v10)) + π0(f(v11))︸ ︷︷ ︸
f ′(v10,v11)

= π0(S)

and
g(v00, v01, v10, v11) = 0

where (v00, v01) is in V ′0, (v10, v11) is in V ′1 and g is the function whose root we want to find for
the original 4-sum problem.

This is again of complexity O
(
V 1/2V 1/2/V 1/2

)
= O

(
V 1/2

)
. Checking a particular value of r

takes therefore O
(
V 1/2

)
operations. Since we have Θ

(
V 1/2

)
values to check, the total complexity

is O
(
V 1/2V 1/2

)
= O (V ), that is the same as before, but we need only O

(
V 1/2

)
memory to store

all intermediate sets.

4.2 A quantum version of the Shamir-Schroeppel algorithm

By following the approach of [6], we will define a quantum algorithm for solving the 4-sum problem
by combining Grover search with a quantum walk with a complexity given by
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Fig. 1. The Shamir-Schroeppel idea in the decoding context (see Problem 5): the support of the elements
of Vij is represented in orange, while the blue and green colours represent G0 resp. G1.

Proposition 2. Consider the generalised 4-sum problem with sets Vu of size V . Assume that G
can be decomposed as G = G0 × G1. There is a quantum algorithm for solving the 4-sum problem
running in time Õ

(
|G1|1/2V 4/5

)
as soon as |G1| = Ω

(
V 4/5

)
and |G | = Ω

(
V 8/5

)
.

This is nothing but the idea of the algorithm [6, Sec. 4] laid out in a more general context.
The idea is as in the classical algorithm to look for the right value r ∈ G1. This can be done with
Grover search in time O

(
|G1|1/2

)
instead of O (|G1|) in the classical case. The quantum walk is

then used to solve the following problem:

Problem 6. Find (v00, v01, v10, v11) in V00 × V01 × V10 × V11 such that

π1(f(v00)) + π1(f(v01)) = r

π1(f(v10)) + π1(f(v11)) = π1(S)− r
π0(f(v00)) + π0(f(v01)) + π0(f(v10)) + π0(f(v11)) = π0(S)

g(v00, v01, v10, v11) = 0.

For this, we choose subsets Ui’s of the Vi’s of a same size U = Θ
(
V 4/5

)
and run a quantum

walk on the graph whose vertices are all possible 4-tuples of sets of this kind and two 4-tuples
(U00,U01,U10,U11) and (U′00,U′01,U′10,U′11) are adjacent if and only if we have for all i’s but one
U′i = Ui and for the remaining U′i and Ui we have |U′i ∩ Ui| = U − 1. Notice that this graph is
nothing but J4(V,U). By following [6, Sec. 4] it can be proved that

Proposition 3. Under the assumptions that |G1| = Ω
(
V 4/5

)
and |G | = Ω

(
V 8/5

)
, it is possible

to set up a data structure of size O (U) to implement this quantum walk such that
(i) setting up the data structure takes time O (U);
(ii) checking whether a new 4-tuple leads to a solution to the problem above (and outputting the
solution in this case) takes time O (1),
(iii) updating the data structure takes time O (logU).
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The proof which we give is adapted from [6, Sec. 4].

Proof.

1. Setting up the data structure takes time O (U).
The data structure is set up more or less in the same way as in classical Shamir-Schroeppel’s
algorithm, i.e. by solving two 2-sum problems first and then using the result to solve a third
and last 2-sum problem. There are however the following differences:

(i) We no longer keep the results in a hashtable but in some other type of ordered data
structure which allows for the insertion, deletion and search operations to be done in O (logU)
time. For instance, [6] chose radix trees. More detail will be given when we look at the Update
operation.
(ii) Because we no longer use hashtables, we will need two data structures at each step, one to
keep track of f(v00) along with the associated v00, f(v00) + f(v01) along with the associated
(v00, v01), etc. and another to keep track of v00, (v00, v01), etc. separately. If we denote the
first family of data structures by Df and the second family by DV , this gives a total of 13 data
structures (7 of type DV and 6 of type Df , because no data structure is needed to store the
sum of all four vectors which is simply S).

Solving the first two 2-sum problems takes time |Ui0| + |Ui1| + |Ui0|.|Ui1|
|G1| , i = 0, 1, which

is O (U) because |G1| = Ω
(
V 4/5

)
= Ω (U). Denote by U0 resp. U1 the set of solutions to these

two problems. These solutions are used to solve the second 2-sum, problem, which takes time

|U0|+ |U1|+ |U0|.|U1|
|G0| = O (U) due to G0 = G/G1 and |G | = Ω

(
V 8/5

)
.

Thus, setting up the data structure takes time O (U).
2. Updating the data structure takes time O (logU).

Recall that the data structures are chosen such that the insertion, deletion and search opera-
tions take O (logU) time, and also that there are two data structures pertaining to each vector
or pair of vectors, for a total of 13 data structures.

Recall also that the update step consists in moving from one vertex of the Johnson graph
J4(V,U) to one that is adjacent to it. Suppose, without loss of generality, that we move from
the vertex (U00,U01,U10,U11) to (U′00,U01,U10,U11). Thus, a v00 ∈ U00 has been replaced by
a u00 ∈ U00.

Then, the low cost of the update step relies upon the following fundamental insight: there
are in all U possible ways of writing the sum π1(f(u00)) +π1(f(v01)) (one for each v01 ∈ U01).
But we have one further constraint which is that this sum needs to be equal to a given r ∈ G1.

Thus, there are on average
|Uij |
|G1| = O(1) values of v01 ∈ U01 which give a solution.

Note that the same argument applies for the number of (v10, v11) ∈ U1 that fulfil the condition

π0(f(u00)) + π0(f(v01)) + π0(f(v10)) + π0(f(v11)) = π0(S)

for a given (u00, v01) ∈ U0 (where π0(S) ∈ G0), for in this case there are on average |U0|
|G0| = O(1)

such elements.

This allows us to proceed as follows: we impose a constant limit on the number of v01 ∈ U01

that correspond to a given u00 ∈ U00 at each update operation. A similar limit is imposed on
the number of (v10, v11) ∈ U1. The probability of reaching this limit is negligeable, and if it
is reached, we re-initialise the data structure, so this does not modify the overall complexity
of the algorithm. Note also that there is no problem when the opposite situation happens, i.e.



Quantum Information Set Decoding Algorithms 11

when there are no v01 ∈ U01 corresponding to a given u00 ∈ U00. Indeed, while this may result
in the data structure being depleted, this is a temporary situation and the data structure will
be refilled over time as more suitable elements occur.

We now enumerate the steps needed to update the data structure. What we need to do is
to remove the old element v00 and everything that has been constructed using it, and add u00
and everything that it allows to construct (within the limits discussed above). First, to remove
v00 and the other elements it affects, we need to do the following:

(a) Find and delete v00 from the data structure DU00 .

(b) Calculate f(v00), then find and delete it from the data structure Df00 .

(c) Find at most a constant number of (v00, v01) in DU0
and remove them.

(d) For each of these (v00, v01), calculate f(v00) + f(v01) and remove it from Df0 .

(e) Find at most a constant number of (v00, v01, v01, v11) in DU and remove them.

This step uses operations of negligeable cost (calculating f(v00), etc.) and the number of op-
erations of cost log(U) which it uses is bounded by a constant. Thus it takes time O (log(U)).

To add u00 and other new elements depending on it, we proceed as follows:

(a) Insert u00 in DU00 .

(b) Calculate f(u00), then insert it in Df00 .

(c) Calculate x = r− π1(f(u00)) and find if there are elements y in Df01 such that π1(y) = x.
For a constant number of associated v01, insert (u00, v01) in DU0

and in Df0 associated
with r.

(d) Similarly there are a constant number of (v01, v11) that need to be updated, for those
calculate g(u00, v01, v10, v11). If it is equal to zero, insert (v00, v01, v10, v11) in DU .

It is easy to see that this step also takes time O (log(U)).

3. Checking whether a new 4-tuple leads to a solution of the problem takes time
O (1).
Checking that the right 4-tuple is in DU requires looking for it in DU at the first step of the
algorithm. This costs O(

√
U) using Grover search. At the following steps of the algorithm, it

is enough to check the new elements (whose number is bounded by a constant) that have been
added to DU . So the checking cost is O (1) overall. ut

Proposition 2 is essentially a corollary of this proposition.

Proof (Proof of Proposition 2). Recall that the cost of the quantum walk is given by Ts +
1√
ε

(
Tc + 1√

δ
Tu

)
where Ts, Tc, Tu, ε and δ are the setup cost, the check cost, the update cost,

the proportion of marked elements and the spectral gap of the quantum walk. From Proposition
3, we know that Ts = O (U) = O

(
V 4/5

)
, Tc = O (1), and Tu = O (logU). Recall that the spectral

gap of J(V,U) is equal to V
U(V−U) by (2). This quantity is larger than 1

U and by using Theorem

2 on the cartesian product of Johnson graphs, we obtain δ = Θ
(
1
U

)
.

Now for the proportion of marked elements we argue as follows. If Problem 6 has a solution
(v00, v01, v10, v11), then the probability that each of the sets Ui contains vi is precisely U/V =
Θ
(
V −1/5

)
. The probability ε that all the Ui’s contain vi is then Θ

(
V −4/5

)
. This gives a total cost

of

O
(
V 4/5

)
+O

(
V 2/5

)(
O (1) +O

(
V 2/5

)
O (logU)

)
= Õ

(
V 4/5

)
.

When we multiply this by the cost of Grover’s algorithm for finding the right r we have the
aforementioned complexity. ut

4.3 Application to the decoding problem

When applying this approach to the decoding problem we obtain
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Theorem 3. We can decode w = ωn errors in a random linear code of length n and rate R = k
n

with a quantum complexity of order Õ
(
2αSSQW(R,ω)n

)
where

αSSQW(R,ω)
4
= min

(π,λ)∈R

H2(ω)− (1−R− λ)H2

(
ω−π

1−R−λ

)
− 2

5 (R+ λ)H2

(
π

R+λ

)
2


R
4
=

{
(π, λ) ∈ [0, ω]× [0, 1) : λ =

2

5
(R+ λ)H2

(
π

R+ λ

)
, π ≤ R+ λ, λ ≤ 1−R− ω + π

}
Proof. Recall (see (4)) that the quantum complexity is given by

Õ

(
TSSQW√
PSSQW

)
(7)

where TSSQW is the complexity of the combination of Grover’s algorithm and quantum walk
solving the generalised 4-sum problem specified in Problem 6 and PSSQW is the probability that
the random set of k + ` positions S and its random partition in 4 sets of the same size that are
chosen is such that all four of them contain exactly p/4 errors. Note that p and ` are chosen such
that k + ` and p are divisible by 4. PSSQW is given by

PSSQW =

( k+`
4
p
4

)4(
n−k−`
w−p

)(
n
w

)
Therefore

(PSSQW)−1/2 = Õ

(
2
H2(ω)−(1−R−λ)H2( ω−π

1−R−λ )−(R+λ)H2( π
R+λ )

2 n

)
(8)

where λ
4
= `

n and π
4
= p

n . TSSQW is given by Proposition 2:

TSSQW = Õ
(
|G1|1/2V 4/5

)
where the sets involved in the generalised 4-sum problem are specified in Problem 6. This gives

V =

(k+`
4
p
4

)
We choose G1 as

G1 = Fd
`
2 e

2 (9)

and the assumptions of Proposition 2 are verified as soon as

2` = Ω
(
V 8/5

)
.

which amounts to

2` = Ω

((k+`
4
p
4

)8/5
)

This explains the condition

λ =
2

5
(R+ λ)H2

(
π

R+ λ

)
(10)

found in the definition of the region R . With the choices (9) and (10), we obtain

TSSQW = Õ
(
V 6/5

)
= Õ

(
2

3
10 (R+λ)H2( π

R+λ )n
)

(11)

Substituting for PSSQW and TSSQW the expressions given by (8) and (11) finishes the proof of the
theorem. ut
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5 Improvements obtained by the representation technique and
“1 + 1 = 0”

There are two techniques that can be used to speed up the quantum algorithm of the previous
section.

The representation technique. It was introduced in [14] to speed up algorithms for the subset-
sum algorithm and used later on in [17] to improve decoding algorithms. The basic idea of the
representation technique in the context of the subset-sum or decoding algorithms consists in (i)
changing slightly the underlying (generalised) k-sum problem which is solved by introducing sets
Vi for which there are (exponentially) many solutions to the problem

∑
i f(vi) = S by using

redundant representations, (ii) noticing that this allows us to put additional subset-sum conditions
on the solution.

In the decoding context, instead of considering sets of errors with non-overlapping support, the
idea that allows us to obtain many different representations of a same solution is just to consider
sets Vi corresponding to errors with overlapping supports. In our case, we could have taken instead
of the four sets defined in the previous section the following sets

V00 = V10
4
= {(e00, 0(k+`)/2) ∈ Fk+`2 : e00 ∈ F(k+`)/2

2 , |e00| = p/4}

V01 = V11
4
= {(0(k+`)/2, e01) ∈ Fk+`2 : e01 ∈ F(k+`)/2

2 , |e01| = p/4}

Clearly a vector e of weight p can be written in many different ways as a sum v00 + v01 + v10 + v11
where vij belongs to Vij . This is (essentially) due to the fact that a vector of weight p can be

written in
(
p
p/2

)
= Õ (2p) ways as a sum of two vectors of weight p/2.

The point is that if we apply now the same algorithm as in the previous section and look for
solutions to Problem 5, there is not a single value of r that leads to the right solution. Here, about
2p values of r will do the same job. The speedup obtained by the representation technique is a
consequence of this phenomenon. We can even improve on this representation technique by using
the 1 + 1 = 0 phenomenon as in [4].

The “1 + 1 = 0” phenomenon. Instead of choosing the Vi’s as explained above we will actually
choose the Vi’s as

V00 = V10
4
= {(e00, 0(k+`)/2) ∈ Fk+`2 : e00 ∈ F(k+`)/2

2 , |e00| =
p

4
+
∆p

2
} (12)

V01 = V11
4
= {(0(k+`)/2, e01) ∈ Fk+`2 : e01 ∈ F(k+`)/2

2 , |e01| =
p

4
+
∆p

2
} (13)

A vector e of weight p in Fk+`2 can indeed by represented in many ways as a sum of 2 vectors of
weight p

2 +∆p. More precisely, such a vector can be represented in
(
p
p/2

)(
k+`−p
∆p

)
ways. Notice that

this number of representations is greater than the number 2p that we had before. This explains
why choosing an appropriate positive value ∆p allows us to improve on the previous choice.

The quantum algorithm for decoding follows the same pattern as in the previous section: (i)
we look with Grover’s search algorithm for a right set S of k+` positions such that the restriction
e′ of the error e we look for is of weight p on this subset and then (ii) we search for e′ by solving
a generalised 4-sum problem with a combination of Grover’s algorithm and a quantum walk. We
will use for the second point the following proposition which quantifies how much we gain when
there are multiple representations/solutions:

Proposition 4. Consider the generalised 4-sum problem with sets Vu of size O (V ). Assume that
G can be decomposed as G = G0×G1×G2. Furthermore assume that there are Ω (|G2|) solutions to
the 4-sum problem and that we can fix arbitrarily the value π2 (f(v00 + f(v01)) of a solution to the
4-sum problem, where π2 is the mapping from G = G0 × G1 × G2 to G2 which maps (g0, g1, g2) to
g2. There is a quantum algorithm for solving the 4-sum problem running in time Õ

(
|G1|1/2V 4/5

)
as soon as |G1| · |G2| = Ω

(
V 4/5

)
and |G | = Ω

(
V 8/5

)
.
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Proof. Let us first introduce a few notations. We denote by π12 the “projection” from G = G0 ×
G1×G2 to G1×G2 which associates to (g0, g1, g2) the pair (g1, g2) and by π0 the projection from G
to G0 which maps (g0, g1, g2) to g0. As in the previous section, we solve with a quantum walk the
following problem: we fix an element r = (r1, r2) in G1×G2 and find (if it exists) (v00, v01, v10, v11)
in V00 × V01 × V10 × V11 such that

π12(f(v00)) + π12(f(v01)) = r

π12(f(v10)) + π12(f(v11)) = π12(S)− r
π0(f(v00)) + π0(f(v01)) + π0(f(v10)) + π0(f(v11)) = π0(S)

g(v00, v01, v10, v11) = 0.

The difference with Proposition 2 is that we do not check all possibilities for r but just all possi-
bilities for r1 ∈ G1 and fix r2 arbitrarily. As in Proposition 2, we perform a quantum walk whose
complexity is Õ

(
V 4/5

)
to solve the aforementioned problem for a fixed r. What remains to be done

is to find the right value for r1 which is achieved by a Grover search with complexity O
(
|G1|1/2

)
. ut

Fig. 2. The representation technique: the support of the elements of Vij is represented in orange, while
the blue, green and violet colours represent G0 resp. G1, resp. G2.

By applying Proposition 4 in our decoding context, we obtain

Theorem 4. We can decode w = ωn errors in a random linear code of length n and rate R = k
n

with a quantum complexity of order Õ
(
2αMMTQW(R,ω)n

)
where

αMMTQW(R,ω)
4
= min

(π,∆π,λ)∈R

H2(ω)− (1−R− λ)H2( ω−π
1−R−λ )− (R+ λ)H2

(
π

R+λ

)
+ β(R, λ, π,∆π)

2


with

β(R, λ, π,∆π)
4
=

6

5
(R+ λ)H2

(
π/2 +∆π

R+ λ

)
− π − (1−R− λ)H2

(
∆π

1−R− λ

)
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where R is the subset of elements (π,∆π, λ) of [0, ω] × [0, 1) × [0, 1) that satisfy the following
constraints

0 ≤ ∆π ≤ R+ λ− π
0 ≤ π ≤ min(ω,R+ λ)

0 ≤ λ ≤ 1−R− ω + π

π = 2

(
(R+ λ)H−12

(
5λ

4(R+ λ)

)
−∆π

)
Proof. The algorithm picks random subsets S of size k + ` with the hope that the restriction
to S of the error of weight w that we are looking for is of weight p. Then it solves for each of
these subsets the generalised 4-sum problem where the sets Vij are specified in (12) and (13), and
G , E , f and g are as in Problem 6. g is in this case slightly more complicated for the sake of
analysing the algorithm. We have g(v00, v01, v10, v11) = 0 if and only if (i) v00 + v01 + v10 + v11
is of weight p (this is the additional constraint we use for the analysis of the algorithm) (ii)
f(v00) + f(v01) + f(v10) + f(v11) = Σ(s,H,S ) and (iii) h(v00 + v01 + v10 + v11) is of weight w.

From (4) we know that the quantum complexity is given by

Õ

(
TMMTQW√
PMMTQW

)
(14)

where TMMTQW is the complexity of the combination of Grover’s algorithm and quantum walk
solving the generalised 4-sum problem specified above and PMMTQW is the probability that the
restriction e′ of the error e to S is of weight p and that this error can be written as e′ =
v00 + v01 + v10 + v11 where the vij belong to Vij . It is readily verified that

PMMTQW = Õ

((
k+`
p

)(
n−k−`
w−p

)(
n
w

) )

By using asymptotic expansions of the binomial coefficients we obtain

(PMMTQW)−1/2 = Õ

(
2
H2(ω)−(1−R−λ)H2( ω−π

1−R−λ )−(R+λ)H2( π
R+λ )

2 n

)
(15)

where λ
4
= `

n and π
4
= p

n . To estimate TSSQW, we can use Proposition 4. The point is that the
number of different solutions of the generalised 4-sum problem (when there is one) is of order

Ω̃

((
p

p/2

)(
k + `− p
∆p

))
.

At this point, we observe that

log2

((
p

p/2

)(
k + `− p
∆p

))
= p+ (k + `− p)H2

(
∆p

k + `− p

)
+ o(n)

when p, ∆p, `, k are all linear in n. In other words, we may use Proposition 4 with G2 = F`22 with

`2
4
= p+ (k + `− p)H2

(
∆p

k + `− p

)
. (16)

We use now Proposition 4 with G2 chosen as explained above. V is given in this case by

V =

( k+`
2

p
4 + ∆p

2

)
= Õ

(
2

(R+λ)H2(π/2+∆πR+λ )n
2

)
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where ∆π
4
= ∆p

n . We choose the size of G such that

|G | = Θ̃
(
V 8/5

)
(17)

which gives

2` = Θ̃

( k+`
2

p
4 + ∆p

2

)8/5
 .

This explains why we impose

λ =
8

5

R+ λ

2
H2

(
π/2 +∆π

R+ λ

)
which is equivalent to the condition

5λ

4(R+ λ)
= H2

(
π/2 +∆π

R+ λ

)
which in turn is equivalent to the condition

π = 2

(
(R+ λ)H−12

(
5λ

4(R+ λ)

)
−∆π

)
(18)

found in the definition of the region R . The size of G1 is chosen such that

|G1| · |G2| = Fd
`
2 e

2 . (19)

By using (16) and (17), this implies

|G1| = Θ̃

(
V 4/5

2p+(k+`−p)H2( ∆p
k+`−p )

)
(20)

With the choices (19) and (18), we obtain

TMMTQW = Õ
(
|G1|1/2 · V 4/5

)
= Õ

(
V 6/5

2
p
2+

k+`−p
2 H2( ∆p

k+`−p )

)
= Õ

(
2[ 3

5 (R+λ)H2(π/2+∆πR+λ )−π2−
R+λ−π

2 H2( ∆π
R+λ−π )]n

)
(21)

Substituting for PMMTQW and TMMTQW the expressions given by (15) and (21) finishes the proof
of the theorem. ut

6 Computing the complexity exponents

We used the software SageMath to numerically find the minima giving the complexity exponents in
Theorems 3 and 4 using golden section search and a recursive version thereof for two parameters.
We compare in Figure 3 the exponents αBernstein(R,ωGV), αSSQW (R,ωGV) and αMMTQW (R,ωGV)
that we have obtained with our approach. It can be observed that there is some improvement upon
αBernstein with both algorithms especially in the range of rates between 0.3 and 0.7.
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Fig. 3. αBernstein in green, αSSQW in pink, αMMTQW in grey.

7 Concluding remarks

One may wonder why our best algorithm is a version of MMT’s algorithm and not BJMM’s
algorithm or May and Ozerov’s algorithm. We did try to quantise BJMM’s algorithm, but it
turned out to have worse time complexity than MMT’s algorithm (for more details, see [15]).
This seems to be due to space complexity constraints. Space complexity is indeed a lower bound
on the quantum complexity of the algorithm. It has actually been shown [3, Chap. 10, Sec. 3]
that BJMM’s algorithm uses more space than MMT’s algorithm, even when it is optimised to use
the least amount of space. Moreover, it is rather insightful that in all cases, the best quantum
algorithms that we have obtained here are not direct quantised versions of the original Dumer
or MMT algorithms but quantised versions of modified versions of these algorithms that use less
memory than the original algorithms.

The case of the May and Ozerov algorithm is also intriguing. Again the large space complexity
of the original version of this algorithm makes it a very challenging task to obtain a “good”
quantised version of it.

Finally, it should be noticed that while sophisticated techniques such as MMT, BJMM [17, 4]
or May and Ozerov [18] have managed to improve rather significantly upon the most naive ISD al-
gorithm, namely Prange’s algorithm [22], the improvement that we obtain with more sophisticated
techniques is much more modest when we consider our improvements of the quantised version of
the Prange algorithm [5].
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Master’s thesis, Université de Rennes 1, France, Sept. 2016.

16. Magniez, F., Nayak, A., Roland, J., and Santha, M. Search via quantum walk. In Proceedings of
the Thirty-ninth Annual ACM Symposium on Theory of Computing (2007), STOC ’07, pp. 575–584.

17. May, A., Meurer, A., and Thomae, E. Decoding random linear codes in O(20.054n). In Advances
in Cryptology - ASIACRYPT 2011 (2011), D. H. Lee and X. Wang, Eds., vol. 7073 of Lecture Notes
in Comput. Sci., Springer, pp. 107–124.

18. May, A., and Ozerov, I. On computing nearest neighbors with applications to decoding of binary
linear codes. In Advances in Cryptology - EUROCRYPT 2015 (2015), E. Oswald and M. Fischlin,
Eds., vol. 9056 of Lecture Notes in Comput. Sci., Springer, pp. 203–228.

19. McEliece, R. J. A Public-Key System Based on Algebraic Coding Theory. Jet Propulsion Lab, 1978,
pp. 114–116. DSN Progress Report 44.

20. Niederreiter, H. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control
and Information Theory 15, 2 (1986), 159–166.

21. Overbeck, R., and Sendrier, N. Code-based cryptography. In Post-quantum cryptography (2009),
D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds., Springer, pp. 95–145.

22. Prange, E. The use of information sets in decoding cyclic codes. IRE Transactions on Information
Theory 8, 5 (1962), 5–9.

23. Santha, M. Quantum walk based search algorithms. In 5th TAMC (2008), pp. 31–46.
arXiv/0808.0059.

24. Schroeppel, R., and Shamir, A. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete
problems. SIAM J. Comput. 10, 3 (1981), 456–464.

25. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer. SIAM J. Comput. 26, 5 (1997), 1484–1509.

26. Stern, J. A method for finding codewords of small weight. In Coding Theory and Applications
(1988), G. D. Cohen and J. Wolfmann, Eds., vol. 388 of Lecture Notes in Comput. Sci., Springer,
pp. 106–113.

27. Szegedy, M. Quantum speed-up of markov chain based algorithms. In Proc. of the 45th IEEE
Symposium on Foundations of Computer Science (2004), pp. 32–41.



Quantum Information Set Decoding Algorithms 19

A Proofs for Section 2

We want to prove the following theorem.

Theorem 2 (Cartesian product of Johnson graphs). Let J(n, r) = (V ,E), m ∈ N and
Jm(n, r) := ×mi=1J(n, r) = (Vm,Em). Then:

1. Jm(n, r) has
(
n
r

)m
edges and is md-regular where d = r(n− r).

2. We will write δ(J) resp. δ(Jm) for the spectral gaps of J(n, r) resp. Jm(n, r). Then:
δ(Jm) ≥ 1

mδ(J)

We need the following results for the proof.

Theorem 5 (Cartesian product of d-regular graphs). Let n ∈ N and G1, ..., Gn be undirected
d-regular graphs. Then Gn = ×ni=1Gi has

∏n
i=1 |Vi| vertices and is nd-regular.

The proof of this theorem is immediate.

Theorem 6 (Spectral gap of product graphs). Let G1 and G2 be d1- resp. d2-regular graphs
with eigenvalues of the associated Markov chain 1 = λ1 ≥ ... ≥ λk1 resp. 1 = µ1 ≥ ... ≥ µk2 .
Denote by δi the spectral gap of Gi, i = 1, 2.
Then the spectral gap δ of the product graph G1 ×G2 fulfils:

δ ≥ min (δ2d2, δ1d1)

d1 + d2

Proof. We first recall the following result (see [9], Chapter 2, Section 5, Theorems 2.23 and 2.24):

The Markov chain associated to the graph G1×G2 has k1k2 eigenvalues which are νi,j =
d1λi+d2µj
d1+d2

.

In particular, δ =
d1+d2−max(i,j)6=(1,1) |d1λi+d2µj |

d1+d2
.

As the eigenvalues of G1 and G2 are ordered from largest to smallest, we have the following:

max
i=2,...,k1

|λi| = max(λ2,−λk1)

max
j=2,...,k2

|µi| = max(µ2,−µk2)

Furthermore

d1δ1 = d1 − d1 max
i=2,...,k1

|λi| = d1 − d1 max(λ2,−λk1) ≤ d1 + d1λk1

d2δ2 = d2 − d2 max
j=2,...,k2

|µj | = d2 − d2 max(µ2,−µk2) ≤ d2 + d2µk2

Which taken together entail

d1 + d2 + d1λk1 + d2µk2 ≥ d1δ1 + d2δ2

Moreover

max
(i,j)6=(1,1)

|d1λi + d2µj | = max (d1λ1 + d2µ2, d1λ2 + d2µ1,−d1λk1 − d2µk2)

= max (d1 + d2µ2, d1λ2 + d2,−d1λk1 − d2µk2)

Therefore

(d1+d2)δ = d1+d2− max
(i,j) 6=(1,1)

|d1λi+d2µj | = min (d2 − d2µ2, d1 − d1λ2, d1 + d2 + d1λk1 + d2µk2)
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Finally

δ =
d1 + d2 −max(i,j) 6=(1,1) |d1λi + d2µj |

d1 + d2

=
min (d2 − d2µ2, d1 − d1λ2, d1 + d2 + d1λk1 + d2µk2)

d1 + d2

≥ min (d2 − d2 max(µ2,−µk2), d1 − d1 max(λ2,−λk1), d1δ1 + d2δ2)

d1 + d2

≥ min (δ2d2, δ1d1, d1δ1 + d2δ2)

d1 + d2

≥ min (δ2d2, δ1d1)

d1 + d2

ut

Proof (Theorem 2). Point (1) is immediate by Theorem 5.
Point (2) is proved using induction.
Indeed, for m = 2 we have, by Theorem 6 :

δ(J2) ≥ δ(J)d

2d
=

1

2
δ(J)

And for m ≥ 2, supposing that δ(Jm) ≥ 1
mδ(J), we have, using Theorem 6 and point (1) of this

theorem :

δ(Jm+1) ≥ min (mdδ(Jm), dδ(J))

md+ d

≥
min

(
md
m δ(J), dδ(J)

)
md+ d

≥ 1

m+ 1
δ(J)

ut


