
SEVDSI: Secure, Efficient and Verifiable Data
Set Intersection

Ozgur Oksuz1, Iraklis Leontiadis2, Sixia Chen3, Alexander Russell4, Qiang
Tang2, and Bing Wang4

1 Washington State University
2 New Jersey Institute of Technology

3 Central Connecticut State University
4 University of Connecticut

Abstract. Private set intersection is one of the most well studied and
useful secure computation protocols. Many specific two party secure com-
putation protocols have been constructed for such a functionality, but all
of them incur large communication between the parties. A cloud assisted
protocol was also considered to provide better efficiency, but with the
potential risk of leaking more information to the cloud.
In this paper, we achieve the best of the two worlds: We design and an-
alyze SEVDSI: a Secure, Efficient and Verifiable Data Set Intersection
protocol which is non-interactive and cloud based in a stronger secu-
rity model. Our protocol assures privacy on data set inputs in case of
a malicious cloud and enforces authorized only computations by the
users. Moreover, the computation is verifiable and we achieve O(m3)
asymptotic communication cost for m users in contrast with the fastest
two party computation protocols, which obtain a O(m4) communication
complexity, in case of multiparty PSI. SEVDSI is provably secure in the
random oracle model.

1 Introduction

Private Set Intersection (PSI) protocols allow two users to learn the intersec-
tion of their dataset, without revealing information for the elements not in the
intersection set. PSI is applicable to a variety of real world scenarios:

– Airline companies in order to determine whether specific flight passengers
appear in a black list, perform a private set intersection operation between
the private passenger list and the government’s list.

– National agencies (e.g., the FBI) need to obtain information on suspects
from other agencies, e.g., local police departments, the military, DMV, IRS,
or employers. The FBI may wish to search suspects on other agencies’ lists,
but no agency wants to divulge members of its suspect list unnecessarily to
others.

– In an online advertisement setting, a content provider G has information
about users, who access content online. A transaction provider T keeps a

log of users with all the online purchases a user did. In the end, G wants to
jointly compute the common users with T , in order to learn the percentage
of users who access its content and proceed to a purchase, to further analyze
how much the viewing of some content affects spending.

Over the years, due to its importance, researchers have designed numerous PSI
protocols [4,7–11,13,16–18,23,24,26–28]. Alas, for any two users to jointly com-
pute the set intersection, there is a communication burden at least proportional
to the size of their datasets. Thus, each user must have large network bandwidth
to run PSI with others. Communication costs become of paramount importance
when the intersection is computed over multiple datasets of many users. Another
issue with jointly computing the set intersection is that a malicious user may
change its dataset every time it computes the intersection in order to gradually
learn others’ datasets over time.

A cloud infrastructure with its cost effective storage and computation re-
sources may alleviate the communication burden two users need to exchange.
However, the advantage in communication costs with the incorporation of a
cloud infrastructure is dampened as the cloud may act maliciously and try to
infer plaintext of users’ datasets even if datasets are encrypted. The most cru-
cial attacks to infer plaintext datasets from encrypted datasets are brute-force
attacks, whereby a malicious or semi-honest adversary leverages public infor-
mation, such as the ciphertexts of the datasets, to compromise dataset privacy.
These adversaries are able to recover any user’s dataset after guessing the plain-
text from a non-random distribution of the ciphertext. As such users’ privacy
should be taken into account.

Recent research surveys [3, 15] have shown that the cloud cannot be fully
trusted and it may misbehave by exposing or tampering with users’ sensitive
data, or changing the results of the computation. It is essential though, for users
not only to protect the confidentiality of their outsourced data, but also to verify
the integrity of the data and the result of the computation delegated to the cloud.

State of the art work in cloud-based or interchangeable dubbed server-aided
solutions enables efficient PSI computation without linear size information to
be exchanged in between users [32]. However, to achieve that improvement the
cloud has to run the computations with the aid of some auxiliary information,
forwarded by each data owner. We realize this information renders the protocol
vulnerable to brute-force attacks on the ciphertexts of the datasets. In order to
address the above limitations, we re-randomize the final ciphertext with an extra
secret key, which is canceled out by the cloud using some auxiliary information
that is sent by the users. The auxiliary information is a function of common
randomness (secret to the malicious cloud).

Our scheme also uses a multi-accumulator primitive that allows a verifier to
test if multiple dataset values that are sent by the cloud are truly part of the
original dataset. While a single accumulator scheme allows a verifier to test data
item existence one-by-one, the multi-accumulator scheme allows verifier to test

multi data items at once. The multi-accumulator value is further signed in order
to protect from tampering.

Contributions Our major contributions are threefold.

– First, we design a verifiable PSI protocol, which is communication efficient,
without requiring heavy communication in between the users; in contrast
with previous work [2, 7, 8, 10, 11, 14, 17–20]. Such an improvement in com-
munication bandwidth is of crucial importance as it will allow deployment
of PSI protocol in critical infrastructures as federal institutions and big on-
line advertisement companies with millions of users, whereby the private set
intersection is computed over many users and not between two users. In two
party computation (2PC) based PSI solutions, each user needs to send n
data items to all the other m−1 users. The total communication complexity
between any two users is O(nm). The overall communication complexity in
case of multi-party PSI between all users is O(nm2). In SEVDSI we achieve
communication complexity O(km2+mn), for k common elements which out-
performs 2PC solutions [10,24,27–29] in case of multiple users interested in
running PSI. As shown in table 1, when the intersection size for each PSI
is k << m our protocol reduces communication complexity from O(m4) to
O(m3).

SEVDSI O(km2 +mn) 2PC PSI O(nm2)

n = m, k = c O(m2) O(m3)

n = m, k = m1/2 O(m2.5) O(m3)

n = m, k = m O(m3) O(m3)

n = m2, k = c O(m3) O(m4)

n = m2, k = m O(m3) O(m4)

n = m2, k = m2 O(m4) O(m4)
Table 1. Communication complexity comparison of the most communication efficient
2PC based PSI protocols and ours (SEVDSI).

– Second, the proposed scheme does not allow malicious cloud to apply brute-
force attacks on the encrypted datasets. As such private information about
users datasets are kept secret without compromising its confidentiality.

– Third, in contrast with previous work on cloud based PSI protocols, our PSI
protocol does not allow a malicious cloud to run the PSI protocol at will in
an unauthorized way without users’ permissions.

In this paper, we present a Secure, Efficient and Verifiable Data Set
Intersection protocol, dubbed SEVDSI, with the following salient features:

1. Verifiability: Users can check that the cloud has honestly computed the set
intersection. Moreover, the verification for each user requires an amount of
computation at most linear in the cardinality of the set intersection.

2. Communication Efficiency: Any two users outsource their encrypted datasets
and afterwards they are engaged in a communication round with the cloud
which is constant. We call this constant size information as auxiliary infor-
mation. Moreover, the cloud sends the intersection result, whose size is linear
in the set intersection cardinality.

3. Computational Efficiency: The verification computation complexity for users
is at most linear to the intersection cardinality, i.e. O(k). This is more ef-
ficient than the straightforward solution whereby each user needs to access
all the encrypted inputs and perform verification operations linear to the
number of inputs, i.e. O(n) if k << n, where n is the number of values in a
users dataset, k is the set intersection cardinality.

4. Non-Interactive PSI: Users encrypt, upload and learn the private set inter-
section of their datasets with the aid of a cloud, avoiding the need to interact
with each other during the protocol execution.

5. Privacy: Users learn nothing beyond the intersection about other users’
datasets. The cloud learns nothing about either datasets or their intersection,
beyond the size of datasets and intersection size.

6. Authorized PSI: The cloud is allowed to run PSI between datasets owned by
users who have granted permission to it. In other words, the cloud needs to
be authorized by both users to execute the PSI protocol.

Outline: In Section 2 we introduce state-of-art PSI schemes in the 2PC, and
the cloud setting. We present the overview of the cryptographic primitives and
assumptions used for SEVDSI in Section 3. Section 4 formulates the problem and
the security guarantees. In Section 5, we present an overview of the protocol, its
full details with the security and efficiency analysis.

2 Related Work

Two-Party Computation (2PC) based PSI: The first study that introduces
PSI [11] is based on oblivious polynomial evaluation (OPE). Then, a plethora
protocols of PSI [4, 7–10, 13, 16–18, 23, 27, 28] has been proposed with different
adversarial models: Semi-honest, malicious, and covert adversarial models. In
the semi-honest adversarial model, users faithfully follow the protocol specifica-
tion and do not change the content of their datasets. In the malicious adversar-
ial model, malicious users can arbitrarily deviate from the protocol. They can
change their inputs or respond with different outputs. In the covert adversarial
model, adversaries are willing to actively cheat (and as such are not semi-honest),
but only if they will not be caught (and as such they are not arbitrarily ma-
licious) [5]. The protocols in [4, 6, 9, 16, 23, 27, 28] are secure in the presence of
semi-honest adversaries, while solutions in [7, 8, 10, 11, 14, 17, 18, 29] are secure
in the presence of malicious adversaries and [13] is secure against covert adver-
saries. The studies in [4,6] hide the users’ input sets size. Authors in [13] propose
a different approach, designing a PSI protocol based on oblivious pseudorandom
function evaluation, which is later improved by [9, 17]. Garbled circuits for PSI

introduced in [16], while [10] employs garbled bloom filters and has O(n) commu-
nication and computation complexity but introduces false positives. In [6], users
need an extra round of communication. The size of communication is linear in
a bound t that is chosen by the user. The user is able to check at most t of his
data values against the other user’s datasets. The recent study in [31] proposed
t−threshold private set intersection. Using this primitive, two parties, a server
and a client can perform the PSI computation using their datasets as long as
the intersection is larger than a pre-agreed threshold value t. A tailored solution
for unequal datasets is proposed in [22]. The authors proposed 4 protocols based
on blind RSA signatures, Diffie-Hellman, garbled circuits and oblivious PRF in
order to eliminate online computational and communication costs and push the
linear to the size of the smallest dataset costs in an offline phase.

Scheme Verify PPR FPR U-U CS-U U-CS

2PC

[11] yes yes yes O(nλ) n/a n/a
[23] no yes yes O(nλ) n/a n/a
[8] yes yes yes O(nλ2 log2 n) n/a n/a
[17] yes no yes O(nλ) n/a n/a
[18] yes yes yes O(nλ) n/a n/a
[7] yes no yes O(nλ) n/a n/a
[14] yes yes yes O(nλ) n/a n/a
[9] no no yes O(nλ) n/a n/a
[4] no no yes O(nλ) n/a n/a
[16] no yes yes O(nλ logn) n/a n/a
[10] yes yes no O(nλ2) n/a n/a
[28] no yes yes O(nλ logn) n/a n/a
[27] no yes yes O(nλ logn) n/a n/a
[6] no yes yes O(nλ) n/a n/a

Cloud

[20] yes no yes communication free O(nλ) O(nλ)
[19] yes no yes O(kλ) O(nλ) O(nλ)
[21] no no no communication free O(nλ) O(n2λt)
[25] no yes yes communication free O(nλ) O(nλ)
[32] yes yes yes communication free O(kλ) O(1)
[1] no no yes O(nλ) O(nλ) O(nλ)
[2] yes no yes O(nλ) O(nλ) O(nλ)
SEVDSI yes yes yes communication free O(kλ) O(1)

Table 2. Comparison of protocols in the 2PC, and Cloud settings: λ is the security
parameter, n is the number of values in a user’s dataset, k is the set intersection
cardinality. The column U-CS denotes the size of the information sent to the cloud
from users after outsourcing of the encrypted dataset, the column CS-U is the size of
the information sent to users from the cloud. The column PPR applies to protocols
where users do not share secret values with each other interactively or there is not a
trusted third party that provides secret values to users to encrypt their datasets. The
column U-U indicates the total communication between two users and the column FPR
indicates whether a protocol is a false positive resilient protocol. Some of the protocols
use a bloom filter. In those cases, t represents the number of hash functions that are
used in the bloom filter.

Cloud-based PSI: The studies in [19, 20] show that users share some secrets
interactively to encrypt their datasets. Later, they send their encrypted datasets
to a cloud. The cloud computes the set intersection on behalf of the users. Ker-
schbaum [20] and Kamara et al. [19] propose protocols whereby the users need to
agree on a common secret key and to send O(n) information to the cloud for each
intersection operation. Another flaw of these schemes is that a honest but curious
user can brute force other users’ datasets. To alleviate the brute force attacks
a trusted third party authorizes users’ datasets to prevent them from changing
their input values. The protocols in [19, 20] need linear O(n) communication
complexity between cloud and the user. The protocol in [19] introduces extra
O(n) interaction between users. Our scheme does not require any collaborative
preprocessing. Users outsource their encrypted datasets only once and only need
to engage in minimal communication with the cloud on a per-intersection basis.

The studies in [21, 25] propose PSI protocols, in which the cloud is semi-
honest. Furthermore, the authors in [21] proposed a protocol that may yield
false positives and requires quadratic communication complexity. Authors in [32]
suggest a verifiable set intersection protocol secure under a malicious cloud: If
the cloud dishonestly executes the set intersection protocol, it is caught with
high probability at the cost of O(k) communication complexity between users
and the cloud, where k is the set intersection cardinality. However, their protocol
leaks plaintexts and does not have the authorized PSI property. In this paper
we mitigate these shortcomings.

The study in [1] proposes a secure private set intersection protocol, which
does not provide verifiability. A later study by the same authors in [2] provides
verifiability, but it is not efficient. Specifically, if user A wants to know which
data items are common with user B’s data items, A sends a secret value and
O(n) information to B. Then, B performs O(n) internal computations in order
to embed the secret value (chosen by A) in his dataset, and then sends the
resulting values to the cloud. An inherent drawback of this scheme is that B
may not agree on the secret information chosen by A. The second drawback
in [1] is that B performs O(n) computation and sends O(n) information to the
cloud on behalf of A. In other words, user B does the heavy work. Even worse in
case m users want to engage in a PSI with A or B, the latter needs to perform
O(mn) computations and send O(mn) information to the cloud.

3 Preliminaries and Complexity Assumptions

In this section we present the cryptographic primitives used in our protocol and
the underlying mathematical assumptions.

3.1 Cryptographic primitives

Bilinear Maps: Let G and G′ denote two multiplicative cyclic groups of prime
order p and let g be a generator of G. A map e : G × G → G′ is bilinear
if it has the following properties: (1) for all u, v ∈ G and a, b ∈ Zp, we have

e
(
ua, vb

)
= e (u, v)

ab
; (2) the map is not degenerate, i.e., e (g, g) 6= 1, and (3) e

is an efficiently computable function.

Unforgeable Digital Signature [12]: A digital signature scheme, Sig, con-
sists of three algorithms, Sig = (sigKeyGen, sigSign, sigVerify), where sigKeyGen
generates public and private keys sigPK, sigSK, sigSign generates a signature
for a message, and sigVerify determines if a signature is generated under the
corresponding message. We say that a digital signature scheme is secure if the
signature scheme is existentially unforgeable under adaptive chosen message at-
tack (UF-CMA). UF-CMA means that an adversary who is given signatures for
some messages of its choice adaptively should not be able to produce a signature
for a new message. Any signature scheme satisfying the standard definition of
UF-CMA can be used in our construction.

Multi-Accumulator [32]: We present the details of the multi-accumulator
scheme that we use in our protocol as presented in [32]. A multi-accumulator
scheme can be based on a single-accumulator scheme that supports both mem-
bership and non-membership proofs, as follows: the cloud generates a witness
for each element of Db showing the element is a member or non-member of
Da and simply puts them together as the witness for acRslt = Db ∩Da. How-
ever, this straightforward approach is costly because both the computational
and communication complexities are linear to |Db|. In SEVDSI we employ the
multi-accumulator scheme in [32], where the size of the witness is constant which
does not depend on the cardinality of the sets, Da (Db). Suppose user A’s data
set is Da = {da,0, . . . , da,n−1}, user B’s data set is Db = {db,0, . . . , db,m−1} (we
assume that n = m), and acRslt = Da ∩Db. We can encode Da via polynomial
R(x) =

∏
t∈Da(x+ t), encode Db via polynomial W (x) =

∏
t∈Db(x+ t), encode

the intersection set acRslt via polynomial T (x) =
∏
t∈acRslt(x+ t), and encode

the subset Db − acRslt via polynomial Q(x) =
∏
t∈(Db−acRslt)(x + t). These

polynomials satisfy the following: (i) T (x)Q(x) = W (x), (ii) T (x) is a divisor
of R(x), and (iii) Q(x) is co-prime to R(x). For the special case acRslt = ∅,
the three conditions also hold since T (x) = 1, Q(x) = W (x) =

∏
t∈Db(x + t)

and R(x) =
∏
t∈Da(x+ t). Therefore, based on this idea, the multi-accumulator

scheme allows the cloud to show the correctness of the intersection set, which
can be either empty or non-empty. It can be constructed as follows:

– acKeyGen(λ): This algorithm takes security parameter λ, outputs system

parameters acPk = (gα, gα
2

, . . . , gα
q

), where random α ∈ Zp, acSk = (α),
where q is bounded by a polynomial in security parameter λ.

– acGen(acPk,Da): Given user A’s data set Da = {da,0, . . . , da,n−1} ∈ Znp ,

where n ≤ q, compute his digest as sa = g
∏n−1
i=0 (da,i+α).

– acProve(acPk,Db, Da): Given user B’s data set Db = (db,0, . . . , db,m−1) ∈
Zmp , where m ≤ q, compute acRslt = Db ∩ Da, and generate a witness as
follows:

• Let T ′(x) =
∏
t∈(Da−acRslt)(x+ t) and compute gT

′(α) by substituting x
with α.

• Let Q(x) =
∏
t∈(Db−acRslt)(x+t) and R(x) =

∏
t∈Da(x+t), and find two

polynomials Q′(x), R′(x) such that Q(x)Q′(x)+R(x)R′(x) = 1 mod p by
taking advantage of gcd(Q(x), R(x)) = 1. Compute (gQ(α), gQ

′(α), gR
′(α))

by substituting x with α. Set acRslt = Db ∩ Da and acWit =
(gQ(α), gQ

′(α), gR
′(α), gT

′(α)).

– acVerify(acPk, sb, acRslt, acWit, sa): Given acWit and acRslt from the
prover, the verifier proceeds as follows:

1. If acRslt 6= ∅, compute gT (α) according to T (x) =
∏
t∈acRslt(x + t).

Otherwise, let T (x) = 1 and gT (α) = g.
2. If e(gQ(α), gT (α)) 6= e(sb, g), return 0; otherwise, proceed to next step.
3. If e(gT (α), gT

′(α)) 6= e(sa, g), return 0; otherwise, proceed to next step.
4. If e(gQ(α), gQ

′(α))e(sa, g
R′(α)) 6= e(g, g), return 0; otherwise, return 1.

Definition 1. A multi-accumulator scheme is correct if the following holds:

Pr

∀Da, Db,

(acSk, acPk)← acKeyGen(λ),
sb ← acGen(acPk,Db),
sa ← acGen(acPk,Da),

(acRslt, acWit)← acProve(acPk,Db, Da) :
1← acV erify(acPk, sb, acRslt, acWit, sa)

 = 1

Definition 2. A multi-accumulator scheme is secure if

Pr

(acPk, acSk)← acKeyGen(λ),
Da ← AacProve,acV erify(acPk),

sa ← acGen(acSk,Da),
(Db, acRslt, acWit)← AacProve,acV erify(acPk,Da) :

sb ← acGen(acPk,Db),
1← acV erify (acPk, sb, acRslt, acWit, sa) ,

acRslt 6= Db ∩Da

≤ ε(λ)

The security proof is based on the q-SDH assumption. For the details of the
proof the reader can defer to Zheng et al. paper [32, Theorem 1].

3.2 Assumptions

We denote as λ the security parameter and ε(λ) a negligible function on input
the security parameter λ.
Bilinear q-strong Diffie-Hellman assumption (q-SDH): For given
(g, gα, .., gα

q

), where α ∈ Zp, and q is bounded by a polynomial in λ, there
exists no PPT algorithm A that can compute (s, e(g, g)1/(α+s)), where s ∈ Zp

with non-negligible probability ε. The probability is defined over the random
choices of parameters and random coins used by A. The advantage of A is

Pr[A(g, gα, . . . , gα
q

) = (s, e(g, g)1/(α+s))]

Definition 3. q-SDH holds over bilinear groups G,G′ if no polynomial time
adversary A has advantage in breaking q-SDH greater than ε(λ).

Variant Decisional Diffie-Hellman Assumption (V DDH): For given

T =

(
g, v, gγa , gγb , gβa , gβb , grβa , grβb , gr

βa
γa , g

r
βb
γb , Z

)
and γa,γb,βa,βb,r uniformly at random elements in Zp, generator g ∈ G of prime
order p and v any element in G, V DDH assumption asks an adversary A to

distinguish Z = vr from a value gc ∈ G, c $← Zp with non-negligible probability

ε. The advantage of an algorithm A in distinguishing vr from gc, c
$← Zp is

|Pr [A (T, vr) = 1]− Pr [A (T, gc) = 1]| .

Definition 4. V DDH holds in G if no polynomial time advesary can achieve
non-negligible advantage in deciding correctly the V DDH assumption.

To provide some security confidence for the VDDH assumption we show a
lower bound on the computational complexity of an adversary A attacking the
VDDH problem in the generic group model (GGM) as presented by Shoup [30].
The idea of the GGM model is to “mirror” the elements of bilinear groups with
random encodings accessible to an adversary through random encoding injective
function ξ : Zp → {0, 1}∗ for elements in G. That is, ξ maps elements from Zp
through G to random encoding string in {0, 1}∗. We write ξ(x) to represent the

encoding of gx. Let βa, βb, γa, γb, c, r
$← Zp, T0 = vr, T1 = gc and d ← {0, 1}.

A receives the encodings of g, v, gγa , gγb , gβa , gβb , grβa , grβb , gr
βa
γa , g

r
βb
γb , Td, Td−1.

Finally we show that after at most q queries, A can guess d with a probability

no greater than 1
2 +O(q

2

p).

Theorem 1. Suppose A is an algorithm that solves the VDDH problem, making
at most q oracle queries for the group operations in G and G′. Suppose that the
integers βa, βb, γa, γb, r and the encoding function ξ are chosen at random. Then

Pr

A

p, ξ(1), ξ(u), ξ(βa), ξ(βb), ξ(γa),

ξ(γb), ξ(rβa), ξ(rβb), ξ(
rβa
γa

),

ξ(rβbγb), ξ(t0), ξ(t1)

 = d :

c, r, βa, βb, γa, γb,
$← Z∗p,

d← {0, 1}, td ← vr, t1−d ← gc

−
1

2

≤ (q + 11)2

p

Proof. We show how a challenger B interacts with A. During the interaction
B encodes elements with the random encoding function and answers algebraic
operations in group G with the encoding of the result.
B defines polynomial F1 ∈ Zp[Ba, Bb, Γa, Γb, T0, T1], i ∈ {1, τ} with deter-

minants Ba, Bb, Γa, Γb, T0, T1 ∈ Zp. It also stores the list L1 = {F1,i, ξ1,i :
i = 0, . . . , τ1}, with the invariant that at each step τ , τ1 = τ + 11. Initially
F1,0 = 1, F1,1 = Ba, F1,2 = Bb, F1,3 = Γa, F1,4 = Γb, F1,5 = RBa, F1,6 =
RBb, F1,7 = RBa

Γa
, F1,8 = RBb

Γb
, F1,9 = T0, F1,10 = T1, so as to τ1 = 11.

At the beginning of the game A gets the random encodings
ξ1,2, . . . , ξ1,13, ξτ,1 = ξ′(t0). These random encodings are mapped to the ran-
dom polynomial F1,τ1 by B. The polynomial is kept secret and never exposed to
A. Whenever A asks for group operations B simulates it as follows:
Group Operations: For any two operands ξi, ξj with 0 ≤ i, j < τ1 B computes
F1,τ1 ← F1,τi+/−F1,τj depending the sign action be it multiplication or division.
B checks if F1,τ exists in the list L1 and returns that ξτ1 to A. Otherwise sets

τ1 = τ1 + 1, returns ξτ1
$←{0, 1}∗ to A and adds (F1,τ1 , ξτ1) to the list L1.

Eventually A outputs its guess d′ ∈ {0, 1}. Notice that at any time the maxi-

mum degree of any F1 is at most 2. B assigns random elements βa, βb, γa, γb
$← Zp

and sets t0 ← vr, t1 ← gc for the variables Ba, Bb, Γa, Γb, T0, T1. We will bound
the success probabilities of randomly assigning values to the polynomial F1 with
the Schwartz-Zippel lemma. Namely, in order A to guess correctly the following
should hold:

F1,i(βa, βb, γa, γb, r, c)− F1,j(βa, βb, γa, γb, r, c) = 0

, for F1,i 6= F1,j . The success probability of A is thus: ε ≤
(
τ1
2

)
2
p . It is also true

that: τ1 ≤ τ + 11. Plugging q = τ where q represents the total number of queries
it holds that:

ε ≤ (q + 11)2

p

4 Definitions

In this section we give the definitional framework of our secure and efficient
verifiable set intersection protocol (SEVDSI) and we present its privacy and
security definitions.

4.1 SEVDSI Function Definition

Users first send their encrypted datasets to the cloud, later they run the PSI
protocol with the aid thereof. Let Da = {da,0, ..., da,n−1} denote A’s plaintext
dataset and let Db = {db,0, ..., db,n−1} denote B’s plaintext dataset. We assume
that users A and B have the same number of elements in their datasets, for
the sake of simplicity. User A (B) outsources his encrypted dataset Ca (Cb)

to the cloud. When users A and B want to compute Da ∩ Db, they delegate
the computation to the cloud by providing auxiliary information aua (aub) to
compute the set intersection. As an important note, the common elements do
not leak any information about any plain data to the cloud. These values are
still encrypted.

Definition 5. A SEVDSI scheme comprises seven algorithms:

– pm ← Setup(λ): This algorithm is run by a trusted third party. It takes a
security parameter λ and outputs system public parameters pm.

– (pka, ska) ← KeyGen(pm): It is a randomized algorithm run by user A. It
takes the system public parameter (pm) and outputs a pair of public and
private keys (pka, ska), where pka is made public and ska is kept secret by
A. Similarly, user B generates his public and private key pairs, (pkb, skb).

– Ca ← Enc((ska, pka), Da): This algorithm takes dataset Da, public/secret
key pair, (ska, pka) of A and outputs ciphertext Ca, which is outsourced to
the cloud. B generates Cb similarly.

– (aua, sa) ← AuGen(ska, Da, pm, pkb): User A authorizes the cloud to con-
duct the set intersection operation on the outsourced ciphertexts Ca and Cb
with AuGen algorithm. This algorithm takes as input (ska, Da, pm, pkb) and
it outputs some auxiliary information aua and an internal secret sa. Then
aua is sent to the cloud through the authenticated user-to-cloud private com-
munication channel while sa is kept secret. Similarly, user B can generate
aub with (skb, Db, pm, pka) as input. Then, B sends aub to the cloud.

– {(rslta, proofa), (rsltb, proofb)} ← SetInt(Ca, aua, Cb, aub): This algo-
rithm runs by the cloud. It takes Ca, aua, Cb, aub as input and outputs
(rslta, proofa) and (rsltb, proofb). Then, the cloud sends (rslta, proofa) to
A and (rsltb, proofb) to B, where proofa and proofb are proofs to demon-
strate faithful private set intersection computation by the cloud.

– {D,⊥} ← Dec(ska, rslta): Each user A,B individually executes this algo-
rithm to decrypt the intersection result. It takes ciphertext rslta as input,
which is the output of the delegated set intersection operation computed by
the cloud on ciphertexts Ca and Cb, and ska and it outputs the intersection
set D = Da ∩ Db. If Da ∩ Db = ∅, the algorithm outputs ⊥. Similarly, B
obtains Da ∩Db.

– {0, 1} ← Verify(ska, sa, rslta, proofa): A runs this algorithm to verify
whether rslta is honestly generated. It takes (ska, sa, rslta, proofa) and out-
puts 1 if the rslta has been honestly generated. It outputs 0 if the cloud
is cheating. Similarly, B verifies that if the outputs of the computation is
correct.

4.2 Adversarial model and Security Guarantees

We assume that users are honest-but-curious adversaries, meaning that they use
their benign inputs for the protocol, but they are curious about other users’
data. We assume that the cloud is malicious: It can arbitrarily deviate from

the prescribed protocols in any way. The malicious cloud can manipulate the
integrity of the outsourced data. We also assume that the cloud does not collude
with any data owners. This is a reasonable assumption that is also explained in
[1]. If the cloud is controlled by an adversary, the adversary also has control over
all the communication channels. SEVDSI scheme leaks only the set intersection
size of two datasets.
Function Output Secrecy. Function output secrecy assures that even if pre-
vious information about any data v ∈ Da ∪Db is given to the malicious cloud,
it will not be able to perform brute-force attacks to figure out if any cipher-
text has encoding of v in Ca ∪ Cb. In order to eliminate the brute-force attacks
that are performed by the cloud, the resulting ciphertexts Ca, Cb should have a
common secret value in order to allow the cloud to compare ciphertexts in the
set intersection phase. Moreover, having this common secret value also prevents
the adversary (cloud) to run the PSI protocol between different users without
having their permission. In SEVDSI, this secret element is the Diffie-Hellman
key tkab = gγaγb of A and B.

The function outputs secrecy game between a challenger B and an attacker
A is the following:
Setup. Challenger B runs Setup algorithm, it outputs public/secret key pair
pka, ska for user A and pkb, skb for user B. Then, it gives pka, pkb to attacker A.
Query. A issues encryption queries. For query q, A outputs D′a, D

′
b. B runs

(C ′a, C
′
b)← Enc algorithm and gives (C ′a, C

′
b) to A.

SetInt. A issues set intersection queries. B runs (au′a, s
′
a, au

′
b, s
′
b) ← AuGen

algorithm and gives (au′a, au
′
b) to A.

Challenge. A outputs (Da, Db, v) to be challenged upon, where v is any dataset
element in Da∪Db. B randomly chooses a bit b ∈ {0, 1} and sends Ca,v and aua
(assuming that v is in Da) to A, where if b = 0; Otherwise, it sends Ca,v′ , aua,
where v′ is a random element in G and Ca,v is the encryption of v with keys pka
and ska.
Guess. A outputs b′ ∈ {0, 1}.

Definition 6 (Function Output Secrecy). We say that SEVDSI assures
Function Output Secrecy if the advantage of A in winning the aforementioned
game is AdvA = Pr[b = b′] ≤ 1/2 + ε(λ), for a negligible function ε and security
parameter λ.

Verifiability. In order to assure that the cloud honestly computes the set inter-
section, the users ask the malicious cloud to generate a proof about the result of
the computation. With the proof and the result users are able to check whether
the malicious cloud has honestly executed the delegated set intersection opera-
tions or not. Verifiability exposes to the user malicious private set intersection
computations performed by a malicious cloud server. We use the same security
game for verifiability as in [32], defined between an adversary A and a challenger
B as follows:

– KeyGen: Given public parameters pm, B runs KeyGen(pm) algorithm to
obtain encryption/decryption keys (pka, ska) for user A, (pkb, skb) for user
B and gives pka, pkb to A.

– Phase 1: A issues the following queries:
• Enc: Given the dataset D′a, B runs C ′a ← Enc((ska, pka), D′a) and re-

turns C ′a to A.
• Enc: Given the dataset D′b, B runs C ′b ← Enc((skb, pkb), D

′
b) and returns

C ′b to A.
• AuGen: B runs au′a, s

′
a ← AuGen(ska, D

′
a, pm, pkb) and returns au′a to

A.
• AuGen: B runs au′b, s

′
b ← AuGen(skb, D

′
b, pm, pka) and returns au′b to

A.
• Verify: B runs Verify(ska, s

′
a, rslta, proofa) and returns the output to

A.
• Verify: B runs Verify(skb, s

′
b, rsltb, proofb) and returns the output to A.

Challenge: A selects Da, Db of its choice, and sends them to B. B
runs Ca ← Enc((ska, pka), Da) and Cb ← Enc((skb, pkb), Db), aua, sa ←
AuGen(ska, Da, pm, pkb) and aub, sb ← AuGen(skb, Db, pm, pka), and re-
turns Ca, aua, Cb, aub to A.
Phase 2: A and B follow the similar steps as that are in Phase 1.
Guess: A outputs (rslta, proofa), (rsltb, proofb) to B.

The adversary wins the game if

– Verify(ska, sa, rslta, proofa) = 1 is valid and
– Verify(skb, sb, rsltb, proofb) = 1 is valid and
– Dec(ska, rslta) 6= Dec(skb, rsltb) ∨Dec(ska, rslta) 6= (Da ∩Db).

Definition 7. A SEVDSI scheme satisfies the verifiability functionality if the
following holds:

Pr

(pm)← Setup(λ),
(pka, ska)← KeyGen(pm),
(pkb, skb)← KeyGen(pm)

(Da, Db)← AEnc,AuGen,SetInt,Verify(pka, pkb)
Ca ← Enc((ska, pka), Da), Cb ← Enc((skb, pkb), Db),

aua, sa ← AuGen(ska, Da, pm, pkb),
aub, sb ← AuGen(skb, Db, pm, pka)
{(rstla, proofa), (rsltb, proofb)} ←

AEnc,SetInt,Verify(pka, aua, Da, Ca, pkb, aub, Db, Cb) :
1← Verify(ska, sa, rslta, proofa)∧
1← Verify(skb, sb, rsltb, proofb)∧
Dec(ska, rslta) 6= Dec(skb, rsltb)
∨Dec(ska, rslta) 6= (Da ∩Db)

≤ ε(λ)

for a negligible function ε and security parameter λ.

5 SEVDSI Protocol

5.1 Solution Overview

The PSI protocol in [32] is vulnerable to brute force attacks: the malicious cloud
is able to infer users’ plain datasets from ciphertexts by checking all possible
dataset values. Another issue in [32] is that the malicious cloud is allowed to do
set intersection operation between any two users, without having any permission
by them. The cloud can proceed as follows: (1) In time t0, users A and B wish
to run the set intersection protocol with the aid of the cloud by sending their
corresponding auxiliary information to it. (2) In time t1, users A and C run the
set intersection protocol with the help of the cloud by sending their corresponding
auxiliary information to it. (3) In time t2, where t2 > t1 ∧ t2 > t0, the cloud is
able to perform PSI operation on the encrypted datasets of user B and user C,
without their permission. This contradicts their protocol specifications, whereby
users are required to send auxiliary information to the cloud in order the latter
conduct the set intersection protocol.

Before delving into SEVDSI protocol, we present the idea for resiliency to
cloud-side brute-force attacks. Also, we demonstrate how to achieve authorized
and verifiable PSI.

– In order to build a system resilient against the cloud side brute force attacks,
the ciphertexts are blinded with an extra random value xa by user A (xb
by user B). Later, xa, xb are converted to a common random tkab that is
independently computed by user A and user B to allow the cloud perform the
set intersection operation on the encrypted data. tkab prevents the malicious
cloud to perform brute force attacks on the datasets in order to infer the
users’ plaintext values.

– To avoid permissionless PSI by the malicious cloud on behalf of two users
without getting any permission by them, users agree on a common random
tkab which is Diffie-Hellman key exchange value. This value is unique for
each pair of users. According to the given example above, the cloud is not
able to perform PSI protocol on behalf of user B and user C without getting
any authorization (permission) from them. The only way the malicious cloud
can perform PSI is to extract tkbc.

– The auxiliary information that is sent to the cloud by user A consists of two
parts. The first part is a function of xa and tkab. The second part is the
aggregated user A’s dataset values (sa) that is masked under user B’s public
key. User A also signs this masked value and appends it to the second part
of the auxiliary information which is directly forwarded to user B later by
the cloud.

– In order to allow user B to verify if the set intersection result that is com-
puted by the cloud is correct, the cloud sends a (proofb, rsltb) tuple to user
B. proofb consists of two parts: The first part is a witness that is gener-
ated by the cloud. The second part is the second part of user A’s auxiliary
information.

– In our scheme user A (B) also uses da,0 (db,0) random data value as in [32]
to randomize his accumulated dataset, sa. That prevents a semi-honest user
B (A) to infer useful information about A’s (B’s) dataset items.

5.2 Protocol Description

We now present SEVDSI in full details:

– Setup(λ): Given security parameter λ, the trusted party runs
(acPk, acSk) ← acKeyGen(λ) and outputs system parameters pm =
acPk, g, e(,), G,G′, p,H1, H2, where g is the generator of the group G of
prime order p, H1 : G→ Zp and H2 : G′ → Zp.

– KeyGen(pm): Users A and B take system public parameters, pm, and
generate their secret and public keys. The secret and public keys for users
A and B are:

(ska, pka) = ((xa, βa, γa, sigSKa), (gβa , gγa , sigPKa)),

(skb, pkb) = ((xb, βb, γb, sigSKb), (g
βb , gγb , sigPKb))

, where sigPK and sigSK are secret and public keys of a signature:
(sigPK, sigSK)← sigKeyGen(λ).

– Enc((ska, pka), Da): User A on input the dataset Da = (da,1, . . . , da,n−1),
his secret and public key pair (ska, pka)

• picks a random da,0 ∈ G and two random values ra,i1, ra,i2 for each
i = {0, . . . , n− 1},
• computes

cpha,i = (gra,i2 , gra,i1γa , dxaa,ig
(ra,i1+ra,i2)xaβa)

= Ca,i,1, Ca,i,2, Ca,i,3

and sets Ca = {cpha,0, . . . , cpha,n−1}.
Similarly, user B with Db = (db,0, db,1, . . . , db,n−1) where db,i ∈G for 0≤ i≤
n− 1, can compute:

Cb={cphb,0, . . . , cphb,n−1}

.
– AuGen(ska, Da, pm, pkb): Once two users (A and B) agree on set intersec-

tion operation that is delegated to the cloud, user A

• generates rekey:

rka = (gH1(tkab)βa/γa , gH1(tkab)βa , gH1(tkab)/xa)

= (RKa,1, RKa,2, RKa,3),

where tkab = gγaγb .

• computes, for 0 ≤ i ≤ n− 1,

Ti = H2

(
e
(
d
H1(tkab)
a,i , g

))
and sa = sa ← acGen(acPk, {T0, . . . , Tn−1})

• masks the secret information sa using user B’s public key pkb to obtain
cphb =

(
gr2 , gγbr1 , sag

βb(r1+r2)
)
, where r1, r2 ← Zp. Then, user A runs

ρa ← sigSign(sigSKa, cphb) to obtain a signature ρa on message cphb.
Finally, user A sets aua = (rka, cphb, ρa) and sends it to the cloud.
Similarly, user B can generate aub = (rkb, cpha, ρb) and forwards it to
the cloud.

– SetInt(Ca, aua, Cb, aub): The cloud:
• transforms ciphertexts cpha,i for 0 ≤ i ≤ n − 1 into Ta,i using aua and

computes Ta as follows: for rab = ra,i1 + ra,i2,
Ta,i equals

=
e (Ca,i,3, RKa,3)

e (Ca,i,2, RKa,1) e (Ca,i,1, RKa,2)

=
e
(
dxaa,ig

xaβa(rab), gH1(tkab)/xa
)

e
(
gγara,i1 , gH1(tkab)βa/γa

)
e
(
gra,i2 , gH1(tkab)βa

)
=
e
(
dxaa,i, g

H1(tkab)/xa
)
e
(
gxaβa(rab)gH1(tkab)/xa

)
e (g, g)

ra,i1H1(tkab)βa e (g, g)
ra,i2H1(tkab)βa

=
e (da,i, g)

H1(tkab) e (g, g)
H1(tkab)βa(rab)

e (g, g)
H1(tkab)βa(rab)

= e (da,i, g)
H1(tkab)

Ta = {H2(Ta,0), ...,H2(Ta,n−1)}
It follows the same steps to compute Tb.

• generates the intersection sets rslta, rsltb and the proofs proofa, proofb
with respect to Ca and Cb as follows: (acRslt, acWita) ←
acProve(acPk, Ta, Tb) and sets rslta = {cpha,i | H2 (Ta,i) ∈ acRslt},
proofa = (acWita, cpha, ρb). Accordingly it procceds to compute
(acRslt, acWitb) ← acProve(acPk, Tb, Ta), rsltb = {cphb,i | H2 (Tb,i) ∈
acRslt} and proofb = (acWitb, cphb, ρa).

– Dec(ska, rslta): Given the cloud-generated ciphertext intersection set
rslta = {cpha,j , ..., cpha,k} where 0 ≤ j, k ≤ n − 1, user A decrypts ci-
phertexts cpha,i for j ≤ i ≤ k as follows:

(Ca,i,3)
x−1
a

(Cβaa,i,1)
(
C
βa/γa
a,i,2

) =

(
dxaa,ig

xaβa(ra,i1+ra,i2)
)x−1
a

(gra,i2βa)(gγara,i1βa/γa)
= da,i.

The decryption of rslta is Da ∩ Db = {da,j , ..., da,k}. Note that this algo-
rithm can also be used to decrypt Ca without involving any delegated set
operations. Similarly, user B can decrypt the cloud-generated ciphertext in-
tersection set rsltb = {cphb,j , ..., cphb,k} where j ≤ i ≤ k to obtain Da ∩Db.

– Verify(ska, sa, rslta, proofa): Given rslta and proofa, user A verifies that
the cloud faithfully executed the SetInt protocol as follows:
• verifies the integrity of cpha by running sigVerify(sigPKb, cpha, ρb). If

the signature verification fails the protocol halts, otherwise, proceed to
the next step.

• decrypts cpha using private key ska according to sb = sbg
βa(r1+r2)

(gr2βa)(gγar1βa/γa)
.

• if rslta is not empty, decrypts rslta to obtain the plaintexts and computes

Ya = {e
(
d
H1(tkab)
a,i , g

)
| cpha,i ∈ rslta}. Otherwise, let Ya = ∅.

• runs acVerify(acPk, sa, Ya, acWita, sb). If the multi-accumulator fails to
verify the protocol halts. Otherwise, the algorithm calls Dec(ska, rslta)
to obtain Da ∩Db. Similarly, user B runs the same algorithm to verify
that the cloud faithfully computed the set intersection computation.

Remark 1. When users A and B wish to learn their intersection on new datasets,
Dnew
a , Dnew

b , user A uses a new value ya instead of using xa to encrypt Dnew
a

(B uses yb to encrypt Dnew
b) and generates a new rknewa (rknewb for user B).

To generate a new rka, the users agree on a new common secret key, tkab.
Therefore, aunewa (aunewb for user B) is generated. The reason to use new ya to
encrypt Dnew

a and choose new rka is to eliminate the compatibility of Cnewa and
auolda . Otherwise, the cloud with

(
Cnewa , auolda

)
and

(
Cnewb , auoldb

)
can compute

the set intersection operation on users’ new datasets in a permissionless manner.

5.3 Efficiency Analysis

In Table 3 we analyze the computation efficiency of SEVDSI. As for the multi-
accumulator operations acGen and acProve commit to n exponentiations and
acVerify results in k exponentiations and 7 pairings. We assume that |Da| =
|Db| = n and |Da ∩Db| = k. We also present in table 3 the overhead of VDSI
scheme [32]. Overall, SEVDSI requires 3n + 2k + 4 more exponentiations than
VDSI [32] as a result of the extra xa, tk, rk values embedded to each ciphertext,
for datasets of size n, with k common elements.

Algorithm VDSI [32] SEVDSI

Enc 3n E + n P + acGen 4n E

Dec 2n E 3n E

AuGen 4 E + sigSign (n+ 7) E + n P + sigSign + acGen

SetInt 6n P + 2 acProve 6n P + 2 acProve

Verify 2(k + 1) E + k P + acVerify + sigVerify (4k+3) E + k P + acVerify + sigVerify

Table 3. Computational complexity comparison of the protocol in [32] and ours
(SEVDSI), where E denotes the exponentiation operation, P denotes the pairing oper-
ation.

SEVDSI outperforms asymptotically in the communication overhead com-
pared with 2PC PSI solutions. More specifically assuming m is the total number

of users in the system, n is the total number of dataset items that each user has,
k is the intersection size of two different datasets then:

1. Each user outsources n data items to the cloud. Therefore, m users outsource
mn data items to the cloud in outsourcing phase.

2. During AuGen and SetInt phases user ui sends 7(m− 1) group elements to
the cloud in order allow all the other users uj , 1 ≤ i 6= j ≤ m to perform
PSI with all the other users, by running AuGen algorithm. The cloud sends
(k + 6)(m − 1) elements to each user ui (k is the intersection size and 6 is
the proof size for each PSI), for i = 1, . . . ,m, as the intersection results by
using SetInt algorithm. The total communication complexity between the
users and the cloud is (k + 13)(m− 1)m = O(km2).

3. Thus from 1) and 2) we conclude that the overall communication complexity
for SEVDSI is O(km2 +mn).

5.4 Security

In this section we analyze the security of SEVDSI scheme that is formally de-
fined in Section 4. SEVDSI protocol adheres to two security guarantees: function
output secrecy and verifiability. We model H1 as a random function and H2 as
a collision resistant hash function.

Theorem 2. SEVDSI scheme assures function output secrecy if the VDDH as-
sumption holds.

The reductionist proof is based on the VDDH assumption. We establish that
if there exists an adversary A winning the function output secrecy game with
non-negligible probability ε, then there is an adversary B breaking the VDDH
assumption in G with non-negligible probability.

Proof. The VDDH oracle chooses a uniformly random t
$←{0, 1} and passes

T =

(
g, v, gγa , gγb , gβa , gβb , grβa , grβb , gr

βa
γa , g

r
βb
γb , Z

)
to B, where Z = vr if t = 0

and Z some random element in G if t = 1. B simulates A’s queries during the
game as follows:
Setup. B obtains sigPKa and sigSKa using (sigPKa, sigSKa) ←
sigKeyGen(λ); sigPKb and sigSKb are generated similarly. B gives pka =(
gγa , gβa , sigPKa

)
and pkb =

(
gγb , gβb , sigPKb

)
to attacker A.

Query. A issues encryption queries. For query q, A outputs D′a =
{d′a,0, . . . , d′a,n−1}, D′b = {d′b,0, . . . , d′b,n−1}. B runs (C ′a, C

′
b) ← Enc algorithm

as follows:

– B finds the corresponding data items from T such that d′a,i = va,i and
d′b,j = vb,j ,

– picks random values r′, ra,i,1, ra,i,2, xa, xb ∈ Zp, where i = 0, . . . , n− 1,
– computes cpha,i = gra,i,2 , gra,i,1γa , vrxaa,i g

(ra,i,1+ra,i,2)xarβa =
(Ca,i,1, Ca,i,2, Ca,i,3)

– computes (Cb,i,1, Cb,i,2, Cb,i,3) by the same way above and and gives (C ′a, C
′
b)

to A.

SetInt. A issues set intersection queries for D′a, D
′
b. B runs (au′a, s

′
a, au

′
b, s
′
b)←

AuGen algorithm as follows:

– generates rekey, rk′a =
(
grr
′βa/γa , grr

′βa , gr
′/xa

)
= (RKa,1, RKa,2, RKa,3).

– computes, for 0 ≤ i ≤ n − 1, Ti = H2

(
e
(
vrr
′

a,i , g
))

and s′a ←
acGen(acPk, {T0, . . . , Tn−1}).

– encrypts the secret information s′a using user B’s public key pkb to obtain
ciphertext cph′b =

(
gr5 , gγbr6 , s′ag

βb(r5+r6)
)
, where r5, r6 ← Zp. Then, user A

runs ρ′a ← sigSign(sigSKa, cph
′
b) to obtain a signature ρ′a on message cph′b.

Finally, user A sets au′a = (rk′a, cph
′
b, ρ
′
a). Similarly, user B can generate

au′b = (rk′b, cph
′
a, ρ
′
b). Then, it gives (au′a, au

′
b) to A.

Challenge. A outputs Da = {da,0, . . . , da,n−1}, Db = {db,0, . . . , db,n−1}, v to
be challenged upon. B randomly chooses ya, r

′′ ← Zp. Then, if v ∈ Da and
v = va,n−1, B

– randomly chooses a bit b ∈ {0, 1} and sets Z = vra,n−1 if b = 0. Then, it finds
the corresponding data items for T such that da,i = va,i,

– uniformly at random selects two values ra,1, ra,2, and sends Cv =
gra,1 , gra,2γa ,

(
Zya = vryaa,n−1

)
(gryaβa(ra,1+ra,2)) to A.

– generates rekey, rka =
(
gr
′′rβa/γa , gr

′′rβa , gr
′′/ya

)
= (RKa,1, RKa,2, RKa,3).

– computes, Ti = H2

(
e
(
vrr
′′

a,i , g
))

and sa ← acGen(acPk, {T0, . . . , Tn−1}) for

0 ≤ i ≤ n− 1.
– encrypts the secret information sa using other user’s public key pkb to ob-

tain ciphertext cphb =
(
gr7 , gγbr8 , sag

βb(r7+r8)
)
, where r7, r8 ← Zp. Then, B

runs ρa ← sigSign(sigSKa, cphb) to obtain a signature ρa on message cphb.
Finally, B sets aua = (rka, cphb, ρa).

Guess. A outputs b ∈ {0, 1} and sends it to B. If t = b then A wins the game.
As the game is perfectly simulated by B, then if A chooses the correct b then
B also chooses as t = b and breaks the VDDH assumption, with non-negligible
probability ≥ 1

2 + ε′(λ).

Theorem 3. If Sig is an unforgeable signature scheme, multi-accumulator
scheme is secure under q-SDH assumption, H1 is a random function and H2

is a collision resistance hash function, SEVDSI scheme assures the verifiability
property.

Proof. We show that if there exists a probabilistic polynomial-time adversary A
who breaks the verifiability of the SEVDSI scheme with a non-negligible prob-
ability ε, then we show how a probabilistic polynomial time adversary B can

break the assumption that Sig is an unforgeable signature scheme or Ac is a
secure multi-accumulator. In the proof we assume H1 is a random function and
H2 is a collision resistant hash function. B proceeds as follows.
Setup: B runs pm ← Setup(λ) and makes pm publicly known. It then runs
KeyGen(pm) to obtain ska = (sigSKa, βa, γa, xa) and pka = (sigPKa, g

βa , gγa),
runs KeyGen(pm) to obtain skb = (sigSKb, βb, γb, xb), pkb = (sigPKb, g

βb , gγb),
and returns pka, pkb to A.
Phase 1: A can make the following queries polynomially many times.

– Enc: Given the dataset D′a, B runs C ′a ← Enc((ska, pka), D′a) and returns
C ′a to A.

– Enc: Given the dataset D′b, B runs C ′b ← Enc((skb, pkb), D
′
b) and returns C ′b

to A.
– AuGen: B runs au′a, s

′
a ← AuGen(ska, D

′
a, pm, pkb) and returns aua to A.

– AuGen: B runs au′b, s
′
b ← AuGen(skb, D

′
b, pm, pka) and returns aub to A.

– Verify: B runs Verify(ska, s
′
a, rslta, proofa) and returns the output to A.

– Verify: B runs Verify(skb, s
′
b, rsltb, proofb) and returns the output to A

Challenge: A selects Da, Db of its choice, and sends them to B. B
runs Ca ← Enc((ska, pka), Da) and Cb ← Enc((skb, pkb), Db), aua, sa ←
AuGen(ska, Da, pm, pkb) and aub, sb ← AuGen(skb, Db, pm, pka), and returns
Ca, aua, Cb, aub to A.
Phase 2: A issues queries in the same way as in Phase 1.
Guess: A outputs (rslta, proofa), (rsltb, proofb) to B. This completes the sim-
ulation. First let us consider the verification for (rslta, proofa). Note that cpha
specified by proofa cannot be manipulated, otherwise it breaks the unforgeabil-
ity of Sig. B decrypts cpha to obtain sb. In addition, B decrypts Dec(ska, rslta),
and obtains
Ta = {H2(e(d′a,i, g)H1(tkab)) | cpha,i ∈ rslta} where d′a,i is the plaintext with
respect to cpha,i and H1(tkab) is a random value.

T = {H2(e(da,i, g)H1(tkab)) | (da,i ∈ Da) ∧ (tkab = gγaγb))}∩

{H2(e(db,i, g)H1(tkab)) | (db,i ∈ Db) ∧ (tkab = gγaγb)}

. If A breaks the verifiability with (rslta, proofa), then at least one of the fol-
lowing cases should hold:
Case 1:

1← acVerify(acPk, sa, Ta, acWita, sb)
1← acVerify(acPk, sa, T, acWita, sb)
T = Ta
∃d′a,i 6= da,i, H2(e(d′a,i, g)H1(tkab)) = H2(e(da,i, g)H1(tkab)),

Case 2:
1← acVerify(acPk, sa, Ta, acWita, sb)
1← acVerify(acPk, sa, T, acWita, sb)
T 6= Ta
If A breaks the verifiability regarding (rslta, proofa) with respect to case

1, then it breaks the assumption that H2 is collision resistant: (d′a,i 6= da,i)

leads to e(d′a,i, g)H1(tkab) 6= e(da,i, g)H1(tkab) while H2(e(d′a,i, g)H1(tkab)) =

H2(e(da,i, g)H1(tkab)).
If A breaks the verifiability regarding (rslta, proofa) with respect to case

2, then it breaks the security of the multi-accumulator scheme by presenting
acRslt = Ta, which is different from T .

Therefore, we proved that A breaks the verifiability of SEVDSI scheme with
respect to (rslta, proofa) or (rsltb, proofb) with negligible probability under the
assumptions that Sig is unforgeable, H1 is a random function, H2 is a collision
resistant hash function and Ac is a secure multi-accumulator scheme.

References

1. A. Abadi, S. Terzis, and C. Dong. O-PSI: delegated private set intersection on
outsourced datasets. In 30th IFIP TC 11 International Conference, 2015.

2. A. Abadi, S. Terzis, and C. Dong. VD-PSI: Verifiable delegated private set inter-
section on outsourced private datasets. In FC, 2016.

3. C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu. From security to assurance in
the cloud: A survey. ACM Comput. Surv., 2015.

4. G. Ateniese, E. De Cristofaro, and G. Tsudik. (if) size matters: Size-hiding private
set intersection. In PKC, 2011.

5. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In TCC, 2007.

6. T. Bradley, S. Faber, and G. Tsudik. Bounded size-hiding private set intersection.
Technical report, https://eprint.iacr.org/2016/657, 2016.

7. E. D. Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection
protocols secure in malicious model. In ASIACRYPT, 2010.

8. D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private
set intersection. In ACNS, 2009.

9. E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with
linear computational and bandwidth complexity. In FC, 2010.

10. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an
efficient and scalable protocol. In CCS, 2013.

11. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In EUROCRYPT, 2004.

12. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 1988.

13. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In TCC, 2008.

14. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious
adversaries. In PKC, 2010.

15. W. Huang, A. Ganjali, B. H. Kim, S. Oh, and D. Lie. The state of public
infrastructure-as-a-service cloud security. ACM Comput. Surv., 2015.

16. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits
better than custom protocols? In NDSS, 2012.

17. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications
to adaptive ot and secure computation of set intersection. In TCC, 2009.

18. S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN, 2010.

19. S. Kamara, P. Mohassel, M. Raykova, and S. S. Sadeghian. Scaling private set
intersection to billion-element sets. In FC, 2014.

20. F. Kerschbaum. Collusion-resistant outsourcing of private set intersection. In SAC,
2012.

21. F. Kerschbaum. Outsourced private set intersection using homomorphic encryp-
tion. In ASIACCS, 2012.

22. A. Kiss, J. Liu, T. Schneider, N. Asokan, and B. Pinkas. Private set inter-
section for unequal set sizes with mobile applications. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2017(4):97–117, 2017. To appear. Code:
http://encrypto.de/code/MobilePSI.

23. L. Kissner and D. Song. Privacy-preserving set operations. In CRYPTO, 2005.
24. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched obliv-

ious prf with applications to private set intersection. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
pages 818–829, New York, NY, USA, 2016. ACM.

25. F. Liu, W. K. Ng, W. Zhang, D. H. Giang, and S. Han. Encrypted set intersection
protocol for outsourced datasets. In IC2E, 2014.

26. M. Orr, E. Orsini, and P. Scholl. Actively secure 1-out-of-n ot extension with ap-
plication to private set intersection. Cryptology ePrint Archive, Report 2016/933,
2016. http://eprint.iacr.org/2016/933.

27. B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set intersection
using permutation-based hashing. In USENIX Security 15, 2015.

28. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on
OT extension. In USENIX, 2014.

29. P. Rindal and M. Rosulek. Improved private set intersection against malicious
adversaries. In EUROCRYPT, pages 235–259. Springer, Cham, 2017.

30. V. Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, 1997.

31. Y. Zhao and S. S. M. Chow. Are you the one to share? secret transfer with access
structure. PoPETs, 2017(1):149–169, 2017.

32. Q. Zheng and S. Xu. Verifiable delegated set intersection operations on outsourced
encrypted data. In IC2E, 2015.

