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Abstract

In encryption schemes, the sender may not generate randomness properly if generating ran-
domness is costly, and the sender is not concerned about the security of a message. The problem
was studied by the first author (2016), and was formalized in a game-theoretic framework. In
this work, we construct an encryption scheme with an optimal round complexity on the basis
of the mechanism of repeated games.

1 Introduction

Randomness is essential for many cryptographic primitives. In practice, generating randomness is
a complex and difficult task. There are many cryptographic failures [20, 9, 4, 10, 5, 22, 18, 16].

Even though users can access to a good randomness source, they may not use it if generating
randomness itself is a costly task. Such a situation arises naturally for energy-saving devices. In
encryption schemes, the sender may not generate randomness properly if she is not concerned about
the security of a message to be encrypted. Namely, the sender may rationally decide not to generate
costly randomness.

The problem of such rationality was studied in [21] for public-key encryption schemes. For the
first step to understand the behavior of such rational parties, the author considered a simple setting
in which rational senders and receivers can choose either good randomness and bad randomness.
Good one is a truly random string, but is costly. Bad one is a fixed string, e.g., the all-zero string,
and can be generated without cost. The author gave both positive and negative results. The study
reveals the importance of the information given to the sender and the receiver. Secure encryption
schemes were provided depending on situations. For the most basic situation, in which the receiver
does not know whether a message to be sent is valuable to him or not, a two-round scheme is
constructed based on any secure public-key encryption scheme. In a more difficult situation, in
which the receiver may know the value of a message to him, the two-round scheme is not secure.
Then, the author presented a three-round scheme with a peculiar final step, where the receiver
encrypts a recovered message with the sender’s public key and makes it public.
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1.1 This Work

We study the problem of rational behavior for generating randomness in encryption by treating
the security game as a repeated game. In public-key encryption schemes, after generating a pair
of public and secret keys, messages are assumed to be encrypted repeatedly. Thus, it is natural to
formalize the security game of encryption schemes as a repeated game. We present a round-efficient
scheme based on a mechanism of repeated games. Specifically, we construct a secure two-round
scheme in the setting for which a three-round scheme was presented in [21]. The scheme is the
first two-round scheme in the setting where the receiver may know the value of a message to be
sent. Since non-interactive schemes cannot be secure [21], the scheme achieves the optimal round
complexity.

1.2 Our Model

Our security model is based on the study of [21]. We define a variant of chosen plaintext attack
(CPA) game of encryption schemes. The game consists of the key generation phase, which is con-
ducted only once, and the encryption phase, which is played repeatedly. In the encryption phase,
an adversary, on input public keys, chooses two challenge messages, and, given a ciphertext, tries to
guess which of the two messages was encrypted. The sender and the receiver are rational players,
and have their own utility functions. The values of utilities are determined by the outcome of the
game. Each rational player needs to choose either good or bad randomness before performing prob-
abilistic algorithms. Roughly speaking, an encryption scheme is said to be secure if the prescribed
strategy for rational players is a Nash equilibrium, and a message is securely encrypted in every
encryption phase when rational players follow the prescribed strategy.

In this work, we model the above repeated game as an infinitely repeated game. More concretely,
we consider an infinite sequence of adversaries A1, A2, . . . such that Ai plays only at the i-th
encryption phase, called a stage game. The i-th stage game is conducted between the sender, the
receiver, and Ai. Since Ai cannot communicate with other adversaries, we can avoid the problem
of using computationally-secure primitives an exponential number of times. Although the message
security is considered for every stage game, rational players are assumed to calculate their utilities
as a total of infinitely-many stage games. Thus, we can utilize a mechanism of infinitely repeated
games in the framework of CPA games of encryption schemes.

1.3 Related Work

There are many studies using game-theoretic analysis for cryptographic primitives, including secret
sharing [14, 1, 6, 3], two-party protocols [2, 8, 17], public-key encryption [21], and protocol design [7].
Among them, repeated games have been introduced only in rational secret sharing [19]. This work
shows that the mechanism of repeated games is effective for reducing the round complexity of
encryption schemes.

Halpern and Pass [11] introduced the framework of machine games for incorporating the cost
of computation, including the cost of randomization, in utility functions. They showed that if
randomization is free, there always exists a Nash equilibrium in machine games. In this work,
we employ a simpler framework specific to encryption schemes, and show that a Nash equilibrium
strategy satisfies CPA security.
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Halpern et al. [13, 12] used cryptographic primitives for finding equilibria in repeated games
played by computationally-bounded players.

Halpin and Naor [15] proposed a method for generating randomness by human game play.

1.4 Notations

A function ε(·) is called negligible if for any constant c, ε(λ) < 1/λc for every sufficiently large
λ. For two families of random variable X = {Xn}n∈N and Y = {Yn}n∈N, we say X and Y are
computationally indistinguishable, denoted by X ≈c Y , if for every probabilistic polynomial-time
distinguisherD, there is a negligible function ε(·) such that |Pr[D(Xn) = 1]−Pr[D(Yn) = 1]| ≤ ε(n)
for every sufficiently large n. For a probabilistic algorithm A, we denote by A(x; r) the output of
A running on input x with randomness r.

2 Repeated Games for Public-Key Encryption

We assume that both the sender and the receiver are rational players. Each player has a set of
valuable messages, and prefers a message to be sent confidentially if it is valuable to the player.
We consider the cost of generating randomness for algorithms. Each player can choose one of the
two types of randomness, good randomness and bad randomness. The former is a truly random
string but costly to generate. The latter is the all-zero string and can be generated without cost.

We model the interactions between the sender and the receiver as a game. The game is a variant
of the chosen plaintext attack (CPA) game of encryption schemes. First, the key generation phase
is conducted by the sender and the receiver individually. Then, the guessing game is conducted
between the sender, the receiver, and an adversary. The adversary chooses two messagesm0 andm1.
A randomly chosen message is encrypted by the interaction between the sender and the receiver.
Given the transcript of the interaction, the adversary tries to guess which message was encrypted.
The guessing game is played repeatedly. We assume that the repeated game is perfect monitoring,
in the sense that the players can observe each other’s actions after each guessing game ends. Let
MS andMR be the sets of valuable messages for the sender and the receiver, respectively. In each
guessing game, the adversary chooses two messages so that both of them are in eitherMS \MR,
MR \ MS , or MS ∩ MR. Let pS , pR, pSR denote the probabilities that the chosen messages
are in MS \ MR, MR \ MS , and MS ∩ MR, respectively. It holds that pS , pR, pSR ≥ 0 and
pS + pR + pSR = 1. We assume that pS , pR, pSR are a priori fixed, and the same values are used in
each iterated game.

As observed in [21], it is necessary to define a public-key encryption scheme as an interactive
protocol in which both the sender and the receiver can generate their own public and secret keys.

Definition 1 (Public-key encryption scheme). An n-round public-key encryption scheme Π is the
tuple ({Genw}w∈{S,R}, {Enci}i∈{1,...,n},Dec) such that

• Key generation: For each w ∈ {S,R}, on input 1λ, Genw outputs (pkw, skw). LetM denote
the message space.

• Encryption: For a message m ∈ M, set stS = (pkS , pkR, skS ,m), stR = (pkS , pkR, skR),
and c0 = ⊥. Let w ∈ {S,R} be the first sender, and w̄ ∈ {S,R} \ {w} the second sender. For
each round i ∈ {1, . . . , n}, when i is odd, Enci(ci−1, stw) outputs (ci, st

′
w), and stw is updated

to st′w, and when i is even, Enci(ci−1, stw̄) outputs (ci, st
′
w̄), and stw̄ is updated to st′w̄.

3



• Decryption: After the encryption phase, on input stR, Dec outputs m̂.

• Correctness: For any message m ∈M, after the encryption phase, Dec(stR) = m.

We define a formal security game for rational sender and receiver in repeated games. Without
loss of generality, we assume that every probabilistic algorithm requires random bits of length equal
to the security parameter∗, and that, in the encryption phase, only the first algorithm for each party
is probabilistic.

Definition 2 (Repeated CPA game for rational parties). Let Π =
({Genw}w∈{S,R}, {Enci}i∈{1,...,n},Dec) be an n-round public-key encryption scheme. For a sequence
of adversaries A = (A1, A2, . . . ), the security parameter λ, valuable message spaces MS and MR,
and a pair of strategies (σS , σR), we define the following game Gamerep(Π, λ, A,MS ,MR, σS , σR):

• Key generation phase:

– Choice of randomness: For each w ∈ {S,R}, compute (agenw , stw) ← σw(1
λ,Mw),

where agenw ∈ {Good,Bad} and stw is the state information of w. We assume that Mw

has a polynomial-size representation. If agenw = Good, choose rgenw ∈ {0, 1}λ uniformly at
random. Otherwise, set rgenw = 0λ.

– Key generation: For each w ∈ {S,R}, generate (pkw, skw) ← Genw(1
λ; rgenw ), and

set the state information for the challenge phase to be st1w = (stw, pkw, skw, pkw̄), where
w̄ ∈ {S,R} \ {w}.

– Outcome of the key generation phase: Output (Numgen
S ,Numgen

R ), where Numgen
w

takes 1 if agenw = Good, and 0 otherwise.

• Challenge phase: For i = 1, 2, . . . , do the following.

– Challenge generation: Given (pkS , pkR), Ai outputs (m0,m1, a
S
A, a

R
A, stA), where

m0,m1 ∈ MS ∪ MR
†, aSA, a

R
A ∈ {0, 1} represent the choices of Ai for the auxiliary

inputs to the sender and the receiver, and stA is the state information of Ai. Then,
b ∈ {0, 1} is chosen uniformly at random.

– Choice of randomness: For each w ∈ {S,R}, compute (aenc,iw , sti+1
w )← σw(pkS , pkR,

skw, st
i
w, auxw), where aenc,iw ∈ {Good,Bad}, auxS = (mb, v

i
R, a

enc,i−1
R ), auxR =

(aenc,i−1
S , viS), aenc,0R = aenc,0S = ⊥, viR = ValiR if aSA = 1, and viR = ⊥ otherwise,

viS = ValiS if aRA = 1, and viS = ⊥ otherwise, where ValiR and ValiS are defined below. If

aenc,iw = Good, then choose rgenw ∈ {0, 1}λ uniformly at random. Otherwise, set rgenw = 0λ.

– Guessing the challenge: The challenge message mb is encrypted by the interaction
using {Enci}i∈{1,...,n}, where w ∈ {S,R} uses rgenw as the random bits for the encryption
algorithms.

Given the transcript of the interaction and stA, Ai outputs b′ ∈ {0, 1}.
∗If the algorithm requires longer random bits, a pseudorandom generator can be employed to stretch the length.
†In general, message spaces should be dependent on the public key. This can be realized by defining an embedding

function Emb(·) for valuable message spaces Mw and denoting by Embpk(Mw) the valuable message space corre-
sponding to Mw under the public key pk. Then, the adversary chooses messages from Embpk(MS) ∪ Embpk(MR).
For simplicity, we use MS and MR instead.
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– Outcome of the stage game: Output (Wini,ValiS , Val
i
R,Num

i
S ,Num

i
R), where Wini

takes 1 if b′ = b, and 0 otherwise, Valiw takes 1 if mb ∈Mw, and 0 otherwise, and Numi
w

takes 1 if aenc,iw = Good, and 0 otherwise.

• The outcome of the game is (Numgen
S ,Numgen

R , {Advi, ValiS ,ValiR,Numi
S ,Num

i
R}i=1,...), where

Advi = 2|E[Wini]− 1/2|.

In the above game, the adversary can choose whether the sender (and the receiver) can know
the value of a message for the other player, namely ValiR (and ValiS), before interacting with the
other player. This setting is challenging as observed in [21].

Note that the adversary Ai plays the CPA game only at the i-th stage game, and does not
communicate with other adversaries. Thus, it is possible to achieve a negligible advantage for every
stage game although we define the whole CPA game as an infinitely-repeated game.

Next, we define the utility functions in the repeated CPA game. In repeated games, the discount
factor δ > 0 is employed so that the utility of the i-th stage game is discounted by the factor δi−1.
We assume that rational players calculate their utilities as if the stage games will be played infinitely.

Definition 3. Let (σS , σR) be a pair of strategies of the game Gamerep. For a dis-
count factor δ ∈ (0, 1), the utility of player w ∈ {S,R} when the outcome Out =
(Numgen

S ,Numgen
R , {Advi,ValiS ,ValiR,Numi

S , Numi
R}i=1,...) happens is defined by

uw(Out) = −crandw · Numgen
w +

∞∑
i=1

δi−1uw[i],

where uw[i] is the utility of player w in the i-th stage game, defined by

uw[i] = usecw · (−Ãdv
i
) · Valiw − crandw · Numi

w,

and crandw , usecw ∈ R represent the cost of generating randomness and the utility when the message

is sent securely, respectively, and Ãdv
i
is equal to Advi except that Ãdv

i
= 0 if Advi is a negligible

function in λ. We assume that usecw > crandw > 0, which implies that the security is worth paying
the cost of generating randomness.

The utility when the players follow a pair of strategies (σS , σR) is defined by

Uw(σS , σR) = min
A,MS ,MR

{E [uw(Out)]} ,

where Out is the outcome of the game Gamerep(Π, λ, A, MS ,MR, σS , σR), and the minimum is
taken over all sequences of probabilistic polynomial-time adversaries A = (A1, A2, . . . ) and valuable
message spaces MS and MR. We assume that the prameters δ, crandw , usecw are independent of the
security parameter λ. Since Out is a function of λ, Uw(σS , σR) is a function of λ.

A round version Ãdv
i
of Advi is introduced for the simplicity of arguments. In addition, we

assume that rational players are not concerned about a negligible advantage of their utility.

Definition 4 (Nash equilibrium). A pair of strategies (σS , σR) is called a Nash equilibrium if for
every w ∈ {S,R} and strategy σ′

w, it holds that Uw(σ
∗
S , σ

∗
R) ≤ Uw(σS , σR), where (σ

∗
S , σ

∗
R) = (σ′

S , σR)
if w = S, and (σ∗

S , σ
∗
R) = (σS , σ

′
R) otherwise.
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We define the security of encryption schemes for rational players. For an encryption scheme Π
and a pair of strategies (σS , σR), we require that (1) when the players follow (σS , σR), Π is secure
in every stage game, and (2) the strategy of following (σS , σR) is a Nash equilibrium.

Definition 5. Let Π = ({Genw}w∈{S,R}, {Enci}i∈{1,...,n}, Dec) be a public-key encryption scheme,
and (σS , σR) a pair of strategies of the game Gamerep. We say (Π, σS , σR) is CPA secure with a
Nash equilibrium if

1. for any sequence of probabilistic polynomial-time adversaries A = (A1, A2, . . . ), and any sets
of message spaces MS and MR, there is a negligible function ε(·) such that Advi ≤ ε(λ) for
every i in Gamerep(Π, λ, A,MS ,MR, σS , σR) for every sufficiently large λ; and

2. (σS , σR) is a Nash equilibrium.

3 Two-Round Scheme

We propose a two-round scheme that achieves a CPA security with a Nash equilibrium. The scheme
can be based on any usual CPA-secure encryption scheme. In the key generation phase, both the
sender and the receiver generate their own public key and secret key. In the encryption phase, a
key agreement protocol is conducted to share a key. The shared key has the property such that
it is a uniformly random string if and only if both players use good randomness in the encryption
phase.

The above two-round scheme is not secure in a one-shot game, since if a message to be sent is
valuable only to the receiver, the sender never uses good randomness. We overcome the insecurity in
a one-shot game by a mechanism of infinitely-repeated games. In repeated games, each player can
choose an action depending on the actions in the previous stage games. We employ a grim trigger
strategy as a punishment strategy in repeated games. Initially, players choose good randomness in
the encryption phase regardless of the value of a message to be sent. In any stage game, if some
player chooses bad randomness, then bad randomness will be chosen in every subsequent game.
This strategy is effective when valuable messages to each player will be chosen with at least a
certain probability. The mechanism is similar to the repeated prisoners’ dilemma.

We present a formal description of our two-round scheme Πtwo =
({Genw}w∈{S,R}, {Enc1,Enc2},Dec) and the grim trigger strategy for the repeated CPA game. The
scheme is based on a public-key encryption scheme Π = (Gen,Enc,Dec).

• Genw(1
λ) : Generate (pkw, skw)← Gen(1λ), and output (pkw, skw). The state information is

set to be st1w = (pkw, pkw̄, skw), where w̄ ∈ {S,R} \ {w}.

• Enc1(st
1
R): Sample r1 ∈ {0, 1}λ uniformly at random, compute c1 ← Enc(pkS , r1), and output

(c1, st
2
R), where st2R = (st1R, r1).

Enc2(m, c1, st
1
S): Sample r2 ∈ {0, 1}λ uniformly at random and compute c2 ← Enc(pkR, r2)

and r̂1 ← Dec(skS , c1). Then, set r = r̂1 ◦ r2, compute c3 ← m⊕r, and output (c2, c3), where
◦ denote the concatenation operation.

• Dec(c2, c3, st
2
R): Compute r̂2 ← Dec(skR, c2) and r̂ = r1 ◦ r̂2. Then output m̂ = c3 ⊕ r̂.
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The above scheme Πtwo is similar to the three-round scheme presented in [21]. In the scheme,
a shared key in the encryption phase has a property such that it is a uniformly-random string if
one of the sender and the receiver uses good randomness. This scheme is not secure without the
final step. This is because the sender does not have any incentive to use good randomness in the
key generation phase. The sender can achieve their own security only by using good randomness
in the encryption phase. To prevent such laziness of the sender, we need the final step in which
the receiver encrypts a recovered message using the sender’s public key and makes it public. In
repeated CPA games, the final step is not needed since a punishment can be imposed in subsequent
stage games.

The grim trigger strategy (σtri
S , σtri

R ) for repeated CPA games is defined as follows.

• For each w ∈ {S,R}, σtri
w (1λ,Mw) outputs (a

gen
w , stw) = (Good,Good).

• For each w ∈ {S,R}, σtri
w (pkS , pkR, skw, st

i
w, auxw) outputs (aenc,iw , sti+1

w ), where sti+1
w =

(stiw, a
enc,i
w , aenc,i−1

w̄ ), w̄ ∈ {S,R} \ {w}, and aenc,iw = Good if aenc,1x = · · · = aenc,i−1
x = Good

for every x ∈ {S,R}, and aenc,iw = Bad otherwise.

Recall that pS , pR, pSR denote the probabilities that chosen messages in repeated CPA games
are inMS \MR,MR \MS , andMS ∩MR, respectively. We show that the scheme Πtwo is secure
under the trigger strategy if valuable messages to each player will be chosen in stage games with
at least a certain probability.

Theorem 1. The tuple (Πtwo, σ
tri
S , σtri

R ) is CPA secure with a Nash equilibrium if pw + pSR >
max{(2− δ)(crandw /usecw ), crandw /(δusecw )} for each w ∈ {S,R}.

Proof. Let A = (A1, A2, . . . ) be a sequence of probabilistic polynomial-time adversaries, and MS

andMR sets of message spaces.
First, we show that there is a negligible function ε(·) such that Advi ≤ ε(λ) for every i in

Gamerep(Πtwo, λ, A,MS ,MR, σ
tri
S , σtri

R ). Since the players follow (σtri
S , σtri

R ), they choose good ran-
domness at the key generation phase and every encryption phase. For the i-th stage game, suppose
Ai chooses m0,m1 as a pair of challenge messages. The view of Ai is

{pkS , pkR,m0,m1,Enc(pkS , r1),Enc(pkR, r2),

mb ⊕ (r1 ◦ r2)}
≈c {pkS , pkR,m0,m1,Enc(pkS , r

′
1),Enc(pkR, r

′
2),

mb ⊕ (r1 ◦ r2)}
= {pkS , pkR,m0,m1,Enc(pkS , r

′
1),Enc(pkR, r

′
2), r}

= {pkS , pkR,m0,m1,Enc(pkS , r
′
1),Enc(pkR, r

′
2),

m1−b ⊕ (r1 ◦ r2)}
≈c {pkS , pkR,m0,m1,Enc(pkS , r1),Enc(pkR, r2),

m1−b ⊕ (r1 ◦ r2), }

where r1, r2, r
′
1, r

′
2 ∈ {0, 1}λ and r ∈ {0, 1}2λ are uniformly random strings. We have used the CPA

security of the underlying scheme Π for the relation ≈c. The above implies that there is a negligible
function ε(·) such that Advi ≤ ε(λ) for every i.
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Next, we show that the pair of strategies (σtri
S , σtri

R ) is a Nash equilibrium. It follows from the
above security analysis that

Uw(σ
tri
S , σtri

R ) ≥ −crandw +
∞∑
i=1

δi−1(−crandw )

≥ −crandw − crandw

1− δ
= −(2− δ)crandw

1− δ
. (1)

Let consider the case that player w ∈ {S,R} chooses Bad in the key generation phase. Suppose
S chose Bad in the key generation phase. (The same argument can be applied to the case for
R.) An adversary Ai can obtain r1 by decrypting Enc(pkS , r1) by using skS , which is a part of
the output of Gen(1λ; 0λ). Thus Ai can win every stage game by choosing m0,m1 such that the
first halves of m0 and m1 are different, and, on receiving c3, outputting b′ = 0 if the first half of

c3 ⊕ (r1 ◦ 0λ) is equal to that of m0, and b′ = 1 otherwise. Since the advantage Ãdv
i
will be 1 for

every i, the utility US will be at most

∞∑
i=1

(
δi−1usecS (−1)(pS + pSR)

)
= −

(pS + pSR)u
sec
S

1− δ
,

which is less than (1) since pS + pSR > (2− δ)(crandS /usecS ). Thus, each player cannot increase the
utility by choosing Bad in the key generation phase.

In the following, we consider players who choose Good in the key generation phase, but may
choose Bad in the encryption phase. In the analysis, we use the following three values for the utility
uw[i] of the i-th stage game:

• u1 = 0, which is the case that Valiw = 0 and Numi
w = 0;

• u2 = −crandw , which is the case that Valiw = 0,Numi
w = 1 or that Advi = 0,Valw = 1,Numi

w =
1;

• u3 = −usecw , which is the case that Ãdv
i
= 1, Valiw = 1, and Numi

w = 0.

Note that u1 > u2 > u3.
Suppose that player R follows σtri

R , and player S chooses Good for stages i = 1, . . . , r − 1,
but chooses Bad at the r-th stage game. Then, the utility uS [i] for the i-th stage game is u2 for

i = 0, . . . , r− 1 since both players chooses Good, and thus Ãdv
i
= 0. After the r-th stage, player R

uses Bad in every subsequent stage game since R follows σtri
R . Then, an adversary Ai can win the

i-th stage game for every i > r. Since R uses Bad, r1 = 0λ. Thus Ai can win the game by choosing
m0,m1 such that the first halves of m0 and m1 are different, and outputting b′ = 0 if the first half
of c3 is equal to that of m0, and b′ = 1 otherwise. For such Ai’s, uS [i] is u1 with probability pR,
and u3 with probability pS + pSR. Thus, the utility US is at most

− crandw + u2 + δu2 + · · ·+ δr−2u2 + δr−1u1

+
∞∑

i=r+1

δi−1 (pRu1 + (pS + pSR)u3)

= −
(2− δ − δr−1)crandS + δr(pS + pSR)u

sec
S

1− δ
,
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which is less than (1) since pS + pSR > crandS /(δusecS ).
The same argument holds when player S follows σtri

S , but player R tries to choose Bad in the
encryption phase. Thus, both players S and R cannot increase their utility by changing their
strategies from (σtri

S , σtri
R ). Hence, (σtri

S , σtri
R ) is a Nash equilibrium, and thus the statement follows.

4 Conclusions

In this work, we employed repeated games for reducing the round complexity of encryption schemes
performed by rational players. Our two-round scheme achieves a Nash equilibrium in the repeated
CPA games. However, a Nash equilibrium may not be a satisfying solution concept in repeated
games. The notion of a subgame-perfect equilibrium is known as a stronger solution concept in
repeated games. Thus, one of the future work is to achieve a subgame-perfect equilibrium in
our framework. For the one-shot game, a stronger solution concept, strict Nash equilibrium, was
achieved in the previous work [21]. Another future work is to explore the possibility of the mech-
anism of repeated games for other cryptographic primitives. Since a repeated game models a
long-term relationship, the mechanism may be applied to cryptographic protocols by considering a
long-term relationship.
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