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Abstract. At CT-RSA 2017, List and Nandi proposed two variable input length
pseudorandom functions (VI-PRFs) called PMACx and PMAC2x, and a deterministic
authenticated encryption scheme called SIVx. These schemes use a tweakable block
cipher (TBC) as the underlying primitive, and are provably secure up to the query
complexity of 2n, where n denotes the block length of the TBC. In this paper, we
falsify the provable security claims by presenting concrete attacks. We show that
with the query complexity of O(2n/2), i.e., with the birthday complexity, PMACx,
PMAC2x, and SIVx are all insecure.
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1 Introduction
There are several ways to construct a message authentication code (MAC), a pseudorandom
function (PRF), or an authenticated encryption with associated data (AEAD) scheme,
and a block cipher like AES has been used as one of the main building blocks. In other
words, MACs, PRFs, and AEAD schemes can be constructed as a mode of operation of
a block cipher. A tweakable block cipher (TBC), put forward by Liskov, Rivest, and
Wagner [LRW11], is a generalization of a block cipher that takes additional input called a
tweak. It turns out that a TBC is a useful building block to design efficient MACs, PRFs,
and AEAD schemes that have high security, particularly in light of the recent development
of efficient TBCs, such as Deoxys and Joltik [JNP14], and SKINNY [BJK+16].

Let n be the block length in bits of a block cipher or a TBC. A MAC, a PRF, or an
AEAD scheme that are secure up to the 2n/2 query complexity are often called to be upBB
(up to the birthday bound) secure, while a scheme that remains secure beyond 2n/2 query
complexity is often called to have BBB (beyond the birthday bound) security.

At CT-RSA 2017, List and Nandi proposed variable input length PRFs (VI-PRFs)
called PMACx and PMAC2x [LN17], based on the work of Naito [Nai15]. These PRFs
use a TBC as the underlying primitive, and are provably BBB secure up to the query
complexity of 2n. The output length of PMAC2x is 2n bits and that of PMACx is n bits.
Based on PMAC2x, List and Nandi also proposed a provably BBB secure deterministic
AEAD scheme (DAE) called SIVx [LN17].

In this paper, we show that with the query complexity of O(2n/2), PMACx, PMAC2x,
and SIVx are all insecure, falsifying the provable security claims. We show that there exist
distinguishing attacks against them. We also show that there exist forgery attacks against
SIVx. Our attacks on PMACx and PMAC2x exploit the fact that two different tweak
values are used to process the last input block depending on its length. In these schemes,
the input is padded if the length is not a positive multiple of n bits, otherwise it is not
padded. This minimizes the number of TBC calls.
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Table 1: Summary of our results. In the table, n is the block length of the underlying
TBC and q is the number of queries. The attacks against PMACx and PMAC2x are
distinguishing attacks. We have both distinguishing and forgery attacks against SIVx.

Scheme Type Provable security bound Attack complexity

PMACx PRF O(q2/22n + q3/23n) [LN17] q = O(2n/2) [Sect. 3.2]
PMAC2x PRF O(q2/22n + q3/23n) [LN17] q = O(2n/2) [Sect. 3.1]
SIVx DAE O(q2/22n + q3/23n) [LN17] q = O(2n/2) [Sect. 5]

While conceptually similar techniques have been employed in upBB-secure block cipher-
based MACs [BR00, IK03], for the case of PMACx and PMAC2x, this creates security
issues that allow the birthday complexity distinguishing attack. The same distinguishing
attack applies to SIVx, and the distinguishing attack can be translated into a forgery
attack. Furthermore, we point out that SIVx allows more flexible attacks. See Table 1 for
the summary of our results.

We note that other related schemes like PMAC_Plus [Yas11], PMAC_TBC1k [Nai15],
and PMAC_TBC3k [Nai15] do not use this type of padding method and do not have the
security issue presented in this paper.

2 PMACx and PMAC2x

We first fix notation. Let {0, 1}∗ be the set of all finite bit strings, and for an integer i ≥ 0, let
{0, 1}i be the set of all bit strings of i bits. We write ({0, 1}n)+ to denote the set of all finite
bit strings of length positive multiple of n. For a bit string X, let |X| be its length in bits.
We write ε for the empty string. Let n be a block length and let Ẽ : K×T ×{0, 1}n → {0, 1}n

be a tweakable block cipher (TBC), where K is a non-empty set of keys and T is a non-
empty set of tweaks, and for any (K, TW ) ∈ K×T , Ẽ(K, TW , ·) = ẼTW

K (·) is a permutation
over {0, 1}n. We assume that T = {0, 1, 2, 3} × {0, 1}t for t = n− 2, and for instance we
write C ← Ẽ0,i

K (M) to mean C is a ciphertext block of M under key K and tweak (0, i),
where i is naturally encoded as a t-bit string. Let 0i ∈ {0, 1}i be the i-bit string of all
zero, and for two bit strings X and Y , let X ‖Y or simply XY be their concatenation.
For a bit string X, let (X[1], . . . , X[m]) n← X be a parsing operation into n-bit blocks.
If X 6= ε, then X[1], . . . , X[m] are unique bit strings such that X[1] ‖ · · · ‖X[m] = X,
|X[i]| = n for 1 ≤ i ≤ m− 1, and 1 ≤ |X[m]| ≤ n. If X = ε, then we let X[1] n← X where
X[1] = ε. The set of n-bit strings {0, 1}n is regarded as the finite field with 2n elements
GF(2n), and for two elements X, Y ∈ GF(2n), X · Y denotes their multiplication with
some irreducible polynomial. We often consider the case where X is a generator X = 2,
e.g., 2 · Y . For a bit string X s.t. 0 ≤ |X| ≤ n− 1, we define the one-zero padding function
as ozp(X) = X ‖ 10n−|X|−1. For X ∈ {0, 1}n and integer 0 ≤ i ≤ n, let msbi(X) denote
the first (leftmost) i bits of X and lsbi(X) denote the last (rightmost) i bits of X.

With the above notation, PMACx is a keyed function that uses Ẽ as the underlying
primitive. Let PMACx[Ẽ] : K × {0, 1}∗ → {0, 1}n be PMACx with Ẽ. It takes arbitrary
length M ∈ {0, 1}∗ as input, and outputs an n-bit string T . We write T ← PMACx[ẼK ](M)
instead of T ← PMACx[Ẽ](K, M). Similarly, let PMAC2x[Ẽ] : K × {0, 1}∗ → {0, 1}2n be
PMAC2x with Ẽ. It takes M ∈ {0, 1}∗ as input and outputs a 2n-bit string (U, V ), and
we write (U, V )← PMAC2x[ẼK ](M). They are defined in Fig. 1 and illustrated in Fig. 2
and in Fig. 3.
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Algorithm PHASHx[ẼK ](M)

1. X[0]← 0n, Y [0]← 0n

2. (M [1], . . . , M [m]) n←M

3. for i = 1 to m− 1 do
4. Z[i]← Ẽ0,i

K (M [i])
5. X[i]← X[i− 1]⊕ Z[i]
6. Y [i]← 2 · (Y [i− 1]⊕ Z[i])
7. if |M [m]| = n then
8. Z[m]← Ẽ0,m

K (M [m])
9. else

10. Z[m]← Ẽ1,m
K (ozp(M [m]))

11. X ← X[m− 1]⊕ Z[m]
12. Y ← 2 · (Y [m− 1]⊕ Z[m])
13. return (X, Y )

Algorithm PMAC2x[ẼK ](M)

1. (X, Y )← PHASHx[ẼK ](M)
2. X̂ ← msbt(X)
3. Ŷ ← msbt(Y )
4. U ← Ẽ2,Ŷ

K (X)
5. V ← Ẽ3,X̂

K (Y )
6. return (U, V )

Algorithm PMACx[ẼK ](M)

1. (U, V )← PMAC2x[ẼK ](M)
2. T ← U ⊕ V

3. return T

Figure 1: Definitions of PMAC2x and PMACx
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Ẽ1,m
K

PHASHx[EK ](M)

Figure 2: Illustration of PMAC2x. If |M [m]| = n, then we let Z[m] ← Ẽ0,m
K (M [m]).

Otherwise we let Z[m]← Ẽ1,m
K (ozp(M [m])). The output of PHASHx[ẼK ](M) is (X, Y ).

3 Attacks against PMACx and PMAC2x
3.1 Attack against PMAC2x
We present our attack against PMAC2x. Let O be an oracle which is either PMAC2x[ẼK ]
or a random function oracle, which we write $-oracle, that always returns a 2n-bit random
string. According to [LN17], these two oracles are hard to distinguish unless the number
of queries is close to 2n. However, we show that with a high probability, the adversary can
distinguish between PMAC2x[ẼK ] and the $-oracle with 2n/2 queries.

For a set of bit strings {X1, . . . , Xq} for some q ≥ 1, where Xi ∈ {0, 1}∗, we say that
{X1, . . . , Xq} is distinct to mean Xi 6= Xj holds for all 1 ≤ i < j ≤ q.
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Figure 3: Illustration of PMACx
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Figure 4: Our attack against PMAC2x. The left figure illustrates Step 1 and the right
one illustrates Step 2. We see that the collision between the two red circles implies both
Xi = X ′j and Yi = Y ′j .

Now let Q = 2n/2−1, and let M1, . . . , MQ be arbitrary bit strings such that |Mi| = n
for all 1 ≤ i ≤ Q and {M1, . . . , MQ} is distinct. Similarly, let M ′

1, . . . , M ′
Q be arbitrary

bit strings such that 1 ≤ |M ′
j | < n for all 1 ≤ j ≤ Q and {M ′

1, . . . , M ′
Q} is distinct. Our

adversary works as follows. See Fig. 4.

1. For i = 1, . . . , Q, query Mi to O and obtain (Ui, Vi)← O(Mi).

2. For j = 1, . . . , Q, query M ′
j to O and obtain (U ′j , V ′j )← O(M ′

j).

3. Search for a collision between {(U1, V1), . . . , (UQ, VQ)} and {(U ′1, V ′1), . . . , (U ′Q, V ′Q)}.

4. If a collision is found, i.e., if (Ui, Vi) = (U ′j , V ′j ) holds for some (i, j) ∈ {1, . . . , Q}2,
then O is PMAC2x[ẼK ]. Otherwise O is a $-oracle.

We next show that the above attack succeeds in distinguishing between PMAC2x[ẼK ]
and the $-oracle with a high probability.
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Case O = $-oracle. In this case, for each (i, j) ∈ {1, . . . , Q}2, we have Pr[(Ui, Vi) =
(U ′j , V ′j )] = 1/22n and the probability to find a collision in Step 3 is negligibly small, which
is Θ(Q2/22n) = Θ(1/2n).

Case O = PMAC2x[ẼK ]. In this case, for Mi and M ′
j , let

Xi = Ẽ0,1
K (Mi) ,

Yi = 2 ·Xi ,

X ′j = Ẽ1,1
K (ozp(M ′

j)) , and
Y ′j = 2 ·X ′j .

We have (Xi, Yi) = PHASHx[ẼK ](Mi) and (X ′j , Y ′j ) = PHASHx[ẼK ](M ′
j). See Fig. 4.

Now we assume that ẼK is perfectly secure, i.e., it behaves ideally. This implies that
X1, . . . , XQ are non-repeating n-bit random strings, as they are outputs of a random
permutation over {0, 1}n specified by the tweak (0, 1). Similarly, X ′1, . . . , X ′Q are non-
repeating n-bit random strings which are outputs of a random permutation specified by
the tweak (1, 1). Then the probability of collision Xi = X ′j for some Xi ∈ {X1, . . . , XQ}
and X ′j ∈ {X ′1, . . . , X ′Q} is at least 0.6 ·Q2/2n. See for instance [NS90], or [BDJR97] for
the closely related derivation of the probability.

Once Xi = X ′j holds for some (i, j) ∈ {1, . . . , Q}2, we also have Yi = Y ′j , and thus
(Ui, Vi) = (U ′j , V ′j ) holds as well.

Therefore, the attack succeeds with a high probability. More precisely, the advantage
in distinguishing the two oracles is at least 0.6 ·Q2/2n − 1/2n.

3.2 Attack against PMACx
We next consider PMACx. Let O be an oracle which is either PMACx[ẼK ] or a $-oracle,
where this time the $-oracle always returns an n-bit random string. The above attack
cannot be directly applied on PMACx, since the probability of a collision for the $-oracle is
not small for 2n/2 queries. However, we can generalize the above attack to break PMACx
as follows.

Let Q = 2n/2−1, and we fix M [1] and M ′[1] s.t. M [1] 6= M ′[1] and |M [1]| = |M ′[1]| = n
arbitrarily. Let M1[2], . . . , MQ[2], M ′

1[2], . . . , M ′
Q[2] be arbitrary bit strings s.t. |Mi[2]| = n

for all 1 ≤ i ≤ Q, {M1[2], . . . , MQ[2]} is distinct, 1 ≤ |M ′
j [2]| < n for all 1 ≤ j ≤ Q, and

{M ′
1[2], . . . , M ′

Q[2]} is distinct. Now our adversary works as follows. See Fig. 5.

1. For i = 1, . . . , Q, query Mi = (M [1], Mi[2]) to O and obtain Ti ← O(Mi).

2. For j = 1, . . . , Q, query M ′
j = (M [1], M ′

j [2]) to O and obtain T ′j ← O(M ′
j).

3. Search for a collision between {T1, . . . , TQ} and {T ′1, . . . , T ′Q}.

4. Suppose that a collision is found, and suppose that Ti = T ′j holds for (i, j) ∈
{1, . . . , Q}2.

5. For (i, j) found in Step 4, query MQ+1 = (M ′[1], Mi[2]) and M ′
Q+1 = (M ′[1], M ′

j [2])
to O, and obtain TQ+1 ← O(MQ+1) and T ′Q+1 ← O(M ′

Q+1).

6. If TQ+1 = T ′Q+1, then O is PMACx[ẼK ]. Otherwise O is a $-oracle.

We show that the above attack succeeds in distinguishing between PMACx[ẼK ] and
the $-oracle.
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Figure 5: Our attack against PMACx. The attack makes use of a collision between Zi[2]
and Z ′j [2], which are highlighted with the red circles. Both M [1]’s in the left and right
figures are kept constant during Steps 1 and 2, which are later changed to M ′[1] in Step 5.

Case O = $-oracle. In this case, with a high probability, we find (i, j) ∈ {1, . . . , Q}2 in
Step 4, but for the corresponding TQ+1 and T ′Q+1 in Step 5, we have Pr[TQ+1 = T ′Q+1] =
1/2n.

Case O = PMACx[ẼK ]. We follow the notation in Fig. 5, i.e., for Mi and M ′
j , let

Z[1] = Ẽ0,1
K (M [1]) ,

Zi[2] = Ẽ0,2
K (Mi[2]) , and

Z ′j [2] = Ẽ1,2
K (ozp(M ′

j [2])) .

Let (Xi, Yi) = PHASHx[ẼK ](Mi) and (X ′j , Y ′j ) = PHASHx[ẼK ](M ′
j). We have Xi =

Z[1]⊕ Zi[2], Yi = 4 · Z[1]⊕ 2 · Zi[2], X ′j = Z[1]⊕ Z ′j [2], and Y ′j = 4 · Z[1]⊕ 2 · Z ′j [2].
Then it holds that

PHASHx[ẼK ](Mi)⊕ PHASHx[ẼK ](M ′
j) = (Zi[2]⊕ Z ′j [2], 2 · (Zi[2]⊕ Z ′j [2])) .

Here, Z1[2], . . . , ZQ[2] are Q non-repeating n-bit random strings, and Z ′1[2], . . . , Z ′Q[2] are
also Q non-repeating n-bit random strings. Then as in the attack against PMAC2x, with
a high probability, we have (i, j) ∈ {1, . . . , Q}2 such that Zi[2]⊕ Z ′j [2] = 0n, in which case
we have PHASHx[ẼK ](Mi)⊕ PHASHx[ẼK ](M ′

j) = (0n, 0n). We see that changing M [1] to
M ′[1] does not prevent having a collision, and we always have TQ+1 = T ′Q+1 in Step 7.

Therefore, the attack succeeds with a high probability, as the distinguishing advantage
is at least 0.6 ·Q2/2n − 1/2n.

3.3 Remarks on the Attacks against PMACx and PMAC2x
3.3.1 Messages Can Be Longer

We first remark that M [1] and M ′[1] in the attack of PMACx can be longer. Specifically,
we can fix M [1], . . . , M [m−1] ∈ {0, 1}n arbitrarily, and then perform Steps 1–4 in Sect. 3.2
using Mi = (M [1], . . . , M [m− 1], Mi[m]) and M ′

j = (M [1], . . . , M [m− 1], M ′
j [m]) to find

a collision, and then substitute M [1], . . . , M [m − 1] with M ′[1], . . . , M ′[m − 1], where
(M [1], . . . , M [m− 1]) 6= (M ′[1], . . . , M ′[m− 1]), to perform Steps 6 and 7.



Kazuhiko Minematsu and Tetsu Iwata 7

The same is true for PMAC2x. We may fix M [1], . . . , M [m− 1] ∈ {0, 1}n arbitrarily,
and then perform Steps 1–4 in Sect. 3.1 using Mi = (M [1], . . . , M [m − 1], Mi[m]) and
M ′

j = (M [1], . . . , M [m− 1], M ′
j [m]) to find a collision.

3.3.2 Almost Universal Forgery

The above remark about PMACx suggests that an almost universal forgery is possible.
Here the almost universal forgery is a type of forgery where the adversary is given
M∗ ∈ {0, 1}∗, and the goal is to output (M∗ ‖S, T ∗) for some S ∈ {0, 1}∗, where T ∗ =
PMACx[ẼK ](M∗ ‖S), without making a query M∗ ‖S, i.e., the adversary is requested to
produce a correct output for an input that has M∗ as the prefix.

This is possible simply by using ozp(M∗) as M ′[1], . . . , M ′[m− 1] in the above remark,
where we define ozp(X) = X ‖ 10n−(|X| mod n)−1 when |X| ≥ n. Specifically, after obtaining
colliding Mi[m] and M ′

j [m] in Steps 1–4, the adversary makes a query ozp(M∗) ‖Mi[m] to
obtain TQ+1, and the forgery is (ozp(M∗) ‖M ′

j [m], TQ+1). Since |ozp(M∗)| is a multiple
of n, Mi[m] and M ′

j [m] are again used as the last input blocks, and thus the forgery is
always accepted.

It is straightforward to see that the almost universal forgery is possible against PMAC2x
by following the attack in Sect. 3.3.1 that uses a collision of Mi = (M [1], . . . , M [m −
1], Mi[m]) and M ′

j = (M [1], . . . , M [m− 1], M ′
j [m]) for m ≥ 2.

3.3.3 More Colliding Input Pairs

In the attack against PMACx in Sect. 3.2, once we obtain a colliding input pair Mi =
(M [1], Mi[2]) and M ′

j = (M [1], M ′
j [2]) in Steps 1–4, we obtain another colliding input pair

MQ+1 = (M ′[1], Mi[2]) and M ′
Q+1 = (M ′[1], M ′

j [2]). It is easy to see that more colliding
input pairs can be obtained by changing M ′[1].

It is also easy to see that more colliding input pairs can be obtained in PMAC2x by
following the attack mentioned in Sect. 3.3.1.

4 SIVx
SIVx is a deterministic AEAD (DAE for short) scheme that uses a PRF and an IV-
based encryption scheme called IVCTRT proposed by Peyrin and Seurin [PS16]. These
two functions are composed in the same way as SIV [RS06]. Both functions use a
tweakable block cipher, Ẽ : K × T × {0, 1}n → {0, 1}n. Following [LN17], we assume that
T = {0, 1, 2, . . . , 7} × {0, 1}t for t = n − 4, although t = n − 3 is sufficient. The PRF
internally used in SIVx takes (A, M) ∈ ({0, 1}∗)2 as a vector input to produce a 2n-bit
tag. Although this vector-input PRF is based on PMAC2x, and in fact [LN17] called
it PMAC2x, the specification is crucially different. To distinguish them we here write
vPMAC2x to denote the PRF inside SIVx.

Now, vPMAC2x applies PHASH to A and M in parallel, using different tweak sets,
and taking XOR of two PHASH outputs, then performs the same final processing as in
the original PMAC2x to output a 2n-bit tag T . For encryption, IVCTRT takes T as its
IV and performs additive encryption for M . SIVx is defined in Fig. 6, and vPMAC2x is
illustrated in Fig. 7. The encryption algorithm SIVx[ẼK ](·, ·) takes associated data (AD)
A and a plaintext M as input and outputs a ciphertext C and a tag T . The decryption
algorithm SIVx[ẼK ]−1(·, ·, ·) takes A, C, T as the input and outputs M or ⊥ indicating
that the input is invalid.

In our attacks, we will use the fact that IVCTRT encrypts M additively, but we remark
that further details of IVCTRT are irrelevant to our attacks.
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Algorithm SIVx[ẼK ](A, M)

1. T ← vPMAC2x[ẼK ](A, M)
2. IV ← (msbt(T ) ‖ lsbn(T ))
3. C ← IVCTRT[ẼK ](IV, M)
4. return (C, T )

Algorithm SIVx−1[ẼK ](A, C, T )

1. IV ← (msbt(T ) ‖ lsbn(T ))
2. M ← IVCTRT−1[ẼK ](IV, C)
3. T̂ ← vPMAC2x[ẼK ](A, M)
4. if T̂ = T then return M

5. else return ⊥

Algorithm vPMAC2x[ẼK ](A, M)

1. (XA, Y A)← PHASHx4,5[ẼK ](A)
2. (XM , Y M )← PHASHx6,7[ẼK ](M)
3. X ← XA ⊕XM

4. Y ← Y A ⊕ Y M

5. X̂ ← msbt(X)
6. Ŷ ← msbt(Y )
7. U ← Ẽ2,Ŷ

K (X)
8. V ← Ẽ3,X̂

K (Y )
9. T ← (U ‖V )
10. return T

Algorithm IVCTRT[ẼK ](IV, M)

1. I ← msbt(IV ), J ← lsbn(IV )
2. (M [1], . . . , M [m]) n←M

3. for i = 1 to m− 1 do
4. C[i]← Ẽ

1,I+(i−1)
K (J)⊕M [i]

5. S[m]← Ẽ
1,I+(m−1)
K (J)

6. C[m]← msb|M [m]|(S[m])⊕M [m]
7. C ← (C[1] ‖ · · · ‖C[m])
8. return C

Algorithm IVCTRT−1[ẼK ](IV, C)

1. M ← IVCTRT[ẼK ](IV, C)
2. return M

Figure 6: Definition of SIVx, following the description of [LN17]. In the above definition,
PHASHxi,j [ẼK ] is a variant of PHASHx[ẼK ] defined in Fig. 1 where Ẽi,∗

K and Ẽj,∗
K are

used instead of Ẽ0,∗
K and Ẽ1,∗

K . We note that vPMAC2x[ẼK ](A, M) above was written as
PMAC2x[ẼK ](A, M) by List and Nandi. We also note that there are two inconsistencies
in the pseudocode and the figure of [LN17]. First, in vPMAC2x, the tweak value (4, 5) is
used for A and (6, 7) used for M in the pseudocode, however, this is swapped in the figure.
Second, the finalization of vPMAC2x in the figure of [LN17] uses X and Y as the block
inputs to TBC. However, XM and Y M are used in the corresponding pseudocode. Our
definition follows the figure.

5 Attacks against SIVx
5.1 Padding Attack against SIVx
Before describing our attacks, we briefly describe the privacy and authenticity notions
for DAE [RS06]. Let SIVx[ẼK ] and SIVx−1[ẼK ] be the encryption and decryption oracles
of SIVx defined as Fig. 6. The privacy notion is the indistinguishability of two games,
Oe = SIVx[ẼK ] and Oe = $-oracle, using non-repeating encryption queries to Oe. Here,
the $-oracle returns a random string of length |M | + 2n bits on query (A, M). The
authenticity notion is the probability of successful forgery, using encryption queries to
Oe = SIVx[ẼK ] and decryption queries to Od = SIVx−1[ẼK ]. Here, a forgery means an
answer from SIVx−1[ẼK ] which is not ⊥, and we exclude queries leading to a trivial win
(e.g. a decryption query (A, C, T ) after an encryption query (A, M) and the corresponding
answer (C, T )). A break of privacy notion means a high advantage (the absolute difference
in the probabilities of decision that Oe is SIVx[ẼK ] after queries) in distinguishing two
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Ẽ6,1
K Ẽ6,2
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K
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Ẽ4,1
K Ẽ4,2
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Ẽ6,m
K
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Ẽ7,m
K

A[a]

Ẽ4,a
K

A[a] ‖ 10∗

Ẽ5,a
K

Figure 7: vPMAC2x, the PRF of SIVx

games. A break of authenticity notion means a high probability in a successful forgery.
We also say a distinguishing attack to mean an attack against the privacy notion, and a
forgery attack to mean an attack against the authenticity notion.

We first point out that the attack presented in Sect. 3.1, which exploits the padding,
also works on SIVx. For attacking the privacy notion, we let Q = 2n/2−1 and fix arbitrary
M ∈ {0, 1}∗, A ∈ ({0, 1}n)+, A1, . . . , AQ, and A′1, . . . , A′Q, where |Ai| = n, {A1, . . . , AQ}
is distinct, 1 ≤ |A′j | < n, and {A′1, . . . , A′Q} is distinct. After making 2Q queries of
((A, A1), M), . . . , ((A, AQ), M) and ((A, A′1), M), . . . , ((A, A′Q), M) to Oe, the adversary
obtains (C1, T1), . . . , (CQ, TQ) and (C ′1, T ′1), . . . , (C ′Q, T ′Q). With a high probability, we find
a collision between {T1, . . . , TQ} and {T ′1, . . . , T ′Q} which is not the case for a $-oracle.

Similarly, forgery attacks are possible. After finding colliding Ti and T ′j with the above
distinguishing attack, with the corresponding ((A, Ai), M) and ((A, A′j), M), the adversary
replaces A by any A′ s.t. A′ 6= A and |A′| = |A|, makes a query ((A′, Ai), M) to Oe to
obtain (C ′, T ′), and then sends a forgery ((A′, A′j), C ′, T ′) to Od. The forgery is always
accepted.

Therefore, there exist attacks against SIVx with a query complexity of O(2n/2) for
both privacy and authenticity notions.

5.2 Another Attack against SIVx
We next present a set of attacks different from that of Sect. 5.1. These attacks have the
same complexity as before, however, they do not rely on the flaw of the padding, and are
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more flexible for the input blocks to be modified. We first describe a distinguishing attack.

Overview of the Attack for the Case a = m. Starting with initial AD of a blocks and
an initial plaintext of m blocks, where a = m, we alter the last block in the AD and that
in the plaintext at the same time. The first a− 1 blocks of AD and the plaintexts are kept
constant, and we make Q = 2n/2 of such queries, each with a different value for the last
AD and plaintext blocks. The i-th query (Ai, Mi) is of the form{

Ai = (A[1], . . . , A[a− 1], 〈i〉)
Mi = (M [1], . . . , M [a− 1], 〈i〉)

where i = 1, . . . , Q, 〈i〉 is the n-bit encoding of i, and A[1], . . . , A[a− 1], M [1], . . . , M [a− 1]
are fixed. We are then going to look for a pair of queries that share the same value for
T . If we find such a pair, it means that we have distinguished SIVx from an ideal AEAD
scheme.

This attack works for the reason below. We observe that if the two distinct queries
have the same value of X and Y , then we also have the same value of T . Let Xi, Yi, and
Ti be the values of X, Y , and T for the i-th query (Ai, Mi), respectively. We also use the
same notation for other internal variables.

Now consider two queries (Ai, Mi) and (Aj , Mj) for distinct i, j ∈ {1, . . . , Q}. In order
to have Xi = Xj , we need the XOR difference between Ẽ4,a

K (〈i〉) and Ẽ4,a
K (〈j〉) to be the

same as the XOR difference between Ẽ6,a
K (〈i〉) and Ẽ6,a

K (〈j〉). See Fig. 8 illustrating the
XOR difference of internal variables for (Ai, Mi) and (Aj , Mj). If the differences are the
same, then they will cancel out, and we have Xi = Xj . The probability of this event is
about 2−n per pair of queries, thus with Q = 2n/2 queries, we have a good chance of seeing
a pair for which Xi = Xj is true.

We see that once Xi = Xj holds, then this implies Yi = Yj , and hence we have Ti = Tj ,
which is unlikely to hold for the case of an ideal AEAD scheme.

Concrete Attack for the Case a = m. We now present the concrete attack below.
Recall that 〈i〉 is the n-bit encoding of i, and we let Q = 2n/2.

1. Fix (A[1], . . . , A[a−1]) ∈ ({0, 1}n)+ and (M [1], . . . , M [m−1]) ∈ ({0, 1}n)+ arbitrarily,
where a = m.

2. For i = 1, . . . , Q, let Ai = (A[1], . . . , A[a− 1], 〈i〉) and Mi = (M [1], . . . , M [a− 1], 〈i〉),
and query (Ai, Mi) to Oe to obtain (Ci, Ti)← Oe(Ai, Mi).

3. Search for a collision among {T1, . . . , TQ}.

4. If a collision is found, i.e., if Ti = Tj holds for some distinct i, j ∈ {1, . . . , Q}, then
Oe is SIVx[ẼK ].

Let us analyze the success probability of the above attack.

Case Oe = $-oracle. In this case, for any distinct i, j ∈ {1, . . . , Q}, we have Pr[Ti =
Tj ] = 1/22n and the probability to find a collision in Step 4 is Θ(Q2/22n) = Θ(1/2n).

Case Oe = SIVx[ẼK ]. For any distinct i, j ∈ {1, . . . , Q}, we have

Xi ⊕Xj = ZA
i [a]⊕ ZA

j [a]⊕ ZM
i [a]⊕ ZM

j [a]

= Ẽ4,a
K (〈i〉)⊕ Ẽ4,a

K (〈j〉)⊕ Ẽ6,a
K (〈i〉)⊕ Ẽ6,a

K (〈j〉) ,

Yi ⊕ Yj = 2 · ZA
i [a]⊕ 2 · ZA

j [a]⊕ 2 · ZM
i [a]⊕ 2 · ZM

j [a]
= 2 · (Xi ⊕Xj) ,
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j [a]
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M [1]⊕M [1] M [2]⊕M [2]

Ẽ6,a
K

Figure 8: The attack against SIVx. The figure illustrates the XOR difference of internal
variables for (Ai, Mi) and (Aj , Mj). A[1], . . . , A[a− 1], M [1], . . . , M [a− 1] are fixed, and
the red lines indicate the zero difference.

and the probability of Xi ⊕Xj = 0n for some 1 ≤ i < j ≤ Q is not small, assuming ẼK

is ideal as in the previous attacks. In more detail, for two independent n-bit random
permutations P1 = Ẽ4,a

K and P2 = Ẽ6,a
K , we observe that finding a collision in {X1, . . . , XQ}

is equivalent to finding a collision on the outputs of a function defined as x→ P1(x)⊕P2(x),
i.e., the sum of two permutations which we call SUM2. We write p1(q) to denote the
maximum probability of finding a collision for SUM2 using (possibly adaptive) q queries.
What we need is a lower bound of p1(Q). By replacing the function x→ P1(x)⊕ P2(x)
with a random function R : {0, 1}n → {0, 1}n, the above task is reduced to finding a
collision on the output of R. Let p2(q) be the maximum probability of finding a collision
for R with q queries. Then |p1(q)− p2(q)| is no greater than the distinguishing advantage
between SUM2 and R, which is at most q3/(3 · 22n−1) from Lucks [Luc00]. Therefore,
p1(q) ≥ p2(q)−q3/(3 ·22n−1) holds. Now it is standard that p2(q) is at least 0.3 ·q(q−1)/2n.
See for instance [BDJR97]. Therefore, p1(q) is at least about 0.3− 1/2n/2 when q = 2n/2.

Extensions. We next present extensions of the above mentioned attack so that the AD
and the plaintext can be different in length, and the blocks to alter do not have to be the
last ones.

We start with AD of a blocks and a plaintext of m blocks, and alter the s-th block in
the AD and the t-th block in the plaintext at the same time, where a− s = m− t. Other
blocks are fixed arbitrarily. So the i-th query (Ai, Mi) is of the form{

Ai = (A[1], . . . , A[s− 1], Ai[s], A[s + 1], . . . , A[a]) ,

Mi = (M [1], . . . , M [t− 1], Mi[t], M [t + 1], . . . , M [m]) ,

where i = 1, . . . , Q, Ai[s] = Mi[t] = 〈i〉, A[1], . . . , A[s−1], A[s+1], . . . , A[a], M [1], . . . , M [t−
1], M [t + 1], . . . , M [m] ∈ {0, 1}n are fixed arbitrarily, and we let Q = 2n/2. We make Q
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Figure 9: Our attack against SIVx. a and m can be different, and this figure assumes
|A[a]| = |M [m]| = n. Ai[s] = Mi[t] = 〈i〉, and all other blocks are fixed. s and t are chosen
to satisfy a− s = m− t.

queries and if we find a pair of queries that share the same value for T , then we decide
that the oracle is SIVx.

Now for two queries (Ai, Mi) and (Aj , Mj), we need the event Xi = Xj , and this time
we require that the XOR difference between the result of encrypting Ai[s] and Aj [s] to
be the same as the XOR difference between the result of encrypting Mi[t] and Mj [t]. See
Fig. 9 illustrating the data flow for the i-th query (Ai, Mi).

To have Yi = Yj , we have to make sure that s and t are equal number of blocks
before the end of AD and plaintext, respectively, which is maintained by the condition
a− s = m− t. Then, our differences are multiplied by the same number and so they also
cancel out.

More precisely, we have

Xi ⊕Xj = ZA
i [s]⊕ ZA

j [s]⊕ ZM
i [t]⊕ ZM

j [t]

= Ẽ4,s
K (〈i〉)⊕ Ẽ4,s

K (〈j〉)⊕ Ẽ6,t
K (〈i〉)⊕ Ẽ6,t

K (〈j〉) ,

Yi ⊕ Yj = 2a−s+1 · (ZA
i [s]⊕ ZA

j [s])⊕ 2m−t+1 · (ZM
i [t]⊕ ZM

j [t])
= 2a−s+1 · (Xi ⊕Xj) ,

where we used the condition that a− s = m− t. With the same reasoning as in the case
of a = m, we observe a collision in {T1, . . . , TQ}, and the attack succeeds with the same
probability as before.

These attacks are distinguishing attacks against the tagging function of SIVx that use
Q = 2n/2 encryption queries. Thus they break the privacy notion of SIVx.
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5.3 Extension to Forgery Attack
The above distinguishing attack is easily extended to a forgery attack. Suppose that the
adversary first performs the last attack of Sect. 5.2 to obtain (Ai, Mi) and (Aj , Mj) with
colliding tags, Ti and Tj , Ti = Tj for some i, j ∈ {1, . . . , Q}. We know that Ai and Aj only
differ in their s-th blocks, and Mi and Mj only differ in their t-th blocks. The adversary
then queries (A′, M ′) to the encryption oracle to obtain the response (C ′, T ′), where A′ is
obtained by changing Ai except for the s-th block, and M ′ is obtained by changing Mi

except for the t-th block, and keeping their lengths. Suppose that A′ = (A′pre‖Ai[s]‖A′post)
and M ′ = (M ′

pre‖Mi[t]‖M ′
post), where |A′pre| = n(s − 1) and |A′post| = n(a − s) and

|M ′
pre| = n(t − 1) and |M ′

post| = n(t − m). Then, the adversary can compute the key
stream, S′ = M ′⊕C ′. Finally the adversary queries (A′′, C ′′, T ′′) to the decryption oracle,
where 

A′′ = (A′pre‖Aj [s]‖A′post) ,

C ′′ = (M ′
pre‖Mj [t]‖M ′

post)⊕ S′ ,

T ′′ = T ′ .

The decryption oracle, SIVx−1[ẼK ], computes M ′′ = C ′′ ⊕ S′ = (M ′
pre‖Mj [t]‖M ′

post) as a
decrypted plaintext, and then computes T̂ ′′ = vPMAC2x[ẼK ](A′′, M ′′) of Fig. 6 to see if
T̂ ′′ = T ′′ holds, which is always true because the internal (X, Y ) value (i.e. the sum of
PHASHx outputs) will collide with that of query (A′, M ′). Hence the decryption oracle
always accepts this query, i.e., the answer is not ⊥, and the adversary wins.

Implication of the Attacks. The attacks in Sect. 5.2 and Sect. 5.3 use a collision with
the birthday complexity as in the attacks in Sect. 3 and in Sect. 5.1, and we here point
out that their implications are different. The attacks on PMACx and PMAC2x could be
avoided if we appropriately modify the padding method, which also avoids the attack of
Sect. 5.1 against vPMAC2x. However, the attacks in Sect. 5.2 and Sect. 5.3 indicate that
the weakness of SIVx cannot possibly be removed by merely changing the padding method,
and for this reason the design of SIVx is fundamentally flawed.

6 Discussions and Conclusions
In this paper, we showed that there are attacks against PMACx, PMAC2x, and SIVx with
the query complexity of O(2n/2).

We here discuss what went wrong with PMACx, PMAC2x, and SIVx. For PMACx and
PMAC2x, the critical flaw is in the XCBC/CMAC-like treatment of last message blocks in
PHASHx. This causes an output collision of PHASHx with probability 1/2n for a pair of
messages having specific forms in the last blocks. Unfortunately, the security proof given
in [LN17] does not cover this event. The event should be captured in Subcase 2 of Case 1
in the proof of [LN17, Theorem 1].

For SIVx, as it is based on PHASHx, the same problem remains. Moreover, vPMAC2x
in SIVx is different from PMAC2x as pointed out in Sect. 4, so that vPMAC2x can process
A and M in parallel, and the difference enables a different type of attacks of birthday
complexity. The paper [LN17] does not provide any specific analysis on this structure.

PMACx and PMAC2x are built on PMAC_TBC1k and PMAC_TBC3k designed
and proposed by Naito [Nai15], and List and Nandi pointed out that the security proof
of [Nai15] has issues, claiming a correct security proof. We note that the attacks presented
in this paper indicate that the proofs of List and Nandi still have issues, yet the erroneous
parts are different from the one that is related to the issue of [Nai15].
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We remark that PMAC_TBC1k and PMAC_TBC3k are not affected by our attacks as
they employ a different padding scheme. Finally, List and Nandi updated the specifications
of PMACx, PMAC2x, and SIVx in their ePrint version [LN16] of [LN17] as a response to
our attacks. Our attacks are not applicable to these updated specifications.
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