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Abstract. Recently, an increasing amount of papers proposing post-
quantum schemes also provide concrete parameter sets aiming for con-
crete post-quantum security levels. Security evaluations of such schemes
need to include all possible attacks, in particular those by quantum ad-
versaries. In the case of lattice-based cryptography, currently existing
quantum attacks are mainly classical attacks, carried out with quantum
basis reduction as subroutine.
In this work, we propose a new quantum attack on the learning with
errors (LWE) problem, whose hardness is the foundation for many mod-
ern lattice-based cryptographic constructions. Our quantum attack is
based on Howgrave-Graham’s Classical Hybrid Attack and is suitable
for LWE instances in recent cryptocraphic proposals. We analyze its run-
time complexity and optimize it over all possible choices of the attack
parameters. In addition, we analyze the concrete post-quantum security
levels of the parameter sets proposed for the New Hope and Frodo key
exchance schemes, as well as several instances of the Lindner-Peikert
encryption scheme. Our results show that – depending on the assumed
basis reduction costs – our Quantum Hybrid Attack either significantly
outperforms, or is at least comparable to all other attacks covered by Al-
brecht et al.’s work “On the concrete hardness of Learning with Errors”.
We further show that our Quantum Hybrid Attack improves upon the
Classical Hybrid Attack in the case of LWE with binary error.

Keywords: Public-key encryption, lattice-based cryptography, LWE,
quantum attack, hybrid attack.

1 Introduction

Over the past decade lattice-based cryptography [33] has proven to be one of the
most promising candidates for post-quantum cryptography. One of the reasons
for this is the seemingly strong resistance it has shown against quantum attacks.
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On top of this lattice-based cryptography has shown a wealth of applications
(e.g., [17,16,20,5,35,32,21]). The foundation for many recent lattice-based cryp-
tographic constructions is the Learning with Errors (LWE) problem [35,32,34],
which is provably as hard as worst-case lattice problems [35,9].

In order to evaluate the concrete post-quantum security levels of LWE-based
schemes, cryptanalisists must evaluate the best known algorithms to solve the
underlying LWE problem. This evaluation must not only consider classical at-
tacks, but attacks by adversaries with quantum computing power. So far the
only existing quantum attacks on LWE are generic attacks, in the sense that
they are classical attacks where the basis reduction subroutine is replaced by
quantum basis reduction.

In this work we present the first non-generic attack on LWE: the Quantum
Hybrid Attack. The attack is based on Howgrave-Graham’s Classical Hybrid At-
tack [22], which combines lattice-based techniques such as basis reduction [25,15]
with guessing techniques such as brute-force or meet-in-the-middle attack [6]
(MitM). In its original form the Classical Hybrid Attack was designed to break
the NTRU cryptosystem, but has recently been applied to instances of LWE with
highly structured error distributions such as binary or trinary errors [12,39].

From a technical point of view our algorithm replaces the MitM-phase with a
generalization of the Grover’s quantum search algorithm by Brassard et al. [10].
The idea to replace this phase by the Grover’s search algorithm [18] was sketched
in Schanck’s thesis [36], but is in its original form only practical for uniform
NTRU keys. A straightforward application of this idea to LWE Hybrid Attacks
would therefore only be practical for LWE with small uniform error. In contrast,
our attack is applicable for LWE with arbitrary error distribution and is par-
ticularly suitable for LWE instances in recent cryptographic proposals. This is
achieved by replacing Grover’s quantum search with the generalization by Bras-
sard et al. For example, the time to recover r coefficients of a vector following
the New Hope error distribution decreases from 22.52r with Grover’s algorithm
to 21.85r with the variant used for the new attack.

We also give a detailed analysis of the Quantum Hybrid Attack and optimize
the attack parameters selection. We apply the new attack to the LWE key-
exchange schemes New Hope [3] and Frodo [8], and the R-BinLWEenc [11] and
Lindner-Peikert [27] encryption schemes, and compare it to the runtimes estima-
tions for existing attacks given by the LWE estimator [2,37]. Depending on the
assumed basis reduction costs, our Quantum Hybrid Attack either significantly
outperforms, or is at least comparable to all other attacks covered by [2]. We
also show that our Quantum Hybrid Attack outperforms the Classical Hybrid
Attack in the case of LWE with binary errors.

1.1 Structure of the paper

The remainder of this paper is organized as follows. In Section 2 we introduce
lattice definitions and notations in order to explain the Classical Hybrid Attack
in Section 3. Then in Section 4 we explain our improved Quantum Hybrid Attack
for LWE instances with arbitrary secret and error distributions. We then analyze
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the runtime complexity and optimize it over the choice of the attack parameters
in Section 5. Lastly, in Section 6 we apply this runtime to concrete parameter
sets and compare it to existing attacks using the LWE simulator on common
key-exchange and encryption schemes.

Acknowledgement This work has been co-funded by the DFG as part of
project P1 within the CRC 1119 CROSSING and supported by the Netherlands
Organisation for Scientic Research (NWO) under grant 639.073.005.

2 Preliminaries

We denote vectors by bold lower case (e.g., a ∈ Zn) letters, matrices by bold
uppercase letters (e.g., A ∈ Zm×n) and probability distributions by upper case
letters (e.g., D). We use the notation Zq for the quotient ring Z/qZ. By a mod q
we indicate that each component of the vector is reduced modulo q to lie in the
interval [−

⌈
q
2
⌉
, q2 ).

For a probability distribution X, we write x $← X if an element x is sampled
according to X. For every element a in the support of X, we write xa := Pr[a =
b|b $← X]. We will specifically refer to the discrete Gaussian distribution Dσ as
the distribution such that

∀y ∈ Z : Pr[x = y|x $← Dσ] ∼ exp
(
− s2

2σ2

)
.

For a probabilistic algorithm A, x $← A assigns the outcome of one (random)
run of A to x.

The Learning with Errors (LWE) problem was introduced by Regev [35] and
has been the foundation of many cryptographic constructions [35,32,34] since.

Definition 1. Let n,m, q ∈ Z be positive integers and let De be a distribution
on Zm and Ds be a distribution on Zn. Let s $← Ds, A be chosen uniformly at
random from Zm×nq , e $← De, and b = As + e mod q. The LWE problem is the
problem of recovering s, given (A,b).

We now review some basic definitions for lattices (for a full survey see
e.g., [28]). Throughout this paper, we only consider full-ranked lattices. A set
Λ ⊂ Rm is called a lattice Λ in Rm if

Λ = Λ(B) :=
{

x ∈ Rm| x =
m∑
i=1

αibi, with αi ∈ Z

}
,

for some R-linearly independent set B = {b1, . . . ,bm} ⊂ Rm. Such a set B is
called a basis of the lattice Λ. The determinant det(Λ) of a lattice Λ is defined
as det(Λ) = |det(B)|, where B is some basis of Λ. This definition is independent
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of the choice of the basis. The Hermite delta δ of a basis B = (b1, . . . ,bm) is
defined via ‖b1‖ = δmdet(Λ)1/m.

Lattice-based cryptography is based on a variety of lattice problems that are
conjectured to be hard. In the following we list the problems relevant to this
work. The Shortest Vector Problem (SVP) is to find a shortest non-zero lattice
vector, given a basis of the lattice. The unique Shortest Vector Problem (uSVP) is
a variant of SVP with the additional promise that the shortest non-zero lattice
vector y is significantly shorter than all other lattice vectors that are not an
integral multiple of y. The Bounded Distance Decoding (BDD) problem is the
problem of given a basis of a lattice in Rm and a target vector t ∈ Rm that is
close to a lattice vector v, find the lattice vector v. In this work we assume that
the task is to find t− v instead of v, which is equivalently hard.

3 The Classical Hybrid Attack

In this section, we recap the approach of solving LWE problems with the Classical
Hybrid Attack, see e.g., [12,39]. The first step is to transform the LWE problem
instance A ∈ Zm×nq ,b = As + e ∈ Zmq , into a uSVP instance. The second step
is to then solve the resulting uSVP instance with the Hybrid Attack.

We use the following common approach [7] to transform a LWE problem into
uSVP. Consider the d-dimensional lattice

Λ = {x ∈ Zd : (A|Im| − b)x = 0 mod q},

where d = n + m + 1. With high probability, we have det(Λ) = qm [29]. Since
b = As + e, the vector v = (s, e, 1) ∈ Zd is a vector in the lattice Λ. Provided v
is sufficiently short (as in typical LWE instances), this leads to an uSVP problem
in the lattice Λ.

In order to apply the Hybrid Attack to the uSVP instance we need to compute
a basis B′ of Λ of the form

B′ =
(

B C
0 Ir

)
∈ Zd×d,

for some r ∈ N with r < m, n. Wunderer [39] showed that with high probability
a basis of Λ exists and can be found efficiently.

The main idea of the Hybrid Attack is to split the short vector v into two
parts v = (v`,vg) with v` ∈ Zd−r and vg ∈ Zr. With this notation it holds that

v =
(

v`
vg

)
= B′

(
x
vg

)
=
(

Bx + Cvg
vg

)
,

for some vector x ∈ Zd−r, which implies v` − Bx = Cvg. Note that Bx is a
lattice vector in the lattice spanned by B, and v` is a short vector. Consequently,
if vg is known, we can recover v` by solving BDD in the lattice spanned by B
with target vector Cvg. This idea results in the Hybrid Attack: loop through
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guesses for vg and check if a guess is correct (and if so recover v`) by solving the
corresponding BDD. To solve this problem Babai’s Nearest Plane algorithm [4]
is used. Nearest Plane runs in polynomial time, but in order to achieve a high
success probability it requires a lattice basis of sufficiently good quality, which
in turn has to be generated by a exponential time precomputation step (basis
reduction). This makes Nearest Plane suitable for the Hybrid Attack. For every
guess of vg we have to solve one instance of BDD. Every such instance is a BDD
in the same lattice spanned by B, only with a different target vector. However,
the most time-consuming step (basis reduction) of Nearest Plane is independent
of the target vector. Consequently, we can precompute a good basis of the lattice
spanned by B before looping over the possible guesses of vg. Therefore, we can
balance the time spend on basis reduction and on guessing values for vg to obtain
the optimal trade-off.

As was already shown by Howgrave-Graham [22], the guessing part of the at-
tack can be sped up using meet-in-the-middle techniques. However, this approach
has three main drawbacks. First, it is only practical for highly structured LWE
instances such as LWE with binary or trinary error distribution [39]. Second,
its memory requirements are huge [38]. Third, the probability that collisions are
actually recognized can be extremely small [39]. In this work, we show how the
guessing part can be sped up by using quantum search algorithms. Our Quantum
Hybrid Attack, outlined in the next section, eliminates all three drawbacks of
the meet-in-the-middle approach and thus enables the Hybrid Attack to handle
arbitrary error distributions of LWE.

4 The Quantum Hybrid Attack

We now introduce our new Quantum Hybrid Attack. The main idea is to use
quantum search algorithms to speed up the guessing part of the classical Hybrid
Attack. This section is structured as follows. We give a brief summary of Grover’s
quantum search algorithm in and its modified version developed by Brassard et
al. [10] in Section 4.1. In Section 4.2 we show how to use this quantum search
algorithm inside the Hybrid Attack to obtain a new Quantum Hybrid Attack.

4.1 Amplitude Amplification

In 1996, Grover presented a quantum algorithm that can speed up the search in
unstructured data bases [18]. Given a function f : S → {0, 1} for some finite set
S, we call Sf := {x ∈ {0, 1}d | f(x) = 1} the set of marked elements. Grover’s
algorithm allows to find an element x ∈ Sf in approximately π

4 ·
√
|S|/|Sf | eval-

uations of f (without any further knowledge about f), while classical algorithms
require an average number of evaluations in the order of |S|/|Sf |.

The runtime of Grover’s search algorithm is independent of how the marked
elements have been chosen. The drawback is that additional information about
the choice of the marked elements is not used. A generalization of Grover’s
search algorithm that can utilize the probability distribution on the search space
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was presented by Brassard et al. [10]. Their generalization uses an additional
algorithm A sampling from some distribution on the search space S.

Theorem 1 ([10], Theorem 3). There exists a quantum algorithm QSearch with
the following property. Let A be any quantum algorithm that uses no measure-
ments, and let f : S → {0, 1} be any Boolean function. Let a denote the initial
success probability of A (i.e., a = Pr[f(x) = 1, x $← A]). The algorithm QSearch
finds a good solution using an expected number of applications of A, A−1 and f
which are in Θ(1/

√
a) if a > 0, and otherwise runs forever.

Note that the complexity of the algorithm is only given asymptotically. This
is only necessary because the probability a is unknown. In Appendix A, we show
that the hidden constant is indeed small, and we can ignore the landau notation
in our runtime estimates.

Furthermore, it is important to note that every efficient sampling algorithm
A can be transformed into an efficient quantum algorithm without measurements
as needed by QSearch.

4.2 The Attack

We now describe our new Quantum Hybrid Attack (Algorithm 2). We use the
notation NPB(t) to indicate that Nearest Plane is called on the target vector t
and input basis B. Inputs for the Quantum Hybrid Attack are an LWE instance
(A,b) ∈ Zm×nq ×Zmq , the LWE error distribution De, and the attack parameters
r, δ. The algorithm first transforms the LWE instance into a uSVP instance
as described in Section 3 and then runs QSearch with the function defined by
Algorithm 1.

As we show in Section 5, it is not optimal to use the error distribution for
the sampling algorithm A to find the solution. Instead we use the following
transformed distribution.

Definition 2. Let X be an arbitrary distribution with support S. We write T (X)
for the distribution defined by

∀a ∈ S : Pr[a = b|b $← T (X)] = x
2
3
a∑

c∈S x
2
3
c

.

Our Quantum Hybrid Attack is presented in Algorithm 2.

5 Analysis

In this section, we analyze the runtime complexity of the Quantum Hybrid At-
tack and show how to minimize it over all choices of attack parameters.
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Algorithm 1: Function fA,b,B,C(wg)
1 w` ← NPB (Cwg);
2 Set (s′, e′, 1) = (w`,wg);
3 if As′ + e′ = b and s′, e′ are small then
4 return 1;
5 else
6 return 0;

Algorithm 2: Quantum Hybrid Attack
Input: LWE instance A ∈ Zm×n

q ,b ∈ Zm
q , error distribution De on Zm, attack

parameters δ ∈ R>1, r ∈ N, r < m, n
1 Let D be the distribution of the last r entries of the vector (x, 1), where

x $← De;
2 Set A to be a quantum algorithm without measuring for the distribution T (D);
3 Calculate basis B′ of lattice Λ = {x ∈ Zm+n+1 : (A|Im| − b)x = 0 mod q} of

form B′ =
(

B C
0 Ir

)
;

4 Perform basis reduction to reduce B to hermite delta δ;
5 Let v′g be the result of QSearch (Theorem 1) with function fA,b,B,C

(Algorithm 1) and quantum algorithm A;
6 return (NPB

(
v′g
)
,v′g);

5.1 Success Probability and Number of Function Applications

In the following, we show our main result about the runtime of our Quantum
Hybrid Attack.

Main Result. For an LWE instance (A,b = As + e), let the vectors v,v`,vg,
the matrices B,B′, the Distribution D, the algorithm A, and the parameters
n,m, q, d, r, δ be defined as in Sections 3 and 4.

The success probability p of the Quantum Hybrid Attack is approximately

p ≈
d−r∏
i=1

(
1− 2

B( (d−r)−1
2 , 1

2 )

∫ max(−ri,−1)

−1
(1− t2)

(d−r)−3
2 dt

)
,

where B(·, ·) denotes the Euler beta function (see [31]),

ri = Ri
2 ‖vl‖

for all i ∈ {1, . . . , d− r},

and R1, . . . , Rm−r denote the lengths of the Gram-Schmidt basis vectors corre-
sponding to the basis B.
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In case of success, the expected number of applications of f , A, and A−1 in
Algorithm 2 is Θ(L), where

L =

 ∑
x∈supp(D)

d
2
3
x

 3
2

.

Furthermore, the choice of the distribution for the sampling algorithm A in Al-
gorithm 4 is optimal.

We first determine the success probability of the attack. We then calculate
and optimize the number of applications of f , A, and A−1 and compare our
results with Grover’s search algorithm.

Success Probability If NPB (Cvg) = v`, we have fA,b,B,C(vg) = 1 with
overwhelming probability and QSearch recovers vg. An approximation of the
probability that NPB (Cvg) = v` is calculated in [12,39] and yields the suc-
cess probability given in Theorem 5.1. If the components of the LWE error are
distributed according to a discrete Gaussian distributions with standard devia-
tion σ, this approximation can be replaced by the simpler (and more efficiently
computable) formula

Pr [NPB (Cvg) = v`] =
d−r∏
i=1

erf
(
Ri
√

2
σ

)
(1)

given by Lindner and Peikert [27].

Number of Applications of f , A, and A−1 We now calculate the expected
number of applications of f , A and A−1 (simply called loops in the following)
in the Quantum Hybrid Attack in the case the attack is successful. We show
how the choice of the sampling algorithm A influences the number of loops, how
to minimize this number over all possible choices of A, and that our choice in
Algorithm 2 is in fact optimal. In the following, let S = supp(D) be a finite
set. The support S is the search space of our quantum algorithm. Let A be the
initial sampling algorithm used in the Quantum Hybrid Attack and A be the
distribution with support S corresponding to A. According to Theorem 1, for
a fixed target element x ∈ S the expected number of loops in the Quantum
Hybrid Attack is roughly (√ax)−1. However, since the marked element (and its
probability) is not known, we can only estimate the expected number of loops

L(A) = L ((ax)x∈S) =
∑
x∈S

dx√
ax
. (2)

In order to minimize the runtime of the quantum search we must determine the
optimal distribution A that minimizes the number of loops L(A). We emphasize
that minimizing the number of loops is of independent interest for any quantum
search algorithm based on [10] applied in a similar way as in our attack.
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Minimal number of loops. We first minimize the expected number of loops over
all possible choices of A. Without loss of generality we assume S = {1, . . . , k}
for some k ∈ N. We minimize the expected number of loops by minimizing the
function

L : (0, 1)k → R, (a1, . . . , ak) 7→
k∑
i=1

di√
ai
, (3)

in k variables a1, . . . , ak ∈ (0, 1) under the constraint

a1 + . . .+ ak = 1, (4)

where d1, . . . , dk ∈ (0, 1) are fixed. In order to minimize L under the constraints,
we define the Lagrange function corresponding to L and Equation (4)

L(λ, a1, . . . , ak) =
(

k∑
i=1

di√
ai

)
+ λ

(
−1 +

k∑
i=1

ai

)
. (5)

To find the minimum of L we need to solve the following set of k + 1 equations

[Ei]i∈{1,...,k} 0 = Lai(λ, a1, . . . , ak) = −di2 a
− 3

2
i + λ

[Ec] a1 + . . .+ ak = 1,

which gives

ai = d
2
3
i∑k

j=1 d
2
3
j

. (6)

It remains to be shown that choosing the ai according to Equation (6) leads in
fact to a local minimum of L under the given constraints. If this is the case,
this local minimum must indeed constitute the global minimum satisfying the
constraints, since it is the only local minimum and L tends to infinity as one
of the ai approaches zero (hence the problem can be restricted to a compact
domain). In order to show that the ai constitute a local minimum, we compute
the determinants of the leading principal minors of the bordered Hessian matrix
evaluated in the ai

H =



0 1 1 . . . 1
1 x1 0 . . . 0

1 0 x2
. . .

...
...

...
. . . . . . 0

1 0 . . . 0 xk

 , where xi = 3di
4a2.5
i

> 0.

For j ∈ {1, . . . , k} let

Hj =



0 1 1 . . . 1
1 x1 0 . . . 0

1 0
. . . . . .

...
...

...
. . . . . . 0

1 0 . . . 0 xj
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be the leading principal minors. Using Gaussian elimination we can see the
determinants of all but the first principal minors of H are given by

det(Hj) = det



x0 1 1 . . . 1
0 x1 0 . . . 0

0 0
. . . . . .

...

0
...
. . . . . . 0

0 0 . . . 0 xj

 where x0 = −
(

j∑
i=0

1
xi

)
< 0.

Hence all determinants of the leading principal minors of H (except the first
one) are negative and thus choosing the ai according to Equation (6) leads in
fact to a local minimum of L under the given constraints. Inserting these ai into
Equation (3) yields the minimal number of loops

Lmin =
(∑
x∈S

d
2
3
x

) 3
2

. (7)

An important special case. While Equation (7) provides a simple formula for the
minimal number of loops, evaluating it might be a computationally infeasible
task for a large support S. In the following we consider the case that the support
is of the form S = Sr0 for some r ∈ N and smaller set S0 and that D = P r

for some distribution P on S0. Note that this is the case for most LWE-based
cryptosystems, in particular for the ones we analyze in this work. We show how
in this case Equation (7) can be evaluated by computing a sum of |S0| summands
and raising it to the r-th power instead of computing a sum of |S0|r summands.
This is true since Equation (7) can be rewritten and simplified to

Lmin =
(∑
x∈S

d
2
3
x

) 3
2

=

 ∑
y1∈S0

. . .
∑

yr−1∈S0

∑
yr∈S0

r∏
i=1

p
2
3
yi

 3
2

=

=

 ∑
y1∈S0

. . .
∑

yr−1∈S0

r−1∏
i=1

p
2
3
yi

 ∑
yr∈S0

p
2
3
yr

 3
2

=

=

 ∑
y1∈S0

. . .
∑

yr−1∈S0

r−1∏
i=1

p
2
3
yi

∑
y∈S0

p
2
3
y

 3
2

=

= . . . =

∑
y∈S0

p
2
3
y

r
3
2

, (8)

since each of the dx is exactly the product of r of the py.
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Comparison with Grover’s search algorithm. If in our Quantum Hybrid Attack
the distribution D is the uniform distribution, then its complexity matches the
one of Grover’s search algorithm

Lmin =
(∑
x∈S

d
2
3
x

) 3
2

=
(∑
x∈S

(
1
|S|

) 2
3
) 3

2

=
(
|S| 1
|S|

2
3

) 3
2

=
√
|S|.

For a structured search space, QSearch (see Theorem 1) gives a much better
complexity. As an example we examine the distribution D on the set S =
{−16, . . . , 16}r used in New Hope [3]. Then |S| = 33r and using Grover’s search
algorithm inside the Quantum Hybrid Attack would yield a complexity of

Lgrover =
√

33r ≈ 22.52r.

In comparison, our Quantum Hybrid Attack only has complexity

Lour =
(( 32∑

i=0
p

2
3
i

)r) 3
2

≈ 21.85r, where pi =
(

32
i

)
· 2−32.

For r = 200 entries that are guessed during the Quantum Hybrid Attack this
amounts to a speedup factor of 2134 of our approach over using Grover’s al-
gorithm inside the Hybrid Attack. This example showcases the significant im-
provement of our Quantum Hybrid Attack over one that is simply using Grover’s
search algorithm. It also demonstrates that our new Quantum Hybrid Attack
opens the possibility to apply the Hybrid Attack to larger, non-uniform search
spaces.

5.2 Total Runtime of the Quantum Hybrid Attack

In this section we estimate the total runtime of the Quantum Hybrid Attack
by estimating the individual cost of one application of f , A, and A−1, the pre-
computation (i.e., basis reduction) cost, and combining the results with the ones
of Section 5.1. The resulting runtime formula must then be optimized over all
possible attack parameters.

Cost of f , A, and A−1. The cost of the function f is dominated by the cost of
one Nearest Plane call, which was experimentally found to be roughly k2/21.06

bit operations [26], where k is the dimension of the lattice (in our case k = d−r),
see [19].3 We assume that compared to this cost, the cost of the algorithm A
and A−1 can be neglected.
3 In [19], Hirschhorn et al. conservatively assume that if one has to perform multiple
Nearest Plane calls with the same lattice basis (as it is the case in the Quantum
Hybrid Attack), one can reduce this cost to k/21.06 bit operations using precompu-
tation. However, since this speedup has not been confirmed in practice, we do not
assume this linear cost for our runtime estimates. Note that assuming the linear
cost instead of the quadratic one would lower the runtime of the Quantum Hybrid
Attack.
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Basis Reduction Cost. In the following we examine the precomputation cost of
basis reduction (BKZ) to achieve a BKZ-reduced basis of quality δ. According
to [14,2], the minimal block size b needed by BKZ to achieve a certain Hermite
delta δ can be determined via the relation

δ = (((πb)1/bb)/(2πe))1/(2(b−1)).

We assume that the number of tours t with block size b is as given in the LWE
estimator [2,37]. Then the precomputation cost of BKZ with block size b in the
(d− r)-dimensional lattice is roughly Tred = t(d− r)TSVPb

, where TSVPb
denotes

the number of operations to solve SVP in dimension b.
The main two methods to solve SVP are enumeration and sieving. Asymp-

totically the runtime of sieving outperforms the one of enumeration, but the
cross-over point is unknown (see e.g. the discussion in [23]). However, sieving al-
gorithms require access to exponentially large memory (while enumeration only
requires polynomial memory), which could turn out to be the limiting factor in
high dimension, especially when it comes to quantum-sieving. In this work we
compare the Quantum Hybrid Attack with existing attacks under two different
basis reduction assumptions.

In the first model (called quantum-sieving) we assume that memory con-
sumption is not a problem, sieving scales as predicted to higher dimensions and
can be sped up with quantum computers as proposed by Laarhoven et al. [24]
with a runtime complexity of

TSVPb
= 20.265b+16.4.

From an attacker’s point of view this is an optimistic prediction, so the number
derived in this model can be seen as a lower bound on the hardness of the LWE
instances.

The second model (enumeration) assumes that sieving is not practical com-
pared to enumeration for dimensions of cryptographic size and uses an interpo-
lation of Albrecht et al. [2] based on runtimes of enumeration given by Chen and
Nguyen [15] instead. The predicted the number of operations necessary to solve
SVP in dimension b is given by

TSVPb
= 20.27b ln(b)−1.019b+16.10.

This methodology leads to higher runtime estimations (for both the existing
attacks and the Quantum Hybrid Attack).

Total Cost and Runtime Optimization. Using these estimates we obtain that the
total runtime of the Quantum Hybrid Attack is given by

Ttotal = Tred + Thyb
p

,

where

Thyb =
(∑
x∈S

d
2
3
x

) 3
2

· (d− r)2/21.06,
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Tred is the runtime of basis reduction, and p is the success probability as given
in the Main Result.

The total runtime of the attack Ttotal depends on the attack parameters r
and δ and must therefore be optimized over all such choices.

6 Results

In this section, we present concrete runtime estimates of our Quantum Hybrid
Attack against the New Hope [3] and Frodo [8] key exchange schemes (Sec-
tion 6.1) and the Lindner-Peikert [27] (Section 6.2) and R-BinLWEenc [11]
(Section 6.3) encryption schemes. For the comparison, we always selected the
maximal number of LWE samples available for the Quantum Hybrid Attack.

6.1 New Hope and Frodo

We analyze and optimize the runtime of the Quantum Hybrid Attack against
the New Hope [3] and Frodo [8] key exchange schemes and compare our results
to the security levels produced by the LWE estimator for LWE instances with
limited number of samples [37]. Note that the LWE estimator handles LWE
instances with Gaussian distribution, while the distributions of New Hope and
Frodo are only approximations of such. Therefore, for the LWE estimator we use
the Gaussian distributions that are approximated. To obtain a fair comparison,
we also use the approximated Gaussian distributions to determine the success
probabilities according to Equation 1.

Table 1 shows that the Quantum Hybrid is significantly faster if enumeration
is used as basis reduction subroutine. If we assume that quantum-sieving is
practical and behaves as predicted [24], the Quantum Hybrid and the existing
attacks are comparable (see Table 2).

Attack New Hope Frodo-592 Frodo-752 Frodo-864
Dual 1346 446 485 618

Decoding 833 — — —
Quantum Hybrid 725 254 310 377

Table 1: Quantum security estimates for New Hope and Frodo using enumeration
as SVP oracle. Table shows the base-two logarithm of the expected runtimes.

Note that for both, the Quantum Hybrid Attack and the LWE estimator, the
results differ substantially from the claimed security levels of the schemes [3,8].
This, is not surprising, since in the spirit of guaranteeing secure post-quantum
parameter sets, [3] and [8] aim for highly conservative security estimates.
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Attack New Hope Frodo-592 Frodo-752 Frodo-864
Dual 389 173 184 219

Decoding 380 — — —
Quantum Hybrid 384 171 189 221

Table 2: Quantum security estimates for New Hope and Frodo using quantum-
sieving as SVP oracle. Table shows the base-two logarithm of the expected run-
times.

6.2 Lindner-Peikert

In 2011, Lindner and Peikert [27] introduced an LWE-based encryption scheme.
The authors give four concrete parameter sets for various security levels. Later,
Albrecht et al. [1] interpolated those sets to give an asymptotic instantiation.

We analyze such instances for dimensions ranging from 256 to 1024. Note that
theoretically, the discrete Gaussian distributions used in the Lindner-Peikert en-
cryption scheme have infinite support, while our analysis requires finite support.
Using a standard tailbound argument [27] one can show that with overwhelming
probability the absolute value of Dσ is bounded by 14σ. We therefore assume
the distributions Dσ have finite support {−d14σe, . . . , d14σe}.

As Figure 1 shows, the Quantum Hybrid Attack outperforms all existing at-
tacks for enumeration as SVP oracle. Again, the gap between the attacks nearly
vanishes when quantum-sieving is used. However, the Quantum Hybrid Attack
seems to benefit from a slightly better asymptotic complexity (see Figure 2).
The exact hardness values are given in Appendix B.

256 320 384 448 512 576 640 704 768 832 896 960 1,024
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Fig. 1: Quantum security estimates for Lindner-Peikert parameter using enu-
meration as SVP oracle. Figure shows the base-two logarithm of the expected
runtimes.
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Fig. 2: Quantum security estimates for Lindner-Peikert parameter using
quantum-sieving as SVP oracle. Figure shows the base-two logarithm of the
expected runtimes.

6.3 R-BinLWEenc

So far, all instances considered either use Gaussian errors or approximations
of such. However, the Classical Hybrid Attack is most efficient on LWE with
binary error [12,39]. In order to compare the Classical and the Quantum Hybrid
Attack, we investigate the hardness of LWE instances with binary error as used
by Buchmann et al. [11] for their Lindner-Peikert-like encryption scheme.

The runtime of the Classical Hybrid Attack on binary LWE instances was
estimated by Wunderer [39]. The author provides security over- and underesti-
mates of the attack. For our comparison we use the security overestimates, since
their underlying assumptions match the ones in this work.

Attack Set-I Set-II Set-III
Classical Hybrid estimates (enumeration SVP oracle) 99 90 197

Quantum Hybrid (enumeration SVP oracle) 82 75 167
Quantum Hybrid (quantum-sieving SVP oracle) 79 73 140

Table 3: Quantum security estimates for R-BinLWEEnc. Table shows the base-
two logarithm of the expected runtimes.
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A About the constant in Theorem 1

Brassard et al. [10] give two different results about amplitude amplification:
one for known probability a, and one if a is unknown. One disadvantage of the
result about amplification with unknown a is that it is an asymptotic result (see
Theorem 1). Such results give a way to group algorithms into complexity classes,
but are of limited value for runtime estimations on concrete instances, since the
constant factor is unknown. In this section, we show that the hidden constant
factor of Theorem 1 is small.

In the analysis of their algorithm with known a, Brassard et al. show that
the success probability of their quantum amplification algorithm after m rounds
is given by p = sin2((2m+ 1)θa) with θa such that sin2(θa) = a.

Our goal in this section is to produce an algorithm that succeeds at least
with p = 1/2. This leads to

p ≥ 1
2 ⇔ sin((2m+ 1)θa) ≥ 1√

2

⇔ 1
4π ≤ (2m+ 1)θa ≤

3
4π

⇔ π

4(2m+ 1) ≤ θa ≤
3π

4(2m+ 1)

⇔ sin2
(

π

4(2m+ 1)

)
≤ a ≤ sin2

(
3π

4(2m+ 1)

)

Since m is big in our applications, we can approximate the bounds by

a ∈
[
π2

64m2 ,
9π2

64m2

]
(9)

Assume we know that a ∈ [bmin, bmax]. In the following, we find a sequence
of rounds m0, . . . ,mk such that [bmin, bmax] ⊆

⋃
i

[
π2

64m2
i
, 9π2

64m2
i

]
. Given this se-

quence, we can find a solution as follows. We start with running the algorithm
for m0 rounds. If this succeeds, we found a solution. If not, we run the algorithm
for m1 rounds, and so on. After the last run (with mk rounds) at least one of the
algorithm calls had a success probability of at least 1/2, so the overall success
probability is at least 1/2.

To find the sequence ofmi, we start with selectingm0 such that 9π2

64m2
0

= bmax,
which is equivalent to

m0 = 3π
8
√
bmax

.

The other mi are then defined iteratively by selecting mi+1 such that 9π2

64m2
i+1

=
π2

64m2
i
, which is equivalent to mi+1 = 3mi, which in turn leads directly to

mi = 3i+1 π

8
√
bmax

.
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The second condition of our sequence is that π2

64m2
k

≤ bmin. A simple calcu-
lation shows that this is equivalent to

32k+2 ≥ bmax
bmin

Finally, we take a look at the special when a is distributed according to a
Gaussian distribution. By the definition of the Gaussian distribution, we have

Pr[Dσ = x] = c exp
(
− x2

2σ2

)
,

which leads directly to bmin = c. It is common knowledge that with overwhelming
probability, only elements smaller than 14σ get sampled, so we set

bmax = c exp
(
− (14σ)2

2σ2

)
= c exp(−98).

Consequently, we require

32k+2 ≥ c

c exp(−98) = exp(98),

which is satisfied for k ≥ 45.

B Hardness Tables for Lindner/Peikert LWE

n 256 320 384 448 512 576 640 704 768 832 896 960 1024
Dual 177 262 358 463 576 697 823 956 1058 1198 1341 1489 1640

Decoding 145 197 254 314 378 442 510 580 651 725 800 876 953
Quantum Hybrid 138 186 236 288 342 397 452 508 588 649 711 772 835

Table 4: Quantum security estimates for Lindner-Peikert parameter using enu-
meration as SVP oracle. Table shows the base-two logarithm of the expected
runtimes.

n 256 320 384 448 512 576 640 704 768 832 896 960 1024
Dual 92 120 149 178 208 238 269 301 325 356 388 420 453

Decoding 101 127 155 182 210 239 266 295 324 353 383 412 442
Quantum Hybrid 108 134 161 187 214 242 269 297 326 355 383 412 441

Table 5: Quantum security estimates for Lindner-Peikert parameter using
quantum-sieving as SVP oracle. Table shows the base-two logarithm of the ex-
pected runtimes.
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