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Abstract—Cloud storage platforms promise a convenient way for users to share files and engage in collaborations, yet they require all
files to have a single owner who unilaterally makes access control decisions. Existing clouds are, thus, agnostic to the notion of shared
ownership. This can be a significant limitation in many collaborations because, for example, one owner can delete files and revoke access
without consulting the other collaborators.
In this paper, we first formally define a notion of shared ownership within a file access control model. We then propose two possible
instantiations of our proposed shared ownership model. Our first solution, called Commune, relies on secure file dispersal and
collusion-resistant secret sharing to ensure that all access grants in the cloud require the support of an agreed threshold of owners. As
such, Commune can be used in existing clouds without modifications to the platforms. Our second solution, dubbed Comrade,
leverages the blockchain technology in order to reach consensus on access control decision. Unlike Commune, Comrade requires that
the cloud is able to translate access control decisions that reach consensus in the blockchain into storage access control rules, thus
requiring minor modifications to existing clouds. We analyze the security of our proposals and compare/evaluate their performance
through implementation integrated with Amazon S3.
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1 INTRODUCTION

Even though the cloud promises a convenient way for users to
share files and effortlessly engage in collaborations, it still retains
the notion of individual file ownership. That is, each file stored
in the cloud is owned by a single user, who can unilaterally
decide whether to grant or deny any access request to that file.
However, the individual ownership is not suitable for numerous
cloud-based applications and collaborations. Consider a scenario
where a number of research organizations and industrial partners
want to set up a shared cloud repository to collaborate on a joint
research project. If all participants contribute their research efforts
to the project, then they may want to share the ownership over
the collaboration files so that all access decisions are agreed upon
among the owners. There are two main arguments why this may
be preferred to individual ownership. First, a sole owner can abuse
his rights by unilaterally making access control decisions. The
community features a number of anecdotes where users revoke
access to shared files from other collaborators. Second, even if
owners are willing to elect and trust one of them to make access
control decisions, the elected owner may not want to be held
accountable for collecting and correctly evaluating other owners’
policies. For example, incorrect evaluations may incur negative
reputation or financial penalties.

In contrast to individual ownership, we introduce a novel notion
of shared ownership where n users jointly own a file and each
file access request must be granted by a pre-arranged threshold
of t owners. We remark that existing cloud platforms, such as
Amazon S3 or Dropbox, provide no support for shared ownership
policies, and offer only basic access control lists. In short, they
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are agnostic to the concept of shared ownership. Furthermore,
state-of-the-art trust management systems that can support shared
ownership policies (e.g., SecPAL [8], KeyNote [11], Delegation
Logic [23]) make all access decisions using a centralized Policy
Decision Point (PDP). This is not suitable for enforcing our shared
ownership model, because the user who administrates the PDP can
arbitrarily change the policy rules set by the owners and enforce
his own policies.

In this paper, we address the problem of distributed enforcement
of shared ownership within cloud storage providers. By distributed
enforcement, we mean enforcement where access to files in a shared
repository is granted if and only if t out of n owners separately
support the grant decision. Therefore, we introduce the Shared-
Ownership file access control Model (SOM) to define our notion
of shared ownership, and to formally state the given enforcement
problem. We then propose two instantiations of the SOM model to
enforce shared ownership policies in a distributed fashion.

This paper extends our previous work [30]. More specifically,
we provide additional formal technical details about the SOM
model. We also propose a new instantiation of the SOM model,
Comrade, that leverages functionality from the blockchain in
order to reach consensus on access control decisions. Unlike
the Commune framework proposed in [30], Comrade requires
cooperation from the cloud provider that is expected to translate
access control decisions that reached consensus in the blockchain
into storage access control rules. Comrade, however, exhibits
considerably better performance than Commune. We integrate
a prototype implementation of Comrade within Amazon S3 [1]
and compare its performance to the ones of Commune [30] with
respect to the file size and the number of users. We summarize our
contributions as follows:
• We formalize the notion of shared ownership within a file

access control model named SOM, and use it to define a novel
access control problem of distributed enforcement of shared
ownership in existing clouds.

• We propose a first solution, called Commune, which dis-
tributively enforces SOM and can be deployed in an agnostic
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cloud platform. Commune ensures that (i) a user cannot read
a file from a shared repository unless that user is granted read
access by at least t of the owners, and (ii) a user cannot write
a file to a shared repository unless that user is granted write
access by at least t of the owners.

• We propose a second solution, dubbed Comrade, which
leverages functionality from the blockchain technology in
order to reach consensus on access control decision. Comrade
improves on the performance of Commune, but requires
that the cloud is able to translate access control decisions
that reached consensus in the blockchain into storage access
control rules, thus requiring minor modifications of existing
clouds.

• We build prototypes of Commune and Comrade and evaluate
their performance within Amazon S3 with respect to the file
size and the number of users.

The remainder of the paper is organized as follows. Section 2
introduces our notion of shared ownership in a file access control
model. Section 3 details Commune and analyzes its security.
In Section 4, we introduce Comrade and analyze its provisions.
Section 5 evaluates the performance of Commune and Comrade
through an implementation within Amazon S3. In Section 6, we
discuss further insights with respect to Commune and Comrade.
Section 7 reviews related work, and we conclude the paper in
Section 8.

2 SOM: SHARED-OWNERSHIP FILE
ACCESS CONTROL MODEL

In this section, we define the concept of shared ownership, and
formally instantiate it in a file access control model dubbed SOM.
Our main motivation for constructing this model is three-fold:
(i) to precisely define the ideal set of features that we believe a
model, which enforces shared ownership, should provide; (ii) to
formulate the problem of distributed enforcement more precisely
by focusing on SOM’s formal description; and (iii) to provide
a point of reference to scrutinize SOM’s enforcement solutions,
including our own.

2.1 The Notion of Shared Ownership
In a file system, we see the notion of shared ownership as follows.
Each file can have one or more owners, and they collaboratively
make an access decision.

To make this notion more precise, let an owner credential denote
a pair (O,R), whereR is a tuple (Subject, F ile, Action), andO
is one of File’s owners. Intuitively, an owner credential represents
a (unilateral) decision by an owner O to grant a request R.

We then define a T-out-of-N file access control policy, also
called a threshold policy, as follows:

Definition 1 (Threshold Policy). A T-out-of-N (threshold) access
control policy for a file File is a tuple (T,Owners, F ile) where
T is a number representing a threshold, Owners are the File’s
owners.

We define an enforcement function g : Reqs× TPolicies ×
P(Creds) 7→ {grant, deny}, where Reqs is a set of requests,
TPolicies is a set of threshold policies, and Creds is a set of all
possible credentials. Now we define shared ownership enforcement
as follows:

Definition 2 (Shared Ownership Enforcement). An enforce-
ment function g enforces shared ownership over File and its
threshold policy TPolicy when g(R,TPolicy , Creds) maps
to grant iff there are at least T many distinct credentials
(O1, R), . . . , (OT , R) in Creds, where each Oi is in Owners
and no two Oi refer to the same owner.

Intuitively, we say that a file access control model enforces
shared ownership if it implements a function g that correctly
enforces shared ownership.

2.2 SOM’s Overview
Given the general notion of shared ownership enforcement from
Definition 2, in the following we present a file access control model
that adopts this concept in the context of a file access control model.
It also further defines how ownership can be delegated and revoked,
and how files’ thresholds can be changed.

Our model, dubbed SOM, takes files as the only protected
resources. We do not focus on directories (or other file groupings).
Each file is created by one user with the following request:

U reqs Create(F)

Upon receiving this request, SOM tells a file system to create
a file F, assign the user U as the sole owner, and initiate the
file’s threshold to 1. SOM grants requests for file creation from
authenticated users as long as the new file name is unique. To
this end, we assume that the file system authenticates U before
processing his requests.

SOM allows the ownership over a file to be further shared with,
and also revoked from, a user U through the following operations:
• Delegate(F,U) – Delegate ownership of the file F to the

user U, i.e., make U one of the owners of F.
• Revoke(F,U) – Revoke ownership of the file F from U, i.e.,

remove U as an owner of F.
If an owner O wishes to delegate or revoke ownership from U

over F, then he issues a credential of the form:

O says Action(F,U),

where Action is either Delegate or Revoke. Intuitively, one can
think of a credential as a certificate by an owner to support an
action.

To decide whether a request for an ownership distribution
or revocation is in fact enforced for U, SOM consults the file’s
threshold t to determine how many different credentials U needs
from the file’s owners. For example, to gain ownership of a file F
with t = 2, U submits her request:

U reqs Delegate(F,U)

which is granted if two distinct owners of F , for example O and
O′, issue the following credentials:

O says Delegate(F,U)

O′ says Delegate(F,U)

The full credential and request grammar are defined in Figure 1.
To access a file, a user submits the following requests: (i) Read(F)
– Obtain F’s content; (ii) Write(F) – Change F’s content; (iii)
Delete(F) – Delete F. For example, to read F, U submits:

U reqs Read(F)
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credential ::= user says (accessAct | ownsOp | newTOp)
request ::= user reqs (Create(f) | accessOp | ownsOp | newTOp)

accessAct ::= user can accessOp
accessOp ::= Read(f) |Write(f) | Delete(f)

ownsOp ::= Delegate(f, u) | Revoke(f, u)

newTOp ::= NewT(f, t, t)

u ::= String

t ::= N
f ::= String

Fig. 1. SOM’s credential and request grammar. Words in italics are
non-terminating symbols.

Similarly to granting and revoking ownership, file access requests
are granted if t out ofN owners issue the corresponding credentials.
For example, if the threshold for F is still 2, then U can read F, if
the following credentials are present:

O says U can Read(F)

O′ says U can Read(F)

where O and O′ are F’s owners. We note that in SOM, each of
a file’s owners can, by default, read that file. However, writing
and deleting are still subject to a threshold even for an owner. We
find this to be a natural interpretation of shared ownership when
compared to unilateral ownership, where an owner has full rights.

Note that successful additions and revocations of the ownership
effectively change the number of owners. This, however, does not
change the file’s threshold. Namely, since adding new owners does
not change the threshold t, then the original fraction of owners
required to approve file actions is lower. To enable the owners to
restore the ratio, or indeed set a new one, the newT action can be
used as follows:

O says NewT (F, told, tnew)

2.3 Formal Account
Intuitively, we formalize SOM’s semantics as follows. We represent
a file system state consisting of files, owners and thresholds as a
Datalog database [13]. This database consists of a set of relations
describing each file’s owners and its threshold, and a set of clauses
that axiomatize the definitions of shared ownership. We translate a
request and credentials into Datalog clauses, which are evaluated
over the current state and threshold axioms. For example, file access
is granted if a set of credentials supports the grant (expressed as a
Datalog query) evaluated over the current state. Facts are added or
removed when a set of credentials supports a change of ownership
or a change of a particular threshold.

Since SOM’s semantics heavily depend on Datalog, we first
give a brief overview of Datalog and refer the reader to the more
extensive surveys [13]. A Datalog program is a finite set of clauses
of the form:

S ← L1, . . . , L2,

where S and Li are function-free first-order literals of the form
predicate(arg1, . . . , argn). We refer to S as the head of the
clause, and to Li as a body literal. We adopt the following notation:
a variable starts with the ? character, a constant starts with a capital
letter, and a predicate name starts with a lower-case letter.

A clause with no body literals is called a fact. All clauses are
safe: all variables that appear in a head literal also appear in at
least one body literal. A Datalog program can be split into two
sets of clauses: EDB and IDB. EDB is a set of facts whose head
literals do not appear as head literals in any other clause. All other
clauses are in the IDB set. Intuitively, we think of an EDB as an
input for computing all implied facts by the clauses in the IDB
set. The declarative semantics of a Datalog program are given by
interpreting each clause as a first-order sentence: ∀x̄L1 ∧ · · · ∧
Li → S, and then taking a program to be a conjunction of all its
clauses. For each program P = IDB ∪ EDB let σ(IDB,EDB) =
{fact | I(P) |= fact}, where I(P) represents the first-order
translation of P , and |= is the logical implication.

We formally define SOM’s semantics of request evaluations in
terms of a labeled transition system (LTS) (S,L,→).

A state s ∈ S is a tuple (Files,Users,Owns, Thresholds)
where Files denotes a set of strings representing file names, Users
is a set of users, Owns is a subset of 2Users×Files. The Thresholds set
is a subset of 2Files×N. For the sake of brevity and presentation, we
write Filess, to denote the Files set of the state s (and similarly
for other sets of s as well). We can represent a state s as an (EDB)
Datalog program sEDB consisting of only the following facts:

file(F ). only if {F} ⊆ Filess
user(U). only if {U} ⊆ Userss

owns(U, F ). only if {(U,F)} ⊆ Ownss
threshold(F,N). only if {(F, N)} ⊆ Thresholdss

For the sake of simplicity, we assume a fixed set of Users
across all states, and we take s0 to be ({},Users, {}, {}).

A label e ∈ L is a tuple (R, C), where R is a request
credential submitted by a user, and C is a set of available credentials.
Credentials can be either submitted by a user, or kept in a separate
storage and simply appended to each request.

The→ set contains all (valid) transitions, defined as a triple
(s, e, s′). All the necessary and sufficient conditions for valid
transitions are given in Figure 2. We note that s and s′ are equal in
all aspects except if otherwise indicated.

Intuitively, all transition rules (except Create) require that
σ(T (C) ∪ A[s] ∪ sEDB ) |= T (R), where s is the state in which
the request is received. T (C) are Datalog clauses generated from
e:

T (U says U′ can accessOp(F)) = says(U,U ′, accessOp, F )

T (U says U′ ownsOp(F,U′)) = says(U,U ′, ownsOp, F )

T (U says NewT (F, t, t′)) = says(U,NewT , F, T, T
′)

In the given translation, accessOp ranges over Write, Read,
and Delete; ownsOp ranges over Delegate, and Revoke. The
translation of R follows the same idea, except that we do not
generate says facts but rather queries that should follow from the
submitted speech acts.

T (U reqs accessOp(F) = can(U, accessOp, F )

T (U reqs ownsOp(F,U′)) = ownsOp(U ′, F )

T (U reqs NewT(F, t, t′)) = changeT (F, T, T ′)

T (U reqs Create(F)) = create(U, F )
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e = (U reqs accessOp(F), C)
σ(T (C) ∪ A[s] ∪ sEDB ) |= T (R)

(F 6∈ Filess′ , if accessOp = Delete)
[FAction]

s
e−→ s′

e = (U reqs NewT(F, t′, t), C)
σ(T (C) ∪ A[s] ∪ sEDB ) |= T (R)

(F, t) ∈ Thresholdss, (F, t′) ∈ Thresholdss′ , (F, t) 6∈ Thresholdss′ [NewT]
s

e−→ s′

e = (U reqs Delegate(F,U′), C)
σ(T (C) ∪ A[s] ∪ sEDB ) |= T (R)

Ownss′ = Ownss ∪ {(U′,F)}
[Delegate]

s
e−→ s′

e = (U reqs Revoke(F,U′), C)
σ(T (C) ∪ A[s] ∪ sEDB ) |= T (R)

Ownss′ = Ownss \ {(U′,F)}
[Revoke]

s
e−→ s′

e = (U reqs Create(F,U), C)
F 6∈ Filess, F ∈ Filess′ , U ∈ Userss

Ownss′ = Ownss ∪ {(U,F)}
Thresholdss′ = Thresholdss ∪ {(F, 1)}

[Create]
s

e−→ s′

where accessOp = {Read,Write,Delete}.

Fig. 2. Transition rules for the→ set of SOM’s LTS.

The setA[s] is a parameterized (on s) IDB program containing
necessary clauses to enforce a T-out-of-N access control policy.

The first axiom allows owners to read their files:

can(?U,Read, ?F )← file(?F ), owns(?U, ?F )

The second axiom is a template for the accessOp operations
Read, Write, and Delete:

can(?U, accessOp, ?F )← file(?F ), user(?U),

threshold(?F, ?T ),

[[says(?U1, ?U, accessOp, ?F ), . . . , says(?U?T , ?U, accessOp, F ),

owns(?U1, ?F ), . . . , owns(?UT , ?F ),

?U1 6=?U2, . . . , ?U1 6=?U?T , . . . , ?U?T−1 6=?U?T ]]

Intuitively, this template axiom generates the necessary clauses
(by substituting accessOp with Read, Write, and Delete). The
generated clauses are further grounded on ?F and ?T , i.e., on all
files and their thresholds. The reason for doing so is to correctly
enforce the current (for the given state s) threshold T for a
particular file. In other words, we need to generate the correct
number of ?Ui variables for each file and its threshold in s. To
represent this dynamic part of a clause (that is dynamically adjusted
for each state), we enclose it within [[ and ]] brackets. We note that
the number of variables that need to be generate is given by the
?T ’s value.

The same reasoning applies for the ownsOp axioms. We replace
(o|O)wnsOp with (d|D)elegate and (r|R)evoke, in addition to
grounding the clauses on ?F and ?T .

ownsOp(?U, ?F )← file(?F ), user(?U), threshold(?F,OwnsOp, ?T ),

[[says(?U1, ?U, ownsOp, ?F ), . . . , says(?U?T , ?U,OwnsOp, ?F ),

owns(?U1, ?F ), . . . , owns(?UT , ?F ),

?U1 6=?U2, . . . , ?U1 6=?U?T , . . . , ?U?T−1 6=?U?T ]]

In case of NewT, we ground the following clause on ?F and ?T .

changeT (?F, ?T, ?Tnew)← file(?F ), user(?U),

threshold(?F, ?T ), [[says(?U1, NewT , ?F, ?T, ?Tnew),

. . . , says(?U?T , NewT , ?F, ?T, ?Tnew),

owns(?U1, ?F ), . . . , owns(?U?T , ?F ),

?U1 6=?U2, . . . , ?U1 6=?U?T , . . . , ?U?T−1 6=?U?T ]]

Given these axioms and the transition rules, it follows that SOM
represents a correct implementation of an enforcement function g

given in Definition 2 for all requests, except when a subject is a
file’s owner as well and the action is a read action. In this case, an
owner is always given access. Clearly, we can easily remove this
provision from A[s], but we argue that it is a natural provision to
have in a file access control model.

2.4 Centralized vs. Distributed Enforcement
Given SOM’s description, the natural question to consider is how
to enforce such a model in a third-party cloud file system that does
not endorse shared ownership.

Current state-of-the-art distributed authorization logics—such
as SecPAL [8], DKAL [19], Binder [15], KeyNote [11]—that
could in principle express SOM’s axioms, enforce a policy through
a policy decision point (PDP), which evaluates a given set of
policies. However, a PDP always has one trusted administrator
who has full control over the PDP’s policies. This administrator
can clearly abuse his powers and modify policies within his PDP
and circumvent threshold policies, which defeats the core idea of
shared ownership.

We frame this concern as the SOM enforcement problem.

Problem: How can SOM be enforced without granting one owner
unilateral powers?

3 COMMUNE: DISTRIBUTED ENFORCEMENT OF
SHARED OWNERSHIP IN AN AGNOSTIC CLOUD

This section presents Commune, our solution for distributed
enforcement of the SOM access control policy in an agnostic
cloud. As SOM does not specify concrete file access operations,
we instantiate Commune with write and read actions. Before
introducing our solution, we outline our cloud and attacker model.

3.1 Cloud and Attacker Model
We focus on a cloud storage platform, S , where a set of users U
have personal accounts onto which they upload files. For example,
users might set up their own personal clouds [2], [3], or might
create personal accounts in existing public clouds. A user U ∈ U
can unilaterally decide who has access to files stored on his account.
In particular, S allows each user to define access control policies
of the type p : U × {write, read} → {grant, deny}. We also
assume that S correctly enforces individual access control policies.
This model reflects the functionalities provided by existing cloud
platforms, such as Amazon S3.

Since we assume that S authenticates users, we only focus on
internal adversaries. An adversary may try to gain read access to
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a file even if fewer than t owners have issued the corresponding
credentials. We refer to this adversary as a “malicious reader”.
Alternatively, an adversary, who has been granted write access
by fewer than t owners, may try to publish a file F as if F were
authored by a user had been granted write access by t or more
owners. We refer to this adversary as a “malicious writer”. We also
consider sets of users who collude to escalate their access rights.

3.2 Overview of Commune
Before describing Commune, we make the following observations:

Observation 1. Commune’s files cannot be stored on a single
user account.

Following the discussion regarding the centralized enforcement,
a single user must not be charged with making unilateral grant
and deny decisions. Otherwise, that user may abuse his rights
and take unilateral access control decisions. A naïve solution
where a file is encrypted (e.g., using a key shared among the
owners) and the ciphertext is stored on a single account, allows that
account holder to, unilaterally deny read access to the ciphertext.
If the ciphertext cannot be read, any mechanism to distribute or
recover the encryption key is of no help. We argue, therefore, that
Commune cannot use a centralized repository owned by a single
user because the repository owner can unilaterally grant or deny
access to the files stored therein. Our alternative is to use a “shared
repository”, which is an abstraction built on top of the owners’
personal accounts on S .

Observation 2. Commune cannot support in-place writing.

If Commune were to allow in-place writing, then users who
are granted write access could overwrite a file with “garbage”.
This would equate to granting users the right to unilaterally delete
the file, thus nullifying our efforts to prevent such scenarios. A
standard alternative to in-place writing is to introduce “copy-on-
write” mechanisms whereby a new file is created upon each file
write operation. To optimize performance, Commune implements
versioning and splits files into units (i.e., the unit of granularity of
versioning) so that writing a new version of an existing file, only
requires updating the units that have changed with respect to the
previous version.

Observation 3. Commune cannot prevent users from disseminat-
ing a file through an out-of-band channel.

Access control solutions cannot prevent a user from distributing
content through an out-of-band channel. For example, a user
who rightfully reads a file can leak it to third parties. Similarly,
a malicious writer can write a file and disseminate it through an
out-of-band channel. For example, a user can publish files on his
account on S and make them available for others to read. We
cannot prevent such behaviour. Commune, however, must at least
allow honest readers, who abide to the protocol specification, to
distinguish between the content written by malicious writers and
the content written by honest writers.

Given these observations, Commune unfolds as follows. At
system setup, users define the set of n ownersO and the threshold t
(with t ≤ n).1 Commune abstracts the storage space of the owners’
accounts on S as the “shared repository”. Each owner grants/denies

1. The selection of owners and the threshold t are outside of our scope. In
settings like scientific collaboration, these are agreed upon by the partners.

read and write access on his account to users (including other
owners) according to his individual access control policy. The
distributed enforcement of the SOM access control policy then
follows from the enforcement of the individual access policies set
by each owner.

To write a file to the shared repository, the writer encodes the
file in tokens and distributes the tokens to the owners’ accounts.
A file is written to the shared repository if and only if the writer
successfully distributes the file’s tokens onto at least t owners’
accounts. That is, a user has write access to the shared repository
if and only if he has write access to at least t of the owners’
accounts. We refer to such a user as an “authorized writer”.

To read a file from the shared repository, the reader must fetch
the file’s tokens from at least t distinct owners’ accounts. Therefore,
a user has read access to the file if and only if he has read access
to the file’s tokens by at least t owners. We refer to such a user as
an “authorized reader”.
To securely enforce shared ownership policies, Commune is
designed to fulfil the following properties.
• P1: A malicious writer (i.e., a user who has been granted

write access by fewer than t owners), must not be able to
publish a file F as if F were authored by an authorized writer.

• P2: A malicious reader (i.e., a user who has been granted
read access to a file F by fewer than t owners), must not
be able to recover the file content. This property must also
hold in case of revocation. Assume that, at the time τ1, U has
read access to F granted by at least t owners. Also assume
that, at the time τ2 > τ1, U has his access rights revoked.
This happens if, at the time τ2, some of the owners decide
to revoke read access to U so that U is left with fewer than
t read grants. We must ensure that, starting from time τ2,
U cannot recover meaningful bits of F. We remark that, as
is common for access control systems, we cannot prevent U
from storing a local copy of F at the time t1 and reading it
even after his read right has been revoked.
Commune must also provide collusion resistance. That is,
coalitions of users—where no single user is an authorized
reader—must not be able to pool their credentials to escalate
their read access rights.

Property P1 ensures protection against malicious writers who
try to disseminate content despite lacking the required credentials.
Property P2 guarantees that malicious readers cannot read content
written to the shared repository.

Commune fulfils property P1 by design, through the abstrac-
tion of the shared repository and the copy-on-write mechanism (see
Section 3.5). Property P2 is fulfilled through two cryptographic
building blocks: Secure File Dispersal (SFD), and Collusion
Resistant Secret Sharing (CRSS). SFD ensures that malicious
readers cannot acquire any information about a file, even if they
previously had access to the file and were later revoked. CRSS
builds atop SFD and ensures that coalitions of users where no
single user has enough credentials to read the file, cannot pool their
credentials in order to escalate their read access rights.

In the following, we describe and analyze SFD (Section 3.3)
and CRSS (Section 3.4). In Section 3.5, we detail the integration
of both building blocks in Commune.

3.3 Secure File Dispersal (SFD)
Information dispersal algorithms [24] encode a file in n chunks
so that any t chunks (where t ≤ n) are sufficient to decode it.
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Algorithm 1 AON-FFT(K, f1, . . . , fm)

1: Parse f1, . . . , fm as f01 , . . . , f
0
m

2: for r ← 1 to log2m do . round counter
3: for i← 0 to m

2r
− 1 do

4: for j ← 1 to 2r−1 do
5: frj+i·2r ||frj+i·2r+2r−1 ← E(K, fr−1

j+i·2r , f
r−1
j+i·2r+2r−1 )

6: end for
7: end for
8: end for
9: return fr1 . . . , f

r
m as f̄1 . . . , f̄m

However, information dispersal algorithms do not provide any
security guarantees if the number of available chunks is smaller
than t: any party with fewer than t chunks may still recover
meaningful information about the original file’s content.

Previous work on securing information dispersal algorithms
[25] combines erasure codes with All-Or-Nothing Transforms
(AONT) [26]. The latter is an efficient block-wise transformation
that maps an n-block bitstring in input to an n′-block bitstring in
output (with n′ ≥ n). AONTs are designed in such a way that,
unless all the n′ output blocks are available, it is hard to recover
any of the input blocks.

Existing AONTs [12], [26] leverage block ciphers and rely
on the secrecy of a cryptographic key that is embedded within
the output blocks. Given all AONT output blocks, the key can be
recovered; once the key is known, individual blocks can be reverted,
independently of other blocks. Current AONTs, therefore, preserve
their all-or-nothing property only for one time: knowledge of the
cryptographic key allows to revert single output blocks and to
recover parts of the original data. This is at odds with our security
requirements. As argued before, we cannot prevent users from
caching a local copy of the file and reading it at later time when
their read rights may have been revoked. However, we still want
to provide revocation of a user who only stored the encryption key
at the time when he had read access to the file.

We therefore introduce a new scheme, called Secure File
Dispersal (SFD), that combines information dispersal algorithms
with an AONT that preserves its all-or-nothing property even if the
adversary has the encryption key.

Definition. An SFD scheme consists of the following algorithms:
{c1, . . . , cn} ← SFD.Encode(t, n,F,K, λ). Encodes a file F

into n chunks, such that F can be correctly decoded using
any t chunks; K denotes a key used in the encoding process
and λ is a security parameter.

F′ ← SFD.Decode(K, C, λ). Takes as input a key K, a set of
chunks C, and security parameter λ; it outputs a file F′.

Correctness. Given {c1, . . . , cn} ←
SFD.Encode(t, n,F,K, λ) and F′ ← SFD.Decode(K, C, λ),
we require that if C ⊆ {c1, . . . , cn} and |C| ≥ t, then F′ = F.

Security. We define the advantage of adversary A as follows:

AdvSFD(A) = Pr[f ← A(K, C)|K ← {0, 1}l, l ≥ λ,
F = f1, . . . , fm ← {0, 1}mλ,
{c1, . . . , cn} ← SFD.Encode(t, n,F,K, λ),

C ⊂ {c1, . . . , cn}, |C| < t, f ⊆ F, |f | ≥ λ].

where f ⊆ F refers to a substring of F. We say that SFD is secure
if, for any p.p.t. adversary, its advantage is negligible in the security
parameter, i.e., AdvSFD(A) ≤ negl(λ). Our security definition

Fig. 3. Sketch of the AON-FFT scheme where the input consists of
m = 8 input blocks. Solid circles refer to the block cipher E(·), while
empty circles depict its input/output blocks.

captures the scenario where, at an earlier time,A was given enough
chunks to decode F and has cached a copy of the key K, while
at current time he is only given fewer than t chunks. Even if A
has the key K, we require the probability that A recovers any λ
consecutive bits of F to be negligible in the security parameter.

Instantiation. Our SFD scheme combines information dispersal
techniques with AON-FFT, an all-or-nothing transformation
inspired by Fast Fourier Transform.

Let E : {0, 1}4λ → {0, 1}2λ be a semantically secure block
cipher (e.g., E(·) could correspond to 256-bit Rijndael [20], with
λ = 128).2 AON-FFT takes as input a symmetric key K (of size
2λ) and m input blocks f1, . . . , fm (each of size λ). It executes
in log2m rounds and, at each round, applies E(·) to pairs of
blocks. Each round is fed with the output of the previous round.
The original input f1, . . . , fm is treated as the output of round 0;
the final output of the algorithm is the output of round log2m (cf.
Figure 3). The pseudo-code of AON-FFT is shown in Algorithm 1.
We omit the details of the decryption algorithm since it is specular
to encryption.

Given the pseudo-code of AON-FFT, our SFD scheme
unfolds as follows:

c1, . . . , cn ← SFD.Encode(t, n,F,K, λ). Parse F as
f1, . . . , fm where each fi has size λ.
Run f̄1 . . . , f̄m ← AON-FFT(K, f1, . . . , fm). Use the
information dispersal encoder to encode f̄1 . . . , f̄m in n
chunks with reconstruction threshold t.3

F′ ← SFD.Decode(K, C, λ). Given a set of at least t chunks C
and key K, use the information dispersal decoder to decode
blocks f̄ ′1, . . . , f̄ ′m. Run f ′1 . . . , f

′
m ←

AON-FFT(K, f̄ ′1, . . . , f̄
′
m).

Correctness. If {c1, . . . , cn} ← SFD.Encode(t, n,F,K, λ),
any subset of at least t chunks {ci1 , . . . , cit} can be decoded
into the whole output of AON-FFT, namely f̄1 . . . , f̄m. Given
K, the output of AON-FFT can be decrypted to recover
F = f1, . . . , fm.

Security. Given the construction of our AON-FFT scheme, it is
easy to see that each input block depends on all output blocks
and on the encryption key. Furthermore, assuming that E(·) is a
semantically secure block cipher, for any p.p.t. algorithm A, we
have AdvSFD(A) ≤ negl(λ). A full security argument can be
found in [30].

2. The key size is 2λ and the input/output size is also 2λ, totalling 4λ size
of input.

3. SFD can leverage any information dispersal algorithm (e.g., Reed-Solomon
codes [32]).
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Note that a construct similar to AON-FFT, was first men-
tioned by Rivest [26] and later on used as a “proof of storage”
in [31]. Nevertheless, the construction proposed therein can use any
pseudo-random permutation in the FFT network. Our AON-FFT
requires a keyed permutation, hence a block-cipher. Furthermore,
the goal of the adversary in [31] is to recover, in a given amount of
time, all output blocks. In contrast, the goal of our adversary is to
recover any input block. This entails a different security analysis.

3.4 Collusion Resistant Secret Sharing (CRSS)
We now introduce our second building block, called Collusion
Resistant Secret Sharing (CRSS). Similar to threshold secret-
sharing schemes, CRSS allows one party to distribute a secret
among a set of designated shareholders, so that any subset of
shareholders of size equal to or greater than the threshold can
reconstruct the secret. Furthermore, CRSS allows shareholders
to issue to other users delegation to reconstruct the secret. If a
user collects enough (i.e., above the threshold) delegations, he
can rightfully reconstruct the secret. However, users cannot pool
their delegations to reconstruct the secret, unless one of them has
collected enough delegations. In Commune, CRSS is used to
secret-share the key K used in SFD, in order to achieve collusion
resistance.

CRSS is inspired by decentralized Attribute Based Encryp-
tion [22] where shares of a secret are blinded with shares of 0, such
that, if a user collects enough shares for his identity, the blinding
cancels out and the secret can be reconstructed.

Definition. Our definition of CRSS builds on top of a standard
threshold secret-sharing scheme SS with algorithms SS.Share(·)
and SS.Combine(·), to share and reconstruct a secret, respectively.
We assume SS to be secure according to the Game Priv
definition by Rogaway et al. [27]. That is, we assume that an
adversary has only negligible advantage in identifying which
out of two values was (t, n) secret-shared using the SS.Share(·)
algorithm, even if the adversary can corrupt up to t−1 shareholders
and access their shares.

CRSS defines the following algorithms:
{s1, . . . , sn} ← CRSS.Share(s, t, n). Shares secret s in a set of

n shares {s1, . . . , sn} with reconstruction threshold t.
di,j ← CRSS.Delegate(si, Uj). Takes as input a share si and

an user identity Uj . The output is a delegation di,j .
s′ ← CRSS.Combine({di1,j , . . . , dil,j}). Combines

delegations {di1,j , . . . , dil,j} into s′.

Correctness. Given {s1, . . . , sn} ← CRSS.Share(s, t, n) and
s′ ← CRSS.Combine({di1,j , . . . , dil,j}), we require that if
dip,j ← CRSS.Delegate(sip , Uj), for 1 ≤ p ≤ l and l ≥ t,
then s′ = s.

Security. We model the security of CRSS using an adaptation
of the Game Priv of [27] and we denote the refined game by
Game Priv∗:
Init. The adversary A submits two messages x0, x1 of equal

length. The challenger flips an unbiased coin b and runs
{s1, . . . , sn} ← CRSS.Share(xb, t, n).

Find. A can submit two types of queries. In Type-1 queries,
the adversary can corrupt up to t′ ≤ t − 1 shareholders
and receives their shares. At this time, A picks t′ indexes
i1, . . . , it′ and receives {si1 , . . . , sit′}. In Type-2 queries,
for any fresh identity Uj , the adversary can ask for up to t′′

delegations, as long as t′ + t′′ ≤ t− 1. A submits an identity

Uj and t′′ indexes i1, . . . , it′′ , and receives delegations
{di1,j , . . . , dit′′ ,j}.

Guess. The adversary outputs his guess b′ and wins if b′ = b.

We define the advantage of the adversary as the probabil-
ity of its winning minus a half. That is, AdvPriv

∗

CRSS(A) =
Prob[Priv*

A]− 1
2 . Therefore, we say that CRSS is secure if any

p.p.t. algorithm A has only negligible advantage in winning Game
Priv*.

The above Game Priv* models a scenario where a set of
malicious users, including up to t′ shareholders, collects up to t′′

delegations for each of their identities. If t′+ t′′ ≥ t, the malicious
shareholders can produce the missing delegations for any of the
colluding user identities, so that the secret can be reconstructed
by means of CRSS.Combine(·). Otherwise, colluding users must
not be able to retrieve the secret.

Instantiation. Our CRSS scheme is based on the threshold secret-
sharing scheme proposed in [14], which is defined as follows:

gx, {x1, . . . , xn} ← SS.Share(−, t, n). Pick a cyclic group G
of prime order q where the discrete logarithm assumption
holds; let 〈g〉 = G. Pick a random x ∈ Zq and set the
secret to gx. Pick a random t− 1-degree polynomial X with
coefficients in Zq , such that X(0) = x. Set the i-th share to
xi = X(i).

s′ ← SS.Combine({xi1 , . . . , xil}). Given shares
{xi1 , . . . , xil}, use polynomial interpolation to
recover the secret. That is s′ = g

∑p=l
p=1 xipλp where

λp =
∏k 6=p

1≤k≤l
xik

xik
−xip

.

Note that in the above scheme, the secret is not given as input to
the Share algorithm; rather, it is set to gx for a randomly chosen x.
Given the above algorithms, our CRSS scheme unfolds as follows:

{s, s1, . . . , sn} ← CRSS.Share(−, t, n). Run
SS.Share(−, t, n) to obtain gx, {x1, . . . , xn}. Pick
H(·) : {0, 1}∗ → G to be a cryptographic hash function
that maps random strings in G. Pick a random t− 1-degree
polynomial Y with coefficients in Zq , such that Y (0) = 0,
and denote yi = Y (i). The secret is set to s = gx while each
share is set to si = (xi, yi).

di,j ← CRSS.Delegate(si, Uj). Parse si = (xi, yi) and output
di,j = gxiH(Uj)

yi .
s′ ← CRSS.Combine({di1,j1 , . . . , dil,jl}). Run

s′ ← SS.Combine({di1,j1 , . . . , dil,jl}).

Correctness. If l ≥ t, then CRSS.Combine({di1,j , . . . , dil,j})
outputs

s′ =

p=l∏
p=1

(
dip,jp

)λip =

p=l∏
p=1

(gxiH(Uj)
yi)

λip =

= g
∑p=l

p=1 λipxipH(Uj)
∑p=l

p=1 λipyip =

= gkH(Uj)
0 = gk = s.

Security. The security of CRSS is based on the fact that, in
the random oracle model, delegations for different identities
cannot be combined to remove the blinding factor from the secret.
Assuming that H(·) is modeled as a random oracle and that the
discrete logarithm assumption holds in G, we can show that any
p.p.t. algorithm A has only negligible advantage in winning Game
Priv*.
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3.5 Commune: Protocol Specification

Recall that Commune leverages a shared repository, which is an
abstraction of the owners’ storage space. The shared repository
uses a versioning system so that content cannot be overwritten
but only new content can be added. In particular, Commune
optimizes performance by splitting a file in smaller units, and
encoding/decoding each unit separately. Therefore, when a new file
version is written to the shared repository, the writer only needs to
upload the units that have changed from the previous version.

Files written to the repository are encoded in tokens and
distributed across the owners’ accounts. Leveraging the basic ACLs
of S , owners define their individual policy on the tokens in their
accounts. The distributed enforcement of the SOM policy is implied
by the enforcement of each owner’s individual policy on his tokens
by S . Encoding must guarantee both correctness and security of
reading operations. Hence, users who are authorized to read at least
t tokens must be able to decode the original file; users who are
granted read access on fewer than t tokens must not be able to
recover its content. Furthermore, users must not be able to pool
their credentials to escalate their access rights.

Create a File. File creation requires one user, the file creator, to
“bootstrap” the system and write the initial version of the file into
the repository. For this reason, we assume that—at the file creation
time—the file creator has been granted the right to write new data
to each of the owner’s accounts on S .

The file creator splits the file F into k fixed-sized units. For
each unit Fi, he runs {si, si1, . . . , sin} ← CRSS.Share(−, t, n)
to produce a fresh secret si and n of its shares. Secret si is
used as a symmetric key to encode the unit Fi in n chunks
using SFD. That is, the file creator runs {ci1, . . . , cin} ←
SFD.Encode(t, n,Fi, si, λ). The token of the unit Fi for
the owner Oj is set to (cij , sij) (i.e., one chunk out-
putted by SFD.Encode(·) and one secret-share outputted by
CRSS.Share(·)). Finally, for each owner Oj , the file creator
writes {(cij , sij)}i∈[1,...,k] to Oj’s account on S . Each owner,
therefore, receives one token for each unit that constitutes F.

Grant/Deny Write Rights. An owner Oj grants write rights to a
user Ul by granting to Ul the right to write new data (i.e., tokens)
to O′js account. Similarly, Oj denies write rights to Ul by denying
Ul the right to write new data to O′js account.

Update a File. Assume Ul wants to write a new version of a file
F. For simplicity, assume that the new version differs from the
previous one by only one unit Fi (the case where the old and the
new versions differ in several units is handled in a similar fashion).
At this point, some owners may allow Ul to write tokens to their
accounts while others may not. Let O+ be the subset of owners
who grant to Ul write rights to their accounts. Similarly, letO− be
the subset of owners who deny to Ul write rights to their accounts.
Ul can, therefore, only distribute tokens to owners in O+. This
scenario is equivalent to the case where Ul distributes tokens to
all owners in O, but the ones in O− decide to reject the version
produced by Ul and make the received tokens unavailable.

Ul is an authorized writer and his version accepted (i.e.,
considered as written to the shared repository) if and only if
|O+| ≥ t. In this case, there are at least t tokens for the new unit,
so it may be decoded by users who collect enough credentials. If
|O+| < t, user Ul is not authorized to write and his version is
rejected (i.e., considered as not written to the repository), since
there are not enough tokens to decode the unit produced by Ul.

Grant/Deny Read Rights. Recall that for each unit Fi, an owner
Oj receives the token (cij , sij). Oj can grant to Ul read access
to that unit by endorsing the token for Ul and granting to Ul
read access on the endorsed token. Token endorsement requires
Oj to run dij,l ← CRSS.Delegate(sij , Ul). The endorsed token
(cij , dij,l) is then made available by Oj for Ul to read. If a file
consists of multiple units, Oj must endorse all relative tokens for
Ul and grant to Ul read access on all endorsed tokens.

Oj can revoke read rights that were previously granted, by
denying to Ul the right to read the previously endorsed tokens.

Read a File. If the original file spans several units, Ul must decode
each unit separately in order to read the entire file. That is, for
each unit, he uses the set of endorsed tokens he can fetch to
recover the secret key via CRSS.Combine(·) and then uses the
secret key to decode the unit via SFD.Decode(·). Note that for
an authorized reader to read version x of file F, he must fetch
the latest endorsed tokens created up to (and including) version x,
for each unit that comprises the file. Assume user Ul is granted
read access to {(cij1 , dij1,l), . . . , (cijt , dijt,l)}. To recover Fi
that user runs si ← CRSS.Combine({dij1,l, . . . , dijt,l}) and
then Fi ← SFD.Decode(si, {cij1 , . . . , cijt}, λ). Uj proceeds in
a similar way to recover all units of F that he has access to.

3.6 Security Analysis
From Sections 3.3 and 3.4, it follows that given t tokens of a
file unit Fi (endorsed for a unique user identity), it is possible to
recover both the secret key used to encode Fi and its AON-FFT
ciphertext, so that the original file can be decrypted. That is, users
can read files written by honest writers, if they are granted such
right by at least t out of n owners.

Property P1 (cf. Section 3.2) is fulfilled as follows. First,
Commune uses copy-on-write to prevent writers from overwriting
content in the shared repository with garbage. Second, malicious
writers (i.e., writers with less than t write permissions) are unable
to distribute a file without honest readers detecting it. In other
words, a file is considered written if and only if it is correctly
encoded in tokens and those tokens are distributed to and endorsed
by at least t out of n owners. Any content distributed through other
means (e.g., out of band channels) is recognized as malicious by
honest readers. We argue that detection of unauthorized files is the
only solution for protecting honest readers, because there are no
mechanisms to deter malicious writers from disseminating arbitrary
content (cf. Observation 3). We also stress that honest readers can
easily detect writers that distribute polluted (i.e., non-decodable)
tokens. Denial-of-service attacks are, nevertheless, out our scope.

Property P2 is satisfied by combining CRSS and SFD. The
former ensures that coalitions of users, where no single user has
enough tokens endorsed for his identity, cannot pool their endorsed
tokens in order to escalate their access rights. The latter addresses
the case where at a time τ1 a user has access to t or more tokens of
a file unit Fi, but at a time τ2 > τ1, his access rights are revoked.
That is, at time τ2, the user has access to fewer than t endorsed
tokens. SFD ensures that even if, at time τ1 the user may have
cached the key used to encode Fi, he will not be able to decode
parts of Fi at time τ2 . Note that, once a user has access to the file,
then he can locally store any plaintext of his choice. Similar to other
access control schemes, Commune cannot deter this behavior.

Finally, given the guarantees that Commune makes for write
and read actions, it follows that Commune is a (correct) solution
for distributed enforcement of the SOM access control policy.
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4 COMRADE: BLOCKCHAIN-BASED SHARED OWN-
ERSHIP

In this section, we present an alternative solution for enforcing
shared ownership in the cloud by leveraging functionality from the
blockchain. Our solution, dubbed Comrade, enables a distributed
blockchain-based enforcement of the SOM access control policy in
a cooperative cloud. Unlike Commune, Comrade does not assume
an agnostic cloud, and requires the cloud operator to cooperate
and to interface with the blockchain. Since SOM does not specify
concrete file access operations, we instantiate Comrade with write
and read actions. Before introducing our solution, we provide some
background on the blockchain and describe the system model.

4.1 Blockchain and Smart Contracts
The notion of blockchain was originally introduced by the well-
known proof-of-work hash-based mechanism that confirms cryp-
tocurrency payments in Bitcoin [28]. The PoW-based blockchain
ensures that all transactions and their order of execution are avail-
able to all blockchain nodes, can be verified by all involved entities
and aids the consensus between the parties. Bitcoin’s blockchain
fueled innovation, and a number of innovative applications have
already been devised by exploiting the secure and distributed
provisions of the underlying blockchain. Prominent applications
include secure timestamping [6], [7], and smart contracts [16].

Smart contracts refer to binding contracts between two or more
parties that are executed by all blockchain nodes. Namely, smart
contracts implement state machine replication. Smart contracts
typically consist of a self-contained code and persistent storage
available to all blockchain nodes. For example, Ethereum [16] is a
decentralized platform that enables the execution of arbitrary appli-
cations (or contracts) on its blockchain. Owing to its support for a
Turing-complete language, Ethereum (which currently also relies
on PoW-based consensus) offers an easy means for developers to
deploy their distributed applications in the form of smart contracts.

To make smart contracts more powerful, techniques have been
developed to securely insert real-world facts into blockchains, such
as TownCrier [34]. These facts, such as weather information or
flight delays, allow contracts to take real-world events into account
and to offer new functionalities.

4.2 Overview of Comrade
In Comrade, cloud accounts are not owned by a single user, but
by a smart contract that is running within a blockchain. We refer to
such a smart contract by owner contract and we rely on it to ensure
access control as agreed upon by the file owners. The cloud’s
PDP makes access control decisions by evaluating a standardized
function within the owner contract, as depicted in Figure 4. To
grant or deny access rights, the owners submit their votes to the
owner contract, which stores them in the blockchain. The PDP’s
decision then depends on the access control policy, encoded in the
owner contract, and data stored inside the blockchain, i.e., owners’
votes or securely inserted facts.

To perform an action a on file F in Comrade, user Ul proceeds
as follows. Ul issues a standard access request to the cloud storage.
The request is authenticated using Ul’s private key. The cloud
PDP determines the corresponding owner contract for F and
evaluates the hasAccess() function inside that owner contract:
hasAccess(F, Ul, a).

hasAccess() is evaluated based on the contract’s access con-
trol policy, the owners’ votes and potentially additional blockchain
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Fig. 4. Overview of Comrade. Access control decisions depend on the
evaluation of a smart contract executed within the blockchain.

data. The derived access control decision is then enforced by the
cloud’s Policy Enforcement Point (PEP). Notice that the cloud PDP
performs this evaluation by locally executing hasAccess() on
the current state of the blockchain, i.e., the evaluation triggers no
action on the blockchain and requires no fees.

The owner contract also manages the users. Users can join
the system by sending a request to the owner contract. For every
user, the contract’s storage contains the user’s public key, used for
authentication and data encryption as explained below. The storage
also contains every user’s accounting balance. Finally, the contract
contains procedures for initializing and closing the cloud account.

Recall that the owner contract stores the votes inside its
storage. To minimize the overhead associated with such a voting
scheme (i.e., storage costs in the blockchain), Comrade employs
a hierarchical file structure and groups files into directories. This
allows users to issue a directory-specific vote; votes on directories
are valid for all contained files and subdirectories (unless a more
precise vote exists). We additionally group users into roles by
leveraging role-based access control (RBAC) [18]. RBAC allows
full flexibility at higher efficiency as owners only need to vote on
access rights for the roles.

Similar to Commune, we assume that the cloud provider will
enforce access control decisions correctly at all time (although the
provider might be interested in learning the contents of files).

Comrade also ensures fair payment by all owners, protect the
cloud provider from free-riding, and punishes unfair behaviour. To
do so, each user in Comrade makes a policy-defined deposit at
the owner contract at system setup. The owner contract tracks each
user’s balance (e.g., and punishes them for delayed payments). To
pay for cloud storage, the owner contract forwards a part of the
users’ deposits to a deposit inside the cloud contract.

In turn, the cloud contract deducts the operational costs from
the deposit and requests the deposit to be refilled before it reaches
zero. Once the deposit reaches zero, access to the cloud resources
is denied and after some grace period the cloud resources are
released.

Similarly, the owner contract requires users to restock their
deposit. Otherwise, the owner contract can impose sanctions, e.g.,
deny certain access rights or ignore votes in case of an owner.
Such sanctions and the payment procedures are defined as part
of the owner contract which is visible to all owners at contract
creation. Notice here that different accounting policies are feasible.



10

For example, the owners can equally split the costs, can ask users
to pay a share of the costs or the policy can dictate usage-based
cost sharing where more active users pay more.

In contrast to Commune, Comrade requires slight changes
to the cloud architecture. Namely, the cloud needs to provide a
blockchain interface to manage and pay for used cloud resources.
To offer such an interface, a single smart contract per cloud provider
is sufficient. We refer to such a contract as a cloud contract. The
cloud can monitor the state of the cloud contract and perform
the requested operations. Such an interface seems realistic as
cloud providers currently provide more complex interfaces such
as command-line tools or web platforms. The cloud also needs a
slight modification in its PDP. Access control requests for cloud
resources owned by a smart contract are decided by evaluating a
function inside the matching owner contract. We refer to this as
a blockchain-aware PDP. Overall, Comrade only requires minor,
inexpensive changes in the cloud infrastructure.

We argue that Comrade ensures that the cloud provider cannot
be held accountable for collecting and correctly evaluating other
owners’ policies. For example, incorrect evaluations may incur
negative reputation or financial penalties. Instead, all votes are col-
lectively evaluated by the blockchain nodes. Moreover, Comrade
allows for the first time the implementation of complex, distributed,
event-based access control policies that would considerably enrich
the cloud offering.

4.3 Comrade: Protocol Specification

We now detail the operations of Comrade.

Create a File. During file creation, one user—the file creator—
writes the initial version of the file into the repository. This requires
the file creator to have write permissions for the directory the file
is created in.

The file creator also encrypts the file using a randomly chosen
file key before uploading it. The encrypted file is uploaded as F
using a write action. To securely distribute the file key to Ui, the
file creator also uploads wrapped keys Fk,Ui

containing the file
key for file F encrypted with the public key of user Ui. By default
a file creator uploads wrapped file keys for all owners. Notice that
the access control policy for Fk,Ui is defined such that a user Uj
can access Fk,Ui if and only if Uj = Ui and Uj can access F.

Grant/Deny Write Rights. An owner Oj grants write rights for
a resource F (and the associated wrapped file key) to an entity Ul
by submitting a corresponding vote to the blockchain. The vote
consists of a blockchain transaction v(Oj , Ul,write,F). Here, F
can be a file or directory and Ul can be a single user or a specific
role. Similarly, Oj denies write rights for F to Ul by voting
against the access. Notice that access to F also implies access to
the associated wrapped file key.

Update a File. Assume Ul wants to write a new version of a file
F. Ul encrypts F using its file key and issues a write action as
described in Section 4.2. In case the owner contract implements a
threshold-based access control policy, the request succeeds if there
are at least t owner votes in favour.

Grant/Deny Read Rights. Analogously to write rights, an owner
Oj grants or denies read rights for a resource F to an entity Ul
by submitting a corresponding vote to the owner contract. As
mentioned earlier, this vote corresponds to a blockchain transaction
v(Oj , Ul,read,F).

Read a File. Assume Ul wants to read a file F. Ul issues a read
request for F and Fk,Ui

as described in Section 4.2. In case the
owner contract implements a threshold-based access control policy,
the request succeeds if there are at least t owner votes in favour.
Ul decrypts Fk,Ui

using its private key to obtain the file key and
finally decrypts F.

4.4 Security Analysis

We now analyze the security provisions of Comrade according to
Properties P1 and P2 as defined in Section 3.2.

First, we show that a rational cloud PDP cannot influence the
owners’ votes. Recall that the owners vote on access control deci-
sions by issuing appropriate blockchain transactions. Such trans-
actions are confirmed in the blockchain by the validators/miners.
As required for the security of the underlying blockchain, we
assume the standard safety conditions particular to the underlying
blockchain technology. For instance, in Proof-of-Work (PoW) based
blockchains (e.g., Bitcoin and Ethereum), we assume that the
adversary cannot control the majority of the computing power in
the network (see [28] for further details). Recall also that the access
control decisions are made by the cloud PDP according to the user
contract which was previously agreed upon by all owners. These
decisions are publicly verifiable and the cloud provider can be held
accountable for any diverging decisions.

Property P1 (cf. Section 3.2) is fulfilled as follows. First, similar
to Commune, Comrade uses copy-on-write to prevent writers
from overwriting content in the shared repository with garbage.
Second, malicious writers (i.e., writers who have been granted
write access on a resource by fewer than t owners) are denied
access by the cloud PDP following from the execution of the
contract.

Property P2 is satisfied by performing access control over the
file as an atomic unit. Once a reader loses read access, it cannot
read the file anymore as its requests are denied by the cloud PDP
as mandated by the owners contract. Even in case the reader had
previous access and locally saved the file key, it cannot use this file
key to recover meaningful bits of F since it does not have access to
the ciphertext. Finally, users cannot collude since the owners’ votes
are issued to specific users and cannot be reused by other users.

A user anticipating to lose read or write access could try
to mount a Denial-of-Service attack against the blockchain to
prevent the propagation of the owner vote. This emerges as
a challenging task, given the distributed nature/deployment of
existing blockchains.

Finally, we note that cloud providers have to evaluate
hasAccess on every resource access. Since hasAccess is
Turing-complete, the cloud provider must protect against resource
exhaustion attacks, where clients trigger expensive hasAccess
functions. Therefore, the cloud provider can define a maximal
number of execution steps for an evaluation of hasAccess and
charge the owner contract according to the number of required
execution steps. Notice that this is a similar concept as the notion of
gas in Ethereum [17]. This ensures fair payments across different
tenants and defends against resource exhaustion.

5 PROTOTYPE DESIGN & EVALUATION

In this section, we describe prototype implementation of Com-
mune and Comrade integrated with Amazon S3 [1] and evaluate
their performance.
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New Owner Contract New Permission New File
5 Owners 0.59 0.0189 0.00
10 Owners 0.71 0.0189 0.00

TABLE 1
Transaction Fees in USD for our Comrade prototype.

5.1 Commune Implementation
We leverage Amazon S3 to instantiate S: for each user in U , we
create personal accounts in Amazon S3, into which users can
upload content and for which users can define arbitrary access
control policies. In our implementation, we use Amazon S3 access
control features to distribute tokens from the file creator to the set
of owners O ⊆ U . In particular, we assume that each user sets
up (i) one “temporary” folder where other peers are granted write
access, and (ii) one “main” folder where endorsed tokens are stored
and retrieved. When the file creator wants to distribute a token to
owner Oj , he writes the token to Oj’s temporary folder. Since no
other user apart from Oj has read access to the temporary folder,
the new token is protected from unauthorized access. At this point,
Oj can endorse the token for another user Ul by storing the token
in his main folder, and granting read access on it to Ul.

Our Commune prototype, implemented in Java, is a multi-
threaded client-side interface to repositories hosted on Amazon
S3. The client runs on a user’s machine and uploads/downloads
content to/from the repositories. The client’s implementation
of SFD leverages Rijndael [20] as the underlying block cipher
for AON-FFT and systematic Reed-Solomon codes [32] for
information dispersal. We chose a symbol size of 16 bytes, and a
security parameter λ = 128 bits.

To optimize performance, our prototype handles file unit
operations at a smaller granularity, called pieces. During the
creation of any file unit, the unit is split into pieces that are
processed in parallel. A token for each unit contains one output
chunk of SFD for each piece that composes the unit. The piece size
w is chosen such that tλ|w, where λ is the security parameter and
t is the required reconstruction threshold. This condition ensures
that (i) a piece can be encrypted in an integer number of ciphertext
blocks of λ bits, (ii) an encrypted piece can be divided into an
integer number of input chunks for the Reed-Solomon encoder, and
(iii) the size of each chunk of the Reed-Solomon encoder/decoder
is at least λ bits.

5.2 Comrade Implementation
Our python-based implementation of Comrade is also integrated
with Amazon S3. Here, there is only a single account which is
owned by the owner contract. Since Amazon does not support
blockchain-aware PDPs yet, we implement the PDP in an Amazon
EC2 instance. The PDP has access to the S3 account and makes all
access control decisions based on the current state of the blockchain.
Clients vote on the access control policies directly through the
blockchain and access resources by contacting the PDP. We rely
on Ethereum [16] blockchain running in test mode to avoid paying
transaction fees during evaluation. Table 1 summarizes the fees.
The creation of our owner contract would cost $0.594 and $0.71 for
5 and 10 owners respectively. Granting permissions costs $0.0189
while uploading a new file incurs no fees.

To support authentication with the PDP, every user registers
its public key within the owner contract. Since the storage

4. At time of writing, the Gas price is 2·10−8 ETH where 1 ETH = $10.54.

inside the blockchain is expensive, we use compact elliptic curve
cryptography (ECC) (since ECC public keys are smaller than RSA
keys). To access a file, a client establishes a TLS connection to the
PDP using its registered public key inside a client certificate. The
PDP identifies the client based on the key and makes the access
control decision by locally evaluating a function of the owner
contract. Similar to Commune, our Comrade prototype breaks
units up into pieces.

5.3 Evaluating Single Unit Write/Read
We evaluate the performance of Commune and Comrade for a
single file unit write and read, with respect to (i) the piece size w
(default value w = 128 bytes), (ii) the reconstruction threshold
t (default value t = 4), (iii) the number of owners n (default
value n = 10), and (iv) the size of the file unit |Fi| (default value
|Fi| = 10 MiB).

We then change one variable at a time to assess its impact on
the system performance. For each configuration, we measure the
time required (i) to create and upload Fi (denoted by Write in our
plots), and (ii) to retrieve Fi (denoted by Read). These latencies
are measured from the initiation of the operation until the output is
available either in the repositories (for Write) or on a local disk (for
Read). We control for the effect of caching by uploading random
binary streams at each repetition.

During Read, the Commune client fetches endorsed tokens
from t randomly chosen owners. Recall that a (t, n) systematic
erasure code outputs t data chunks and n− t parity chunks. Since
data chunks need not be decoded, our evaluation accounts for the
average-case scenario where the probability that a token contains a
data chunk is bounded by t

n . Notice that we do not evaluate the
time required to grant read rights (i.e., the time required to endorse
a token or to submit a blockchain transaction) since it does not
depend on any of the considered parameters.

Our results are depicted in Figure 5. For Commune, we
additionally monitor the runtime of the intermediate steps for
a number of configurations as shown in Figure 5(e).

Our evaluation shows that writing a new unit in Commune
(Write) is less expensive than reading it (Read) while the order is
reversed in Comrade. The former effect is due to the overhead
of thread synchronization when storing decoded pieces on the
local disk while the Write performance in Comrade is due to the
overhead of uploading wrapped keys for all owners.

Impact of the Piece Size: Figure 5(a) shows the impact of the
piece size w on the latency. For Commune, a smaller w leads
to a smaller number of input blocks to the AON-FFT scheme,
which results in better performance since AON-FFT requires
log2m rounds of encryption for m input blocks. However, we
experience higher latencies for very small values of w, especially
in the Read operation. This is due to the thread synchronization
overhead when writing data to disk. For Comrade, a smaller
w increases the overhead because of additional synchronization
while a larger w cannot benefit from parallelism. Throughout the
rest of the evaluation, we set w = 128 B for Commune and
w = 512 KiB for Comradesince they offer a good performance
trade-off as shown in Figure 5(a).

Impact of the Reconstruction Threshold: Figure 5(b) shows the
latency impact of the reconstruction threshold t. In Comrade, the
threshold does not influence latency as shown in Figure 5(b). In
Commune, the chunk size of the Reed-Solomon encoder increases
as t decreases; this results in larger chunk upload and download
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Fig. 5. Latency evaluation of our prototype implementations. Each data point is averaged over 20 measurements; where appropriate, we also provide
the corresponding 95% confidence intervals. Figure 5(e) splits up the latency into its different components.

times. Figure 5(e) also shows that a smaller value of t results in
longer encoding and decoding times. On the one hand, during
Write, small values of t result in larger encoding overhead since the
size of the encoding matrix increases. On the other hand, during
Read, small values of t decrease the probability of recovering data
chunks (w.r.t. the probability of recovering parity chunks), which
makes decoding slower (cf. Figure 5(e)).

Impact of the Number of Owners: Figure 5(c) shows that latency
increases for Commune’s Read and Write as the number of owners
grows. The latency increase during Read is due to an higher
probability of fetching parity codes that take more time to be
decoded by the Reed-Solomon decoder. During Write, this increase
is caused by the creation and distribution of additional tokens from
the file creator to the set of owners. The performance of Comrade
is virtually unaffected by the number of owners since the upload
of additional wrapped keys can be performed in parallel—thereby
resulting in negligible additional cost.

Impact of the Unit Size: Figure 5(d) shows Commune’s and
Comrade’s latency for different unit sizes. The time required
to read/write a unit increases almost linearly with the unit size
(Figure 5(d) relies on semi-logarithmic axes). However, the
performance of Comrade is a magnitude faster than that of
Commune. The time required to read a 10 MB unit is roughly
4.47 seconds for Commune, but only 0.81 seconds for Comrade.
As shown in Figure 5(e), this stems from the fact that Commune’s
latency is dominated by the encryption and decryption as part of
AON-FFT, while Comrade does not leverage AON-FFT and
therefore witnesses a considerably lower latency.

5.4 Evaluating Multiple Units Read/Write
We now assess the performance of reading/writing multiple file
units of in order to determine the peak throughput exhibited by

Peak Throughput (Mbps)
Commune Comrade

Write 43.39 190.26
Read 29.52 225.37

TABLE 2
Peak throughput. Each data point is the average of 20 measurements.

our prototype implementations. Here, we increase the number of
concurrently accessed units until the throughput is saturated. We
then compute the peak throughput as the maximum aggregated
amount of data in bits per second that can be transferred between
client and Amazon S3. Table 2 shows that the peak read/write
throughput is above 29 Mbps for Commune and above 190 Mbps
for Comrade.

We argue that, while Commune’s overhead might be tolerable
in low-throughput, high-latency scenarios such as collaborative text
editing where users work on content on their local machines (and
only periodically synchronize content with the cloud), Comrade is
a viable option in a wide variety of application scenarios including
those with more frequent cloud interactions.

6 DISCUSSION

In this section, we discuss further insights with respect to the design
of and possible improvements for Commune and Comrade.

Transparency to Users: As explained, Commune enables users
to coordinate access control to cloud content in a distributed manner.
We stress that all the operations in Commune are implemented
by the client application described in Section 5. Users need not
“manually” distribute or fetch tokens. In fact, users are only required
to set the list of owners for the files they create and to define the
access policy on the files for which they are appointed as owners.
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In Comrade, the owners initially create the owner contract.
Afterwards, the owner contract acts as an orchestrator for all users
and Comrade can act transparently to the users by automatically
fetching ciphertexts and the corresponding wrapped keys.

Changing threshold t: To maintain consistency in Commune,
we do not support the change of threshold t for any file F. If an
owner would want to change the threshold, say from t to t′, he
would have to compute and distribute new tokens to all owners in
O. Then, all owners in O must replace their old tokens with the
newly received ones. Since each owner has full rights on its tokens,
there is no mechanism to force all owners to accept these changes,
and replace their tokens. This can lead to an inconsistent state in
which some tokens correspond to a file version with threshold t,
while other tokens correspond to another version with threshold t′.
Therefore, Commune does not support changing the threshold.

In contrast, Comrade supports changing threshold t by
modifying the owner contract. The owner contract defines the
requirements for such a change, e.g., agreement by all owners.
Once the requirements for a change are fulfilled, the change takes
effect and future evaluations of the owner contract through the
cloud PDP use the updated threshold.

Adding/Revoking Owners: Our model assumes that the set of
owners O is defined before file creation. Adding an owner in
Commune requires that either the original file creator or at least t
out of the n owners provide the new owner with his set of tokens.
However, revoking ownership rights from an owner, say Oj , may
not be feasible since tokens cannot be removed from Oj’s storage
on S without his consent. One possible solution would be to re-
encode the file and distribute new tokens to owners in O \ {Oj}.
Nevertheless, similar to the case of changing the threshold t, some
of the owners in O \ {Oj} may decide to discard the new tokens
and keep the old ones—leading to an inconsistent state.

In Comrade, owners can be added and revoked through the
owner contract. The requirements for adding or revoking owners
are mandated by the owner contract which can require e.g., the
approval by a majority of owners. Afterwards, the owner list inside
the owner contract is updated and new owner votes take effect (or
obsolete owner votes are disregarded).

Fine-Grained Per-Version Access Control: Commune and
Comrade enable owners to perform per-version access control.
That is, ownerOj can, for example, grant Ul read access to version
x of a file F but deny Ul access to F’s version x′. In collaborative
scenarios some versions of a given file may contain information
only intended for a subset of the users (e.g., due to IPR protection).

Note that, due to versioning, a given unit may span several
versions of file F. Nevertheless, this is transparent to the user who
only decides whether to grant/deny access to a given version x,
while tokens are handled by the client application. In particular
granting/denying read access rights to version x of file F is
achieved as follows in both Commune and Comrade:

To grant read access to version x, the client grants read access
to the most recent version of each unit that is smaller or equal to
x. To deny read access to version x, the client only denies read
access to those units that are part of version x but no earlier or
later version that Ul should have access to.

7 RELATED WORK

To the best of our knowledge, this is the first work that addresses
the problem of distributed enforcement of shared ownership.

Current state-of-the-art access control systems, such as Sec-
PAL [8], KeyNote [11], and Delegation Logic [23], can in principle
express t out of n policies. These languages, however, rely on the
presence of a centralized PDP component to evaluate their policies.
Furthermore, their PDPs cannot be deployed within a third-party
cloud platform. As explained in Section 2, these access control
systems rely on an administrator to define and manage access
control policies. In our setting, this means that a set of owners has
to elect one enforcer who has unilateral powers over their files.

Secret sharing schemes [9] allow a dealer to distribute a
secret among a number of shareholders, such that only authorized
subsets of shareholders can reconstruct the secret. In threshold
secret sharing schemes [14], [29], the dealer defines a threshold t
and each set of shareholders of cardinality equal to or greater
than t is authorized to reconstruct the secret. Secret sharing
guarantees security (i.e., the secret cannot be recovered) against
a non-authorized subset of shareholders; however, they incur a
high computation/storage cost, which makes them impractical for
sharing large files.

Information dispersal based on erasure codes [32] are effective
tools to enhance the reliability of cloud-based storage systems [4],
[5], [21], [33]. Ramp schemes [10] constitute a trade-off between
the security guarantees of secret sharing and the efficiency of
information dispersal algorithms.

8 CONCLUSION

Even though existing cloud platforms are used as shared reposi-
tories, they do not support any notion of shared ownership. We
consider this a severe limitation because contributing parties cannot
jointly decide how their resources are used.

In this paper, we introduced a novel concept of shared
ownership and we described it through a formal access control
model, called SOM. We then propose two possible instantiations
of our proposed shared ownership model. Our first solution, called
Commune, relies on secure file dispersal and collusion-resistant
secret sharing to ensure that all access grants in the cloud require
the support of an agreed threshold of owners. As such, Commune
can be used in existing agnostic clouds without modifications to the
platforms. Our second solution, dubbed Comrade, leverages the
blockchain technology in order to reach consensus on access control
decision. Unlike Commune, Comrade requires that the cloud is
able to translate access control decisions that achieved consensus
in the blockchain into storage access control rules. Comrade,
however, shows better performance than Commune.

Given the rise of personal clouds (e.g., [2], [3]), we argue
that Commune and Comrade find direct applicability in setting
up shared repositories that are distributively managed atop of the
various personal clouds owned by users. We therefore hope that
our findings motivate further research in this area.
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