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Abstract

Background: Cloud computing is becoming the preferred solution for efficiently dealing with the increasing amount
of genomic data. Yet, outsourcing storage and processing of sensitive data, such as genomic data, comes with important
concerns related to privacy and security. This calls for new sophisticated techniques that ensure data protection from
untrusted cloud providers and still enables researchers to obtain useful information.
Methods: We present a novel privacy-preserving algorithm for fully outsourcing the storage of large genomic data
files to a public cloud and enable researchers to efficiently search for variants of interest. To preserve data and query
confidentiality from possible leakage, our solution exploits optimal encoding for genomic variants and combines it
with homomorphic encryption and private information retrieval. The proposed algorithm is implemented in C++ and
evaluated on real data as part of the 2016 iDash genome privacy-protection challenge.
Results: Results show that our solution outperforms the state-of-the-art and enables researchers to search over millions
of encrypted variants in a few seconds.
Conclusions: As opposed to prior beliefs that sophisticated privacy-enhancing technologies (PETs) are unpractical
for real operational settings, our solution demonstrates that, in the case of genomic data, PETs can represent very
efficient enablers.
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INTRODUCTION

Due to the impressive advances in high throughput technologies we have witnessed a significant deluge, in the
last few years, of digitalized genomes. This increasing availability of genomic information has triggered massive
research in the so-called “data-driven medicine”, thus paving the way to the new era of personalized health. Yet,
even if the promise of personalized diagnoses and treatments seems just around the corner, the required storage and
processing capacities necessary to run analyses on these data are becoming increasingly prohibitive and often beyond
the capabilities of single institutions. For this reason, many medical research centers and healthcare providers are
beginning to look into cloud computing [1] as a flexible and cost-effective solution to outsource the expensive storage
and processing of genomic data.

Pushing genomic data to the cloud, however, is not an easy task. One of the main difficulties stems from the
important privacy and security concerns caused by outsourcing this sensitive and personal data to an untrusted third
party. Indeed, unlike other types of medical data, genomes cannot be anonymized [2], [3]. Many recent attacks based
on either side-channel information [4], phenotype/genotype correlations [5], or genealogical triangulation [6] have
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shown that standard anonymization techniques are ineffective with genomic data and, as a consequence, de-identified
genomes can be easily re-identified. Moreover, although the recent NIH (National Institutes of Health) Genomic Data
Sharing Policy [7] allows NIH-funded studies to use public cloud infrastructures to facilitate large-scale data analyses,
it also states that the data owner (i.e., a researcher or an institution), instead of the cloud provider, is responsible
for data security and privacy. In other words, if a data breach happens, the accountable party is the one that is
storing and processing the genomic data on the cloud and not the cloud service-provider. The leakage of genomic
information can open the door to all sorts of abuse and threats, not only for the individual but also for his relatives.
Hence, sophisticated protection mechanisms have to be put in place to protect genomic data when their storage and
processing are outsourced to an untrusted cloud environment.

In response to these concerns, in the last few years, the privacy and security community has proposed several
techniques for securely outsourcing to cloud environments the storage and processing of genomic data. The most
popular are those based on homomorphic encryption (HE), the state-of-the-art cryptographic technique that enables
a researcher to perform certain computations directly on the encrypted data and decrypt only the final result, thus
preserving the confidentiality of the raw genomic sequences from an honest-but-curious cloud provider. For example,
McLaren et al. [8] propose a technique based on additive HE, for securely performing pharmacogenetic tests on
encrypted genomes. Similarly, Lauter et al. [9] show how several statistical algorithms can be carried out on encrypted
genomes by using somewhat HE (SHE). Naehrig et al. [10] also show how certain approximated machine-learning
algorithms can be securely run in the cloud by using HE. Finally, Wang et al. [11] make use of HE to securely
compute exact logistic regression.

However, most of these solutions have reached limited adoption because of either (i) their lack of flexibility (i.e.,
some privacy-preserving solutions can be used only for specific tasks on specific types of data such as SNPs) or (ii)
their cost (HE introduces a significant storage and computational overhead that substantially limits their scalability
to real-size genomic datasets).

In this paper, we address this problem by proposing a new and very efficient solution for securely outsourcing
genomic data storage and processing that outperforms the state-of-the-art. Our solution is based on HE and private
information retrieval (PIR)[12] and enables a user to securely store millions of genomic variants of all types for one
or multiple individuals on the cloud and to efficiently search for specific genomic variants without revealing anything
to the cloud provider.

Due to its efficiency, the proposed solution was selected among the finalists at the 2016 iDash competition
[13], which was held in Chicago, Illinois, USA on November 11. The iDash competition is a community-wide
open competition whose goal is to bridge the gap between the biomedical informatics, data privacy, and security
communities by benchmarking new secure solutions for known genomic-security problems. The intention is to address
these issues and further advance the current state-of-the-art in the genome privacy and security research field.

We summarize the key contributions of this paper as follows:
• A new secure and efficient solution to store and search genomic data in a public cloud that provides data and

query confidentiality and hides access patterns from the cloud.
• The first application of private information retrieval for genomic data.
• A thorough performance evaluation on real genomic data.
• A detailed study of the security/privacy vs performance trade-offs.

METHOD

Our main objective in this paper is to propose an efficient solution to securely store and search genomic variants
in a public cloud. The cloud must not find out any information associated with the data kept within its premises but
must still enable the data owner the chance to query it. These genomic data are kept in variant call format (VCF)
files, one for each individual, in the following format:
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CHROMOSOME ‖ POSITION ‖ VARIANT ID ‖ REFERENCE ‖
ALTERNATE ‖ ...

The reference and alternate alleles represent, respectively, the alleles or set of nucleotides that should be present,
and their substitute. All other fields are self-explanatory. It is important to mention that the variant id is sometimes
absent. Figure 1 provides an example of one of these files and some of their content. To correctly query for a specific
variant, we need to specify only four parameters: chromosome, position (in the chromosome), reference and alternate.
The first two parameters provide the location of the variant in the genome and the other two represent the associated
allele mutation that can be different from individual to individual.

For the remainder of this paper, we assume symmetric non-homomorphic encryption under a key K (e.g., AES)
to be represented as EK(·) and homomorphic encryption as HEK(·). Hashing is symbolically represented as h(·).

Fig. 1: Variant Call Format (VCF) file. This is a text file that stores genomic information, in particular, genetic variations,
for example, single-nucleotide polymorphisms (SNPs). Each VCF file is divided into a header section, which provides some
meta-data describing the remaining content of the file, and the body, which contains all the different variants.

Background

Our solution draws inspiration from a known privacy technique entitled private information retrieval. This protocol
is of particular interest in a scenario when one of the participating parties (e.g., a server) owns a database and the
other wants to perform one or more queries without leaking any information, such as access patterns. Conceptually
speaking, we want to achieve the same level of privacy as downloading the entire database from the server and
performing the search locally. There are many variations of this protocol, but the current model for our solution uses
cPIR[14] (Computationally Private Information Retrieval) with HE that safeguards against a polynomially-bounded
querier. The way this protocol works, in practice, is to make each query indistinguishable and to ensure that the
server processes all of its database entries. In this way, it cannot obtain any information, neither by looking at the
query nor by looking at the computations performed on the database.

System Model

Our system comprises a data owner/client who possesses the genomic information in multiple VCF files. This
information is sent to a cloud server to be stored in a database, as depicted in Figure 2. The client can then query
the server to find out if one or more variants are present in the data bank. This information can be used for multiple
purposes, and can be particularly important for genome-wide association studies (GWAS), which statistically assess
the correlation between genetic variants and disease status. Our solution is able to hide data, query and access patterns
from the cloud.
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We envision simple scenarios such as a doctor who possesses the genomic data of his patients and wishes to
consult this information, or a patient who stores his genomic information on an external cloud service to free some
space in his device.

Fig. 2: Doctor-Server setting: (1) an honest doctor securely stores his patients’ genomic data in a cloud service; (2) he performs
search queries on that data without compromising any of his patients’ confidentiality and privacy.

Threat Model

Our system is mainly concerned with the confidentiality of data, such as genetic variants and with side-information
such as access patterns. We assume an honest-but-curious cloud server that follows the defined protocol but might try
to infer sensitive information from the owner’s data during its execution. This model is useful in cloud computing,
because cloud’s malicious behavior, such as tampering with the computation results, can be caught with a periodic
system audit, e.g., where the owner downloads a random small subset of the data and verifies previous computation
results [15]. The server can be instantiated with well-known cloud service providers (e.g., Google, Amazon, Microsoft
Azure) that have business incentives to behave honestly and are prudent to avoid malicious behaviors. We do not
consider any malicious adversary on the communication channel, as it is authenticated, confidential, and integrity-
protected with state-of-the-art security techniques (e.g., TLS 1.2 [16]). The client, who is the data owner and is
always authenticated, is assumed to be honest.

Proposed Solution

With the previous system model in mind, we devised a hash-based solution using homomorphic encryption and
PIR. We made some changes to the standard PIR protocol in order for it to have access to a given variant using its
identification parameters (chromosome, position, reference allele, alternate allele), rather than its relative position in
the VCF file. Furthermore, we protected the genomic data at the server side by means of symmetric encryption.

We decided to split our solution into initialization (encoding and encryption) and querying phases, in order to
separate between one-time offline operations (e.g., hashing, encrypting and uploading data) and online interactive
operations that need to be executed each time we run a search (e.g., generating query, obtaining the response).

Initialization Phase: The initialization phase (Figure 3) comprises the following steps:

(1) The client (e.g., doctor) generates a symmetric key, S, to later protect the sensitive data by using symmetric encryption. He
also generates another key, U , to compute hashes and a pair of public, private keys, (R,r), for the homomorphic encryption
scheme.

(2) The client possesses multiple VCF files in his machine that list the genomic variants, 1 . . . I where I is the total number
of variants. For example, in case of a medical doctor, each VCF would contain the variants pertaining to a specific patient.
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He computes for each variant i a hash, h(i), using U and keeps the first data hash size bits, h(i)bits. Hence, data hash size
quantifies the size of the hash representation that is going to be stored in the server. A smaller data hash size would greatly
improve performance, but would increase the probability of collisions, or in other words that two variants are represented by
the same hash.

(3) From h(i)bits he extracts x bits that will map to an index. The hash is then stored in another file (encoded VCF) in this
new position. A bigger x means that our database will have more entries (2x) since the number of possible mapped indexes is
bigger. A smaller x reduces the number of possible indexes and, as a consequence, increases the number of collisions in the new
encoded VCF file. If a collision occurs, the variant is concatenated to pre-existent ones.

(4) All rows in the encoded VCF file, even if empty, are padded so that they have the same length.

(5) Finally, each element in a row is symmetrically encrypted. The combination of padding and symmetric encryption ensures
that all entries have the same size and are indistinguishable.

Fig. 3: Initialization Phase. The owner of the data first encodes the data (variants 1...I) into a new VCF file, which is then
symmetrically encrypted and sent to the cloud server.

Querying Phase: The querying phase (Figure 4) is mostly the same as standard PIR, repeated for each variant
and/or VCF file queried:

(1) The client specifies the query and performs a hash for the variant j being searched using the same key, U , as before, h(j)bits.
He then maps it to its respective index, pos, using the first x bits of that hash.

(2) The client issues a PIR query for that position. In other words, the client sends an array, arr, with the same length as
the queried VCF file in the database, composed of homomorphic encrypted 0s and a 1 on the position of the desired element

→ ∀l ∈ arr :

{
HER(1) if l = pos
HER(0) otherwise

Note that the encryption scheme is randomized (there are many encryptions of 0 and of a 1) and that the encryptions of 0
and 1 are indistinguishable for an attacker.

(3) The server generates a PIR reply. To do that the server multiplies each value in the array by its respective element in the
queried VCF file and adds up everything. When there is a 1, that entry is homomorphically absorbed (i.e., HE(1)×y = HE(y)),
otherwise it is erased. As encryptions of 0 and 1 are indistinguishable, the server cannot know which entry is absorbed and
which are erased. If the variant exists it will correspond to one of the elements/variants in the response vector.

(4) Finally, the response is sent to the client, who decrypts, using r and S, and checks for the presence of the variant.
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Fig. 4: Querying Phase. The owner of the data first maps the queried variant into a database index and then runs a generic
homomorphic version of the PIR protocol.

In this solution, the client queries a single row where he thinks a specific variant is. However, because each row
contains multiple elements, he will have access to extra information, aside from the variant that he is looking for.
Most of the times, these additional data do not raise any security or privacy concerns as it belongs to the client
itself. However, if we consider an honest-but-curious querier (e.g., an outside entity who is authorised to query the
database) retrieving more information than intended can be problematic. Therefore, we propose an extension to our
querying phase to be performed after the PIR reply-generation denoted subtraction step, see Figure 5:

(3a) In addition to the PIR query, the client sends a “subtract query”, sub, which contains the symmetrically encrypted hash of
the variant being searched, ES(h(j)bits), replicated multiple times so that it has the same length as a row in the queried file.

(3b) The server then subtracts its PIR reply with sub. If the variant is present in the reply vector some of the polynomial
coordinates will be 0.

(3c) Finally, the server multiplies each element of the reply vector by a multiplicative mask. This way, it randomizes every element
in the response by using an uniformly random multiplier (one-time pad), except the zero coordinates that exist only if the reply
contains the variant. Hence, the client only has to search for consecutive zero coordinates after decrypting the result to check
whether the variant is in the file or not. Yet he cannot obtain any other information as non-zero entries have been randomized.

Fig. 5: Subtraction step. The server subtracts the encrypted hash of the variant with its PIR reply and then randomises the
result, thus hiding all other variants except for the one being queried.

Implementation

In our solution we make use of a very recent improved private information retrieval implementation, XPIR [17],
combined with AES CTR256 for symmetric encryption and HMAC SHA256 for hashing. The XPIR library has
been modified to include an optimized Fan and Vercauteren (FV) [18] homomorphic encryption scheme.
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There are a number of reasons for choosing these particular techniques. First, for the protection of data at rest,
we opted for AES CTR256 because it is considered safe for today’s systems, but it also dramatically reduces the
storage cost at the server side. In fact, the size of each ciphertext is the same as the corresponding plaintext value
and the data owner can simply store the 64-bit nonce, needed to generate the initialization vectors (IVs), locally.
Each IV corresponds to this random nonce, different for each encoded VCF file, concatenated with each variant’s
position (64 bits). Second, for hashing, HMAC SHA256 provides a collision-resistant function proven to be still
secure. Finally, for homomorphic encryption, we use FV-NFLlib [19], which is an implementation of FV based on
NFLlib developed for the HEAT [20] project. It is an efficient library dedicated to ideal lattice cryptography and it is
currently employed by the XPIR application due to its security guarantees (i.e., uses secure gaussian noise generators).

For padding, various schemes could be applied in order to distinguish dummy elements from real ones. We refer
to the PKCS #7 padding scheme [21], where the value of each dummy element is equal to the number of dummy
elements. For example, if we have to pad 3 dummy elements, the padding will be “3 ‖ 3 ‖ 3”.

Parametrization

For the keys of HMAC and AES, we chose sizes that are considered to be standard and secure. The remaining
parameters had to be empirically fine-tuned. Table I contains the different parameters of our system.

Parameters Description
DATA HASH SIZE Length in bits of a variant’s hash to be stored.

BITS FOR MAPPING = x Number of bits extracted from the hash that maps to a specific index.
NUM ENTRIES Number of entries in the encoded VCF (= 2x).

ROW SIZE Number of elements per row of data hash size bits. Indirectly defines the number
of dummy elements (padding) to be added.

ENCRYPTION MODE Cryptographic parameters for the FV scheme: FV:A:B:C:D. FV is to be used with A
security bits, polynomials of degree B, polynomial coefficients of C bits and capable
of absorbing a maximum of D bits per coefficient.

AGGREGATION Number of aggregated rows. Ensures that multiple rows are concatenated resulting
in a database with a lesser amount of rows (NUM ENTRIES/AGGREGATION), which
are in turn longer (ROW SIZE × AGGREGATION).

DIMENSIONALITY Level of recursion.

TABLE I: List of parameters.

We first analyze the data hash size parameter. For this particular variable, more bits will reduce the chance
of having false positives (one variant with the exact same hash as another one), but will also increase the overall
database size. For example, storing 48 bits of each variants’ hash in a 5 million VCF file would lead to a false
positive probability of roughly 5, 000, 000/248 ≈ 1

225
. We consider this to be acceptable, as the error rate in DNA

sequencing is well above this probability [22]. Nevertheless, we could increase the stored hashes to 96 bits so as to
have a cryptographically low probability of false positives, thus doubling the database size as well as the subtract
query size, and multiplying response time by slightly less than two (as the PIR query size is unchanged).

Varying the number of bits for mapping x affects multiple dimensions of our solution. The entries of each encoded
VCF are indexed by the x first bits of the hash of each variant. Hence, each entry is a list of encrypted variants that
map to the same index, or in other words, the first bits of their hash is the same. Choosing a small x significantly
increases the average number of collisions and reduces the number of entries, num entries. Whereas, the number
of collisions defines the amount of padding needed, or in other words the row size. For example, if the maximum
number of collisions in one single index, among the different VCF files, is 100, then we can set our row size to
the same number and with that homogenize the size of each VCF file in the database.

On the contrary, a higher x means a lengthier encoded VCF file as more bits are extracted during our mapping
phase. This reduces the number of collisions but significantly increases the amount of dummy data needed to hide
every entry.

In practice, if we have x = 13, then we have num entries = 213 elements in each encoded VCF file. As a result
of the law of large numbers (limn→∞ P (|X − µ| ≥ ε) = 0) [23], the average maximum number of collisions would
be around 710 for a 5 million variants’ file. As such, the padded VCF size will be reduced by a factor between
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4 and 6, when comparing with another VCF file with 222 elements with an average of 1 collision, but with the
maximum number close to 5-6. Such an improvement will reduce pre-processing by the same factor, as well as
query-generation/query-sending and reply-generation time by roughly a factor 2. Nevertheless, there is a limit to how
compact each file can be, since the increasing number of collisions greatly expands the size of the reply.

Both aggregation and dimensionality are associated with the PIR scheme. The first parameter enables the packing
of data, or in other words, enables multiple rows to be concatenated into a single row. Thus, we can reduce the
number of rows of a file in the database during the PIR protocol, as well as the size of PIR query, in exchange for
a bigger PIR reply.

The second parameter, dimensionality, enables the recursive execution of multiple PIR queries simultaneously,
see Figure 6, thus reducing query transmission time. However, reply size grows exponentially in the number of
dimensions and thus we must keep the dimension small (<4). Both dimensionality and aggregation can be chosen
in a way that ensures maximum performance.

Fig. 6: Dimensionality/Recursion. With dimensionality = 2 the size of the PIR query is smaller but the server needs to
perform more iterations to generate the correspondent reply. In the example above, we reduce the size of the PIR query from 9
to 6 elements.

Security Analysis

Our solution uses multiple techniques, in particular, two encryptions, a hash and a padding scheme that, when
combined, provide data and query confidentiality and hide the access patterns from the cloud server.

The first encryption scheme, AES-CTR256, outputs a uniformly random distributed ciphertext for each encrypted
variant. Therefore, the data sent to the cloud cannot be directly used by an attacker to obtain confidential information.

The second encryption scheme, FV, is a somewhat homomorphic encryption (SHE) scheme that ensures indistin-
guishably against chosen plaintext attacks and is limited to an amount of operations (e.g., some additions and/or
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multiplications). Beyond this limit, an operation on the ciphertext creates too much noise for the decryption to be
correct as the noise overflows the data. FV is based on the ring learning with errors (RLWE) problem; and to estimate
the security of its parameters we use Martin Albrecht’s work [24] that provides a script to generate this information
based on existing attacks. The script returns the security of the last attacks against cryptography based on LWE and
we assume the results hold for RLWE. This is the standard approach to estimate RLWE security nowadays.

Hashing, SHA256, ensures that we can represent any kind of variant (SNPs, insertions, deletions, etc.) in a compact
way and still provide indistinguishability after we symmetrically encrypt the data. By padding we ensure that each
row in each of the files in the server is the same size, hence the line length does not leak any information.

Finally, the subtraction step changes the solution so that the data owner can only learn about the requested variants
and nothing else.

By combining all of these techniques, we ensure data confidentiality and privacy throughout the two main steps
of our solution. For the first step, the initialization phase, symmetrically encrypting the hash of the variants, using
the client’s private key, ensures that no one besides the client can decrypt this information. As for the second step,
the querying phase, since the query has the same length as the length of the queried file and all its elements are
homomorphically encrypted, the server cannot obtain any information about the rows that the client wishes to access.
In addition, the server cannot distinguish between two different queries, as the encryption scheme used to generate
them provides ciphertext indistinguishability based on a standard cryptographic assumption. The operations performed
at the server side to obtain the PIR reply are always done between homomorphic-encrypted data and symmetric-
encrypted data and therefore the stored variants and the query are protected at all times. The server performs the
same homomorphic multiplication for every single row of the VCF file, and thus does not know which one is being
retrieved.

The extension to our solution simply reduces the amount of extra data that the client has access to. Data is still
encrypted before, during and after the subtraction step and as a result there is no leakage of information.

RESULTS

In this section, we assess the performance with different settings and offer a comprehensive view on how to achieve
better results. We split our results in two categories: a generic performance evaluation and another where we focus
on the tests conducted during the iDash challenge.

We ran both client and server, implemented in C++, on a Ubuntu (64-bit) virtual machine with 4GB RAM and
250GB hard disk, on top of a MacBook Pro with a 3.1 GHz Intel Dual-Core i7 processor. We enforced a 10 Mbps
link for both downloading and uploading data. Each measurement was averaged over 10 independent runs and we
displayed the standard deviation for the round-trip-time (RTT).

Generic Performance Evaluation

Table II lists five different settings, and Table III showcases the results. All different setups will run a single
variant search on a specific VCF file with 5 million variants. We generated this test file by using the two datasets
provided during the iDASH genome privacy challenge. For more information on each of the parameters please refer
to subsection - Parametrization.

Setup default uses the default settings for our strategy. We fine-tuned these parameters to offer the best possible
performance.

For storage, we decided to represent each variant with 48 bits of its hash, ensuring a small file size and a negligible
probability of error. Furthermore, we also decided in favor of a compact database that enables us to reduce storage
complexity and improve PIR query-generation/query-sending time. We ended with 8192 entries per file (x = 13),
as further aggregating the database would make the PIR reply-generation/reply-sending too cumbersome. For the
encryption mode and complementary parameters, we chose those provided by the XPIR optimizer - FV:80:1024:62:14
with aggregation 3 and dimension 2. To come up with these values, the XPIR optimizer empirically tests, for a specific
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Setup default sparse no info

DATA HASH SIZE 48 48 48
BITS FOR MAPPING 13 16 13
NUM ENTRIES 8192 65536 8192
ROW SIZE 716 130 716
ENCRYPTION MODE 80:1024:62:14 - -
AGGREGATION 3 15 3
DIMENSIONALITY 2 (53x52) 2 (67x66) 2 (53x52)

Setup security

DATA HASH SIZE 48
BITS FOR MAPPING 13
NUM ENTRIES 8192
ROW SIZE 716
ENCRYPTION MODE 172:2048:62:14
AGGREGATION 3
DIMENSIONALITY 2 (53x52)

TABLE II: System settings for the generic performance evaluation. Each setup pertains to a single scenario→ default: optimized
setup; sparse: sparser database (more entries); no info: no extra variants retrieved; security: stronger security guarantees. ’-’ means
the same value has the previous setting.

file, different combinations of parameters and chooses the ones that provide the better overall PIR performance and
guarantee at least 80-bits security. We opted to include a pipeline execution and pre-importation. Consequently, both
query and reply are sent as they are created and some data is stored in RAM to enable a much faster computation
of all PIR operations. It is worth mentioning that the pre-importation is not viable if the number of patients is too
big, roughly 100 for this machine, as there is not enough space in RAM. Finally, to provide data confidentiality and
privacy, we selected a 256 bit key for AES encryption, a secure standard, and a row size of 716. This is sufficient
to hide the average maximum amount of collisions on any given VCF file up to 5 million variants without too much
storage and time overhead and to still keep the size of each entry at the minimum possible.

The three remaining setups enable us to compare the default strategy (compact database) with an alternative one
(sparser database), to evaluate the performance of our subtraction step and to assess the security scalability of our
solution. For Setup sparse we decided for a more lengthier database, an alternative solution, with fewer collisions
and a higher recursion to mitigate the effect of having more entries. Setup no info removes the extra information
retrieved for each query by adding our subtraction step. Finally, Setup security is similar to the previous one but,
this time, the ciphertext size chosen is larger to provide much stronger security (>128 bits).

We evaluate each setup based on three performance parameters, see Table III, in decreasing order of importance:
performance, storage complexity and communication cost. The first metric is assessed by looking at the round-trip-
time (RTT), the PIR query and reply generation, as well as the reply extraction. Both data preparation and importation
are comparably less important, as they are executed only once. The size of the VCF file measures the performance in
terms of storage, and send-query and send-reply measures the performance in terms of communication cost. Although
not indicated in Table III, sending the VCF file takes approximately size of vcf file(MBytes)/1.25 seconds with a
10Mbps of bandwidth.

The first setup, Setup default, shows the overall best performance of our basic solution under optimized settings.
On average, a client can query the system in less than 2.5 seconds, while protecting the data at rest, and the query
and response from the cloud server. It is very important to mention again that we are using a 5 million VCF file,
currently considered to be an upper-bound to the the maximum number of variants a human can have in his/her
genome [25]. For smaller files, the results are exactly the same, except for the amount of time it takes to prepare
the data during the initialization phase. Hence, as long as the VCF has less than 5 million variants, this solution is
file-independent due to the padding scheme. In other words, querying a VCF file with one variant takes the same
amount of time as querying a file with 5 million variants.
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Setup default sparse no info

Data preparation (s) 19.2 21 19.6
Size of VCF file (Mbytes) 35 51 35
Importation (s) 0.6 1.08 0.71

PIR query generation (s) 0.013 0.017 0.011
Sending query (s) 1.37 1.74 1.49
PIR reply generation (s) 0.38 0.55 0.46
Sending reply (s) 1.03 1.04 1.26
Reply extraction (s) 0.4 0.58 0.49

Round-trip-time (s) 2.4± .006 2.8± .002 2.7± .001

Setup security

Data preparation (s) 21.3
Size of VCF file (Mbytes) 35
Importation (s) 0.8

PIR query generation (s) 0.025
Sending query (s) 2.88
PIR reply generation (s) 0.56
Sending reply (s) 1.39
Reply extraction (s) 0.34

Round-trip-time (RTT) (s) 4.3± .02

TABLE III: Quantitative results for the generic performance evaluation. The table is divided into three sections: initialization
phase, querying phase and overall querying performance. The results are for one single variant search on a specific VCF file
with 5 million variants.

In the second setup, Setup sparse, we notice a slight increase in the overall RTT time, mostly due to the fact that
we have a higher number of entries, thus causing the PIR query to be larger and more cumbersome. Aggregation can
help, up to a certain point, to mitigate this problem, by having multiple entries in one single polynomial/ciphertext.
Without it, our PIR query becomes slightly larger, and the time it takes to generate and send it becomes rapidly
impractical.

In the third setup, Setup no info, we introduce the subtraction step and, as expected, the RTT increases with
respect to our default setting. A part of the overhead is caused by generating and sending the extra polynomial and
by performing the corresponding homomorphic subtraction and multiplication. The remaining overhead is caused by
having to reduce the number of bits that hold the data (the rest is noise) for each coefficient. Only then can we
perform the multiplication without having the noise bits overlap the data bits and still provide enough randomness
to prevent the client from inferring the extra information.

Finally, Setup security simply proves that scaling security is easily achieved by using our secure searching method.

The iDash Challenge

In the iDash challenge there were a number of requirements to consider. Accepted solutions had to (1) hide the data,
query and access patterns from the cloud server, (2) employ homomorphic encryption, (3) retrieve/reveal fewer than
20 variants to the data owner during each single variant search. However, for this competition it was not mandatory
to hide the number of variants in each VCF file. Hence, we decided to slightly change the padding scheme and
significantly reduce query runtime. In this case, we only add dummy data to homogenize all rows inside a specific
VCF. This padding is weaker than our previous one because the server can still distinguish different files by looking
at their sizes. Therefore, the cloud knows if a VCF has more or less variants than another one in the database and
can consequently infer an approximation of the total number of variants. Note that in the iDash challenge only SNPs
needed to be considered. However, in our solution we can test for the presence of any mutation (e.g. an insertion of
one thousand nucleotides) due to our hash-based representation. This is not true in general, as for approaches not
using hash-based representations SNPs are potentially much easier to handle than multi-nucleotide mutations.
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Query 1a 2a 3a

DATA HASH SIZE 48 48 48
BITS FOR MAPPING 13 17 17
NUM ENTRIES 8192 131072 -
ROW SIZE 6 6 6
ENCRYPTION MODE 80:1024:62:14 - -
AGGREGATION 4 4 4
DIMENSIONALITY 2 (46*45) 3 (32*32*32) -

Query 1b 2b 3b

DATA HASH SIZE 48 48 48
BITS FOR MAPPING 4 9 9
NUM ENTRIES 16 512 512
ROW SIZE 672 256 256
ENCRYPTION MODE 80:1024:62:14 - -
AGGREGATION 2 2 2
DIMENSIONALITY 1 (8) 2 (16x16) 2 (16x16)

TABLE IV: System settings for the iDash challenge. Each setup pertains to a single query scenario → 1: “query 4 variants
in one single VCF file with 10,000 variants”; 2: “query 4 variants in one single VCF file with 100,000 variants”; 3: “query the
same variant in 50 different VCF files with 100,000 variants”.

Table IV lists the different settings, and Table V showcases the results for the three queries performed by the
challenge organisers: (1) query 4 variants in one single VCF file with 10,000 variants; (2) query 4 variants in one
single VCF file with 100,000 variants; and (3) query the same variant in 50 different VCF files with 100,000 variants.
We opted for two different scenarios, a. and b.; they map to two different querying methods. The first one uses the
simpler version of our protocol and was the one we submitted to the competition. The second one includes our
extension, the subtraction step, to eliminate any extra information obtained by the querier.

For query number 1, in scenario a., we opted for a setting with a sparser file and almost no aggregation. The
reason for this was to ensure that we did not retrieve more than 20 variants at a time. For the row size we chose
6, which is enough to homogenize the size of each entry. Whereas, for scenario b., we chose a very compact file
structure with a high number of collisions in each entry, row size = 672. In this case, we no longer need to worry
about obtaining extra information, as the subtraction step ensures that the querier only obtains access to the variants
he queried.

Following the same kind of reasoning, for query number 2, we decided on 131,072 entries and a row size of 6
for scenario a., and on 512 entries and a row size of 256 for scenario b.

Finally, query number 3 has the exact same settings as the previous query, because the number of variants in each
of the 50 VCF files is the same.

To evaluate the results, we pay attention to the same three key elements as before: response time, storage complexity
and communication cost, see Table V.

For the first two queries, our solution provides a short execution time, no matter the scenario. We are able to query
4 variants in a VCF file with 10,000 entries in respectively 5.5 or 1.07 seconds, which means 1.4 or 0.3 seconds
per variant; and 4 variants in a VCF file with 100,000 entries in respectively 13.3 or 2.9 seconds, which means 3.3
or 0.7 seconds per variant. The difference between the two searching methods is due to the fact that, by hiding the
unnecessary variants in b., we have the freedom to fully optimize the system parameters, thus obtaining a better RTT.

The last query shows that response time grows linearly with the number of variants or files queried. In fact, for
each variant search in a specific VCF, we have to execute an independent PIR request each time.



13

Query 1a 2a 3a

Data preparation (s) 0.04 0.4 20.2
Size of VCF file (Mbytes) 0.3 4.72 235.9
Importation (s) 0.12 1.89 94.5

PIR query generation (s) 0.04 0.05 0.67
Sending query (s) 4.77 5.03 62.9
PIR reply generation (s) 0.29 4.27 53.4
Sending reply (s) 0.53 5.19 64.9
Reply extraction (s) 0.34 4.41 55.1

Round-trip-time (s) 5.5± .02 13.3± .1 128.1± .1

Query 1b 2b 3b

Data preparation (s) 0.037 0.36 19.2
Size of VCF file (Mbytes) 0.06 0.79 39.5
Importation (s) 0.002 0.03 1.4

PIR query generation (s) 0.008 0.016 0.2
Sending query (s) 0.736 1.78 22.3
PIR reply generation (s) 0.008 0.1 1.27
Sending reply (s) 0.31 1.15 14.5
Reply extraction (s) 0.05 0.16 2.05

Round-trip-time (s) 1.07± .01 2.95± .004 37± .5

TABLE V: Quantitative results for the three queries performed during the iDash competition.

DISCUSSION

In this section, we analyze the results reported in Tables III and V and discuss the pros and cons of our solution.
We also unveil some alternative strategies for potentially addressing some of the limitations of our system.

From the results of the previous section, we are confident to say that our solution enables the execution of a query
in a short amount of time and is scalable no matter the number of elements in the file. Furthermore, under the right
parameters, e.g, Setup default, and under the same encoding strategy, our solution is faster than downloading the
entire database (approximately 3.5 seconds with a 5,000,000 VCF file) and provides stronger security and privacy.

Trade-Offs

As previously mentioned, two of the most prominent and distinctive factors that affect our solution are the size of
the hash for each variant, data hash size, and the number of entries in the encoded VCF file, correlated with the bits
for mapping=x. Both of these parameters greatly influence the performance of our algorithm by reducing/increasing
the transmission time of the VCF and of the PIR query/reply. For instance, as seen in Table III, having a small
data hash size and a compact file structure, with fewer entries and more collisions, reduces transmission time for
the VCF file and the PIR query and decreases the amount of homomorphic operations performed on the server side.
But, it also expands the PIR reply. Without the subtraction step, in addition to the answer to a query, other data is
also retrieved.

Some other variables influence performance in exchange for a stronger or weaker secrecy and privacy. The first one
worth noting is the row size. Recall that this parameter enforces a minimum number of elements per entry, regardless
of the number of variants of a given individual. We could remove this restriction or place it below the minimum of
ceil(5,000,000/num entries), like we did for the iDash challenge, but this would mean that the size of each entry and
of the overall file would depend on the number of collisions. This would greatly improve the performance of our
protocol, as seen in Table V. But in exchange, the server could much more easily infer the actual number of variants
a client had by looking at other VCF files, thus severely degrading privacy.
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Therefore, if we want to achieve maximum privacy, we must ensure that all files are sufficiently large and
homogeneous to hide the average maximum amount of collisions that could happen, for example, with 5 million
variants.

We can also mention the encryption techniques and size of the symmetric key as variables that engage in this
trade-off. Having symmetric encyption, AES-CTR, slightly decreases performance but ensures data confidentiality.
Finally, opting for a larger or smaller polynomial for HE dictates the security level, the amount of aggregation we
can do, as well as the size of the PIR query and reply (see Setup security in Table III).

Features

Our strategy features the following properties:

• Optimal privacy: By hashing and padding each file with dummy data we ensure that, no matter the number
of variants, with a maximum of 5 million, all files are indistinguishable. Therefore, we can hide the length
of each file and the length of its elements. Using PIR hides access patterns and provides inalienability when
querying the same variant twice. We can weaken the privacy level and in exchange achieve better performance.

• Confidentiality: We symmetrically encrypt the data using AES-CTR256.

• Good security scalability: As we rely on lattice-based cryptography to perform PIR, we are able to increase
security without much performance overhead, e.g., increasing security by a factor of two only decreases
performance by a factor of two.

• Low storage complexity: By using hashing, we significantly reduce the size of the VCF files. Hence, if for
example we store 48 bits (6 bytes) of the hash, every VCF file will be around 30Mbytes (5, 000, 000× 6). To
maintain privacy, we need to pad enough dummy data, thus hiding the number of variants.

• Low querying time: This solution yields a fast querying time and is extremely scalable. Under the stronger
padding scheme, querying a file with 1 variant takes the same time as querying a file with 5 million variants.

• Minimization of delivered data: We propose a way to reveal only the queried variants to the client and nothing
else. This is accomplished by means of the additional subtraction step executed after revealing the PIR reply.

• Generality: We consider all known variants, not only single-nucleotide polymorphisms (SNPs). Furthermore,
our solution can easily store a different encoding instead of its hash, possibly enabling for other kinds of
operations on the genomic data.

Limitations

There are a few limitations that we can identify in our strategy. The first is the error rate associated with our
hashing scheme. In the next section, we propose a way to mitigate this problem and still provide a fast querying
time. Second, if the number of VCF files in the database is relatively large, then we can no longer store pre-imported
data into RAM. This can be solved by storing pre-imported data into disk, but will result in a slow down. As reply
generation is quite faster than sending the reply, the overhead due to the disk reading will not impact RTT except
for very slow disks. Finally, our default strategy still suffers from some scalability issues, especially when querying
multiple variants or files - O(n) complexity, with n being the number of variants or files queried.

Other possible strategies

We now list a couple of other alternative strategies and mechanisms to address some of the previously listed
disadvantages of our protocol. These ideas have both pros and cons, some of which we detail in the following
paragraphs.

The first one is to store the encoding of a variant instead of part of its hash. This would remove the risk of having
false positives and enable the possible execution of other operations on the data.
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Encoding example: uses information on variant type [op-2bits] (insertion, deletion, single polymorphism, substitution), chro-
mosome [chr-5bits] , position [pos-28bits] , reference [ref-2bits/base] and alternate [alt-2bits/base] alleles.

INSERTION/SNP:
op (01)‖chr‖pos‖alt

DELETION:
op (11)‖chr‖pos‖ref length

SUBSTITUTION:
op (11)‖chr‖pos‖ref length‖alt

EXAMPLE:
chr: 1; position: 160999478; reference: A; alternate: G

01 00001 1001100110001010100000110110 01 10

However, in addition to the normal padding, we would also need to hide each variant’s length by means of
another padding. With this particular encoding, variant size varies from a SNP (37 bits, see example above) to
an insertion/deletion (variable, e.g., 81 bits). Thus, padding each element to the maximum encoding length in the
database would increase the database size by a factor of 2 with the proposed example. Larger databases significantly
degrade performance (see Table VI) because they increase importation time and PIR reply-generation/reply-sending.

Setup encoded

Data preparation (s) 22.3
Size of VCF file (Mbytes) 58.6
Importation (s) 1.02

PIR query generation (s) 0.03
Sending query (s) 1.37
PIR reply generation (s) 0.62
Sending reply (s) 1.68
Reply extraction (s) 0.66

Round-trip-time (RTT) (s) 3.06± .004

TABLE VI: Quantitative results relative to our alternative encoding strategy. We use the same settings as Setup default but
with data hash size = 81.

The second idea, which we briefly discussed in the previous subsection, is to have a much lengthier database, with
no collisions, thus removing the need to perform the subtraction step. This would also enable a much faster AND
operation by means of a point-value polynomial representation. This way, we could batch several queried elements
into one single PIR query, instead of one query per variant, and then search, in the reply, for the value corresponding
to the addition of the variants. This approach, however, would require a huge database and much dummy data, thus
severely degrading the performance of the PIR protocol. One naive way to avoid collisions could be to separate each
variant into a collection of SNPs to be encoded (37 bits) and directly place them in a database with 237 entries.
Cuckoo hashing[26] offers a smarter alternative, by replicating the database and using two hashes/positions for each
single element. However, for our algorithm to work, we require one of the two positions to remain empty, something
that cannot be efficiently done with the standard greedy insertion algorithm.

Finally, the third alternative would be not to use PIR and instead employ a fully-homomorphic encryption (FHE)
scheme. For this protocol, the database would contain encrypted multi-nucleotide variants unordered. To perform a
query, we would use FHE to test the equality of each database element to, for example, a 48-bit homomorphically
encrypted hash as shown in Figure 7. We would do this by sending 48 queries that correspond to the 48 bits of the
encrypted variant’s hash we want to verify. Then, because the noise increases significantly with multiplicative depth,
we would apply a binary tree on each entry of the database.

Notation: ai is the ith bit we send; bi is the ith bit of an element in the database; ti represents the equality test of the bits i.
We can do this by working modulo 2 with: 1− (ai + bi)
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Fig. 7: FHE-only scheme. The response is 1 if an element matches, 0 if not. Unfortunately this kind of multiplication is very
time consuming.

We list some of the pros and cons for the FHE-only alternative strategy.

Pros:
• Small database size (small-sized padding);
• The size of the reply does not depend on the variants’ representation and is a simple binary response: 0 or 1;
• Easy AND operations.

Cons:
• Too much time to generate the response.

CONCLUSION

We have described a new efficient strategy that uses private information retrieval to search genomic variants on
a cloud database. This scheme makes use of a new enhanced PIR protocol that we adapt to fit our purpose. All
the security requirements were met by introducing certain modifications in the PIR protocol, such as the need to
homogenize each client’s VCF file and the symmetric encryption of the data to guarantee confidentiality and privacy.
We have also listed some other alternative mechanisms that can be useful, depending on the setting, e.g., sparse
database and cuckoo hashing to reduce AND complexity, or encoding to enable other operations. Finally, results
show that, although not as effective as a simple search through an unencrypted database, this strategy exhibits a good
performance and could be realistically deployed, for example, in clinics or hospitals. Future work includes finding a
way to make AND operations scalable, probably by means of cuckoo hashing.
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