
TwinsCoin: A Cryptocurrency via Proof-of-Work and Proof-of-Stake

Alexander Chepurnoy∗ Tuyet Duong† Lei Fan‡ Hong-Sheng Zhou§

Abstract

We design and implement TwinsCoin, the �rst cryp-

tocurrency based on a provably secure and scalable

public blockchain design using both proof-of-work and

proof-of-stake mechanisms. Di�erent from the proof-of-

work based Bitcoin, our construction uses two types of

resources, computing power and coins (i.e., stake). �e

blockchain in our system is more robust than that in a

pure proof-of-work based system; even if the adversary

controls the majority of mining power, we can still have

the chance to secure the system by relying on honest

stake. In contrast, Bitcoin blockchain will be insecure if

the adversary controls more than 50% of mining power.

Our design follows a recent provably secure proof-

of-work/proof-of-stake hybrid blockchain by Duong et

al. (ePrint 2016). In order to make our construction prac-

tical, we enhance Duong et al.’s design. In particular, we

introduce a new strategy for di�culty adjustment in the

hybrid blockchain and provide an analysis of it. We also

show how to construct a light client for proof-of-stake

cryptocurrencies and evaluate the proposal practically.

We implement our new design. Our implementa-

tion uses a recent modular development framework for

blockchains, called Scorex. It allows us to change only

certain parts of an application leaving other codebase

intact. In addition to the blockchain implementation, a

testnet is deployed. Source code is publicly available.

∗
IOHK. Email: alex.chepurnoy@iohk.io.

†
Virginia Commonwealth University. Email: duong�3@vcu.edu.

‡
Shanghai Jiao Tong University. Partial work done while visiting

the Cryptography Lab at Virginia Commonwealth University. Email:

fanlei@sjtu.edu.cn.

§
Virginia Commonwealth University. Email: hszhou@vcu.edu.

1 Introduction

�e emergence of decentralized cryptocurrencies like

Bitcoin [40] has the potential to signi�cantly reshape the

future of �nancial transactions and distributed interac-

tions in general, and eventually bring us a much more or-

ganized and documented digital world. In the Bitcoin sys-

tem, a public distributed ledger, called blockchain, is main-

tained by a peer-to-peer network of nodes called Bitcoin

miners via the proof-of-work (PoW) mechanism [2, 15].

Essentially, the proof-of-work mechanism enables an

open blockchain, where miners are allowed to join and

leave the system at any moment.

Garay et al. [18] and then Pass et al. [44] investigated

the blockchain security in the cryptographic se�ing and

have shown that, assuming the majority of mining power
in the Bitcoin system is controlled by the honest miners,

the blockchain indeed satis�es several important secu-

rity properties (which are critical for blockchain-based

applications). In contrast, if the assumption of “honest

majority of computing power” does not hold, i.e., the

adversary dominates the computing resources in the sys-

tem, then Bitcoin blockchain will not be trustworthy any

more.

In practice, it is not clear if assumption of “honest

majority of computing power” always holds. Here are

few examples. GHash.io, the largest mining pool at the

moment, exceeded 50% of Bitcoin’s mining power in

2014 [20]. For now, several top mining pools (e.g., F2Pool,

AntPool, BTCC, BW) collectively control about 60% min-

ing power. It is unclear if they could be in�uenced by

certain party or collude. Novel ideas were introduced [38]

to discourage the formation of mining pools. Unfortu-

nately, if the adversary controls the majority of mining

power, they can still be able to dominate the system

(which makes the system not trustworthy). We also re-

1

mark that blockchain protocols could be vulnerable dur-

ing the process of spli�ing. As an example, in Summer

2016 Ethereum network had been split into two forks,

Ethereum and Ethereum Classic. In the early days of

Ethereum Classic one of the biggest Ethereum miners,

Chandler Guo, threatened it with “51% a�ack” [22]. Simi-

larly, in the face of a possible spli�ing in Bitcoin, a group

of miners supporting Bitcoin Unlimited was threatening

“CoreCoin” with the same adversarial majority mining

power a�ack [12]. How can users protect their assets

from a majority of mining power which is willing to

destroy the system? �is leads to our research goal:

Research Goal: Develop Bitcoin-like open blockchains so
that they can be secure even when the adversary controls
more than 50% computing power.

1.1 Our Approach
1.1.1 Singling out a suitable candidate blockchain

�e research goal above seems to be impossible to reach

without additional resources or assumptions. It is popu-

lar in the cryptocurrency community to suggest to use

coins (i.e., stake) in order to protect the blockchain. Such

method is called proof-of-stake (PoS). In a very high level,

proof-of-stake requires protocol players to prove own-

ership of a certain amount of stake in the system. Only

those who can provide such a proof can participate in

the process of maintaining the blockchain. Naturally,

we could have two approaches to achieve the research

goal: (i) blockchain via a pure PoS mechanism, and (ii)

blockchain via a hybrid (PoW and PoS) mechanisms.

We are aware that it is very di�cult to give a complete

security analysis for a complex, real-world protocol such

as Bitcoin. However, the well-received provable security

approach still deserves our a�ention. If a full-�edged

security analysis of a blockchain protocol is not feasible

at the moment, we could focus on a much simpli�ed

“core” of the targeted protocol. Provable security of the

simpli�ed core, once established, will help gain signi�-

cant con�dence on the security of the target blockchain.

With this in mind, we next make e�ort to single out

a candidate, i.e., a provably secure blockchain core, so

that we may be able to “upgrade” the candidate core to

the full-�edged blockchain, and eventually achieve our

research goal.

Existing provably secure pure proof-of-stake
schemes do not scale. Blockchain researchers have

made a�empts to construct provably secure, scalable

blockchains via pure PoS mechanisms; see [6, 31, 36]
1
.

1
�ese are concurrent works of the submission.

However, these existing solutions cannot scale to a large

number of network nodes in an open se�ing where par-

ticipants can freely join or leave the system at any time

they want.

In particular, in these existing provably secure, pure

PoS proposals, a majority voting (or the equivalent) is

required to enable new participants to join the system.

In contrast, without this mechanism, the adversary could

corrupt elected leaders at a later point and produce an

“alternative” blockchain which could be longer than the

blockchain in the system (even if the adversary does not

control the majority of stake). Unfortunately, this voting

process requires most of existing players to participate in

the protocol, which cannot scale to a large scale network.

At the moment of writing, it remains unclear if we can

construct a provably secure, scalable open blockchain

via any pure PoS mechanism.

We here remark that these recent provably secure

pure PoS-based protocols are useful for relatively small

networks. But they not suitable for (potentially big) open

networks because of performance issues.

2-hop blockchain is scalable but not practical yet.
Duong et al. [14] design the �rst provably secure and scal-

able open blockchain, called “2-hop blockchain”, via com-

bining proof-of-work and proof-of-stake. In their design,

in addition to miners, a new type of players, stakeholers

(stakeholders) are introduced. A winning miner cannot

extend the blockchain immediately as in Bitcoin. In-

stead, the winning miner provides a base which enables

a stakeholder to be “selected” to extend the blockchain.

�at is, a miner and then a stakeholder jointly extend

the blockchain with a new block. Note that, in Bitcoin,

winning miners directly extend the blockchain.

In the 2-hop blockchain protocol PoW-chains and

PoS-chains are plaited together in every time step, and

these PoW/PoS-chains are extended alternately. Very in-

tuitively, the 2-hop blockchain can be viewed as a proof-

of-stake scheme which uses a proof-of-work chain as

a biased random beacon. �is critical idea enables the

2-hop scheme to achieve almost the same e�ciency as

the original Bitcoin scheme. Also, the 2-hop blockchain

can scale to a large size of network.

Unfortunately, Duong et al.’s 2-hop blockchain, as it

is, has a signi�cant weakness: the resulting blockchain

protocols are expected to be executed in the static proto-

col execution environments. �at is, in each round, the

invested/involved physical computing resources as well

as virtual resources (i.e., stake/coins) in the system are

always the same. �is does not re�ect the reality. Take

Bitcoin as an example. In the past years, the amount of

computing resources that invested for each unit of time

2

period has increased dramatically. In Bitcoin, Nakamoto

creatively introduced the di�culty adjustment mecha-

nism to address this issue. By se�ing a target of extending

the blockchain with a new block in each 10 minutes, and

by measuring the total time for extending a �xed number

(e.g., 2016) of blocks, each miner can be aware if more

computing power has been invested. If so, then each

miner will increase the di�culty, and vice versa. Unfortu-

nately, adaptive di�culty adjustment mechanism is miss-

ing in the 2-hop blockchain. We remark that blockchains

without adaptive di�culty adjustment mechanism can

o�en be easily broken. Nevertheless, the provably se-

cure, and scalable 2-hop blockchain can serve as a good

starting point for us to achieve our research goal.

1.1.2 From 2-hop blockchain to TwinsCoin

Adaptive di�culty adjustment. In our TwinsCoin

system design, we need to make our blockchain proto-

cols to be adaptive to the protocol execution environ-

ments. Note that here we have to address two types of

resources, computing power and stake. It seems that

we need to measure the system through two di�erent

ways. However, in the original 2-hop design, the total

number of proof-of-work blocks (PoW-blocks) is equal to

the total number of proof-of-stake blocks (PoS-blocks). It

is not clear how to use Nakamoto’s di�culty adjustment

mechanism directly for our purpose.

In order to address this issue, we change the

blockchain structure. Our new blockchain structure al-

low us to “measure” the system thru two di�erent ways.

Now we record more PoW-blocks, called a�empting
proof-of-work blocks; these blocks are generated due to

a successful �rst hop, but a failure second hop. For the

sake of presentation, we call PoW-blocks successful if

they are generated due to a successful �rst hop along

with a successful second hop. Once we have two types

of PoW-blocks, we can measure the ratio between these

two types of PoW-blocks. �is idea eventually allows us

to design a new di�culty adjustment mechanism.

Moving the underlying blockchain to the non-�at
setting. In the original 2-hop blockchain design [14],

the resulting blockchain protocols are expected to be

executed in the idealized �at-model. Note that, in the �at

model, each proof-of-work miner holds the same amount

of computing power and each proof-of-stake holder has

the same amount of stake (i.e., coins). Apparently, this

�at model does not re�ect the reality. Strictly sticking to

the �at model will only allow us to design non-practical

blockchains.

Blockchain is the core component of our TwinsCoin

system. Note that, the designed and then implemented

blockchain in this paper essentially consists of two parts,

the PoW-chain, and the PoS-chain, and they always go

along together, like twins, and we coin our system as

TwinsCoin.

1.2 Our Contributions

In this paper we provide a clear roadmap for designing

provably secure yet scalable blockchain protocols which

can be secure even when the adversary controls more

than 50% computing power in the system. We prove

viability of our design in practice with the help of an

actual implementation done. In details, our contributions

are as follows:

In the paper [19], Garay et al. extend their previ-

ous model [18] by addressing adaptive di�culty adjust-

ment in the Bitcoin system. In our work, we further

extend their model by allowing di�culty adjustment for

both proof-of-work and proof-of-stake. To the best of

our knowledge, there has not been yet a formal de�-

nition, design, and analysis for adaptive di�culty for

proof-of-stake, or hybrid proof-of-work/proof-of-stake

blockchains, or in non-�at se�ing.

We propose a way to make light clients possible in a

Proof-of-Stake se�ing. As far as we know this is the �rst

concrete proposal backed by a practical evaluation.

We provide experimental results on di�erent charac-

teristics of certain parts of our proposal. In particular, we

get concrete numbers for a race of adversarial and honest

chains as initial estimations on security against adver-

sarial majority of mining power. Some Proof-of-Stake

di�culty adjustment function properties are obtained

in another experiment. �e light client proposal has

been examined in a set of two experiments measuring

veri�cation time as well as an overhead needed for a

simulated blockchain. We also provide a full-�edged im-

plementation of our design in the form of TwinsCoin

cryptocurrency. Source code of the implementation is

available. More details on the implementation and the

experiments can be found in Section 5.

Organization. In Section 2, we present our threat model

and assumptions. In Section 3, we recall the most rele-

vant work that TwinsCoin system builds on: Nakamoto’s

blockchain and 2-hop blockchain. Next, in Section 4, we

present the details of our TwinsCoin design, and then in

Section 5, we provide the implementation and evaluation

details. Future work and related work are provided in

Section 6 and in Section 7, respectively. Finally, some

supporting materials are provided in Appendix A, and B.

3

2 �reat Model and Assumptions

We consider a standard multi-player asynchronous com-

munication se�ing (e.g., Cane�i’s formulation of the “real

world” execution [10]), with the relaxations that (i) the

underlying communication graph is not fully connected,

and (ii) the underlying communication channel is reliable

but not authenticated. In this se�ing, an adversary is not

allowed to stop the messages from being delivered, but

he may “spoof” the source of a message and impersonate

the (well-behaved) sender of the message, or to “delay”

messages from any participants. Moreover, the adver-

sary is “rushing” in the sense that, in any given round,

he is allowed to see all honest (well-behaved) miners’

messages before deciding his strategy.

We consider a model which allows both proof-of-work

miners and proof-of-stake holders, and the di�culty for

proof-of-work and proof-of-stake can be adaptively ad-

justed. We remark that all previous models (which will

be reviewed below) are idealized. In the reality, each

di�erent honest miner may have a di�erent amount of

computing power or stake. Our protocol is described in

a non-�at model where each stakeholder is associated

with a di�erent amount of coins.

Previous models. Garay et al. [18] for the �rst time,

follow the well-received provable security approach,

and provide the �rst comprehensive security analysis

framework for Bitcoin blockchain in the cryptographic

se�ing. To simplify the analysis, Garay et al. consider an

idealized “�at-model” where all miners have the same

amount of computing power.

Pass et al. [44] recently extend Garay et al’s model [18]

by considering a more realistic communication network

(i.e., partial synchronous network) in which messages

from honest players can be delayed with an upper bound

units of time. Duong et al. [14] propose a further ex-

tended model by considering two types of players, proof-

of-work miners and proof-of-stake holders, in blockchain

protocols. Very recently, Garay et al. [19], extend their

previous model [18] by addressing adaptive di�culty for

proof-of-work blockchains. To the best of our knowledge,

there has not been yet a formal de�nition and analysis

for adaptive di�culty of proof-of-stake blockchain.

Assumptions. As in [14], we assume that our system

is extended from a “mature blockchain” e.g., Bitcoin. We

also assume that the collective resources (including hash-

ing power and stake) are nicely distributed in the system,

and the majority of them is controlled by well-behaved

players.

3 Background

3.1 Nakamoto’s blockchain
We here brie�y review Nakamoto’s Bitcoin blockchain [40].

Bitcoin blockchain is based on proof-of-work puz-

zles [2, 15], which can be abstractly described via the

following hash inequality:

H(hw,w,X) < T

where hw ∈ {0,1}κ is the hash of the previous proof-of-

work block (κ is a security parameter), w is a suitable

solution for this puzzle, X is the record component of the

block, and T denotes the current proof-of-work target.

See [18] for more details.

Extending the chain. At any point of the protocol

execution, each miner a�empts to extend the blockchain.

More concretely, upon receiving some record X, a miner

chooses random w ∈ {0,1}κ and checks whether w is a

valid solution to the above hash inequality with respect

to hw, hash value of the last block in the blockchain;

if so, the miner reveals the solution to the system. In

Nakamoto’s design, multiple miners might �nd distinct

solutions with the same preceding block, in which a

blockchain fork will be introduced. To resolve this issue,

all well-behaved (honest) miners are expected to follow

the longest blockchain in the system.

Security. Garay et al. [18] and Pass et al. [44]- have

already rigorously analyzed the security of Nakamoto’s

blockchain in the cryptographic se�ing. In a nutshell,

the Nakamoto’s blockchain satis�es certain important

security properties such as common pre�x, chain quality

and chain growth, under the assumption that the major-

ity of computing power is controlled by honest players.

Please refer to Appendix A for the de�nitions of secu-

rity properties (common pre�x, chain quality and chain

growth).

3.2 Duong et al’s 2-hop blockchain
Nakamoto’s blockchain is powered by computing re-

sources, and the blockchain is maintained by only min-

ers. Duong et al. [14] propose 2-hop blockchain — a

combination of proof-of-work (PoW) and proof-of-stake

(PoS). �ere, the blockchain is managed by two types

of nodes, called miners and stakeholders (users). Corre-

spondingly, there are two types of chains: proof-of-work

chain (PoW-chain), denoted C, and proof-of-stake chain

(PoS-chain), denoted C̃, in the system. �ese PoW/PoS

chains are securely tied together, as a chain-pair. Stake-

holders maintain the proof-of-stake chain. On the other

4

hand, miners together manage the proof-of-work chain

which is considered as a biased random beacon for choos-

ing stakeholder (to extend the proof-of-stake chain).

Extending the chain-pair. In general, miners (or

stakeholders) collect information from the network, per-

form some validation and generate proof-of-work blocks

(PoW-blocks) or proof-of-stake blocks (PoS-blocks), and

then share their states to the network.

Extending the PoW-chain: To generate a new PoW-

block, each miner �rst computes the hash hw ∈
{0,1}κ of the previous PoW-block (the head of the

PoW-chain), the hash hs ∈ {0,1}κ of the head of the

PoS-chain. Here, without connecting to the head

of the current PoS-chain, the adversary can rewrite

any information stored on the chain-pair. �e miner

then a�empts to solve the following hash inequality

H(hw,hs,w) < T

by �nding a suitable solution w where T denotes

the current proof-of-work target. If he succeeds

in �nding the proper w, he then generates a new

PoW-block which includes the hash values hw,hs
and the solution w, and shares this PoW-block to

other players in the network.

Extending the PoS-chain: In the 2-hop design, each

PoW-block is used for selecting new stakeholders

(to generate new PoS blocks). More concretely, if

there is a new PoW block B in the system, any stake-

holder whose veri�cation key vk satis�es the follow-

ing hash inequality

H̃(B,vk) < T̃

is allowed to generate a new PoS block. �at is,

the selected stakeholder can use the corresponding

signing key sk to sign the new PoS-block. Note that

here, T̃ is the current proof-of-stake target.

Please see Figure 1 for an illustration of 2-hop

blockchain.

Resolving Fork. If multiple players (miners or stake-

holder) create blocks (PoW-blocks or PoS-blocks) with

the same preceding block, the chain is forked into

branches, forming a tree. Other players may subse-

quently add new valid blocks to any of these branches.

To resolve forks, the protocol speci�es which chain-pair

is the best valid chain-pair. �e criterion is that the win-

ning chain is the longest valid one.

Security. Duong et al. [14] have already analyzed the

security of their 2-hop blockchain in the cryptographic

model. Under the assumption that the majority of collec-
tive resources (computing power and stake) are honest,

time

B−1 B0 B1 B2 B3 B4 B5

B̃1 B̃2 B̃3 B̃4

. . .

. . .

. . .

Figure 1: 2-hop blockchain structure

Here, dot arrows denote the �rst hops, and solid arrows denote

the second hops. Green blocks Bi ’s denote the proof-of-work

blocks, and red blocks B̃i ’s denote the corresponding proof-

of-stake blocks. Note that 2-hop blockchain is bootstrapped

from an existing blockchain and the blue blocks are from the

“mature blockchain”.

then important security properties such as common pre-

�x, chain quality and chain growth can be guaranteed.

Similar to the analysis in [18, 44], their security analysis

is in the �at model.

4 Main Design

Starting with a provably secure “core”, the 2-hop

blockchain [14], we design our TwinsCoin system as

follows.

First, we redesign the structure of the 2-hop

blockchain in [14] to enable a di�culty adjust-

ment mechanism. We call this a modi�ed 2-hop

blockchain. Please see Section 4.1.

Second, we introduce a new mechanism to adjust

the di�culties for both PoW and PoS chains in the

modi�ed 2-hop blockchain. In a nutshell, we need to

ensure that the system is stable since the computing

power or stake in the system may change rapidly

at some point. �erefore, the di�culty should be

adjustable. Please see Section 4.2.

�ird, we further augment the 2-hop blockchain

to support the non-�at model where stakeholders

may have di�erent amounts of stake. Please see

Section 4.3 for details.

Finally, we enhance the TwinsCoin system with light

clients. Please see Section 4.5.

4.1 A modi�ed blockchain structure
Besides PoS-blocks and PoW-blocks, our modi-

�ed blockchain speci�es two types of PoW-blocks:

a�empting blocks and successful blockswith respect to the

local view of each player in the system. If a node receives

a new PoW-block without a corresponding PoS-block,

the PoW-block becomes an a�empting block with respect

5

to the view of the player. In opposite, if a node receives a

new PoW-block along with a corresponding PoS-block,

the PoW-block is now considered as a successful block in

the node’s local view.

Since two types of PoW-blocks are introduced in our

system, we change the structure of PoW-block from the

2-hop design, but keep the original structure of PoS-

block from 2-hop blockchain in our modi�ed blockchain.

Please see Figure 2 for an illustration of our modi�ed

2-hop blockchain.

time

B−1 B0

B12
B22

B32

B13

B23
B33

B1 B2 B3

B̃1 B̃2

. . .

. . .

. . .

Figure 2: A modi�ed 2-hop blockchain structure

Here, dot arrows (that link to the previous successful block and

a�empting blocks) denote the �rst hops, and solid arrows de-

note the second hops. Green blocks Bi ’s denote the successful

proof-of-work blocks, B
j
i ’s denote the a�empting proof-of-

work blocks, and red blocks B̃i ’s denote the corresponding

proof-of-stake blocks. Note that the blue blocks are from the

“mature blockchain”.

Proof-of-Work block structure. Let H(·) be a cryp-

tographic hash function with output in {0,1}κ. Now

we have two di�erent types of PoW-blocks: a�empting

blocks and successful blocks. �e structure of a�empting

and successful blocks are the same. However, they

have di�erent meaning: (1) no PoS-block refers to an

a�empting block, and (2) we only count the successful

blocks when calculating the real length of a proof-of-

work chain. A PoW-block B is a tuple of the form

〈hw,hs,ha,w〉, where ha ∈ {0,1}κ denotes the digest

of the latest seen a�empting proof-of-work block, w ∈
{0,1}κ is a random nonce, and block B satis�es

H(hw,hs,ha,w) < T

where the parameter T ∈ N denotes the current proof-of-
work target of the block.

A PoW-chain C consists of a sequence of ` concate-

nated successful PoW-blocks. We denote head(C) as to

the topmost successful PoW-blockB` in blockchain C. �at

is, we do not consider an a�empting block as the head of

the proof-of-work chain, and the head of a PoW-chain is

not necessary the topmost PoW-block since the topmost

PoW-block could be an a�empting block. Moreover, we

only link a new proof-of-work block to the head of the

proof-of-work chain. �is implies that there may multi-

ple a�empting blocks a�aching to a successful block in

our proof-of-work chain. If a proof-of-work blockchain

C is a pre�x of another blockchain C′ , we write C � C′ .
Extending a proof-of-work blockchain. Since the

PoW structure is changed, mechanism to extend a PoW

chain is slightly di�erent from 2-hop design. Here, each

miner will only mine from the latest successful proof-of-

work block.

We illustrate the high level idea as in Figure 3. In this

�gure, we consider a miner a�empting to mine from

a valid block-pair consisting of a PoW-block B and a

PoS-block B̃. �ere, in the �rst a�empt, a new PoW-block

B12 is linked to B (by the hash hw of B) and to B̃ (by the

hash hs of B̃); however, the corresponding PoS-block

of B12 is not seen by the miner. �erefore, we say B12
is an a�empting PoW-block. In the second a�empt, a

new PoW-block B22 is produced without any correspond-

ing PoS-block, this block also becomes an a�empting

block. �e third a�empt is a successful one, and a new

successful PoW-block with the corresponding PoS-block

is a�ached to the chain.

hw

hs

First A�empt Second A�empt Successful A�empt

ha

B12 B12

B22

B12

B22

B1 B1 B1 B2

B̃1 B̃1 B̃1 B̃2

Figure 3: Generating new PoW-blocks

Resolving fork. In 2-hop blockchain design, fork is re-

solved by choosing the chain-pair with the longest PoW-

chain. In our design, a PoW-block could be an a�empting

or successful block. Furthermore, successful blocks are

much more important than a�empting blocks. �erefore,

the winning chain-pair is the one with the most number

of successful blocks, that is, the one that required (in

expectancy) the most successful mining power.

Security. We emphasize that, this section only focuses

on the structure of the blockchain. We slightly modify

2-hop blockchain to construct a more practical cryptocur-

rency system. �e security proof for this modi�ed ver-

sion is directly implied from 2-hop blockchain security.

6

Please refer to Appendix B for more details on our

modi�ed 2-hop blockchain.

4.2 A blockchain with adjustable di�-
culty

4.2.1 Nakamoto’s di�culty adjustment for PoW

In Bitcoin, in order to keep the block extension with a

steady rate, the system adjusts the PoW hash target adap-

tively. �e intuition is that the lower target means lower

probability to get a valid PoW block by calling a hash

function. �is intuition provides a method to control the

block generation rate by a di�culty target adjustment

scheme. For some time interval, if the chain extension

rate is higher than expected, the di�culty target need to

be decreased to make the successful probability lower.

�e di�culty target is adjusted every m blocks. In

Bitcoin system, we have m = 2016. We de�ne a time

period of m blocks (precisely, di�erence between times-

tamps of the last and the �rst blocks in the sequence) as

an epoch. Let t be the expected time of an epoch. For

example, in Bitcoin a new valid block is to be generated

every 10 minutes on average. �en we have t =m× 10
minutes, which is approximately 14 days for an epoch.

Let ti be the the actual duration of the i-th epoch. Let

Ti be the di�culty target in the i-th epoch. We have the

di�culty target in the (i +1)-th epoch as follows:

Ti+1 =
ti
t
Ti

From the equation above we can observe that, if ti > t
then Ti+1 > Ti and vice-versa. In the case that ti > t, the

miners spend longer time to obtain m blocks in the i-th
epoch. �erefore, the system di�culty target should be

increased so that the miners can �nd new blocks faster

in the next epoch. �is negative feedback mechanism

makes the system stable.

Next, in order to increase readability, we �rst discuss

PoS di�culty target adjustment. �en, we will turn to

the discussions about PoW di�culty target adjustment.

4.2.2 Our di�culty adjustment for PoW/PoS

For the same consideration as in Bitcoin, we propose

two adaptive di�culty target mechanisms for PoW and

PoS chains in order to keep the chain-pair growth with

a stable rate.

First, we use T to denote the PoW di�culty target in

general. We also use Ti as the PoW di�culty target in

the i-th epoch. PoW di�culty target is used to control

the probability of �nding a new valid PoW-block for each

a�empt. Secondly, we use T̃ to denote the PoS di�culty

target in general. We also use T̃i as the PoS di�culty

target in the i-th epoch. PoS di�culty target is used to

control the probability that a PoW-block is successfully
mapped to a valid stakeholder.

PoS di�culty target adjustment. To extend a PoS-

chain, a stakeholder uses the inequality H̃(B,vk) < T̃ to

test if he is quali�ed to sign a PoS-block. Here, B is a new

PoW-block and vk is the veri�cation key of the stake-

holder. We assume the expectation of the probability

that a PoW-block is successfully mapped to a stakeholder

is R < 1. Suppose there are mi PoW-blocks that are gen-

erated in the i-th epoch. Let T̃i be the PoS di�culty in

the i-th epoch. �e PoS di�culty in the (i +1)-th epoch

is de�ned by the following equation:

T̃i+1 =
miR
m

T̃i (1)

We interpret the PoS di�culty adjustment by the fol-

lowing. If
mi
m R > 1, then the probability that the PoW-

block is mapped to a stakeholder is lower than the expec-

tation R. �e PoS target T̃i+1 will be increased. Similarly,

if
mi
m R < 1, then the probability that the PoW-block is

mapped to a stakeholder is higher than the expectation

R. �e PoS target T̃i+1 will be decreased.

It is easy to see this is a negative feedback algorithm

that can maintain the successful probability close to R.

As far as we know this is the �rst di�culty adjustment

procedure for proof-of-stake.

PoW di�culty target adjustment. �e di�culty ad-

justment strategy for PoW-chain in our system is similar

to the original Bitcoin system except that we addition-

ally consider the in�uence of PoS-chain generation to

the PoW-chain.

As discussed in Section 4.1, in order to generate a valid

block a miner need to try di�erent w to satisfy a hash

inequality, i.e., H(hw,hs,ha,w) < T. It is easy to see that

if we increase T, the probability to generate a valid PoW-

block of one hash query will increase and vice versa. We

assume the probability that a PoW-block is successfully

mapped to a stakeholder is R < 1. �e di�culty is ad-

justed every m PoW-blocks of the chain-pair. We can

take the typical value m = 2016 as in Bitcoin system. We

usemi to denote the total number of a�empting (and suc-

cessful) PoW-blocks that are generated in the i-th epoch.

If some PoW-blocks are not be successfully mapped to

stakeholders, we would have mi >m. Similar to Bitcoin,

we also use t to denote the expected time span for an

epoch, and ti do denote the actual time span for the i-th
epoch.

7

Let Ti be the di�culty target in the i-th epoch. �e

di�culty target in the (i +1)-th epoch is de�ned by

Ti+1 =
mti
mitR

Ti

�e di�culty adjustment for PoW is based on two “fac-

tors”, ti and mi . �e logic is as follows:

If ti < t, we know that the i-th epoch is shorter than

expected. In this case, we need to increase Ti+1 to

decrease the PoW di�culty in the (i +1)-th epoch.

Similarly, if ti > t, we need to reduceTi+1 to increase

the PoW di�culty.

Ifmi >m/R, we know that the probability that PoW-

block can be mapped to a stakeholder is lower than

the expectation R. In this case, the PoS di�culty

(see PoS di�culty adjustment) would be decreased

and we need to increase PoW di�culty (by reducing

Ti+1) to keep the balance between PoS and PoW.

Similarly, if mi <m/R, the PoS di�culty would be

increased, then we need to decrease PoW di�culty

(by increasing Ti+1).

4.2.3 Security analysis

In this section we provide an informal security analysis

to demonstrate that the malicious players are not able to

a�ack the TwinsCoin system by taking advantage of the

di�culty adjustment mechanism.

In [14], the authors give a formal security proof for

2-hop blockchain (without considering di�culty adjust-

ment). �ere, they assume that the probability that a

PoW block is generated in a round is very low. A poten-

tial a�ack is that the malicious players can increase the

di�culty target to make it is easier to generate a PoW

block. In the remaining of this section, we will prove this

a�ack does not work for our modi�ed 2-hop blockchain,

under certain assumption. We note that a formal security

proof for our modi�ed 2-hop blockchain with di�culty

adjustment in the cryptographic se�ing is challenging

and we leave it for further work.

�e intuition is that in order to increase the di�culty

target, the malicious players can stop to contribute new

PoW-blocks and PoS-blocks from some moment. �is

will make the block extension rate lower. With our dif-

�culty adjustment algorithm, the di�culty target will

increase to speed up the block generation. At some later

point, the malicious players will begin to work and sign

under the current di�culty target. All the players can

generate more blocks with the current di�culty target.

Before our analysis, we will de�ne some notations.

We assume all of the computing power can make n hash

queries to generate PoW-blocks in an epoch. �e ratio

of honest computing power is ρ and the ratio of mali-

cious computing power is 1 − ρ. We also assume the

total amount of coins is n̂ and the honest ratio is ρ̂ the

malicious ratio is 1− ρ̂. For simplicity we only discuss

the average case.

Lemma 4.1. Suppose the malicious players stop to con-
tribute the block generation to increase the di�culty target.
In the i-th epoch, the system reaches stable target regime.
Let ti be the actual time span of the i-th epoch. Suppose
in the (i +1)-th epoch, the malicious players try to extend
chains with all of resources. Let Let ti+1 be the actual time
span of the (i +1)-th epoch. We have ti+1 = tiρρ̂.

Proof. For the i-th epoch is stable, we have T̂i = T̂i+1. We

getmi =
m
R . �e PoW-blocks generation ratio is

m
R

1
ti

. For

the malicious will begin to generate PoW in the (i+1)-th
epoch, the PoW-blocks generation ratio will increase to

m
R

1
ti

1
ρ .

Suppose there are mi+1 PoW-blocks are generated

in the (i + 1)-th epoch with the time ti+1. We have

mi+1 =
m
R
ti+1
ti

1
ρ . By the de�nition of epoch, mi+1 PoW-

blocks are mapped to m PoS-blocks by honest and mali-

cious stakeholders together. For the current PoS di�culty

target is adjusted for honest stake only in i-th epoch, the

ratio that a PoW-block is mapped to a stakeholder is R 1
ρ̂ .

We have m =mi+1R
1
ρ̂ . Pu�ing them together, we have

ti+1 = tiρρ̂.

From the Lemma 4.1, the ratio that the malicious play-

ers can increase is bounded by the factor
1
ρρ̂ .

4.3 PoS blockchain in the non-�atmodel
4.3.1 Moving PoS blockchain from the �at to the

non-�at model

�e (modi�ed) 2-hop blockchain in section 4.1 is de-

scribed in the �at model with a pre-�xed di�culty param-

eter. �ere, a stakeholder is elected, if his veri�cation

key vk satis�es the inequality H̃(B,vk) < T̃, then this

elected stakeholder is quali�ed to sign and generate a

new PoS-block for the PoW block B. Intuitively, if the

stakeholder has di�erent amount of stake (coins) in his

account, he would have di�erent probability to be elected.

Otherwise, every stakeholder will try to keep minimal

stake in an account and create maximal number of ac-

counts to get higher probability to be selected.

We improve the construction to be suitable for non-

�at model that means the stakeholder can keep di�erent

amount of stake in an account. Next, we will prove our

construction is fair under non-�at model, a stakeholder

8

will not get any advantages if he splits his stake to mul-

tiple accounts with the minimal stake.

Jumping ahead, we will describe the non-�at model

with hash inequality �rst. For a stakeholder, vk is his

veri�cation key (public key), and sk is the correspond-

ing signing key. To extend PoS-chain, the stakeholder

will choose the best chain-pair with the most “successful”

mining power. Let 〈C, C̃〉 be the best chain-pair, and C is

PoW-chain, C̃ is PoS-chain. If the last PoW-block B on

chain C is a new block in which there is no correspond-

ing PoS-block on PoS-chain, then the stakeholder will

a�empt to generate a new PoS-block as the following:

Let T̃ denote the current di�culty target for the PoS-

block generation. We assume the total amount of stake

in the whole system is n̂, we also assume the length of the

output of hash function H̃(·) is κ. Let p = T̃
2κ , we assume

n̂p < 1. Let v be the number of coins in the account of a

stakeholder with vk. If the inequality

H̃(B,vk) < vT̃

is satis�ed, the stakeholder with the key-pair (sk,vk)
wins a chance to sign the corresponding PoS-block for

PoW-block B. As far as we know this is the �rst concrete

non-�at treatment for PoS-chain.

4.3.2 Security analysis

We here provide a security analysis in the non-�at model.

�e players may take more than 1 coin in an account

under non-�at model. We will argue that if a stakeholder

puts more than 1 coin in his account, this will not change

the probability for PoS-block mapping. Intuitively, from

our non-�at construction, if a stakeholder puts more

coins in an account, he has a higher probability to be

selected; therefore, he does not need to split his coins

into multiple accounts.

Lemma 4.2. Let p = T̃
2κ and κ is the length of hash

output. Let n̂ be the total number of coins. We assume
n̂p < 1. For any stakeholder with account (sk,vk), we as-
sume there are v coins in this account, where v < n̂. We
have Pr[H̃(B,vk) < vT̃] = vp.

Proof. From the de�nition we have vT̃ = vp2κ . For n̂p <
1 and v < n̂, we have vT̃ < 2κ. Since H̃(B,vk) produces

the output uniformly in (0,2κ), we have Pr[H̃(B,vk) <
vT̃] = vp.

From the Lemma 4.2, we have the probability that a

stakeholder is selected to generate a PoS-block is propor-

tional to the amount of stake he controls.

If the stakeholder puts his v coins in one account,

for any PoW block B, the probability he is selected

to sign the corresponding PoS block is vp.

If the stakeholder puts his v coins in v accounts and

every account has one coin, for any PoW-block B,

the probability that an account is selected to sign the

corresponding PoS-block is p. �e outputs of hash

function H̃(B,vk) are independent for di�erent vk.

�e total probability that the stakeholder is selected

is also vp.

�at is, the probability a stakeholder is selected in the

non-�at model is equal to the accumulated probability

that he distributes the stake to di�erent accounts in the

�at-model. For a stakeholder, the probability that he

is selected only depends on the total amount of stake

(coins) he controls.

4.4 Blockchain design in TwinsCoin
In this section, we summarize our blockchain design in

TwinsCoin. First, we propose a slightly modi�ed version

of 2-hop blockchain in Section 4.1. Essentially, in this

modi�ed 2-hop blockchain, we change the structure of

the proof-of-work chain as well as the format of a proof-

of-work block. By these modi�cations, the blockchain

in Section 4.1 will form a proper building block and sup-

port for more features of a practical cryptocurrency sys-

tem. Subsequently, the modi�ed version in Section 4.1

is enhanced in di�erent aspects by (i) adding di�culty

adjustment mechanism (for both PoW and PoS chains) in

Section 4.2, and (ii) redesigning the leader election mech-

anism so that it is suitable for the realistic se�ing where

each player may have a di�erent amount of resources

(computing power or stake). Eventually, by combining

these enhancements, we complete the blockchain design

in our TwinsCoin system. Please refer to Figure 4 for

an illustration of the design. In next subsection, we will

start the client design in our TwinsCoin system.

4.1Sec 4.1

Sec 3.2Sec 3.2

4.2Sec 4.2

Sec 4.1TwinsCoin

FSigSec 4.3

Figure 4: A summary of the blockchain design in Twin-

sCoin system.

9

4.5 Light client design in TwinsCoin
Checking work of a Proof-of-work block is a constant-

time operation (just two SHA256 invocations are needed

for that), thus for n blocks time to check consensus rules

is linear (O(n)). In contrast, in all the Proof-of-Stake

protocols checking a balance of a block generator is

needed in order to verify consensus rules validity. Cur-

rently, holding the whole balance sheet is needed for

that, and this is not suitable for light clients. Veri�cation

time (if a balance sheet is indexed by a public key) for a

block is about O(logS), where S is a size of the balance

sheet. Once balance sheet becomes too big to be stored in

random-access memory, performance could be degraded

signi�cantly. In Bitcoin, once block size limit is reached,

size of a balance sheet (more precisely, unspent outputs

set) is growing roughly linearly with time (corresponding

graph could be found at [9]), thus veri�cation time for

n PoS blocks is O(n · logn). �e concerns of heavy vali-

dation and the impossibility to have light clients in the

system could be the solid arguments against switching

from Proof-of-Work chain to the hybrid one.

As a solution, we propose to authenticate the balance

sheet with 2-party dynamic authenticated (public key→
balance) dictionary. In the paper [46] an authenticated

data structure of this kind is proposed to be used in order

to avoid holding all the state for the full nodes. We are

applying the principle further in order to make light

clients feasible in a Proof-of-Stake environment.

A root value a�er processing the transactions in a

block is to be included in a blockheader of a PoS-block.

Also, a stakeholder generating a block is including an

authenticating path for his output against a root of a pre-

vious PoS-block. However, veri�cation time for a block

remains the O(logS), with O(n · logn) for a chain, but

a constant factor would be much smaller. We back the

claim with an experiment provided in the Section 5.2.2.

And it is not needed to hold the whole state in order

to check whether a PoS-block was generated in a valid

way, as by using a 2-party authenticated dynamic dic-

tionary it becomes possible to check proofs and get a

new root value without holding the whole dataset. As

a drawback, block size would be increased by O(logS)
bytes, we provide concrete numbers in the Section 5.2.2.

5 TwinsCoin System

We provide a full-�edged implementation of the Twin-

sCoin. Details on the implementation are provided in

Section 5.1. We run several experiments on particular

aspects of our design in order to empirically evaluate the

claims made througout the paper and also study some

aspects of proof-of-stake di�culty readjustment function

in Section 5.2. We also run fully functional TwinsCoin

nodes over a testing network which is described in Sec-

tion 5.3.

5.1 Implementation
We implement TwinsCoin using the Scorex frame-

work [25] in Scala language. Our implementation is

full-�edged. �erefore, it is possible to run the testing

network without any code modi�cations. Our implemen-

tation is opensourced [1] and published under public

domain CC0 license.

�ere are a few open source modular blockchain de-

velopment tools available, such as Scorex [25], Sawtooth

Lake [26], and Fabric [24]. We choose to use Scorex

2.0 [25] because this is the only existing tool which sup-

ports two (or more) types of transaction blocks.

�e idea of modular design for a cryptocurrency was

�rst proposed by Goodman in the Tezos whitepaper [21].

�e whitepaper (in its Section 2) proposes to break a

cryptocurrency design into the three protocols: network,

transaction and consensus. In many cases, however,

these layers are tightly coupled and it is hard to describe

them separately. For example, in a proof-of-stake cryp-

tocurrency a balance sheet structure, which is heavily

in�uenced by a transaction structure, is used in a con-

sensus protocol. To split the layers clearly, Scorex 2.0

has �ner granularity. In particular, in order to support

hybrid blockchains as well as more complicated struc-

tures than a chain (such as SPECTRE [49]), Scorex 2.0

does not even have a notion of the blockchain as the core

abstract. Instead, it provides an abstract interface to a

history that contains persistent modi�ers. �e history is

a part of a node view, which is a quadruple of 〈history,

minimal state, vault, memory pool〉. �e minimal state is

a data structure and a corresponding interface providing

an ability to check a validity of an arbitrary transaction

for the current moment of time with the same result for

all the nodes in the network having the same history. �e

minimal state is to be obtained deterministically from

an inital pre-historical state and the history. �e vault is

the node-speci�c information, for example, a node user’s

wallet. �e memory pool holds uncon�rmed transactions

being propagated across the networks by nodes before

got into blocks.

�e whole node view quadruple is to be changed atom-

ically by applying whether a persistent node view modi-

�er or an uncon�rmed transaction. Scorex provides guar-

antees of atomicity and consistency for the application

while a coin developer needs to provide implementations

for the abstract parts of the quadruple as well as a family

10

of persistent modi�ers. Our implementation is introduc-

ing two kinds of persistent modi�ers, PoW-Blocks and

PoS-Blocks.

Our implementation has simpler transactions than Bit-

coin [55]: while a TwinsCoin transaction has multiple in-

puts and outputs, like in Bitcoin, an output contains only

a public key of a spender and a value (so no support for

Bitcoin Script [53] or another authorization language is

provided). To spend an output, one needs to sign its bytes

in a referring input. In order to prevent replay a�acks,

we also associate an output with an unique nonce value,

which is a result of hash(all the transaction bytes without
nonces ‖ output index in the transaction). Like in Bitcoin

reference implementation, the minimal state in the Twin-

sCoin is the current unspent outputs set (UTXO [7] set).

In both the systems, with the UTXO set it is possible to

decide whether an arbitrary transaction valid against it

or not. By processing a block, a node is removing out-

puts spent in the block from the set and put there newly

created unspent outputs.

We also have implemented block generation function-

ality directly inside the node so�ware. Iteration over

nonce space in Proof-of-Work mining component is arti-

�cially limited in order to reduce the load of an evaluation

environment and model non-�at mining networks easily.

�us, a number of hash function calls per second is to

be set explicitly in the code. As in Bitcoin, a proof-of-

work function is about to �nd a hash value with a certain

property of a block header with a nonce �eld included.

We use Blake2b hash function with 256 bits output in

order to have 128-bits security level. In our implemen-

tation miners start to work on a next a�empting block

right a�er previous one seen and before corresponding

PoS-block arrives. �us, the mining component working

all the time except PoS-block processing phases.

Rollbacks are possible in a blockchain system if a be�er

fork found. We store all the blocks ever got from the

network (Bitcoin does the same), so an implementation of

the history interface is just switching a pointer to a new

best chain in case of a fork. For the minimal state (the

UTXO set) as well as for the wallet we need to restore

an old version of possibly big dataset before applying

blocks from a new best chain a�er a common one. To

simplify previous database snapshot restoring, we are

using a versioned key-value database engine IODB [33].

IODB has been built to be used in blockchain systems,

so it provides batch updates only and a rollback to an

arbitrary snapshot in the past within depth to be set

during database creation.

We are reusing peer-to-peer network from the Scorex

without any changes. Nodes in the network send an-

nounces about their blocks and transactions with INV

messages like in Bitcoin [8]. A new block is announced

with the same mechanism; thus, propagation time for

miners is worse than in Bitcoin network where miners

have direct low-latency links to each other and push a

header of a new block immediately.

Our implementation is compact, just about 2,300 lines

of code, thanks to the frameworks used and concise Scala

language.

5.2 Experiments
In this section, we investigate some aspects of the Twin-

sCoin proposal with the help of targeted experiments.

First experiment is about a competition of two chains,

an honest and an adversarial, similar to described in the

original Nakamoto paper ([40], Section 11). �e goal

of a second experiment is to measure e�ciency of the

light client proposal from the Section 4.5. �ird exper-

iment examines proof-of-stake di�culty readjustment

procedure in simulated environments.

5.2.1 Chain Race Experiment

In the original Bitcoin paper [40], Nakamoto evaluated

his proposal by considering competition of two chains,

one of an adversary and another of an honest miner

showing that adversarial chain cannot overtake an hon-

est one until it possesses more mining power. As there

are two resources providing a possibility to generate a

block in our proposal, we simulate an adversary possess-

ing di�erent amounts of total hashing power and also

total stake.

In our experiment, an adversarial and an honest par-

ties work on separate TwinsCoin instances generating

chain-pairs of length 10 (so 10 PoW-blocks and also 10

PoS-blocks). A party which generates its chain-pair �rst

wins the race. �e honest party owns 100 outputs locking

the same amount of money, while the adversary has only

some fraction of that. Di�culties are static during the

experiment, time to generate a PoW-block on average

is overwhelmingly big in comparison with time needed

to process the block and the corresponding PoS-block,

and proof-of-stake di�culty is set to have about 1 output

chosen on average for the honest party. �e code could

be found in the �le PrivateChain.scala.

�e result is presented in Figure 5. We run every

experiment 20 times and consider that the adversary

succeeds if he wins at least once. Gray area in the �gure

shows adversarial success.

�e results show that even with 70% of total mining

power, the adversary also needs for about 20% of total

11

Figure 5: In�uence of a�acker’s stake to his hashrate.

stake to generate a be�er chain than the honest party’s.

Given Bitcoin capitalization of $11.5 billion at the mo-

ment of writing, 20% of stake is about $2.3 billion. How-

ever, not all the stake is online so security projected into

money would be about much lower level. It is hard to

de�ne precisely how much stake is online in Bitcoin,

and how much it would be in case of PoS rewards being

granted for that. Also, we have observed only the sim-

plest kind of a�ack in this experiment. �e adversary

can do be�er, for example, by exploiting network-level

protocol with Eclipse a�acks [23]. Nevertheless, a ma-

licious miner needs to spend a lot of money in order to

overtake the honest ones.

5.2.2 Light Validation Experiment

We estimate practically how e�cient the light validation

procedure proposed is in the Section 4.5. For that, we

compare two chain validators. A full validator is oper-

ating with full state residing in a persistent key-value

database. A light validator is checking lookup proofs in

a blockheader. Both validators are performing lookup

operations only.

For the experiment, we use authenticated AVL+ trees

from [46]. �e full validator code is using disk-based

database MvStore with 128 MB in-memory LRU cache.

�e experiment is started with a balance sheet of about

46 million (public key→ balance) pairs (where a public

key is about 32 bytes, a value is about 8 bytes). We then

try bigger sheets, up to 92 million pairs in size. �us

the testing dataset starts from a size like Bitcoin UTXO

set of today [9] and �nishes with twice of that size. We

use a machine with i7 processor, 16 GB RAM and HDD

disk (5400 RPM) for the experiment.

Figure 6 shows running times for both the validators.

Figure 6: Balance lookup time.

�e results show that our light validator is running in

e�ective constant time negligible to the running time of

the full validator (the running time of the light validator

is about 20-25 microseconds).

For the light validator, a proof of a block generator’s

balance is to be included into a block. We obtain the sizes

for di�erent sizes of balance sheet, they are provided in

the Figure 7. �e proof size for a Bitcoin-like balance

sheet size (46M elements) is about 960 bytes and remains

no more than kilobyte when balance sheet is about 92M

elements.

Figure 7: Balance lookup proof size.

5.2.3 Proof-of-Stake Di�culty Experiments

In the Proof-of-Stake di�culty readjustment formula (see

Formula 1) we use the R parameter to show the proba-

bility that a PoW-block is a successful block. In other

words, R indicates the probability that a PoW-block is

successfully mapped to a stakeholder. Also, 1−R value

shows how many a�empting blocks an average success-

ful proof-of-work block has included. However, in a

12

distributed environment, real values could be di�erent

from the planned ones because of propagation e�ects.

To know the di�erence we made an experiment where

proof-of-stake block was sent to proof-of-work miner

not immediately but with a random delay distributed

uniformly from 0 to 5% of target generation time. We

measure number of a�empting blocks included into a

successful blocks. Results provided in the Figure 8 show

that in this scenario experimental numbers are close to

the planned ones.

Figure 8: Percentage of A�empting Blocks

We found that, given a constant stake, target value

is changing with number of stakeholders growing. �e

dependency is presented in the Figure 9.

Figure 9: T̃ Value

5.3 Testnet

We launch TwinsCoin full-�edged implementation over

a publicly accessible testing network (so-called “testnet”

in the cryptocurrency jargon). For that, we deploy Twin-

sCoin to tens of machines, including AWS (Amazon)

instances in the US, Europe, Asia, as well as physical ma-

chines in Germany and Russia. Each node in the network

is connected to 10 random neighbors. Every machine is

participating in proof-of-work blocks mining, few ma-

chines have public keys with stake on-board so gener-

ating proof-of-stake blocks also. Target time between

proof-of-work blocks is 10 minutes and R = 0.8.

User Interface. Scorex generates an user interface (UI)

automatically and few requests regarding common func-

tionality are available with no any e�orts needed. In or-

der to add speci�c functionality, a coin developer needs

to specify handlers for the additional requests. �e inter-

face is available in a web browser. With the help of the

UI, a TwinsCoin user is able to see the hybrid blockchain

contents, network peers and their statuses, wallet public

keys and corresponding balances. It is also possible to

create a transaction (to send tokens) via the user inter-

face.

Monetary Policy and Incentives. �e currency in

the network has no emission, so all the coins are issued

in the initial state. Proof-of-Stake block generators are

ge�ing transaction fees as rewards while Proof-of-Work

miners are ge�ing nothing (as �nding a proper incentives

structure is le� for further research).

6 Future Work

�ere are still some issues to resolve before launching a

production-ready system. We highlight the most impor-

tant ones below.

Incentives. How to properly incentivize participants

in a cryptocurrency is a non-trivial task. As an example,

in April 2016, Lerner reported [35] about uncle mining
issue regarding improper rewards for uncle blocks in the

GHOST [50] component found in the Ethereum protocol.

In TwinsCoin, rewards should be given to stakeholders

generating PoS-blocks and also to generators of success-

ful as well as a�empting PoW-blocks. Finding a proper

balance is le� for further research.

Switching. Changing rules in a cryptocurrency is a

hard topic. �ere are two ways, so�fork and hardfork,

to upgrade the design recognized in the community. A

so�fork [54] is such a protocol upgrade that only pre-

viously valid rules are made invalid. Nodes not being

updated will recognize the new blocks as valid, thus a

so�fork is backward-compatible. To activate a so�fork a

majority of mining power is required. A hardfork [52] is

such a protocol upgrade that makes previously invalid

rules valid. A hardfork requires all the users to upgrade.

If swapping from a PoW-chain to the hybrid solution is

not hard-coded since a launch of a coin, upgrade would be

13

non-trivial and probably requires hardfork, but hardforks

are be�er to be avoided in a mature system. We leave

identifying suitable switching mechanisms for further

research.

7 Related Work

Closely related work. Combining proof-of-work and

proof-of-stake has been studied in [4, 5, 13, 32]. Unfor-

tunately, no rigorous security analysis has ever been

provided for these proposals. Duong et al [14] provide

the �rst provably secure, proof-of-work and proof-of-

stake hybrid blockchain protocol. In addition, Duong et

al’s proposal is easy to implement and does not involve

a trusted entity.

Independent work on secure pure proof-of-stake.
Several recent and concurrent e�orts (e.g., [6,31,36]) have

made to construct provably secure, scalable blockchains

via pure PoS. Unfortunately, these solutions cannot scale

to a large number of network nodes (e.g., billion nodes)

in an open se�ing where participants can freely join or

leave the system at any time they want.

Bitcoin and Provable Security. Anonymous digital

currency was introduced by Chaum [11]. However, the

�rst decentralized and practical currency system, Bit-

coin [40], was developed many years later, using the

so-called proofs-of-work puzzles [2, 15]. Recently, the se-

curity of Bitcoin system has been analyzed in the rational

se�ing, e.g., [16, 17, 28, 41, 47, 48], and in cryptographic

se�ing [14, 18, 19, 29, 30, 44, 50].

Cryptocurrencies via alternative physical re-
sources. Alternative consensus techniques via di�erent

physical resources (e.g., space/memory) have been inves-

tigated to replace computing power. For instance, the

physical storage resource is used in [37,43]. Interestingly,

hybrid proof system utilizing both computational and

space resources—proofs of space time—has been intro-

duced in [39]. Intel proposes the use of trusted hardware

for blockchain protocols in [27].

Additional cryptocurrencies via virtual resources.
We review proof-of-stake (PoS) based blockchain. Since

the idea in an online forum [45], several pure PoS

schemes that have been proposed and/or implemented in

real world including [3, 34, 42, 51]. As mentioned above,

in [4, 5, 13, 32], the proof of work and proof of stake

can be combined together. However, no rigorous secu-

rity analysis has ever been provided for these propos-

als. Fortunately, proof-of-stake related, provably secure

blockchains have been developed very recently; please

see [6, 31, 36] and [14].

Acknowledgements

We would like to thank Dmitry Meshkov for helping

with coding and testing the system.

References

[1] Twinscoin source code. https://bitbucket.
org/TwCoin/twinscoin.

[2] A. Back. Hashcash — A denial of service counter-

measure. 2002. http://hashcash.org/
papers/hashcash.pdf.

[3] I. Bentov, A. Gabizon, and A. Mizrahi. Cryptocurrencies

without proof of work. In 3rd Workshop on Bitcoin and
Blockchain Research - Financial Cryptography, 2016.

[4] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof of

activity: Extending Bitcoin’s proof of work via proof of

stake. Cryptology ePrint Archive, Report 2014/452, 2014.

http://eprint.iacr.org/2014/452.

[5] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof

of activity: Extending bitcoin’s proof of work via proof

of stake [extended abstract]. SIGMETRICS Perform. Eval.
Rev., 42(3):34–37, Dec. 2014.

[6] I. Bentov, R. Pass, and E. Shi. Snow white: Provably

secure proofs of stake. In Cryptology ePrint Archive, Re-
port 2016/919, 2016. http://eprint.iacr.org/
2016/919.

[7] Bitcoin Developer Guide. UTXO de�nition. https:
//bitcoin.org/en/developer-guide#
term-utxo.

[8] Bitcoin Wiki. Protocol documentation. https:
//en.bitcoin.it/wiki/Protocol
documentation.

[9] Blockchain.info. Number of Unspent Transaction

Outputs. 2017. https://bitcoin.org/en/
developer-guide#term-utxo.

[10] R. Cane�i. Security and composition of multiparty cryp-

tographic protocols. Journal of Cryptology, 13(1):143–202,

2000.

[11] D. Chaum. Blind signatures for untraceable payments.

In D. Chaum, R. L. Rivest, and A. T. Sherman, editors,

CRYPTO’82, pages 199–203. Plenum Press, New York, USA,

1982.

[12] CryptocoinsNews. Bitcoin Market Needs Big Blocks, Says

Founder of BTC.TOP Mining Pool. 2017. https://t.
co/fS5sy7jpPD.

[13] CryptoManiac. Proof of stake. NovaCoin
wiki, 2014. https://github.com/
novacoin-project/novacoin/wiki/
Proof-of-stake.

14

https://bitbucket.org/TwCoin/twinscoin
https://bitbucket.org/TwCoin/twinscoin
http://hashcash.org/papers/hashcash.pdf
http://hashcash.org/papers/hashcash.pdf
http://eprint.iacr.org/2014/452
http://eprint.iacr.org/2016/919
http://eprint.iacr.org/2016/919
https://bitcoin.org/en/developer-guide#term-utxo
https://bitcoin.org/en/developer-guide#term-utxo
https://bitcoin.org/en/developer-guide#term-utxo
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://bitcoin.org/en/developer-guide#term-utxo
https://bitcoin.org/en/developer-guide#term-utxo
https://t.co/fS5sy7jpPD
https://t.co/fS5sy7jpPD
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake
https://github.com/novacoin-project/novacoin/wiki/Proof-of-stake

[14] T. Duong, L. Fan, and H.-S. Zhou. 2-hop blockchain:

Combining proof-of-work and proof-of-stake securely. In

Cryptology ePrint Archive, Report 2016/716, 2016. https:
//eprint.iacr.org/2016/716.

[15] C. Dwork and M. Naor. Pricing via processing or com-

ba�ing junk mail. In E. F. Brickell, editor, CRYPTO’92,

volume 740 of LNCS, pages 139–147. Springer, Heidelberg,

Aug. 1993.

[16] I. Eyal. �e miner’s dilemma. In 2015 IEEE Symposium
on Security and Privacy, pages 89–103. IEEE Computer

Society Press, May 2015.

[17] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin

mining is vulnerable. In N. Christin and R. Safavi-Naini,

editors, FC 2014, volume 8437 of LNCS, pages 436–454.

Springer, Heidelberg, Mar. 2014.

[18] J. A. Garay, A. Kiayias, and N. Leonardos. �e bitcoin back-

bone protocol: Analysis and applications. In E. Oswald

and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume

9057 of LNCS, pages 281–310. Springer, Heidelberg, Apr.

2015.

[19] J. A. Garay, A. Kiayias, and N. Leonardos. �e bitcoin back-

bone protocol with chains of variable di�culty. In Cryp-
tology ePrint Archive, Report 2016/1048, 2016. https:
//eprint.iacr.org/2016/1048.

[20] D. Goodin. Bitcoin security guarantee sha�ered by anony-

mous miner with 51% network power. 2014. http:
//arstechnica.com/.

[21] L. M. Goodman. Tezos: A self-amending crypto-ledger.

position paper.

[22] C. Guo. ”I am Chandler Guo, a 51% a�ack on

Ethereum Classic (ETC) is coming with my 98G hashrate”.

2016. https://twitter.com/chandlerguo/
status/757191880740184064.

[23] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse

a�acks on bitcoin’s peer-to-peer network. In USENIX
Security, pages 129–144, 2015.

[24] IBM Corp. Hyperledger-Fabric. 2016. https://
github.com/hyperledger/fabric.

[25] Input Output Hong Kong. �e Scorex Project. 2016.

https://github.com/input-output-hk/
Scorex.

[26] Intel. Hyperledger-Sawtooth Lake. 2016.

https://github.com/hyperledger/
sawtooth-core.

[27] Intel. Proof of elapsed time (PoET). 2016.

https://intelledger.github.io/
introduction.html.

[28] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselek-

ounis. Blockchain mining games. In Proceedings of the
2016 ACM Conference on Economics and Computation (EC),
pages 365–382, 2016.

[29] A. Kiayias and G. Panagiotakos. Speed-security trade-

o�s in blockchain protocols. Cryptology ePrint Archive,

Report 2015/1019, 2015. http://eprint.iacr.
org/2015/1019.

[30] A. Kiayias and G. Panagiotakos. On trees, chains and

fast transactions in the blockchain. Cryptology ePrint

Archive, Report 2016/545, 2016. http://eprint.
iacr.org/2016/545.

[31] A. Kiayias, A. Russell, B. David, and R. Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain

protocol. In Cryptology ePrint Archive, Report 2016/889,

2016. http://eprint.iacr.org/2016/889.

[32] S. King and S. Nadal. Ppcoin: Peer-to-peer

crypto-currency with proof-of-stake. 2012.

https://peercoin.net/assets/paper/
peercoin-paper.pdf.

[33] J. Kotek. IODB storage engine. https://iohk.io/
blog/scorex/iodb-storage-engine/.

[34] J. Kwon. Tendermint: Consensus without min-

ing. 2014. http://tendermint.com/docs/
tendermint.pdf.

[35] S. Lerner. Uncle mining, an ethereum consensus protocol

�aw. 2016. https://t.co/YnnkzROp02.

[36] S. Micali. ALGORAND: the e�cient and democratic

ledger. CoRR, abs/1607.01341, 2016.

[37] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin:

Repurposing bitcoin work for data preservation. In 2014
IEEE Symposium on Security and Privacy, pages 475–490.

IEEE Computer Society Press, May 2014.

[38] A. Miller, A. E. Kosba, J. Katz, and E. Shi. Nonoutsource-

able scratch-o� puzzles to discourage bitcoin mining coali-

tions. In I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS
15, pages 680–691. ACM Press, Oct. 2015.

[39] T. Moran and I. Orlov. Proofs of space-time and ratio-

nal proofs of storage. Cryptology ePrint Archive, Re-

port 2016/035, 2016. http://eprint.iacr.org/
2016/035.

[40] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-

tem. 2008. https://bitcoin.org/bitcoin.
pdf.

[41] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn

mining: Generalizing sel�sh mining and combining

with an eclipse a�ack. Cryptology ePrint Archive, Re-

port 2015/796, 2015. http://eprint.iacr.org/
2015/796.

[42] NXT Community. Nxt whitepaper. 2014. https:
//www.dropbox.com/s/cbuwrorf672c0yy/
NxtWhitepaper v122 rev4.pdf.

[43] S. Park, K. Pietrzak, A. Kwon, J. Alwen, G. Fuchsbauer, and

P. Gaži. Spacemint: A cryptocurrency based on proofs of

space. Cryptology ePrint Archive, Report 2015/528, 2015.

http://eprint.iacr.org/2015/528.

15

https://eprint.iacr.org/2016/716
https://eprint.iacr.org/2016/716
https://eprint.iacr.org/2016/1048
https://eprint.iacr.org/2016/1048
http://arstechnica.com/
http://arstechnica.com/
https://twitter.com/chandlerguo/status/757191880740184064
https://twitter.com/chandlerguo/status/757191880740184064
https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric
https://github.com/input-output-hk/Scorex
https://github.com/input-output-hk/Scorex
https://github.com/hyperledger/sawtooth-core
https://github.com/hyperledger/sawtooth-core
https://intelledger.github.io/introduction.html
https://intelledger.github.io/introduction.html
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/545
http://eprint.iacr.org/2016/545
http://eprint.iacr.org/2016/889
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://iohk.io/blog/scorex/iodb-storage-engine/
https://iohk.io/blog/scorex/iodb-storage-engine/
http://tendermint.com/docs/tendermint.pdf
http://tendermint.com/docs/tendermint.pdf
https://t.co/YnnkzROp02
http://eprint.iacr.org/2016/035
http://eprint.iacr.org/2016/035
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/796
http://eprint.iacr.org/2015/796
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
http://eprint.iacr.org/2015/528

[44] R. Pass, L. Seeman, and A. Shelat. Analysis of the

blockchain protocol in asynchronous networks. Cryp-

tology ePrint Archive, Report 2016/454, 2016. http:
//eprint.iacr.org/2016/454.

[45] U. �antumMechanic. Proof of stake instead of proof of

work. July 2011. https://bitcointalk.org/
index.php?topic=27787.0.

[46] L. Reyzin, D. Meshkov, A. Chepurnoy, and S. Ivanov. Im-

proving authenticated dynamic dictionaries, with appli-

cations to cryptocurrencies. 2016. http://eprint.
iacr.org/2016/994.

[47] A. Sapirstein, Y. Sompolinsky, and A. Zohar. Optimal

sel�sh mining strategies in bitcoin. In Financial Crypto,

2016.

[48] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden.

Incentive compatibility of bitcoin mining pool reward

functions. In Financial Crypto, 2016.

[49] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. SPECTRE: A

fast and scalable cryptocurrency protocol. In IACR Cryp-
tology ePrint Archive, 2016. http://eprint.iacr.
org/2016/1159.

[50] Y. Sompolinsky and A. Zohar. Secure high-rate transac-

tion processing in bitcoin. In R. Böhme and T. Okamoto,

editors, FC 2015, volume 8975 of LNCS, pages 507–527.

Springer, Heidelberg, Jan. 2015.

[51] P. Vasin. Blackcoin’s proof-of-stake proto-

col v2. 2014. http://blackcoin.co/
blackcoin-pos-protocol-v2-whitepaper.
pdf.

[52] B. Wiki. Hard fork. https://en.bitcoin.it/
wiki/Hardfork.

[53] B. Wiki. Script. https://en.bitcoin.it/
wiki/Script.

[54] B. Wiki. So�fork. https://en.bitcoin.it/
wiki/Softfork.

[55] B. Wiki. Transaction. https://en.bitcoin.it/
wiki/Transaction.

A Security properties for blockchains

To capture the security of blockchain protocols, several

fundamental security properties for blockchain protocols,

common pre�x property [18, 44], chain quality property
[18], and chain growth property [29], have been de�ned.

De�nition A.1 (Chain Growth Property). �e chain
growth property Q

cg
states that for any honest player P

with the local chain C at round r and C′ at round r ′ where
s = r ′ − r > 0, in the execution of the blockchain protocol
Π. It holds that len(C′) − len(C) ≥ g · s where g is the
growth rate and len(C) denotes the number of blocks on
the chain.

De�nition A.2 (Common Pre�x Property for

PoS-chain). �e common pre�x property Q
cp

with pa-
rameter κ ∈ N states that for any two honest players P1
at round r1 and P2 at round r2, where r1 ≤ r2, with the
local chains C1, C2, respectively, in the execution of the
blockchain protocol Π, it holds that C1[1, `1] � C2 and
`1 = len(C1)−Θ(κ) where len(C) denotes the number of
blocks on the chain.
De�nition A.3 (Chain �ality Property). �e chain
quality property Q

cq
with parameters µ ∈ R and ` ∈ N

states that for any honest player P with chain C in the
execution of the blockchain protocol Π, it holds that for
large enough ` consecutive blocks of C the ratio of honest
blocks is at least µ for µ ∈ (0,1).

B Our modi�ed 2-hop blockchain

In Section 4.1, we describe the modi�ed version of 2-hop

blockchain. Here, we provide more details.

As in the 2-hop blockchain design [14], we here also

have two tightly coupled blockchains: proof-of-work
blockchain (PoW-chain) and proof-of-stake blockchain
(PoS-chain). A PoW-chain is de�ned as a sequence

of temporally ordered PoW-blocks; however, our

PoW-chain is di�erent from that in the 2-hop design

as there are two di�erent types of PoW-blocks in our sys-

tem: a�empting PoW-blocks and successful PoW-blocks
(see Section B.1 for more details). Along with the proof-

of-work blockchains, there are another type of chains

called Proof-of-Stake blockchain consisting of PoS-blocks,

and is maintained by a set of stakeholders (also called

stakeholders).
We summarize the frequently used notations in the

Table 1.

We suppose that there exists an initial blockchain Cinit
as the starting point, and Cinit is known to all participants

in the TwinsCoin system.

Now we present the behaviors of miners and

stakeholders in our system. In general, miners and

stakeholders collect blockchain information from the

broadcast channel, perform some validation and generat-

ing blocks, and then share their states with the network

through broadcast. We now explicitly describe the two

procedures for miners and stakeholders as follows.

Miners. Initially, each miner sets the set of chain-pairs

C to empty (i.e., ε). A miner then continues execution

as follows. First, the player copies all chain-pairs re-

ceived from the network into his local state. �e miner

then selects the best chain-pair in his view by calling

the BestValid algorithm (see Algorithm 7) over the set

16

http://eprint.iacr.org/2016/454
http://eprint.iacr.org/2016/454
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
http://eprint.iacr.org/2016/994
http://eprint.iacr.org/2016/994
http://eprint.iacr.org/2016/1159
http://eprint.iacr.org/2016/1159
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
https://en.bitcoin.it/wiki/Hardfork
https://en.bitcoin.it/wiki/Hardfork
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Softfork
https://en.bitcoin.it/wiki/Softfork
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Transaction

Table 1: Table of notations

Notation Description

κ security parameter.

Cinit an initial blockchain.

B,C a PoW-block, a PoW-chain.

B̃, C̃ a PoS-block, a PoS-chain

B a set of proof-of-work blocks

〈C, C̃〉 a chain-pair consisting of PoW-chain C
and PoS-chain C̃.

C a set of chain-pairs.

X information stored in blockchain.

Σ digital signature scheme Σ =
(Gen,Sign,Verify).

(sk,vk) a signing and veri�cation key-pair

where (sk,vk)← Gen(1κ).
S a set of valid stake-identity.

Broadcast(·) unauthenticated send-to-all functional-

ity.

of chain-pairs. Upon deriving the best chain-pair 〈C, C̃〉
(based on length and validity), the miner will call PoW

algorithm (see Algorithm 3) to make a bounded number

of hash queries in an a�empt to �nd a proof of work

solution and extend the PoW-chain C. If it is successful,

then his local best chain-pair is extended by one block,

the PoW-chain in the pair is updated, and then the best

chain-pair is broadcast to the network. �is procedure

is formally presented by Algorithm 1.

Algorithm 1: Main Protocol: miner.

1 C← ε;

2 while True do
3 C← all chain-pairs received from the network.

4 〈C, C̃〉 ← BestValid(C)
5 Cnew,← PoW(〈C, C̃〉)
6 if C , Cnew then
7 C ← Cnew
8 C←C∪ 〈C, C̃〉
9 Broadcast(〈C, C̃〉);

Stakeholders. �e initialization of every stakeholder

is the same as miners except that each valid stakeholder

is parameterized by a unique pair of signing and veri�-

cation keys (skj ,vkj) and amount of coins vj . (In this

appendix, the blockchain protocol is described in the �at

model, and we assume vj = 1.)

Consider a stakeholder, in each time step, any

chain-pairs and payload X from the network are copied

into the stakeholder’s local state. �e stakeholder then

selects the best chain-pair on his view through the

BestValid algorithm (see Algorithm 7) over a set of

chain-pairs C. �en, upon deriving the best chain-pair

the stakeholder a�empts to extend the PoS-chain of the

best chain-pair through the PoS algorithm (see Algo-

rithm 4). If this stakeholder is the lucky stakeholder,

then he will produce and sign a new block and extend

the PoS-chain, and �nally broadcasting the newly ex-

tended chain-pair to the network.

Algorithm 2: Main Protocol: stakeholder. �e

stakeholder algorithm is parameterized by signing and ver-

i�cation keys (sk,vk).

1 C← ε;

2 while True do
3 C← all chain-pairs received from the network.

4 X← all payloads received from the network.

5 〈C, C̃〉 ← BestValid(C)
6 C̃new← PoS(sk,vk,X,〈C, C̃〉)
7 if C̃ , C̃new then
8 C̃ ← C̃new
9 C←C∪ 〈C, C̃〉

10 Broadcast(〈C, C̃〉);

B.1 Proof-of-Work Blockchain

B.1.1 Attempting and Successful Blocks

�e players listen to and receive many chain-pairs (con-

sisting of new PoW-blocks) from the network. For each

player, if he receives a new PoW-block without its cor-

responding PoS-block, the new PoW-block becomes an

a�empting block with respect to the view of the player.

On the other hand, if he receives a new PoW-block with

the corresponding PoS-block, this PoW-block is now con-

sidered as a successful block in the player’s local view.

B.1.2 Proof-of-Work Block Structure

Let H(·),G(·) be cryptographic hash functions with out-

put in {0,1}κ where κ is the security parameter. As in-

troduced, we have two di�erent types of PoW-blocks:

a�empting blocks and successful blocks. �e structure of

a�empting and successful blocks are the same. However,

they have di�erent meaning as follows: (1) no PoS-block

links to an a�empting block, and (2) we only count the

successful blocks when calculating the real length of a

proof-of-work chain. A PoW-block B is a tuple of the

form 〈ctr,hw,hs,ha,w〉, where

17

Notation ctr denotes a positive integer, 1 ≤ ctr ≤ q,

and q ∈ N is the maximum number of random oracle

queries from each player per unit of time,

Notation hw denotes the digest of the previous proof-

of-work block, where hw ∈ {0,1}κ,

Notation hs denotes the digest of the previous proof-

of-stake block, where hs ∈ {0,1}κ,

Notation ha denotes the digest of the latest seen

a�empting proof-of-work block, where ha ∈ {0,1}κ

Notation w is a random nonce, where w ∈ {0,1}κ,

and block B satis�es the inequality
2

H(ctr,G(hw,hs,ha,w)) < T

where the parameters T ∈ N denotes the current
proof-of-work target of the block.

A PoW-chain C consists of a sequence of ` concatenated

successful PoW-blocks. We denote head(C) as to the

topmost successful PoW-block B` in blockchain C. �at is,

we do not consider an a�empting block as the head of

the proof-of-work chain, and the head of a PoW-chain is

not necessary the topmost PoW-block since the topmost

PoW-block could be an a�empting block. Moreover, we

only link a new proof-of-work block to the head of the

proof-of-work chain. �is implies that there may ex-

ist multiple a�empting blocks a�aching to a successful

block in our proof-of-work chain. If a proof-of-work

blockchain C is a pre�x of another blockchain C′ , we

write C � C′ .

B.1.3 Extending a Proof-of-Work Blockchain

Miners maintain our system by extending the PoW-chain.

Algorithm 3 formally describes how to extend a proof-

of-work blockchain in our system. �is algorithm is

parameterized by hash functions H(·),G(·) as well as two

positive integers q,T where q is the maximum num-

ber of random oracle queries of each miner per unit of

time, and T determines the “current block target” of the

PoW. �e algorithm works as follows: given a chain-pair

〈C, C̃〉, the algorithm computes the hash hw of the pre-

vious PoW-block (the head of the PoW-chain), the hash

hs of the head of the PoS-chain, and the hash ha of the

latest a�empting block collected. We emphasize that,

the head of the PoW-chain is the “most recent successful

block” on the chain (not an a�empting block), and with-

out connecting to the head of the current PoS-chain or

the latest a�empting block, the adversary can rewrite

any information stored on the chain-pair. �e algorithm

then samples a random initial string w of length κ, then it

2
A more comprehensive version of the inequality, i.e.,

(H(ctr,G(hw,hs,ha,w)) < T)∧ (ctr ≤ q) can be found in [18].

increments ctr and checks if H(ctr,G(hw,hs,ha,w)) < T;

if a suitable (ctr,hw,hs,ha,w) is found then the algorithm

succeeds in solving the PoW and extends blockchain C by

one block. We can this new PoW-block is now a�ached to

the header of C; If no suitable (ctr,hw,hs,ha,w) is found,

the algorithm simply returns the chain unaltered.

Algorithm 3: �e proof-of-work function, parameterized

by positive integers q,T and hash functions H(·), G(·). �e

input is (〈C, C̃〉).

1 function PoW(〈C, C̃〉)
2 Let B be a set of a�empting blocks that a�ach to

head(C).
3 Let l be the number of a�empting blocks in B.

4 Set ha :=⊥ if B is empty.

5 hw← H(head(C)); hs← H(head(C̃))
6 ctr← 1; w← {0,1}κ
7 B← ε
8 if l , 0 then
9 Let Bl be the latest PoW-block found B that

a�aches to head(C).
10 ha← H(Bl);
11 while ctr ≤ q do
12 if (H(ctr,G(hw,hs,ha,w)) < T)∧ (ctr ≤ q) then
13 B← 〈ctr,hw,hs,ha,w〉
14 C ← CB

/* Extend proof-of-work chain

*/
15 ctr← ctr+1
16 return C ; /* Return the updated chain */

B.2 Proof-of-Stake Blockchain
We remark that this part is almost the same as that in

the 2-hop blockchain [14].

In our system, a digital signature scheme is used

by stakeholders to create new valid PoS-blocks. Let

Σ = (Gen,Sign,Verify) be the digital signature scheme.

Let H̃(·) be a cryptographic hash function with output in

{0,1}κ where κ is the security parameter. We now intro-

duce the format of a PoS-block. In our system, each valid

PoS-block is coupled with a valid PoW-block. Based on

a given PoW-block B, a valid stakeholder with the veri�-

cation key vk such that

H̃(B,vk) < T̃

is allowed to generate the corresponding PoS-block B̃.

Here, T̃ is the current proof-of-stake target.
�e PoS-block B̃ is de�ned as a tuple of the form

〈B,vk,X,σ〉. Here, X ∈ {0,1}∗ is the payload of the proof-

of-stake block B̃ (also denoted as payload(B̃)); and σ is

18

a signature for (B,X), i.e., σ = Signsk(B,X) (sk is the

corresponding signing key of vk.)

We de�ne head(C̃) as the topmost PoS-block of the

proof-of-stake chain C̃. We note that, in PoS-chain,

payload is stored, and we use payload(C̃) to denote

the information we store in C̃. If ` is the total num-

ber of PoS-blocks in the PoS-chain C̃, then we have

payload(C̃) = ||`i=1payload(B̃i), where || is the concate-

nation notation.

B.2.1 Extending a Proof-of-Stake Blockchain

In Algorithm 4, we describe how the stakeholders extend

PoS-chains. Intuitively, if the stakeholder with veri�ca-

tion key vk is the elected one, he can to sign and generate

a new PoS-block.

In more details, Algorithm 4 processes as follows.

Upon receiving input (sk,vk,X,〈C, C̃〉), the algorithm

a�empts to extend the speci�ed PoS-chain C̃ in the

chain-pair 〈C, C̃〉; �e algorithm then executes the fol-

lowing two main steps:

Step 1—Leader Election. �e algorithm collects all

a�empting blocks that link to the head of C. We de-

note the set of these a�empting blocks as B, and denote

l as the number of blocks in B; here, l = 0 means this set

is empty and there are no a�empting blocks that follow

head(C). �en, let B be the latest a�empting block in

B. If B is not empty meaning that there exits a block B,

the algorithm checks if the veri�cation key vk is a valid

key (owns the stake) and the inequality H̃(B,vk) < T̃
holds. If yes, the stakeholder with the key pair (sk,vk)
is the winning stakeholder. �at is, stakeholders are

elected based on this inequality H̃(B,vk) < T̃. By this

mechanism, the proof-of-work blockchain is treated as a

biased random beacon for electing a stakeholder.

Step 2—Signature generation. A�er the �rst step, the

stakeholder with signing and veri�cation keys (sk,vk) is

the winning stakeholder. �e algorithm then generates a

signature σ ← Signsk(B,X) and forms a new PoS-block

B̃ = 〈B,vk,X,σ〉. We then say the stakeholder with the

key pair (sk,vk) extends the speci�ed PoS-chain C̃ with

the new block B̃.

�e Figure 10 illustrate the structure of a chain-pair

a�er executing Algorithm 4. As shown in the �gure, we

have B the most recently produced PoW-block, and the

new PoS-block B links to B by storing B in the block.

B.3 Validating a Chain-pair
Chain-Pair validation is the most important process in

our design. Before going to explain our validation al-

head(C) B

head(C̃) B̃

Figure 10: Generating new PoS-blocks

Algorithm 4: �e proof-of-stake function, parameterized

by a signature schemeΣ = (Gen,Sign,Verify), a parameter

T̃, a hash function H̃(·). �e input is (sk,vk,X,〈C, C̃〉).

1 function PoS(sk,vk,X,〈C, C̃〉)
2 Let B is the set of all a�empting blocks that a�ach to

head(C).
3 Let l be the number of a�empting blocks in B.

4 Let B be the latest PoW-block in B that a�aches to

head(C).
/* If there is one new PoW-block that

attaches to head(C). */
5 if l > 0 then
6 if (H̃(B,vk) < T̃)) then
7 σ ← Signsk(B,X)
8 B̃← 〈B,vk,X,σ〉
9 C̃ ← C̃B̃

/* Extend proof-of-stake chain

*/
10 return C̃; /* Return the updated chain */

gorithm. We formally describe the following predicates

used in the ValidateChainPair algorithm.

Predicate ValidPoWq,T
H,G(B,B

′ , B̃,B, B̂). �is predicate

is parameterized by two integers q, T, and two hash

functions H(·),G(·). �e goal of this predicate is to check

the validity of a successful PoW-block B upon receiving

inputs: the successful block B, another successful block

B′ , a PoS-block B̃, two sets of a�empting PoW-blocks B
and B̂. Here, the block B consists of 〈ctr,hw,hs,ha,w〉,
blockB′ consists of 〈ctr′ ,h′w,h′s,h′a,w′〉, the setB consists

of l a�empting blocks {B1, . . . ,Bl}where each block Bi =
〈ctri ,hiw,his,hia,wi〉 for 1 ≤ i ≤ l, and the set B̂ consists

of l̂ a�empting blocks {B̂1, . . . , B̂l̂}where each block B̂j =
〈 ˆctrj , ĥjw, ĥ

j
s , ĥ

j
b, ŵ

j〉 for 1 ≤ j ≤ l̂. Note that, PoW-blocks

in B and B̂ are in temporal-order. �e predicate checks

19

the following.

B is properly solved if

H(ctr,G(hw,hs,ha,w)) < T

B links to the previous PoW-block B′ if hw = H(B′).
B links to the previous PoS-block B̃ if hs = H(B̃).
If l̂ > 0, check whether B links to the latest

a�empting block in the second set B̂ if ha = H(B̂l̂).
If l > 0, check whether all a�empting blocks in B
are properly solved if for 1 ≤ i ≤ l,

H(ctri ,G(hiw,h
i
s,h

i
a,w

i)) < T

If l > 0, check whether all a�empting blocks Bi =
〈ctri ,hiw,his,hia,wi〉 in B̂ are properly linked if

• Bi links to the previous PoW-block B′ if hiw =
H(B′).

• Bi links to the previous PoS-block B̃ if his =
H(B̃).

• Bi links to the previous a�empting block in the

set B if hia = H(Bi−1) (Note that, we consider

B0 = B′ .)

�e predicate ValidPoWq,T
H,G outputs 1 if and only the

examined block B passes all tests described above.

Predicate ValidPoSΣ,T̃
H̃

(B̃,B). �is predicate is param-

eterized by a signature scheme Σ, an integer T̃, and a

hash function H̃(·). �e goal of this predicate is to check

the validity of a PoS-block B̃ = 〈B′ ,vk,X,σ〉 upon receiv-

ing inputs: a PoS-block B̃, a PoW-block B.

�e predicate checks the following

B̃ is generated by an elected stakeholder if

H̃(B,vk) < T̃
B̃ links to the corresponding PoW-block B if B = B′

�e signature σ of B̃ is properly generated if

Verifyvk(B′ ,X,σ) = 1

�e predicate ValidPoWΣ,T̃
H̃

outputs 1 if and only if the

examined PoS-block B̃ passes all tests described above.

Our chain-pair validation algorithm, denoted

ValidateChainPair, is introduced to examine if a pair

of chains (including a PoW-chain and a PoS-chain) is

valid. Intuitively, a valid chain-pair means its members

PoW-chain C and PoS-chain C̃ are both valid, respec-

tively. Furthermore, each block of the PoS-chain must

contain the valid supporting signature for the corre-

sponding block of the PoW-chain. �e algorithm is pa-

rameterized by the signature scheme Σ, parameters q,

T, T̃, the hash functions H̃(·), H(·), G(·), and the content

Algorithm5:�e chain-pair validation algorithm, param-

eterized by a signature scheme Σ = (Gen,Sign,Verify), the

stake-identity set S, parameters q, T, T̃, an initial chain

Cinit, the hash functions H̃(·), H(·),G(·) and the content

validation predicate V (·). �e input is (〈C, C̃〉).

1 function ValidateChainPair(〈C, C̃〉)
2 b← V (payload(C̃))
3 if b = True then
4 repeat
5 B← H(head(C)).
6 Let B is the set of all a�empting PoW-blocks

a�aching to head(C).
7 B̃← H(head(C̃)).
8 Truncate all PoW-blocks from the head of C

(including the head), and truncate the head

of C̃.

/* obtain new heads */
9 Let B̂ is the set of all a�empting PoW-blocks

a�aching to the newhead(C).
10 b1←

ValidPoW
q,T
H,G(B,head(C),head(C̃),B, B̂)

11 b2← ValidPoSΣ,T̃
H̃

(B̃,B)

12 b = b1 ∧ b2
13 until (C = Cinit)∨ (b = False);
14 return b

validation predicate V (·). Note that, the predicate V (·),
introduced in [18], determines the proper structure of

the information (i.e., payload) that is stored into the

PoS-chains.

�e ValidateChainPair algorithm takes as input a

chain-pair (C, C̃). It �rst applies the validation predicate

V (·) to check the payload in the PoS-chain C̃. If the pay-

load is valid, then starting from the head of C, for every

successful PoW-block and its corresponding PoS-block

in the PoW-chain C, the algorithm applies the predicate

ValidPoWq,T
H,G and ValidPoSΣ,T̃

H̃
, respectively, to validate

the blocks. If both predicates output 1, the considered

block-pair (including a PoW-block and its corresponding

PoS-block) are valid. �en, the examining chain-pair is

valid if all block-pairs are valid. Please refer to Algorithm

5 for more details.

B.4 Best Chain-pair Strategy

In this section, we describe the rules in which a single

chain-pair is selected for consensus. We introduce an al-

gorithm BestValid for selecting the best chain-pair on a

set of chain-pairC. �e BestValid algorithm is executed

20

by miners and stakeholders. It is by the function Max(·, ·)
(see Algorithm 6) which outputs the chain-pair having

the most number of successful PoW-blocks. �at is, func-

tion Max(·, ·) only counts the successful PoW-blocks on

the proof-of-work chain. Please refer to Algorithm 7 for

more details on our best chain-pair policy.

Algorithm 6: �e Max function. �e input is

(〈C1, C̃1〉,〈C2, C̃2〉)

1 function Max(〈C1, C̃1〉,〈C2, C̃2〉)
2 Let `i denote the number of successful PoW-blocks in

Ci , for i ∈ {1,2}.
3 Let Bi is the set of all a�empting PoW-blocks

a�aching to head(Ci), for i ∈ {1,2}.
4 Let li be the number of a�empting blocks in Bi .
5 for i ∈ {1,2} do
6 if li , 0 then
7 `i ← `i +1
8 if `1 ≥ `2 then
9 return 〈C1, C̃1〉

10 else
11 return 〈C2, C̃2〉

Algorithm 7: �e BestValid, parameterized by the

Max(·, ·) function. �e input is (C)

1 function BestValid(C)
2 temp← ε

3 foreach 〈C, C̃〉 ∈C do
4 if ValidateChainPair(C, C̃) then
5 temp←Max(〈C, C̃〉, temp)
6 return (temp)

Tie breaking. In our system, we break the tie deter-

ministically. In more detail, if the two chain-pairs have

the same number of successful PoW-blocks, then the one

having the most number of a�empting blocks would win.

If they even have the same number of a�empting blocks,

we would hash the head of the proof-of-work chain in

each chain-pair, and choose the one with the smaller

hash value.

To increase the readability, we illustrate our typical

best chain-pair policy in Figure 11. In the �gure, we have

two chain-pairs. We present a successful PoW-block as a

�lled green box, an a�empting PoW-block as an un�lled

green box, and a PoS-block as a �lled red box. �ere, the

�rst chain-pair only has 4 successful blocks where the

second chain-pair has 5 successful blocks. By Algorithm

7, the second chain-pair is the best one.

time

(1)

(2)

. . .

. . .

Figure 11: Best chain-pair policy

21

	Introduction
	Our Approach
	Singling out a suitable candidate blockchain
	From 2-hop blockchain to TwinsCoin

	Our Contributions

	Threat Model and Assumptions
	Background
	Nakamoto's blockchain
	Duong et al's 2-hop blockchain

	Main Design
	A modified blockchain structure
	A blockchain with adjustable difficulty
	Nakamoto's difficulty adjustment for PoW
	Our difficulty adjustment for PoW/PoS
	Security analysis

	PoS blockchain in the non-flat model
	Moving PoS blockchain from the flat to the non-flat model
	Security analysis

	Blockchain design in TwinsCoin
	Light client design in TwinsCoin

	TwinsCoin System
	Implementation
	Experiments
	Chain Race Experiment
	Light Validation Experiment
	Proof-of-Stake Difficulty Experiments

	Testnet

	Future Work
	Related Work
	Security properties for blockchains
	Our modified 2-hop blockchain
	Proof-of-Work Blockchain
	 Attempting and Successful Blocks
	 Proof-of-Work Block Structure
	 Extending a Proof-of-Work Blockchain

	Proof-of-Stake Blockchain
	Extending a Proof-of-Stake Blockchain

	Validating a Chain-pair
	Best Chain-pair Strategy

