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Abstract

Wee (TCC’14) and Attrapadung (Eurocrypt’14) introduced predicate and pair encodings,
respectively, as a simple way to construct and analyze attribute-based encryption schemes,
or more generally predicate encryption. However, many schemes do not satisfy the simple
information theoretic property proposed in those works, and thus require much more com-
plicated analysis. In this paper, we propose a new simple property for pair encodings called
symbolic security. Proofs that pair encodings satisfy this property are concise and easy to verify.
We show that this property is inherently tied to the security of predicate encryption schemes by
arguing that any scheme which is not trivially broken must satisfy it. Then we use this property
to discuss several ways to convert between pair encodings to obtain encryption schemes with
different properties like small ciphertexts or keys. Finally, we show that any pair encoding
satisfying our new property can be used to construct a fully secure predicate encryption scheme.
The resulting schemes are secure under a new q-type assumption which we show follows from
several of the assumptions used to construct such schemes in previous work.
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1 Introduction

Traditional public key encryption allows an encryptor to use a public key to encrypt a message
so that the owner of the corresponding secret key can decrypt. In 2005, Sahai and Waters [SW05]
introduced the concept of attribute-based encryption, in which who can decrypt is determined by
some more complex attributes of the decryptor and the message. Of course this is only meaningful
if there is some party that can determine the attributes of the decryption, thus the basic model
assumes a trusted party who publishes parameters used in encryption, and who issues decryption
keys to users based on their attributes; given such a key, a user should be able to decrypt any
ciphertext which is compatible with his attributes. The initial result considered a simple threshold
functionality: every ciphertext was encrypted with a set of attributes, and a user could decrypt if
they possessed sufficiently many of those attributes. This was then generalized to key-policy ABE
[GPSW06], in which the user’s key specifies a policy determining what attributes must be present
in the ciphertext in order for that user to be able to decrypt, and ciphertext-policy ABE [BSW07],
which is the natural opposite in that the user’s key corresponds to a list of attributes and ciphertexts
are encrypted with a policy which determines which attributes the user must have to decrypt.

Since then the field of ABE has grown dramatically. There has been work which extends the
type of policies that can be considered, for example to non-monotone formulas [OSW07], or even
regular languages [Wat12]. There has also been work which improves the efficiency of ABE in various
dimensions, for example considering schemes with very short (e.g. constant size) ciphertexts or keys
[ALdP11, YAHK14], or schemes with very short parameters (again constant-size) which still support
attributes from an unbounded space [LW11b, OT12, RW13]. There has been work on distributing
the job of the authority across multiple entities [Cha07, LW11a], on updating ciphertexts [SSW12],
or hiding the key and/or ciphertext attributes [BW07, KSW08, SSW09, BRS13], and many other
interesting directions.1

One weakness in much of the early work is that the schemes presented were only shown to satisfy
a weak notion of security called selective security. Selective security essentially only guarantees
security for an adversary who chooses which type of ciphertext to attack (i.e. the attributes/policy
for the ciphertext) without seeing the system parameters, any ciphertexts, or any decryption keys.
Thus it was a major breakthrough when Waters introduced the dual-system encryption technique
[Wat09], paving the way for schemes which satisfied the natural definition, in which the adversary
may choose what type of ciphertext to attack adaptively based on any of the other information it
sees while interacting with the system. Since then there has been a lot of work focused on obtaining
the results above under this more natural security definition, which is usually referred to as full
security.

One of the main downsides of this process, however, is that while most of the original con-
structions were simple and intuitive, many of these new constructions are significantly more
complex. Also many of the first fully secure schemes relied on composite-order pairing groups,
which while conceptually simpler are not really usable in practice [Gui13]. The effort to move
these results to be based on standard prime-order pairing groups has added even more complexity
[Fre10, Lew12, HHH+14]. As a result, the intuition for the resulting constructions is often difficult
to follow, and the security analysis for these schemes is much more involved, so much so that even
verifying the security proof is often very time consuming.

Two recent works by Wee and Attrapadung [Wee14, Att14a] set out to simplify the process of

1There has also been a very interesting line of work which uses indistinguishability obfuscation or multi-linear
maps to construct ABE for circuits [GGH+13, GGHZ16], and a lot of progress on building ABE schemes from lattices
[Boy13, GVW13], although achieving the natural full security notion there still requires complexity leveraging. Here, we
focus on pairing based constructions as to date they provide the best efficiency and security guarantees.
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designing and analyzing fully secure ABE schemes. They proposed a simple building block, called
a predicate/pair encoding, which essentially considers what happens in the exponent of a single
key and a single ciphertext. They proposed an information theoretic security property, which
considers the distributions of these values, again only considering a single key and ciphertext, and
showed that from any pair encoding scheme which satisfies this property one can construct a fully
secure ABE scheme. The initial works proposed only composite-order group schemes; later works
[CGW15, AC16, Att16] have updated these results to prime-order groups.

These results led to very simple, intuitive, and easy to analyze constructions for several basic
types of ABE schemes, that worked in efficient prime order groups, and were based on simple
assumptions like DLIN or SXDH. However, there are many types of ABE schemes for which we do
not know how to construct this type of pair encoding. And in fact there are many types of ABE
which we do not know how to construct under simple assumptions using any approach, like ABE
with short ciphertexts, or with large universe, or where an attribute can be used any number of
times in a policy, etc.

To address this problem, Attrapadung [Att14a] also proposed a different security notion for
pair encodings, and showed that under this notion one could construct pair encodings for many
more types of ABEs, and that this notion was sufficient to produce secure constructions under
more complex q-type assumptions. However, proving that a pair encoding scheme satisfies the new
security notion is again a challenging task. This property involves elements in bilinear groups rather
than just the exponent, and it is no longer information-theoretic, so that it must be proved via
reduction to a different q-type assumption for every encoding. These reductions are very complex,
and again verifying the security becomes a matter of studying several pages of proof (9 pages for
predicate encryption for regular languages, for instance), providing relatively little intuition for why
the scheme is secure.

1.1 Our Contributions

Our goal in this work is to simplify the process of designing and analyzing ABE schemes for those
types of ABEs which we only know how to construct from q-type assumptions. Towards this, we
introduce a very different kind of security property for pair encodings that completely does away
with any kind of distributions, and show that it is a very powerful and natural property through a
series of results. We believe it provides a new perspective for looking at the security of predicate
encryption schemes.

A pair encoding scheme, as defined by Attrapadung [Att14a], gives a way to encode the two
inputs x and y to a predicate into polynomials of a simple structure. These polynomials have three
types of variables: common variables shared by the encodings of x and y , and variables specific to
the encoding of x and to that of y .

A new property for pair encodings. We present a new security property for pair encodings that
essentially requires one to describe a mapping from the variables in the encoding to matrices
and vectors. Once a mapping is specified, verifying that the property holds is just a matter of
checking if the polynomials in the encoding evaluate to 0 when the variables are substituted.2 Thus
verification is much easier compared to any property known before, since they all require checking
whether certain distributions are (pefectly, statistically or computationally) indistinguishable. We
call our new property the symbolic property (Sym-Prop) since verification only involves symbolic
manipulation.

2The trivial case is ruled out because we also require that the vectors corresponding to two special variables, in the
encoding of x and y respectively, are not orthogonal.
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We show how to convert any pair encoding that satisfies Sym-Prop into a fully secure encryption
scheme whose security is based on a fixed q-type assumption that we call q-ratio. We use the generic
transformation from Agrawal and Chase [AC16], henceforth called Gen-Trans, for this purpose.
Gen-Trans takes an encoding scheme satisfying a certain information-theoretic property and
produces an encryption scheme in dual system groups [CW14a], which can then be instantiated in
composite-order groups under subgroup decision assumptions or prime-order groups under the
k-linear assumption.

We show that the security of Gen-Trans can also be argued when the pair encoding satisfies
a very different security property, the symbolic property. The main novelty in our proof, and the
crucial difference from AC16, is in how the form of master secret key is changed: while AC16 uses
an information-theoretic property, we use Sym-Prop in conjunction with a new assumption called
q-ratiodsg on dual system groups. 3 At a very high level, the terms that cannot be generated from
q-ratiodsg are exactly the ones that go to zero due to Sym-Prop. Thus we are able to embed q-ratiodsg
successfully into the reduction. Interestingly, however, as we will discuss below, Sym-Prop is not
just an artifact of our proof strategy but seems to be inherently linked to the fundamental security
of the resulting predicate encryption schemes.

An added advantage of borrowing AC16’s transformation is that when a pair encoding is used in a
way that can be shown to be information-theoretically secure, then the encryption scheme obtained
through Gen-Trans is fully secure under a standard assumption. We show a useful application of
this feature below.

We also show that the q-ratio assumption is in fact implied by several other q-type assumptions
used to construct ABE schemes, in particular those used in the Lewko-Waters ABE [LW12] and
Attrapadung’s fully secure predicate encryption for regular languages [Att14a]. This assumption
is also simpler to describe than either [LW12] or [Att14a] and we believe that this approach better
captures the intuition for why these schemes are secure.

Analysis of pair encodings. We show that Sym-Prop holds for several pair encoding schemes,
both new and old: multi-use CP-ABE, short ciphertext CP-ABE, large universe KP-ABE, short
ciphertext KP-ABE, and predicate encryption for regular languages.

First, we present a new pair encoding Πre-use for CP-ABE that allows an attribute to be used any
number of times in a policy. An interesting feature of Πre-use is that if no attribute is used more
than once, then it collapses to the one-use scheme of [Att14a], which is information-theoretically
secure. So if we get an encryption scheme ES when Gen-Trans is applied on Πre-use, then ES is fully
secure under a standard assumption as long as it is used to encrypt policies where attributes are
not repeated. If a policy with multiple use of attributes needs to be encrypted, then ES still fully
hides the payload but under a q-type assumption. As far as we know, no multi-use scheme with
this feature was known before. For instance, the Lewko-Waters’ scheme [LW12] uses an assumption
whose size scales with that of the access policy in the challenge ciphertext. So even if no attribute is
used more than once, security still relies on a q-type assumption. 4

For short ciphertext CP-ABE, we show that the pair encoding of Agrawal and Chase [AC16] satis-
fies Sym-Prop. This means that the encryption scheme that comes out after applying Gen-Trans is
fully secure, not just selectively secure as they proved it (since we use the same transformation as

3q-ratiodsg is very similar to q-ratio. We show that Chen and Wee’s instantiations of dual system groups satisfy
q-ratiodsg if the underlying bilinear maps satisfy q-ratio.

4There are other ABE schemes that get much more than attribute re-use, like large universe or short keys, based on
q-type assumptions [Att14a], but proving them secure under a standard assumption when re-use does not happen would
be even more difficult.
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them), under a q-type assumption. Note that it was not known earlier whether there exists a fully-
secure CP-ABE scheme with constant-size ciphertexts under any kind of assumption on bi-linear
maps. In fact, we can generically build an encryption scheme with constant-size ciphertexts for any
predicate P from any pair encoding for P that satisfies Sym-Prop as discussed in more detail below.

The last three encodings we analyze are borrowed from the work of Attrapadung [Att14a] with
slight simplification. Previously, we only knew how to analyze them using the much more complex
computational security property in [Att14a]. Our analysis of these schemes is considerably simpler:
for comparison, the proof of computational security for the regular languages pair encoding
required 9 full pages, while our proof of symbolic security only takes 2.5 llncs pages. Our proofs can
be seen as extracting, abstracting and somewhat simplifying the key ideas behind Attrapadung’s
security analysis, so that they can be very easily verified, and more easily applied to future schemes.

Symbolic property inherent in a secure scheme. While there are several security properties for
encoding schemes that allow one to check if they can be used to build some type of encryption
scheme, is there a property that an encoding scheme should not satisfy? A natural one that comes to
mind is that correctness holds for an x and y that make a predicate false. In other words, there exists
a way to combine the polynomials in the encoding to recover the blinding factor for the message
even when the predicate is false. We call a pair encoding scheme that satisfies this property trivially
broken.

Building an encryption scheme from a pair encoding scheme seems to require at least that the
pair encoding not be trivially broken, but there is no general result that shows some type of security
for a scheme that only provides such a minimal guarantee. In Section 4, we give the first result of
this kind: Any pair encoding scheme that is not trivially broken satisfies our symbolic property.

This result has several interesting broad implications. Suppose we have an encoding Π that
we do not know to be secure. We apply Gen-Trans on it to get an encryption scheme ES. For this
scheme to not be completely broken, there should not be a way to trivially combine some ciphertext
and key to recover the message when the predicate is false. Now an interesting fact about our
generic transformation Gen-Trans is that it preserves the structure of pair encodings, so that if
there is way to combine the polynomials to recover the blinding factor, then the ciphertext and
key coming out of Gen-Trans can be combined to recover the message. Therefore, if ES is not
completely broken, Π is not broken either. This further implies that Π satisfies Sym-Prop and ES is
fully secure under q-ratio. Thus we arrive at a very interesting conclusion: Either ES is broken in an
obvious way or it is fully secure under q-ratio. Hence, Sym-Prop seems to be inherently linked to
the fundamental security of encryption schemes, and is not just an artifact of our proof strategy.

We can take this line of argument even further. Suppose there is a generic transformation that
preserves the structure of pair encodings in the sense described above. And suppose that when an
encoding scheme satisfying a certain property X is given as input, it generates an encryption scheme
that is not obviously broken, for example a selectively secure scheme. Then every encoding that
satisfies X will also satisfy our symbolic property, and hence will lead to a fully secure encryption
scheme through Gen-Trans! In this paper, we do not formalize the exact requirements a generic
transformation should satisfy for such a general result to hold, leaving it as an interesting exercise
for future work.

We conclude with an alternate way of proving symbolic security in case finding a mapping from
an encoding’s variables to matrices/vectors seems difficult: show that for all x and y for which the
predicate is false, the blinding factor cannot be recovered from the encoding’s polynomials.
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New generic conversions. Thanks to the simplicity of our new symbolic property, we are able to
show several useful transformations of pair encodings that preserve security. Specifically,

1. Dual conversion. Any secure pair encoding for a predicate can be transformed into a secure
encoding scheme for the dual predicate (where the role of key and ciphertext are switched).

2. Compact ciphertexts. Any secure pair encoding can be converted into one that has a con-
stant number of variables and polynomials in the ciphertext encoding. Thus, after applying
Gen-Trans to the latter encoding, one gets encryption schemes with constant-size ciphertexts.

3. Compact keys. Analogous to above, any secure pair encoding can be converted into one
that has a constant number of variables and polynomials in the key encoding, leading to
encryption schemes with constant-size keys. 5

This demonstrates the power and versatility of the new symbolic property. In contrast, only the
first type of transformation is known for the security properties of Attrapadung [Att14a, AY15], and
none is known for Wee [Wee14] or Chen et al. [CGW15].

More new schemes. Apart from the new scheme for unbounded attribute-reuse and showing
that the constant-size ciphertext CP-ABE of [AC16] is fully secure, our generic conversions for pair
encodings help us arrive at schemes that were not known before:

• As mentioned before, we show that the regular language pair encoding from [Att14a] satisfies
our symbolic property. Here keys are associated with regular languages, expressed as deter-
ministic finite automata (DFA), and ciphertexts are associated with strings of any length from
an alphabet set. One can first apply the dual conversion transformation to get an encoding
scheme where ciphertexts and keys are associated with DFAs and strings, respectively. Then
applying our compact ciphertext transformation to this encoding, and using the resulting pair
encoding in Gen-Trans, one gets an encryption scheme for regular languages with constant
sized ciphertexts (but with an upper bound on the size of DFAs).

• Similarly, applying our compact ciphertext/key transformation to Attrapadung’s pair encod-
ings for doubly spatial encryption (DSE) yields new encoding schemes, that then lead to
encryption schemes with constant size ciphertext and keys, respectively. The only previous
work on short ciphertext DSE [AHY15] relied on a more complex series of transformations in
which one type of predicate family (e.g. CP-ABE) is embedded inside another (e.g. DSE), and
resulted in more expensive encodings.

1.2 Overview of Symbolic Security

This section provides a high-level informal treatment of pair encodings and the symbolic property
with the goal of building some intuition about these concepts. Please refer to Section 3 for a formal
presentation.

Pair encodings. The pair encoding framework focuses on the exponent space of an encryption
scheme. Suppose there is a predicate P that takes two inputs x and y . We want to encode x into a
ciphertext and y into a key. An encryption scheme for P generally has terms like g b1 , g b2 , . . . and a
special one of the form e(g , g )α in the public parameters (b1, b2, . . . and α are chosen randomly).

5This transformation and the one above requires some bound on the number of variables and polynomials in the
respective encoding.
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α plays the role of the master secret key. To encrypt a message m along with attribute x, some
random numbers s0, s1, s2, . . . are chosen and new terms are created by raising g , or some common
term like g b j , to some si , and then taking a linear combination of these terms, where the terms and
combination used depend on x. So, if we look at the exponent of any group element output by the
encryption algorithm, it is usually a polynomial of the form s1 +λ1s2b3 + . . . where λ1 is a constant
that depends on x. Finally, m is hidden inside the ciphertext by blinding it with a re-randomization
of e(g , g )α, say e(g , g )αs0 .

Similarly, the exponents of group elements in any key are of the form r1 +µr2b1 + . . ., where
r1,r2, . . . is fresh randomness chosen for this key. We could also have expressions that contain
α because key generation involves the master secret key. Thus there are three different types of
variables involved in a pair encoding: the common variables b1,b2, . . ., the ciphertext encoding
variables s0, s1, s2, . . ., and the key encoding variables α,r1,r2, . . ..

Overall, it can be seen that if we focus on the exponent space of an encryption scheme, we
need to deal with polynomials of a special form only. If P (x, y) = 1, then it should be possible to
combine the ciphertext and key polynomials so thatαs0 can be recovered, and then used to unblind
the message. The pair encoding framework just abstracts out such similarities between predicate
encryption schemes in a formal way.

Security properties and transformation. Many security properties have been proposed in the
literature for pair encodings, and a more restricted structure called predicate encodings [Wee14,
Att14a, CGW15, AC16]. The main contribution of these papers is to give a generic transformation
from any pair encoding that satisfies their respective property into a fully secure predicate encryp-
tion scheme in composite or prime order groups (or a higher level abstraction called dual-system
groups [CW14a]). Proving that a pair encoding scheme satisfies a certain property is significantly
easier, especially if the property is information-theoretic, than directly proving security of an encryp-
tion scheme. This is not surprising because there are no bi-linear maps, hardness assumptions, or
sophisticated dual-encryption techniques involved in this process. Furthermore, verifying security
of any number of encryption schemes designed through the pair encoding framework reduces to
checking that the respective pair encodings are secure—a much easier task—and that the generic
transformation is correct—a one-time effort. Needless to say, this saves a huge amount of work.

A concrete example: Unbounded attribute re-use. Suppose we want to design an ABE scheme
that puts no restriction on the number of times an attribute can be used in an access policy. We
know that a linear secret sharing scheme is the standard way to present a policy. It consists of a
matrix A of size m ×k and a mapping π from its rows to the universe of attributes. A value γ can be
secret-shared through A by creating m shares, one for each row. If a user has a set of attributes S,
then she gets shares for all the rows that map to some attribute in S through π. If S satisfies (A,π),
then those shares can be combined to recover γ; otherwise, γ is information-theoretically hidden.
In nearly all fully secure ABE schemes, the mapping π is assumed to be injective or one-to-one
(this is called the one-use restriction), but we want to build an ABE scheme that supports any
π whatsoever. In particular, the size of public parameters should not affect how many times an
attribute can be used in a policy. (Any such scheme will likely rely on a q-type assumption [LW12].6)

6In a recent work, Kowalczyk and Lewko [KL15] proposed a new technique to boost the entropy of a small set of
(unpublished) semi-functional parameters. Using this idea, they propose a new KP-ABE scheme where the number of
group elements in the public parameters grows only logarithmically in the bound on the number of attribute-uses in a
policy, but note that the number of times an attribute can be reused is still affected. Furthermore, the size of ciphertexts
scales with the maximum number of times an attribute can be re-used.
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For a row i of A, suppose ρ(i ) denotes which occurrence of π(i ) this is. (If an attribute y
is attached to the second and fifth rows, then ρ(2) = 1 and ρ(5) = 2.) We now present a new
pair encoding Πre-use for unbounded re-use by adapting the one-use scheme of [Att14a]. (Some
minor elements of the encoding have been suppressed for simplicity; see Appendix B.1 for a full
description.)

EncCt((A,π)) → s0, s1, . . . , sd , {ai (s0b′, ŝ2, . . . , ŝk )T+ sρ(i )bπ(i )}i=1,...,m

EncKey(S) → r, α+ r b′, {r by }y∈S

Here ai is the i th row of A and d is the maximum number of times any attribute appears in it. A
nice feature of Πre-use is that if no attribute is used more than once (i.e. d = 1), then the scheme
collapses to that of [Att14a], and one can show that α is information-theoretically hidden, or that
Πre-use is perfectly secure.

If attributes are used multiple times, so that the ciphertext encoding has several variables
s1, . . . , sd , then α might be revealed to an unbounded adversary. Thus we need to find out ifΠre-use

satisfies a different type of property for which a generic transformation is known. One possibility is
the computational double selective master-key hiding property due to Attrapadung, but then the
advantages of an abstraction like pair encoding are more or less lost: we will have to work at the
level of bi-linear maps instead of simple polynomials, and find a suitable q-type assumption(s)
under which the property can be shown to hold.

The symbolic property. Our new symbolic property (Sym-Prop) can be very useful in such cases.
It provides a new, clean way of reasoning about security of pair encodings: instead of arguing that
one distribution is indistinguishable from another, whether information-theoretically or computa-
tionally, one needs to discover a mapping from the variables involved in an encoding to matrices
and vectors, such that when the latter is substituted for the former in any ciphertext/key encoding
polynomial, the zero vector is obtained. Indeed, one needs to invest some effort in order to find the
right matrices and vectors that will make the polynomials go to zero, but once such a discovery is
made, verifying the property is just a matter of doing some simple linear algebra.

Recall that a pair encoding scheme for a predicate P that takes two inputs x and y , consists
of three different types of variables: common variables b1,b2, . . ., ciphertext encoding variables
s0, s1, s2, . . ., and key encoding variables α,r1,r2, . . .. Sym-Prop is defined w.r.t. three (determinis-
tic) algorithms, EncB, EncS and EncR. Among them, EncB generates matrices for the common
variables; EncS and EncR generate vectors for ciphertext encoding and key encoding variables,
respectively. The inputs to these three algorithms depend on what type of symbolic property we
want to prove. For the selective version, the three algorithms get x as input, while EncR also gets y ;
and for the co-selective version, they all get y as input, while EncS also gets x. This is in line with
the selective and co-selective security notions for encryption schemes. In the former, all key queries
come after the challenge ciphertext, while in the latter, they come beforehand. A pair encoding
scheme satisfies Sym-Prop if it satisfies both the selective and co-selective variants.

The trivial case where all the matrices and vectors output by the three algorithms are simply
zero is ruled out because we also require that the vectors corresponding to two special variables, s0

in the encoding of x and α in the encoding of y , are not orthogonal.

Proving the symbolic property forΠre-use. To proveSym-Prop for the multi-use encoding scheme
Πre-use defined above, we need to define the outputs of the three algorithms EncB, EncS and EncR
(in other words, a mapping from the variables inΠre-use to vectors and matrices) in both the selective
and co-selective settings. Towards this, we make use of a simple combinatorial fact that is often
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used in arguing security of ABE schemes. If a set of attributes S does not satisfy an access policy
(A,π), then there exists a vector w = (w1, . . . , wk ) s.t. w1 = 1 and ai is orthogonal to w for all i such
that π(i ) ∈ S. Note that w can be computed only by an algorithm that knows both (A,π) and S.

We also need some simple notation to describe the mapping. Let Ei , j be an k ×d matrix with 1
at the (i , j )-th position and 0 everywhere else. Also, let e j be the j th d-length unit vector and ei be
the i th k-length unit vector. Here is the mapping for the selective version:

by : −
d∑
`=1

k∑
j=1

aσ(y,`), j E j ,`, b′ : E1,1,

s0 : e1, s` : e`, ŝ j : e j , α : e1, r : −
k∑

j=1
w j e j ,

where σ(y,`) is the index of the row in A which has the `-th occurrence of y . Further, if Ei , j , e j and
ei carry the same meaning as above, except that their dimensions are 1×T , T and 1 respectively7,
then the mapping for the co-selective version is:

by : 0 for y ∈ S and −E1,y otherwise, b′ : E1,1,

s0 : w1e1, s` :
∑

i :ρ(i )=`
ai wTeπ(i ), ŝ j : w j e1, α : e1, r : −e1.

We encourage the reader to verify that the polynomials in Πre-use (except the simples ones
s0, s1, . . . , sd ,r ) go to zero when the two mappings described above are applied. (Vectors output by
EncS (resp. EncR) are multiplied to the right (resp. left) of matrices output by EncB.) All it takes
are simple observations like Ei , j · eTj ′ gives a non-zero vector if and only if j = j ′, and that w is
orthogonal to every row in A that maps to an attribute in S. (See Appendix B.1 for a formal proof.)
One can consider the two mappings to be a short certificate of the security of Πre-use.

How to find a mapping? Indeed, as pointed out earlier, finding an appropriate mapping is not a
trivial task. Nevertheless, Sym-Prop is still the right property for arguing security of pair encodings
for the following reasons:

• If finding the right mapping is difficult for Sym-Prop, then finding a proof for the computa-
tional property of Attrapadung [Att14a] is several times more difficult. A typical proof of the
symbolic property is 1-2 pages while computational property proofs could go up to 10 pages
(see the encoding for regular languages, for instance). A central issue with computational
properties is finding an appropriate q-type assumption under which it holds, which may be
very difficult for a complex predicate. Our approach can be seen as extracting out the real
challenging part of designing Attrapadung’s computational proofs.

• Verification of Sym-Prop involves doing simple linear algebra, arguably a much simpler task
than checking indistinguishability of distributions, and certainly a much simpler task than
verifying a long computational reduction.

• The certificate for the symbolic security of Πre-use bears many similarities with those of other
encodings that we will describe later in the paper. Thus proving Sym-Prop for a new encoding
scheme is not as difficult as it might seem at first. Furthermore, modifying a short proof of
the symbolic property is much easier than a long proof of a computational property.

• Recall our result that if an encoding scheme is not trivially broken then it satisfies Sym-Prop.
This gives an alternate way of showing that Sym-Prop holds, by proving that the scheme is
not broken.

7It is assumed that the attributes are in the set {1, . . . ,T }.
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1.3 Outline of The Paper

In Section 2 we define relevant notation and review the standard definition of predicate encryption.
In Section 3 we define pair encoding schemes and our new symbolic property formally. Section
5 first reviews the notion of dual system groups, then shows how to build encryption schemes
from any pair encoding by using them. This conversion is a two-step process: first we augment an
encoding so that it satisfies a few extra properties (Section 5.1); next we apply the transformation
from Agrawal and Chase [AC16] (Section 5.4). A proof of security of the resulting encryption scheme
is provided in Section 7.

Section 6 gives generic transformations that can be used to reduce the number of variables
and/or polynomials in an encoding, which can then be used to get encryption schemes with
constant-size ciphertexts/keys. We also provide a transformation from any encoding for a predicate
to an encoding for the dual predicate.

In Appendix B, we show how symbolic property can substantially simplifying the analysis of
encoding schemes for complex predicates by giving several examples. Finally, we discuss the new
schemes that we get through our various transformations in Appendix E.

2 Preliminaries

We use λ to denote the security parameter. A negligible function is denoted by negl. We use bold
letters to denote matrices and vectors, with the former in uppercase and the latter in lowercase. The
operator · applied to two vectors computes their entry-wise product and 〈,〉 gives the inner-product.
For a vector u, we use ui to denote its i th element, and for a matrix M, Mi , j denotes the element
in the i th row and j th column. When we write g u for a vector u = (u1, . . . ,un), we mean the vector
(g u1 , . . . , g un ). g M for a matrix M should be interpreted in a similar way. The default interpretation
of a vector should be as a row vector.

For two matrices U and V of dimension n ×m1 and n ×m2 respectively, let U◦V denote the
column-wise join of U and V of dimension n × (m1 +m2), i.e., U◦V has the matrix U as the first m1

columns and V as the remaining m2 columns. We also refer to this operation as appending V to U.
(The notation easily extends to vectors because we represent them as row matrices.) If we want to
join matrices row-wise instead, we could take their transpose, apply a column-wise join, and then
take the transpose of the resultant matrix.

We use x ←R S, for a set S, to denote that x has been drawn uniformly at random from it. The
set of integers a, a +1, . . . ,b is compactly represented as [a,b]. If a = 1, then we just use [b], and if
a = 0, then [b]+.

Let ZN denote the set of integers {0,1,2, . . . , N }. Let GN (m) denote the set of all vectors of length
m with every element in ZN . Similarly, let GN (m1,m2) denote the set of all matrices of size m1 ×m2

that have all the elements in ZN .

Indistinguishability. A function f (·) is negligible if f (n) < n−c for every constant c > 0 and suf-
ficiently large n. The statistical distance between two discrete probability distributions X and
Y , denoted by ∆(X ,Y ), is the maximum value of |Pr[A(X ) = 1]−Pr[A(Y ) = 1] over all functions
A. Two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are perfectly indistinguishable, denoted by
{Xλ}λ∈N ≡ {Yλ}λ∈N, if ∆(Xλ,Yλ) is equal to 0 for any λ. They are statistically indistinguishable if the
statistical distance is negligible as a function of λ. We use ∼= to denote statistical indistinguishability.
Finally, if for every (non-uniform) probabilistic polynomial time (PPT) algorithm A, the distin-
guishing advantage |Pr[A(1λ, Xλ) = 1]−Pr[A(1λ,Yλ) = 1] is negligible in λ, then we say that Xλ, Yλ
are computationally indistinguishable, and denote it by Xλ ≈ Yλ for simplicity.
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Bilinear Pairings: We use the standard definition of pairing friendly groups from literature. A
mapping e from a pair of groups (G,H) to a target group GT is bilinear if there is linearity in both the
first and second inputs, i.e. e(g a ,hb) = e(g ,h)ab for every g ∈G,h ∈H and a,b ∈Z. We require e to
be non-degenerate and efficiently computable. The identity element of a group G is denoted by 1G .

LetGroupGenbe an algorithm that on input the security parameterλ outputs (N ,G,H,GT , g ,h,e)
where N =Θ(λ); G, H and GT are (multiplicative) cyclic groups of order N ; g , h are generators of G,
H, respectively; and e :G×H→GT is a bilinear map. In this paper our focus will be on prime-order
groups because they perform much better in practice.

Predicate family. We borrow the notation of predicate family from Attrapadung [Att14a]. It is given
by P = {Pκ}κ∈Nc for some constant c, where Pκ maps an x ∈Xκ and a y ∈Yκ to either 0 or 1. The
first entry of κ is a number N ∈N that is supposed to specify the size of a domain; rest of the entries
are collectively referred to as par, i.e. κ= (N ,par).

2.1 Predicate Encryption

An encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space M= {Mλ}λ∈N con-
sists of a tuple of four PPT algorithms (Setup,Encrypt,KeyGen, Decrypt) that satisfy a correctness
condition. These algorithms behave as follows.

• Setup(1λ,par). On input 1λ and par, Setup outputs a master public key MPK and a master
secret key MSK. The output of Setup is assumed to also define a natural number N , and κ is
set to (N ,par).

• Encrypt(MPK, x,m). On input MPK, x ∈Xκ and m ∈Mλ, Encrypt outputs a ciphertext CT.

• KeyGen(MSK, y). On input MSK and y ∈Yκ, KeyGen outputs a secret key SK.

• Decrypt(MPK, SK, CT). On input MPK, a secret key SK and a ciphertext CT, Decrypt outputs a
message m′ ∈Mλ or ⊥.

Correctness: For all par, m ∈Mλ, x ∈Xκ and y ∈Yκ such that Pκ(x, y) = 1,

Pr[(MPK, MSK) ← Setup(1λ);

Decrypt(MPK,KeyGen(MSK, y),Encrypt(MPK, x)) 6= Pκ(x, y)] ≤ negl(λ),

where the probability is over the random coin tosses of Setup, Encrypt and KeyGen (Decrypt can
be assumed to be deterministic without loss of generality).

Security: Consider the following game IND-CPAb
A (λ,par) between a challenger Chal and an adver-

sary A for b ∈ {0,1} when both are given inputs 1λ and par:

1. Setup Phase: Chal runs Setup(1λ,par) to obtain MPK and MSK. It gives MPK to A.

2. Query Phase: A requests a key by sending y ∈Yκ to Chal, and obtains SK ←KeyGen(MSK, y)
in response. This step can be repeated any number of times.

3. Challenge Phase: A sends two messages m0,m1 ∈ Mλ and an x? ∈ Xκ to Chal, and gets
CT ←Encrypt(MPK, x,mb) as the challenge ciphertext.
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4. Query Phase: This is identical to step 2.

5. Output. A outputs a bit.

The output of the experiment is the bit that A outputs at the end. It is required that for all y
queried in steps 2 and 4, Pκ(x?, y) = 0.

Definition 2.1. An encryption scheme is adaptively or fully secure if for all par and PPT adversary
A,

|Pr[IND-CPA0
A(λ,par) = 1]−Pr[IND-CPA1

A(λ,par) = 1]| ≤ negl(λ), (1)

where the probabilities are taken over the coin tosses of A and Chal. It is semi-adaptively secure
if (1) is satisfied with respect to a modified version of IND-CPA where the second step is omitted
[CW14b, Wat15]. Further, it is co-selectively secure if (1) holds when the fourth step is removed from
the IND-CPA game [AL10].

3 Pair Encoding Schemes

The notion of pair encoding schemes (PES) was introduced by Attrapadung [Att14a], and later
refined independently by Agrawal and Chase [AC16] and Attrapadung [Att16] himself in an identical
way. As observed in the latter works, all pair encodings proposed originally in [Att14a] satisfy the
additional constraints in the refined versions.

We present here a more structured definition of pair encoding schemes so that the reader can
easily see the different components involved. In Appendix A we describe the original formulation
as well, and argue why our definition does not lose any generality.

3.1 Definition

A PES for a predicate family Pκ :Xκ×Yκ→ {0,1} indexed by κ= (N ,par), where par specifies some
parameters, is given by four deterministic polynomial-time algorithms as described below.

• Param(par) → n. When given par as input, Param outputs n ∈N that specifies the number of
common variables, which we denote by b := (b1, . . . ,bn).

• EncCt(x, N ) → (w1, w2,c(s, ŝ,b)). On input N ∈ N and x ∈ X(N ,par), EncCt outputs a vector
of polynomials c = (c1, . . . ,cw3 ) in non-lone variables s = (s0, s1, . . . , sw1 ) and lone variables
ŝ = (ŝ1, . . . , ŝw2 ). (The variables ŝ1, . . . , ŝw2 never appear in the form ŝz b j , and are hence called
lone.) For ` ∈ [w3], where η`,z ,η`,i , j ∈ZN , the `th polynomial is given by∑

z∈[w2]
η`,z ŝz + ∑

i∈[w1]+,
j∈[n]

η`,i , j si b j .

• EncKey(y, N ) → (m1,m2,k(r, r̂,b)). On input N ∈N and y ∈Y(N ,par), EncKey outputs a vector
of polynomials k = (k1, . . . ,km3 ) in non-lone variables r = (r1, . . . ,rm1 ) and lone variables
r̂ = (α, r̂1, . . . , r̂m2 ). For t ∈ [m3], where φt ,φt ,z ′ ,φt ,i ′, j ∈ZN the t th polynomial is given by

φtα + ∑
z ′∈[m2]

φt ,z ′ r̂z ′ + ∑
i ′∈[m1],

j∈[n]

φt ,i ′, j ri ′b j .
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• Pair(x, y, N ) → (E,E). On input N , and both x and y , Pair outputs two matrices E and E of
size (w1 +1)×m3 and w3 ×m1, respectively.

Observe that the output of EncKey is analogous to that of EncCt, except in how the special
variables α and s0 are treated in the respective case. While α is lone variable, i.e. it never appears in
conjunction with a common variable, s0 is not. See Appendix B for several concrete examples of
pair encodings and the different types of variables involved.

Correctness. A PES is correct if for every κ= (N ,par), x ∈Xκ and y ∈Yκ such that Pκ(x, y) = 1, the
following holds symbolically

sEkT+cErT = ∑
i∈[w1]+,
t∈[m3]

si Ei ,t kt + ∑
`∈[w3],
i ′∈[m1]

c`E`,i ′ri ′ = αs0.

The matrix E takes a linear combination of the products of non-lone variables output by EncCt
and polynomials output by EncKey. (Its rows are numbered from 0 to w1.) Analogously, E takes a
linear combination of the products of polynomials output by EncCt and non-lone variables output
by EncKey. Below we use ct-enc and key-enc as a shorthand for polynomials and variables output
by EncCt (ciphertext-encoding) and EncKey (key-encoding), respectively.

3.2 Symbolic Property

We introduce a new symbolic property for pair encoding schemes that significantly simplifies their
analysis for even complex predicates. We get the best of two worlds: not only is our symbolic
property very clean to describe (like information-theoretic properties), it can also capture all the
predicates that have been previously captured by any computational property. Further, the property
does not involve dealing with any kind of distribution.

We now formally define the property. We use a : b below to denote that a variable a is substituted
by a matrix/vector b.

Definition 3.1 (Symbolic property). A pair encoding scheme Γ= (Param, EncCt,EncKey,Pair) for
a predicate family Pκ : Xκ×Yκ → {0,1} satisfies (d1,d2)-selective symbolic property8 for positive
integers d1 and d2 if there exist three deterministic polynomial-time algorithms EncB, EncS, EncR
such that for all κ= (N ,par), x ∈Xκ, y ∈Yκ with Pκ(x, y) = 0,

• EncB(x) → B1, . . . ,Bn ∈GN (d1,d2);

• EncS(x) → s0, . . . ,sw1 ∈GN (d2), ŝ1, . . . , ŝw2 ∈GN (d1);

• EncR(x, y) → r1, . . . ,rm1 ∈GN (d1), a, r̂1, . . . , r̂m2 ∈GN (d2);

such that 〈s0,a〉 6= 0, and if we substitute

ŝz : ŝTz si b j : B j sTi α : a r̂z ′ : r̂z ′ ri ′b j : ri ′B j

for z ∈ [w2], i ∈ [w1]+, j ∈ [n], z ′ ∈ [m2] and i ′ ∈ [m1] in all the polynomials output by EncCt and
EncKey on input x and y, respectively, they evaluate to 0.

Similarly we say a pair encoding scheme satisfies (d1,d2)-co-selective symbolic security property
if there exist EncB,EncR,EncS that satisfy the above properties but where EncB and EncR depend
only on y, and EncS depends on both x and y. Finally, a scheme satisfies (d1,d2)-symbolic property
if it satisfies both (d ′

1,d ′
2)-selective and (d ′′

1 ,d ′′
2 )-co-selective properties for some d ′

1,d ′′
1 ≤ d1 and

d ′
2,d ′′

2 ≤ d2.

8d1, d2 could depend on κ but we leave this implicit for simplicity of presentation.
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We use Sym-Prop as a shorthand for symbolic property. It is easy to see that if a scheme satisfies
(d1,d2)-selective Sym-Prop then it also satisfies (d ′

1,d ′
2) for any d ′

1 ≥ d1 and d ′
2 ≥ d2. Just append

d ′
1 −d1 rows of zeroes and d ′

2 −d2 columns of zeroes to the B j matrices, d ′
2 −d2 zeroes to the si

vectors, d ′
1 −d1 zeroes to the ŝz vectors, d ′

1 −d1 zeroes to the ri ′ vectors, and d ′
2 −d2 zeroes to

the r̂z ′ vectors. A similar claim can also be made about co-selective Sym-Prop. Thus if a PES
satisfies (d1,d2)-Sym-Prop then it also satisfies selective and co-selective properties with the same
parameters, as well as (d ′

1,d ′
2)-Sym-Prop for any d ′

1 ≥ d1 and d ′
2 ≥ d2.

Lastly, if a PES Γ satisfies Sym-Prop for a predicate family Pκ, we say that Γ is symbolically
secure for Pκ, or simply that Γ is symbolically secure if the predicate family is clear from context.

4 Obtaining Symbolic Security Generically

In this section, we prove an interesting and useful result. If a pair encoding scheme in not trivially
broken in the sense that for any x, y that do not satisfy the predicate, there does not exist a way to
directly recover αs0 from the encoding polynomials (note that for correctness we require exactly
this, but when the predicate is true), then the scheme satisfies the symbolic property.

Definition 4.1 (Trivially broken scheme). A pair encoding scheme Γ= (Param,EncCt,EncKey,Pair)
for a predicate family Pκ : Xκ×Yκ → {0,1} is trivially broken if for a κ = (N ,par), x ∈ Xκ, y ∈ Yκ
that satisfy Pκ(x, y) = 0, there exists a matrix E such that (s,c)E(r,k)T =αs0, where c is the vector of
polynomials output by EncCt(x, N ) in variables s = (s0, . . .), ŝ, b, and k is the vector of polynomials
output by EncKey(y, N ) in variables r, r̂ = (α, . . .), b.

Theorem 4.2. If a pair encoding scheme is not trivially broken then it satisfies the symbolic property.

Proof. If a scheme Γ is not trivially broken, then for all x and y for which the predicate evaluates
to false, the ct-enc non-lone variables s = (s0, . . . , sw1 ) and polynomials c = (c1, . . . ,cw3 ) cannot be
paired with the key-enc non-lone variables r = (r1, . . . ,rm1 ) and polynomials k = (k1, . . . ,km3 ) to re-
coverαs0. We know that the former have monomials of the form s0, . . . , sw1 , ŝ1, . . . , ŝw2 , s0b1, . . . , s0bn ,
. . ., sw1 b1, . . . , sw1 bn , so a total of w2 + (n +1)(w1 +1). Similarly, the total number of distinct mono-
mials in the latter is m2+1+ (n+1)m1 (because α is a lone variable as opposed to s0). Let us denote
the two quantities above by varc and vark respectively.

Define a matrix ∆ over ZN with (w1 +w3 +1)(m1 +m3) rows and varcvark columns. A row is
associated with the product of a ct-enc non-lone variable or polynomial with a key-enc non-lone
variable or polynomial. Each column represents a unique monomial that can be obtained by
multiplying a ct-enc monomial with a key-enc monomial, with the first column representing αs0.
The (i , j )th entry in this matrix is the coefficient of the monomial associated with the j th column in
the product polynomial attached with the i th row. Since Γ is not broken, we know that the rows in
∆ cannot be linearly combined to get the vector (1,0, . . . ,0).

Note that it is enough to work with any subset of rows because they cannot be combined to get
(1,0, . . . ,0) either. Thus, for the rest of the proof, we consider only those rows of ∆ that multiply a
ct-enc non-lone variable with a key-enc polynomial and vice versa (and only those columns which
have monomials that can be obtained from multiplying such polynomials). Let n1 denote the
number of rows now.

Since rows in ∆ cannot be linearly combined to get (1,0, . . . ,0), the first column of ∆, say col, can
be written as a linear combination of the other columns. Because if not, one can show that there
exists a vector v = (v1, . . . , vn1 ) that is orthogonal to all the columns except the first one9. We can
then combine the rows of ∆ using v1/〈col,v〉 , . . . , vn1 /〈col,v〉 to get (1,0, . . . ,0)—a contradiction.

9The claim is similar to one made in the case of linear secret sharing schemes where we say that if a set of attributes
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Let Q denote the set of monomials associated with the columns of ∆. These columns can be
linearly combined to get the zero vector, without zeroing out col, which corresponds to αs0. Let λq

be the factor that multiplies the column associated with the monomial q ∈Q in one such linear
combination. Note that λαs0 6= 0.

Our first goal is to show that Γ satisfies the selective symbolic property. So we need to define
matrices and vectors for various variables in the encoding such that all the polynomials evaluate
to the zero vector. Towards this, pick any non-lone key-enc variable ri ′ for i ′ ∈ [m1] and consider
the sub-matrix ∆′ of ∆ that consists of rows which are attached with the product of ri ′ with a ct-enc
polynomial and columns which are associated with the product of ri ′ and a ct-enc monomial. (Note
that it does not matter which non-lone key-enc variable we consider; the sub-matrix obtained in
each case will be exactly the same.) Recall that a ct-enc polynomial c` is given by∑

z∈[w2]
η`,z ŝz + ∑

i∈[w1]+, j∈[n]

η`,i , j si b j

for ` ∈ [w3]. So more formally, rows in ∆′ are associated with (c`,ri ′), and columns are associated
with monomials ŝz ri ′ , si b j ri ′ , where the range of i , j , z is as described above. For simplicity in the
following, assume that the columns are ordered as ŝ1, . . . , ŝw2 , s0b1, . . . , s0,bn , . . ., sw1 b1, . . . , sw1 bn and
the rows are ordered as (c1,ri ′), . . . , (cw3 ,ri ′), so that the l th row of∆′ is (η`,1, . . . ,η`,w2 , η`,0,1, . . . ,η`,0,n ,
. . ., η`,w1,1, . . . ,η`,w1,n).

Let T be the kernel of ∆′, i.e. the set of all vectors v such that ∆′v = 0. Let v1,v2, . . . ,vd1 be a basis
of T and write vp as (vp,1, . . . , vp,w2 , vp,0,1, . . . , vp,0,n , . . ., vp,w1,1, . . . , vp,w1,n) for p ∈ [d1]. (We discuss
the special case of ∆′’s kernel being empty later on.) Therefore, we have that for any ` ∈ [w3] and
p ∈ [d1], ∑

z
η`,z vp,z + ∑

i , j
η`,i , j vp,i , j (2)

is equal to 0. Let uz = (v1,z , . . . , vd1,z ) and ui , j = (v1,i , j , . . . , vd1,i , j ) for z ∈ [w2], i ∈ [w1]+, j ∈ [n].
We now define matrices B1, . . . ,Bn and vectors s0, . . . ,sw1 , ŝ1, . . . , ŝw2 as follows. B j has d1 rows

and d2 = w1 +1 columns with the (i +1)th column being uT
i , j for i = [w1]+. Vector si is set to ei+1

for i = [w1]+, where ei denotes the i th unit vector of size d2, and ŝz is set to uz for z ∈ [w2]. These
matrices and vectors depend only on v1,v2, . . . ,vd1 , which in turn depends on∆′ only. The entries in
∆′ are the coefficients of the monomials obtained by multiplying ri ′ with various ct-enc polynomials.
Hence, they only depend on x and, in particular, not on y . Further, it is easy to observe that all the
operations involved in computing B j , si , ŝz are efficient. Thus, one can define two deterministic
polynomial time algorithms EncB and EncS that on input x only, output B1, . . . ,Bn and s0, . . . ,sw1 ,
ŝ1, . . . , ŝw2 respectively.

We need to verify that if we substitute ŝz with ŝTz and si b j with B j sTi in any ct-enc polynomial
c`, then we get an all zeroes vector. On performing such a substitution, we have∑

z
η`,z uT

z + ∑
i , j
η`,i , j (uT

0, j , . . . ,uT
w1, j )eTi+1 = ∑

z
η`,z uT

z + ∑
i , j
η`,i , j uT

i , j

The pth element in the column vector above is given by (2), which is equal to 0 for any p.
In the special case where ∆′’s kernel is empty, B1, . . . ,Bn are all set to d1 ×d2 matrices with zero

entries; ŝ1, . . . , ŝw2 are set to the zero vector of size d1; s1, . . . ,sw1 are set to the zero vector of size d2;
and s0 is set to (1,0, . . . ,0). It is easy to see that all ct-enc polynomials still evaluate to zero upon
substitution.

does not satisfy a policy, i.e. the associated set of rows cannot be linearly combined to get a certain vector v, then one can
find a vector orthogonal to all those rows but not to v. See, for instance, [Bei11, Claim 2] for a formal proof.
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We also need to make sure that with the appropriate choice of vectors for the key-enc variables,
all the key-enc polynomials also evaluate to the zero vector. Recall that such polynomials are given
by

kt = φtα + ∑
z ′∈[m2]

φt ,z ′ r̂z ′ + ∑
i ′∈[m1],

j∈[n]

φt ,i ′, j ri ′b j

for t ∈ [m3]. When they are multiplied with a non-lone ct-enc variable si , we get the monomials
αsi , si r̂z ′ , si ri ′b j for i ∈ [w1]+ and i ′, j , z ′ as above.

Recall that the columns of ∆ can be linearly combined using {λq }q∈Q to get the zero vector.
Going back to the product of ri ′ with c`, we can say that∑

z
η`,zλŝz ri ′ + ∑

i , j
η`,i , jλsi b j ri ′ = 0

irrespective of what ` and i ′ are because only the entries in the columns associated with monomials
ŝz ri ′ , si b j ri ′ are non-zero. Hence, the vector wi ′ given by (λŝ1ri ′ , . . . ,λŝw2 ri ′ , λs0b1ri ′ , . . . ,λs0bn ri ′ , . . .,
λsw1 b1ri ′ , . . ., λsw1 bn ri ′ ) lies in the kernel of ∆′. (Recall that no matter what key-enc non-lone variable
is chosen, one always gets the same ∆′.) In other words, there exists a vector ri ′ of size d1 such that
[vT1 , . . . ,vTd1

]rTi ′ = wi ′ . Now the transpose of ri ′B j is given by
u0, j

...

uw1, j

rTi ′ =


v1,0, j . . . vd1,0, j

...
...

...

v1,w1, j . . . vd1,w1, j

rTi ′ =


λs0b j ri ′

...

λsw1 b j ri ′


for every j ∈ [n]. In the special case where ∆′’s kernel is empty, set ri ′ to be the zero vector of size d1.
The relation ri ′B j = (λs0b j ri ′ , . . . ,λsw1 b j ri ′ ) for all j still holds because wi ′ must be zero.

Define the remaining vectors as follows: a is set to be [λαs0 , . . . ,λαsw1
] and r̂z ′ to be [λs0 r̂z′ , . . . ,

λsw1 r̂z′ ] for z ′ ∈ [m2]. (Note that the first element of a is not zero.) When we substitute α with a, r̂z ′

with r̂z ′ and ri ′b j with ri ′B j in kt for t ∈ [m3], we get

φt [λαs0 , . . . ,λαsw1
] + ∑

z ′
φt ,z ′ [λs0 r̂z′ , . . . ,λsw1 r̂z′ ] + ∑

i ′, j
φt ,i ′, j [λs0b j ri ′ , . . . ,λsw1 b j ri ′ ].

The i th element of this sum is given by

φtλαsi + ∑
z ′
φt ,z ′λsi r̂z′ + ∑

i ′, j
φt ,i ′, jλsi ri ′b j

for i ∈ [w1]+. It is easy to see that the above quantity is zero when we consider the row in∆ attached
with the product si kt .

One can define a deterministic polynomial time algorithm EncR that on input x and y , com-
putes how the columns of ∆ can be combined to get the zero vector, and then uses this information
to define a, r̂z ′ , ri ′ as shown above.

The proof for the co-selective symbolic property is analogous to the proof above, so we skip the
details.

5 Predicate Encryption from Pair Encodings

In this section, we describe how any pair encoding scheme for a predicate can be transformed
into an encryption scheme for the same predicate in dual system groups (DSG), introduced by
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Chen and Wee [CW14a], and later used and improved by several works [CGW15, AC16, Att16].
This transformation is a two-step process: first we augment an encoding so that it satisfies a few
extra properties (Section 5.1)10; next we apply the transformation from Agrawal and Chase [AC16]
(Section 5.4).

5.1 Augmenting Pair Encodings

We need the matrices and vectors involved in the symbolic property to have some extra features,
so that we can prove the security of the derived predicate encryption scheme from our q-ratio
assumption. Towards this, we show how any pair encoding scheme that satisfies Sym-Prop can be
transformed into another scheme that satisfies a more constrained version of this property, with
only a few additional variables and polynomials.

We note that, although they are presented monolithically, many of the pair encodings intro-
duced by Attrapadung [Att14a] can be viewed as the result of applying a very similar augmentation
to simpler underlying encodings. Thus, our results also help explain the structure of those previous
encodings.

Recall that the algorithms of symbolic security output a for α, B1, . . . ,Bn for common variables,
s0, . . . ,sw1 for non-lone ct-enc variables, and r1, . . . ,rm1 for key-enc non-lone variables. Let b j denote
the first column of B j and si ,1 the first element of si .

Definition 5.1 (Enhanced symbolic property). A pair encoding scheme satisfies (d1,d2)-Sym-Prop?

for a predicate Pκ if it satisfies selective and co-selective (d1,d2)-Sym-Prop for Pκ but under the
following constraints for both

1. a is set to (1,0, . . . ,0).

2. In every ct-enc polynomial, if si b j is replaced by

• sTi b j then we get a matrix with non-zero elements in the first row only;

• si ,1B j then we get a matrix with non-zero elements in the first column only.

(The lone variables are replaced by the zero vector.)

3. In every key-enc polynomial, if we replace ri ′b j with bT
j ri ′ , then we get a diagonal matrix. (The

lone variables, once again, are replaced by the zero vector.)

4. The set of vectors {s0, . . . ,sw1 } is linearly independent, and so is the set {r1, . . . ,rm1 }.

We convert any pair encoding that satisfies Sym-Prop into one that satisfies Sym-Prop? in
three steps. First we show that with only one additional key-enc non-lone variable, an additional
common variable, and an extra ct-enc polynomial, we can get an encoding scheme for which the
vector a corresponding to α can be set to (1,0, . . . ,0) (in proving that Sym-Prop holds). Next, with
two extra common variables, and an additional variable and a polynomial each in the ciphertext
and key encoding, one can satisfy the second and third properties from above. Finally, a simple
observation can be used to satisfy the fourth property as well.

Theorem 5.2 (Augmentation). Suppose a PES for a predicate family Pκ :Xκ×Yκ→ {0,1} outputs n
on input par, (w1, w2,c) on input x ∈Xκ, (m1,m2,k) on input y ∈Yκ and satisfies (d1,d2)-Sym-Prop,
then there exists another PES for Pκ that outputs n +3 on input par, (w1 +1, w2,c) on input x and

10This step need not be applied if the properties are already satisfied.
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(m1+2,m2,k) on input y, where |c| = |c|+2 and |k| = |k|+1, and satisfies (max(d1,d2−1)+M1+1,d2+
W1 +2)-Sym-Prop?, where M1 and W1 are bounds on the number of key-enc and ct-enc non-lone
variables, respectively.11

Proof. Let Γ′ = (Param′,EncCt′,EncKey′,Pair′) be a PES that satisfies (d1,d2)-Sym-Prop w.r.t. the
triple of algorithms (EncB′,EncS′,EncR′). Without loss of generality, we can assume that d1 ≥ d2−1
(see the discussion that follows Definition 3.1).

First transformation. We build a new encoding scheme Γ as follows. Introduce a new common
variable b and a non-lone key-enc variable r . In every key-enc polynomial, α′ is replaced with
α′ + r b. A new polynomial, s′0b, is added to the ciphertext encoding. It is easy to see that the
correctness still holds: using the matrices output by Pair′ we get (α′+ r b)s′0 = α′s′0 + r bs′0, from
which the second term can be removed by multiplying s′0b by r .

To prove the co-selective property for the new scheme, we exploit the same property of Γ′. Let
V be a d2 dimensional square matrix such that a′V = (1,0, . . . ,0), where a′ is output by EncR(y) as
the vector for α′. The new algorithms we define, i.e. EncB, EncS and EncR, can all compute V since
they have access to y . EncR outputs the vectors that EncR′ does but with all the lone variables
multiplied by V on the right. EncB outputs the matrices produced by EncB′ but after multiplying
them with V on the right. It also outputs a zero matrix for the new common variable b. Finally, EncS
outputs the vectors that EncS′ does but with all the non-lone variables multiplied by the transpose
of V−1 on the right (so that when we take the transpose of the new vectors, V−1 is multiplied on the
left). It is easy to check now that all the polynomials still evaluate to zero. Also, the new vector for

α′ and s′0 are a′V and s′0(V−1)
T

, respectively. Since
〈

a′,s′0
〉 6= 0, so is the inner product of the new

vectors.
Turning to the selective property, let U be a d2 dimensional square matrix such that s′0UT =

(1,0, . . . ,0), where s′0 is output by EncS(x) as the vector for s′0. In the case of selective property, all the
algorithms have access to x, hence they can compute U. Now, EncS outputs the vectors that EncS′

does but with all the non-lone variables multiplied by UT on the right. EncB outputs the matrices
produced by EncB′ but after multiplying them with U−1 on the right. It also outputs a matrix B for
the new variable b with Bi ,i+1 = 1 for i ∈ [d2 −1] and zero every where else (this is why we need
d1 ≥ d2 −1). In particular, the first column of B does not have any non-zero entry. The ciphertext
polynomials borrowed from Γ′ still evaluate to zero, as can be easily seen. The new polynomial s′0b

upon substitution gives BUs′T0 , which is equal to zero.
Let a′U−1 = (λ1, . . . ,λd2 ), where λ1 cannot be zero because s′0UT = (1,0, . . . ,0) and

〈
a′,s′0

〉 6=
0. EncR runs EncR′ to obtain vectors r′1, . . . ,r′m1

, a′, r̂′1, . . . , r̂′m2
. It outputs 1/λ1r′1, . . . ,1/λ1r′m1

,
(1,0, . . . ,0), 1/λ1r̂′1U−1, . . . ,1/λ1r̂′m2

U−1, along with a vector r = (λ2/λ1, . . . ,λd2 /λ1,0, . . . ,0) for the
new variable r . Observe that α′+ r b upon substitution gives (1,λ2/λ1, . . . ,λd2 /λ1), which is equal
to 1/λ1a′U−1. Hence, when we replace the variables in a key-enc polynomial with the new vec-
tors/matrices, we can factor out 1/λ1U−1 on the right. Thus, all the polynomials continue to
evaluate to zero.

Second transformation. This transformation can be directly applied to any pair encoding scheme
that satisfies symbolic property with a set to (1,0, . . . ,0). Let Γ= (Param,EncCt,EncKey,Pair) be one
such scheme with (EncB,EncS,EncR) as the algorithms for symbolic security. We augment again to
build Γ∗ as follows:

11As we will see later, when a pair encoding scheme is transformed into a predicate encryption scheme, the parameters
of Sym-Prop? have no effect on the construction. They only affect the size of assumption on which the security of
encryption scheme is based.
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• Param∗(par) → n+2, where n =Param(par). Let b denote the vector (b1, . . . ,bn) and b∗ denote
b◦ (b∗,b∗∗).

• EncCt∗(x, N ). Run EncCt(x, N ) to obtain a vector c in variables s = (s0, . . . , sw1 ), ŝ and b.
Output c∗ = (c, s∗b∗+ s0b∗∗) as the new vector of polynomials, where s∗ is a new variable.
Hence the polynomials in c∗ are in variables s∗ = (s∗,s), ŝ and b∗.

• EncKey∗(y, N ). Run EncKey(y, N ) to obtain a vector k in variables r, r̂ = (α, . . .) and b. Output
k∗ = (k,α+r∗b∗) as the new vector of polynomials, where r∗ is a new variable, withα replaced
by r∗b∗∗ in all the polynomials in k. One can see that the polynomials in k∗ are in variables
r∗ = (r∗,r), r̂ and b∗.

• Pair∗(x, y, N ). Run Pair to get matrices E and E. Define E∗ by setting E∗
0,m3+1 = 1, E∗

i ,t = Ei−1,t

for i ∈ [w1 +1], t ∈ [m3], and 0 at every other position. Also, define E
∗

by setting E
∗
w3+1,1 =−1,

E
∗
`,i ′+1 = E`,i ′ for ` ∈ [w3], i ′ ∈ [m1], and 0 everywhere else.

Correctness holds because

s∗E∗(k∗)T+c∗E
∗

(r∗)T = s∗(α+ r∗b∗)+∑
i ,t

si Ei ,t kt − (s∗b∗+ s0b∗∗)r∗+∑
`,i ′

c`E`,i ′ri ′

= s∗(α+ r∗b∗)− (s∗b∗+ s0b∗∗)r∗+ s0r∗b∗∗ = αs∗

We define new algorithms (EncB∗,EncS∗,EncR∗) to show that Sym-Prop continues to hold
(both selective and co-selective properties will be proved at the same time). Let Ei , j be a d1×(d2+1)
matrix with 1 in the i th row and j th column, and 0 everywhere else. Also, let ei be a unit vector of
size d2 +1 with 1 at the i th position, and e j be a unit vector of size d1 with 1 at the j th position.

• EncB∗ outputs an extended matrix B for every matrix B output by EncB, where B∗ is just
B with a column of zeroes added to the left. It also outputs B∗ = −E1,1 and B∗∗ = E1,2

corresponding to b∗ and b∗∗, respectively.

• EncS∗ runs EncS to obtain vectors s0, . . . ,sw1 , ŝ1, . . . , ŝw2 . Suppose s0 is given by (λ1, . . . ,λd2 )
where λ1 6= 0. The vector si for a non-lone variable si is extended by adding a zero to the left,
giving a new vector si . Output is s0, . . . ,sw1 , ŝ1, . . . , ŝw2 , along with a vector s∗ = λ1e1 for the
new variable s∗.

• EncR∗ runs EncR to obtain vectors r1, . . . ,rm1 , a, r̂1, . . . , r̂m2 , where a = (1,0, . . . ,0). The vector
r̂z for a lone variable r̂z is extended by appending a zero to the left, giving a new vector rz , for
z ∈ [m2]. Output is r1, . . . ,rm1 ,e1,r1, . . . ,rm2 , along with a vector r∗ = e1 for the new variable
r∗.

Recall that we replaced α by r∗b∗∗ in the polynomials in k. Now, when we substitute r∗b∗∗

by e1E1,2, we get e2, or a = (1,0, . . . ,0) with a zero inserted at the leftmost position. Hence, the
polynomials in k still evaluate to zero. It is also easy to see that when the polynomials in c are
evaluated with the extended matrices and vectors, they evaluate to zero as before. We now argue
about the two new polynomials we added. The vector s0 can be written as

∑d2
i=1λi ei+1. Hence,

s∗b∗+sb∗∗ evaluates to−λ1E1,1eT1 +E1,2(λ1eT2 +. . .) =−λ1eT1 +λ1eT1 = 0T. Further,α+r∗b∗ evaluates
to e1 −e1E1,1 = 0.

We now show how the second and third properties in Definition 5.1 are realized by the new
matrices and vectors. To see why the first point in the second property and the third property
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are satisfied, observe that there is only one matrix, B∗ =−E1,1, with a non-zero value in the first
column. Moreover, the corresponding common variable b∗ is used in only one ct-enc polynomial
s∗b∗+ s0b∗∗. After substitution, we get λ1eT1 · (−e1) =−λ1ET

1,1. Further, only α+r∗b∗ involves b∗ in

the case of key-enc polynomials. And after substitution we have −eT1 ·e1, which is a diagonal matrix
with −1 in the first row and column, and 0 elsewhere. For the second point in the second property,
note that only s∗’s first element has a non-zero value among the non-lone variables, and it appears
in only one polynomial s∗b∗+ s0b∗∗. Upon substitution, we just have −λ1E1,1.

Third transformation. Suppose an encoding scheme satisfies Sym-Prop while meeting the first
three conditions of Definition 5.1. Consider the vectors s0, . . . ,sw1 for non-lone ct-enc variables. If
we modify the output of the three algorithms involved in the symbolic security proof slightly as
follows:

• add a vector of size w1 +1 with 1 at the i th position to the right of si for i ∈ [w1]+,

• add a zero matrix of size d1 × (w1 +1) to the right of B j for j ∈ [n], and

• add a zero vector of size w1 +1 to the right of a and r̂z for z ∈ [m2],

then it is easy to verify that Sym-Prop (as well as the first three properties of Definition 5.1) still
holds, and additionally, s0, . . . ,sw1 now form an independent set of vectors. In an analogous manner,
we can also make the vectors r1, . . . ,rm1 independent. (Note that the modifications needed in this
case are complementary to the ones described above for the case of ct-enc variables.)

We now prove three combinatorial facts that follow from the additional properties of augmented
pair encoding schemes. To keep the presentation simple, we use minimal notation to prove our
point. All the lemmas hold for any range of i , j , any integers µi , j , and any vectors si and matrices
B j over integers.

Lemma 5.3. If
∑

i , j µi , j sTi b j is a matrix with non-zero values in the first row only, then for all
matrices U, the value of mT :=∑

i , j µi , j B j UsTi does not depend on the first row of U if the element in
U’s first row and column is 0, where b j is the first column of B j .

Proof. If si ,q denotes the qth element of si , then we know that if q 6= 1,
∑

i , j µi , j b j si ,q = 0. The
product B j U in m can be written as a sum of matrices, where the `th matrix is a product of the
`th column of B j and the `th row of U. Since we are concerned with the first row of U only, it
is sufficient to consider the sum nT := ∑

i , j µi , j bT
j usTi , where u denotes the first row of U. Now,

n = ∑
i , j µi , j b j

∑
q uq si ,q , where uq is the qth element of u. But since u1 = 0, we can rewrite n as∑

q 6=1 uq
∑

i , j µi , j b j si ,q . The latter sum is 0 whenever q 6= 1, hence n = 0.

Lemma 5.4. If
∑

i , j µi , j si ,1B j is a matrix with non-zero values in the first column only, then for all
matrices U, the value of mT :=∑

i , j µi , j B j UsTi does not depend on the first column of U if the element
in U’s first row and column is 0, where si ,1 is the first element of si .

Proof. The product UsTi can be written as a linear combination of the columns of U where the
coefficients are the elements of si . Since we are concerned with the first column only, it is sufficient
to consider nT :=∑

i , j µi , j B j uTsi ,1, where u is the first column of U and si ,1 is the first element of si .
Rewriting nT as

(∑
i , j µi , j si ,1B j

)
uT, we can easily see that it has to be 0: again, we can express this

as a linear combination of the columns of
∑

i , j µi , j si ,1B j using as coefficients the elements of u; all
columns except the first are zero by assumption, and the first column does not matter because the
first element of u is 0.
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Lemma 5.5. If
∑

i , j µi , j bT
j ri is a matrix with non-zero elements in the diagonal only, then for all

matrices V which have zeroes in the diagonal, the first element of the vector m :=∑
i , j µi , j ri VB j is

zero, where b j is the first column of B j .

Proof. If ri ,p and b j ,q denote the pth and qth elements of ri and b j respectively, then we know
that if p 6= q ,

∑
i , j µi , j ri ,p b j ,q = 0. Since the first element of m depends on the first column of

B j only, it is sufficient to consider the sum n := ∑
i , j µi , j ri VbT

j = ∑
i , j µi , j

∑
p,q ri ,p vp,q b j ,q , where

vp,q is the (p, q)th element of V. But since V has zeroes on the diagonal, we can rewrite n as∑
p 6=q vp,q

∑
i , j µi , j ri ,p b j ,q . The latter sum is 0 whenever p 6= q , hence n = 0.

5.2 Dual System Groups

Dual system groups (DSG) were introduced by Chen and Wee [CW14a] and generalized by Agrawal
and Chase [AC16]. The latter work also shows that the two instantiations of DSG – in composite-
order groups under the subgroup decision assumption and in prime-order groups under the
decisional linear assumption – given by Chen and Wee satisfy the generalized definition as well.

The following definition of dual system groups has been taken almost verbatim from Agrawal
and Chase [AC16]. It is parameterized by a security parameter λ and a number n, and consists of
six PPT algorithms:

• SampP(1λ,1n): On input 1λ and 1n , SampP outputs public parameters PP and secret parame-
ters SP, which have the following properties:

– PP contains a triple of groups (G,H,GT ) and a non-degenerate bilinear map e :G×H→
GT , a homomorphism µ from H to GT , along with some additional parameters used
by SampG, SampH. Given PP, we know the exponent of group H and how to sample
uniformly from it; let N = exp(H). It is required that N is a product of distinct primes of
Θ(λ) bits.

– SP contains h̃ ∈H (where h̃ 6= 1H) along with additional parameters used by SampG and
SampH.

• SampGT takes an element in the image of µ and outputs another element from GT .

• SampG and SampH take PP as input and output a vector of n +1 elements from G and H
respectively.

• SampG and SampH take both PP and SP as inputs and output a vector of n +1 elements from
G andH respectively.

Properties

All the properties below hold for every PP and SP output by SampP. Let SampG0 be the algorithm
that outputs only the first element of SampG. Analogously, SampH0, SampG0 and SampH0 can be
defined. A dual system group is correct if it satisfies the following two properties:

Projective: For all h ∈H and coin tosses σ, SampGT(µ(h);σ) = e(SampG0 (PP;σ),h).

Associative: If (g0, g1, . . . , gn) and (h0,h1, . . . ,hn) are samples from SampG(PP) and SampH(PP) re-
spectively, then for all i ∈ [1,n], e(g0,hi ) = e(gi ,h0).

For security, the following three properties should hold:

Orthogonality: µ(h̃) = 1GT .
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Non-degeneracy:

1. SampH0(PP, SP) ∼= h̃δ, where δ←R ZN .

2. ∃ g̃ ∈G s.t. g̃ 6= 1G and SampG0(PP, SP) ∼= g̃α, where α←R ZN .

3. For all ĝ0 ← SampG0(PP, SP), e(ĝ0, h̃)β is uniformly distributed over GT , where β←R ZN .

Indistinguishability. For two (positive) polynomials p and q , define G, H, Ĝ, Ĥ, Ĝ′, Ĥ′ as follows:

(PP, SP) ← SampP(1λ,1n); γ1,γ2, . . . ,γn ←R ZN ;

g1,g2, . . . ,gp(λ) ← SampG(PP);G := (g1,g2, . . . ,gp(λ));

h1,h2, . . . ,hq(λ) ← SampH(PP);H := (h1,h2, . . . ,hq(λ));

∀ i ∈ [p(λ)], ĝi := (ĝi ,0, . . .) ← SampG(PP, SP); ĝ′
i := (1, ĝγ1

i ,0, ĝγ2

i ,0, . . . , ĝγn

i ,0)

∀ j ∈ [q(λ)], ĥ j := (ĥ j ,0, . . .) ← SampH(PP, SP); ĥ′
j := (1, ĥγ1

j ,0, ĥγ2

j ,0, . . . , ĥγn

j ,0)

Ĝ := (ĝ1, ĝ2, . . . , ĝp(λ));Ĥ := (ĥ1, ĥ2, . . . , ĥq(λ));

Ĝ′ := (ĝ′
1, ĝ′

2, . . . , ĝ′
p(λ));Ĥ′ := (ĥ′

1, ĥ′
2, . . . , ĥ′

q(λ)).

A dual system group is Left Subgroup Indistinguishable, Right Subgroup Indistinguishable and
Parameter hiding if for all polynomials p(·) and q(·),

{PP,G} ≈ {PP,G · Ĝ}, (3)

{PP, h̃,G · Ĝ,H} ≈ {PP, h̃,G · Ĝ,H · Ĥ},and (4)

{PP, h̃,Ĝ,Ĥ} ≡ {PP, h̃,Ĝ · Ĝ′,Ĥ · Ĥ′} (5)

hold, respectively. Observe that the two distributions in (3) and (4) are computationally indistin-
guishable, while the two distributions in (5) are identical.

Additional property. Additionally, we require that there exists a way to sample the set-up parame-
ters so that one not only gets PP and SP, but also some trapdoor information td that can be used to
generate samples from SampG and SampH given only the first element. We formalize this property
with the help of three algorithms SampP∗, ExtendG and ExtendH.

• SampP∗(1λ,1n). On input 1λ and 1n , SampP outputs public parameters PP, secret parameters
SP (with the same properties as that output by SampP), and a trapdoor td.

• ExtendG takes a g ∈G, PP, SP and td as inputs, and outputs an element in Gn .

• ExtendH takes a h ∈H, PP, SP and td as inputs, and outputs an element inHn .

For every (PP, SP,td) we want:

• For all ĝ ← SampG0(PP, SP), the distribution (ĝ ,ExtendG(PP, SP,td, ĝ )) is identical to that
produced by SampG(PP, SP), conditioned on the first element being ĝ .

• For all ĥ ← SampH0(PP, SP), the distribution (ĥ,ExtendH(PP, SP,td, ĥ)) is identical to that
produced by SampH(PP, SP), conditioned on the first element being ĥ.
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These algorithms are needed to prove the security of our construction, not its correctness, so they
are best viewed as extra security conditions for a DSG.

It is easy to see that the two instantiations of Chen and Wee [CW14a] also have the additional
property we desire. In their composite-order construction (Section 5.2), td is the vector w, which
is chosen at random from Zn

N . ExtendG on input g outputs g w, and ExtendH on input h outputs
hw ·X3, where X3 ←R Gn

p3
(using PP). The prime-order construction (Section 6.2) is based on an

asymmetric bilinear map (N ,G,H,GT , g ,h,e). The groups G and H are defined to be Gd+1 and
Hd+1, respectively, where d is the parameter in the linear assumption. The trapdoor td is given by
(f, f1, . . . , fn , f∗, f∗1 , . . . , f∗n). When ExtendG gets g = (g1, . . . , gd+1) ∈Gd+1 as input, it first checks if f = 0
or not. If it is, then it picks ŝ ←R Z

∗
p ; otherwise, g ŝ is computed by picking any fi that is non-zero

and raising gi to f −1
i . Then the output is set to (g ŝf1 , . . . , g ŝfn ). ExtendH behaves in a similar way

except that it uses f∗, f∗1 , . . . , f∗n .

5.3 New Computational Assumption

We introduce a new assumption, called q-ratiodsg, on dual system groups parameterized by positive
integers d1 and d2.

Definition 5.6 ((d1,d2)-q-ratiodsg assumption). Consider the following distribution on a dual system
group’s elements:

dsg-par := (PP, SP,td) ← SampP∗(1λ,1n);

ĝ ← SampG0(PP, SP); ĥ ← SampH0(PP, SP)

u0,u1, . . . ,ud2 , v1, . . . , vd1 ←R Z
∗
N ;

DG := {ĝ ui }i∈[d2]+ ∪
{

ĝ
ui

u j vk

}
i , j∈[d2],i 6= j ,k∈[d1]

;

DH := {ĥvi }i∈[d1] ∪
{

ĥ
vi

v j uk

}
i , j∈[d1],i 6= j ,k∈[d2]

;

T0 := ĥ1/u0 ; T1 ← SampH0(PP, SP).12

We say that the (d1,d2)-q-ratiodsg assumption holds if for any PPT algorithm A,

Adv
qrdsg
A (λ) :=

∣∣∣Pr[A(1λ,dsg-par,DG,DH,T0) = 1]
∣∣∣− ∣∣∣Pr[A(1λ,dsg-par,DG,DH,T1) = 1]

∣∣∣
is negligible in λ.

Note that u0 is present in exactly one of the terms in DG and not at all in DH.

We also define a similar assumption on bilinear maps.

Definition 5.7 ((d1,d2)-q-ratio assumption). Consider the following distribution:

par := (N ,G,H,GT , g ,h,e) ←GroupGen(1λ)

ĝ ←R G; ĥ ←R H; u0,u1, . . . ,ud2 , v1, . . . , vd1 ←R Z
∗
N ;

DG := {ĝ ui }i∈[d2]+ ∪
{

ĝ
ui

u j vk

}
i , j∈[d2],i 6= j ,k∈[d1]

;

12There is a typo in the camera-ready version here. T1 is a fresh sample from SampH0(PP, SP), not a random element in
H.
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DH := {ĥvi }i∈[d1] ∪
{

ĥ
vi

v j uk

}
i , j∈[d1],i 6= j ,k∈[d2]

;

T0 := ĥ1/u0 ; T1 ←R H.

We say that the (d1,d2)-q-ratio assumption holds if for any PPT algorithm A,

AdvqrA (λ) :=
∣∣∣Pr[A(1λ,par,DG ,DH,T0) = 1]−Pr[A(1λ,par,DG ,DH,T1) = 1]

∣∣∣
is negligible in λ.

In this paper our focus is on constructions in prime-order groups because they are much
more practical, so we will consider the q-ratio assumption on prime-order bilinear maps only.
We show that this assumption is implied by the assumptions proposed by Lewko, Waters [LW12]
and Attrapadung [Att14a] in Appendix C. We also show that Chen and Wee’s prime order DSG
construction [CW14a] (along with the new sampling algorithms we introduce) satisfies the q-ratiodsg
assumption if the underlying group satisfies the q-ratio assumption. Thus we have,

Lemma 5.8. A dual system group with a bilinear map e : G×H→ GT that satisfies the (d1,d2)-
q-ratiodsg assumption can be instantiated in a prime-order bilinear map e ′ :G×H→GT that satisfies
the (d1,d2)-q-ratio and k-linear assumptions. Further, an element of G andH is represented using
k +1 elements of G and H, respectively. (An element of GT is represented by just one from GT ).

5.4 Encryption Scheme

In this section, we show how to obtain an encryption scheme from a pair encoding using the
sampling algorithms of dual system groups. Our transformation is based on the one given by
Agrawal and Chase [AC16], and is referred to as Gen-Trans. If a PES ΓP is defined by the tuple of
algorithms (Param,EncCt,EncKey,Pair) for a predicate family P = {Pκ}κ∈Nc , then the algorithms for
ΠP :=Gen-Trans(ΓP ) are given as follows.

• Setup(1λ,par): First the pair encoding algorithm Param(par) is run to obtain n, and then the
dual system group algorithm SampP(1λ,1n) is run to get PP, SP. A randomly chosen element
from H is designated to be the master secret key MSK. Master public key MPK is set to be
(PP,µ(MSK)). Further, N and κ are set to exp(H) and (N ,par), respectively (where the exponent
ofH is a part of PP).

• Encrypt(MPK, x,msg): On input x ∈Xκ and msg ∈GT , EncCt(x, N ) is run to obtain w1, w2 and
polynomials (c1, . . . ,cw3 ). For i ′ ∈ [w1+w2]+, draw a sample (gi ′,0, . . . , gi ′,n) from SampG using
PP. Recall that the `th polynomial is given by∑

z∈[w2]
η`,z ŝz + ∑

i∈[w1]+, j∈[n]

η`,i , j si b j .

Set CTi to be gi ,0 for i ∈ [w1]+ and C̃T` to be∏
z∈[w2]

g
η`,z

w1+z,0 · ∏
i∈[w1]+, j∈[n]

g
η`,i , j

i , j

for ` ∈ [w3]. Also, let CT? =msg ·SampGT(µ(MSK);σ) where σ denotes the coin tosses used
in drawing the first sample from SampG. Output CT := (CT0, . . . , CTw1 , C̃T1, . . . , C̃Tw3 , CT?).
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• KeyGen(MPK, MSK, y): On input y ∈Yκ,EncKey(y, N ) is run to obtain m1, m2 and polynomials
(k1,k2, . . . ,km3 ). For i ∈ [m1 +m2], draw a sample (hi ,0, . . . ,hi ,n) from SampH using PP. Recall
the t th polynomial is given by

φtα + ∑
z ′∈[m2]

φt ,z ′ r̂z ′ + ∑
i ′∈[m1], j∈[n]

φt ,i ′, j ri ′b j .

Set SKi ′ to be hi ′,0 for i ′ ∈ [m1] and S̃Kt to be

MSKφt · ∏
z ′∈[m2]

h
φt ,z′
m1+z ′,0 · ∏

i ′∈[m1], j∈[n]

h
φt ,i ′ , j

i ′, j

for t ∈ [m3]. Output SK := (SK1, . . . , SKm1 , S̃K1, . . . , S̃Km3 ).

• Decrypt(MPK, SKy , CTx ): On input SKy and CTx , Pair(x, y, N ) is run to obtain matrices E and E.
Output

CT? ·
( ∏

i∈[w1]+,t∈[m3]

e(CTi , S̃Kt )Ei ,t · ∏
`∈[w3],i ′∈[m1]

e(C̃T`, SKi ′)
E`,i ′

)−1

.

One can use the projective and associative property of DSG to show that the predicate encryp-
tion scheme defined above is correct (see [AC16] for details). We defer a proof of security for ΠP to
Section 7, and conclude with the following remark.

Remark 5.9 (Size of ciphertexts and keys). Ciphertexts have w1 +w3 +1 elements from G and an
element from GT ; keys have m1 +m3 elements fromH. So the size of these objects depends only
on the number of non-lone variables and polynomials. Moreover, there is a one-to-one mapping
between variables/polynomials and ciphertext/key elements. Thus if we can reduce the size of an
encoding, we will immediately get an equivalent reduction in the size of ciphertexts or keys.

6 Transformations on Pair Encodings

In this section we present several useful transformations on pair encodings that preserve symbolic
property. The first class of transformations help in reducing the size of ciphertexts and keys, and
the second one provides a way to develop schemes for dual predicates (where the role of the two
inputs to a predicate is reversed).

Compact encoding schemes. We show how pair encoding schemes can be made compact by
reducing the number of ct-enc and/or key-enc polynomials and/or variables to a constant in a
generic way. Importantly, we show that if the encoding scheme we start with satisfies the symbolic
property, then so does the transformed scheme. As a result, building encryption schemes with
constant-size ciphertexts or keys, for instance, becomes a very simple process.

Our first transformation converts any encoding scheme Γ′ to another scheme Γ where the
number of ct-enc variables is just one. Naturally, we need to assume a bound on the total number
of ct-enc variables for this transformation to work. If W1 +1 and W2 are bounds on the number of
non-lone and lone ct-enc variables, respectively, and the number of common variables in Γ′ is n,
then Γ has (W1 +1)n +W2 common variables, 1 ct-enc non-lone variable and 0 lone variables. The
number of lone key-enc variables and polynomials increases by a multiplicative factor of W1 +1.
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Our second transformation brings down the number of ct-enc polynomials to just one. Once
again the transformation is fully generic, as long as there is a bound W3 on the number of polynomi-
als. In this case, the number of common variables increases by a multiplicative factor of W3 +1, the
number of non-lone key-enc variables by a multiplicative factor of W3, and the number of key-enc
polynomials by an additive factor of m1W 2

3 n.
When the two transformations above are applied one after the other, we obtain an encoding

scheme with just one non-lone variable and one polynomial in the ciphertext encoding. After
augmenting the scheme as per Theorem 5.2 which adds a non-lone variable and two polynomials,
we can convert the resulting encoding scheme into a predicate encryption scheme by using the
generic mechanism of Section 5.4. This encryption scheme will have exactly 5 dual system’s source
group elements in any ciphertext, a number which would only double if the instantiation from
Lemma 5.8 is used under the SXDH (1-linear) assumption.

One can also reduce the number of key-enc variables and polynomials in a manner analogous to
how the corresponding quantities are reduced in the ciphertext encoding, at the cost of increasing
the number of common variables and ct-enc variables and polynomials. If there is a bound on both
the number of variables and polynomials in the key encoding, then one can obtain an encoding
scheme with just one of each. This will result in encryption schemes with constant-size key.

Finally, we remark that one can also mix-and-match. For instance, first the number of ct-enc
variables can be reduced to one, and then we can do the same for key-enc variables, resulting
in a scheme with just one variable each in the ciphertext and key encodings at the cost of more
polynomials in both. (This might be interesting, for example, because it produces a pair encoding
of the form used in [CGW15].) Note that when the ciphertext variable reduction transformation
is applied, no lone variables are left in the ciphertext encoding (the only remaining variable is a
non-lone variable). Hence, the key variable reduction transformation does not affect the number of
ct-enc variables.

Dual predicates. The dual predicate for a family P ′
κ : Yκ×Xκ → {0,1} is given by Pκ : Xκ×Yκ →

{0,1} where Pκ(x, y) = P ′
κ(y, x) for all κ, x ∈Xκ, y ∈Yκ. For example, CP-ABE and KP-ABE are duals

of each other. In Section 6.3 we show that Attrapadung’s dual scheme conversion mechanism
[Att14b, Section 8.1] preserves symbolic property too.

6.1 Ciphertext Encoding Variables

In this section, the following theorem is proved.

Theorem 6.1. If a PES Γ′ = (Param′,EncCt′,EncKey′,Pair′) with a bounded number of non-lone
and lone ct-enc variables satisfies Sym-Prop for a predicate family Pκ, then there exists an encoding
Γ with just one ct-enc variable (which is non-lone) that also satisfies Sym-Prop for Pκ.

Proof. Suppose Γ′ has bounds W1 +1 and W2 on the number of non-lone and lone ct-enc variables,
respectively. The transformation from Γ′ to Γ works as follows:

• Param(par). If Param′(par) returns n, then output W2 + (W1 +1)n. Let b denote the vector
(b1, . . . ,bW2 ,b0,1, . . . ,b0,n , . . . ,bW1,1, . . . ,bW1,n).

• EncCt(x, N ). Run EncCt′(x, N ) to obtain a vector c′ = (c ′1, . . . ,c ′w3
) of polynomials, where for

` ∈ [w3], c ′
`

is given by ∑
z∈[w2]

η`,z ŝ′z + ∑
i∈[w1]+, j∈[n]

η`,i , j s′i b′
j .
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Define a new polynomial c` using the new common variables as∑
z∈[w2]

η`,z s0bz + ∑
i∈[w1]+, j∈[n]

η`,i , j s0bi , j ,

where s0 is a new variable. Output (c1, . . . ,cw3 ) as the new vector of polynomials in a single
non-lone variable s = (s0), no lone variables ŝ = (), and the common variables b.

• EncKey(y, N ). Run EncKey′(y, N ) to obtain a vector k′ = (k ′
1, . . . ,k ′

m3
) of polynomials in vari-

ables r′ and r̂′ = (α′, r̂ ′
1, . . . , r̂ ′

m2
). For every lone variable define W1 +1 new variables: so for α′,

we now have α0, . . ., αW1 , and for every r̂ ′
z for z ∈ [m2], we have r̂z,0, . . ., r̂z,W1 . Recall that k ′

t is
given by

φtα
′ + ∑

z∈[m2]
φt ,z r̂ ′

z + ∑
i ′∈[m1], j∈[n]

φt ,i ′, j r ′
i ′b

′
j .

For each such polynomial, we define W1 +1 new polynomials as follows:

kt ,i = φtαi + ∑
z∈[m2]

φt ,z r̂z,i + ∑
i ′∈[m1], j∈[n]

φt ,i ′, j r ′
i ′bi , j .

Output (k1,0, . . . ,k1,W1 , . . . ,km3,0, . . . ,km3,W1 ) as the new set of polynomials in variables r′, r̂ =
(α0, . . . ,αW1 , r̂1,0, . . . , r̂1,W1 , . . . , r̂m2,0, . . . , r̂m2,W1 ) and b.

• Pair(x, y, N ). Run Pair′(x, y, N ) to obtain matrices E′ and E
′

of size (w1 +1)×m3 and w3 ×m1,
respectively. Set E to just be E

′
, but E is a 1×m3(W1 +1) matrix with E0,((t−1)(W1+1)+i ) = E ′

i ,t
for i ∈ [w1]+, t ∈ [m3] (rest of the entries are set to 0).

In the new encoding scheme, the monomials ŝ′z and s′i b′
j are being captured by introducing new

common variables bz and bi , j , respectively. Further, the effect of multiplying s′i with k ′
t is captured

by introducing W1 + 1 polynomials for k ′
t (where W1 + 1 is the maximum number of non-lone

variables in any encoding). Thus, if from the product s′i k ′
t , we got monomials of the form s′i r̂ ′

z ′ and
s′i r ′

i ′b
′
j , we now multiply s with k(t−1)(W1+1)+i to get sr̂z ′,i and sr ′

i ′bi , j . Intuitively, since we are still
able to preserve the distinctness of monomials obtained by multiplying monomials in the base
encoding, we can show that correctness holds. We skip the details, which follow easily by using the
matrices E and E defined above.

Selective property. We prove the selective and co-selective properties separately. Suppose the base
encoding satisfies the selective property due to the algorithms EncB′, EncS′ and EncR′. Then, the
respective algorithms for the new encoding are as follows.

• EncS(x) just outputs one vector s0 with a single entry 1 (for s0, the new variable).

• EncB(x) runs EncS′(x) to obtain vectors (s′0, . . . ,s′w1
, ŝ′1, . . . , ŝ′w2

) and EncB′(x) to obtain matri-

ces (B′
1, . . . ,B′

n). It outputs ŝ′zT for bz and B′
j s′i

T for bi , j , where z ∈ [w2], i ∈ [w1]+ and j ∈ [n].
(It does not matter what matrices we set for the rest of the common variables.)

• EncR(x, y) outputs a′s′i
T for αi , r̂′z s′i

T for r̂z,i , and r′i ′ for r ′
i ′ for z ∈ [m2], i ∈ [w1]+ and i ′ ∈

[m1], where s′0, . . . ,s′w1
are obtained by running EncS′(x) and rest of the vectors come from

EncR′(x, y).
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It is easy to see that all the new polynomials evaluate to zero vectors when substituted with the
vectors above. Specifically, c` evaluates to∑

z
η`,z ŝ′z

TsT0 + ∑
i , j
η`,i , j B′

j s′i
TsT0 = ∑

z
η`,z ŝ′z

T + ∑
i , j
η`,i , j B′

j s′i
T,

which is equal to 0 by the selective symbolic property of the base scheme. Also, kt ,i evaluates to

φt a′s′i
T + ∑

z
φt ,z r̂′z s′i

T + ∑
i ′, j
φt ,i ′, j r′i ′B

′
j s′i

T,

which is again 0 (by selective symbolic property of the base scheme) because s′i
T is a common

factor in every term. Also, the inner product of a′s′0
T (the vector corresponding to α0) with s0 is just

a′s′0
T, which is not equal to 0.

Co-selective property. To prove the co-selective property of the new scheme, we exploit the co-
selective property of the base scheme as follows. (Below we join matrices and vectors using the
notation defined in Section 2.)

• EncS(x, y) runs EncS′(x, y) to obtain (s′0, . . . ,s′w1
, ŝ′1, . . . , ŝ′w2

). It outputs s0 = s′0 ◦ . . .◦ s′w1
◦ ŝ′1 ◦

. . .◦ ŝ′w2
, a row vector of length (w1 +1)d2 +w2d1.

• EncB(y) runs EncB′(y) to get matrices B′
1, . . . ,B′

n . Set Bi , j to be 0◦. . .◦0◦B′
j ◦0◦. . .◦0◦0′◦. . .◦0′

for i ∈ [w1]+, j ∈ [n], where B′
j occurs at the i th position, and 0, 0′ are all-zero matrices of size

d1 ×d2 and d1 ×d1, respectively (the number of 0 and 0′ matrices is w1 and w2, respectively).
Also, Bz is set to 0◦ . . .◦0◦0′ ◦ . . .◦0′ ◦ I◦0′ ◦ . . .◦0′ for z ∈ [w2], where I is a d1 dimensional
identity matrix at the (w1 +1+ z)th position (the number of 0 and 0′ matrices is w1 +1 and
w2 −1, respectively).

• EncR(y) runs EncR′(y) to get (r′1, . . . ,r′m1
,a′, r̂′1, . . . , r̂′m2

). It just outputs r′i ′ for r ′
i ′ , where i ′ ∈

[m1]. But r̂z,i is set to 0′′ ◦ . . . ◦0′′ ◦ r̂′z ◦0′′ ◦ . . . ◦0′′ ◦0?, where 0′′ is a row vector of size d2

(occurring w1 times), 0? is of size w2d1, and r̂′z occurs at the i th position. In a similar way,
a0, . . . ,aw1 are also set using a′.

With matrices and vectors defined as above for various variables in the ciphertext and key encoding,
one can easily show that all the polynomials evaluate to 0. Specifically, c` evaluates to∑

z
η`,z Bz sT0 + ∑

i , j
η`,i , j Bi , j sT0 = ∑

z
η`,z ŝ′z

T + ∑
i , j
η`,i , j B′

j s′i
T,

and kt ,i evaluates to

φt ai + ∑
z
φt ,z r̂z,i + ∑

i ′, j
φt ,i ′, j r′i ′Bi , j

= 0′′ ◦ . . .◦0′′ ◦
(
φt a′ + ∑

z
φt ,z r̂′z + ∑

i ′, j
φt ,i ′, j r′i ′B

′
j

)
◦0′′ ◦ . . .◦0′′ ◦0?,

which are all equal to 0 due to the co-selective symbolic property of the base scheme. (In particular,
note that in evaluating kt ,i , we are effectively evaluating k ′

t in the i th block.) Also, 〈a0,s0〉 is just
equal to

〈
a′,s′0

〉
because a0 has a′ in the first d2 columns and 0 everywhere else.
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Remark 6.2. Note that in the proof of co-selective symbolic property, every algorithm runs the
corresponding algorithm of the underlying encoding scheme. Hence, one can use the same tech-
nique for proving selective property too. We, however, provide a separate proof to highlight that it is
possible to have the dimension d2 to be just 1. Thus, we can get selective security for the resulting
encryption scheme from a potentially weaker assumption.

The same remark applies to the generic transformation for reducing the number of ct-enc
polynomials in the following section.

6.2 Ciphertext Encoding Polynomials

We show how to further reduce the size of ciphertext encoding by giving a transformation that
results in a scheme with just one polynomial.

Theorem 6.3. If a PES Γ′ = (Param′,EncCt′,EncKey′,Pair′) with bounded number of ct-enc poly-
nomials satisfies Sym-Prop for a predicate family Pκ, then there exists an encoding Γwith just one
ct-enc polynomial that also satisfies Sym-Prop for Pκ. Moreover, if Γ′ has only one variable in any
ciphertext encoding which is non-lone then Γ preserves this property.

Proof. We assume that PES Γ′ has only one variable in the ciphertext encoding (which is non-lone).
This assumption is without loss of generality if there is a bound on the number of ct-enc variables
(Theorem 6.1) but even when there is no such bound, we can modify the proof below to handle this
case.

Suppose s′0 is the only ct-enc variable of Γ′, then its ct-enc polynomials are given by c ′
`
=

s′0
∑

j∈[n]η j ,`b′
j for ` ∈ [w3]. Let W3 be bound on the number of such polynomials in any encoding.

Algorithms for the scheme Γ are now defined as follows.

• Param(par). If Param′(par) returns n, then output (W3 + 1)n. Let b′ denote the vector
(b′

1, . . . ,b′
n) and b denote (b′

1, . . . ,b′
n ,b1,1, . . . ,b1,W3 , . . . ,bn,1, . . . ,bn,W3 ).

• EncCt(x, N ). Run EncCt′(x, N ) to obtain a vector c′ = (c ′1, . . . ,c ′w3
) of polynomials, where c ′

`
=

s′0
∑

j∈[n]η j ,`b′
j . Define a new polynomial c using the new common variables as s′0

∑
j∈[n],`∈[w3]

η j ,`b j ,`. Output c = (c) as the new vector with a single polynomial in a single non-lone
variable s = (s′0) and the common variables b.

• EncKey(y, N ). Run EncKey′(y, N ) to obtain a vector k′ = (k ′
1, . . . ,k ′

m3
) of polynomials in vari-

ables r′ = (r ′
1, . . . ,r ′

m1
), r̂′ and b′. For every non-lone variable define W3 new variables: so

for r ′
i ′ , we now have ri ′,1, . . ., ri ′,W3 . For every i ′ ∈ [m1], `,`′ ∈ [W3] and j ∈ [n], define a new

polynomial ki ′,`, j ,`′ to be ri ′,`b j ,`′ if ` 6= `′, and ri ′,`b j ,`−r ′
i ′b

′
j otherwise. Output (k′, {ki ′,`, j ,`′})

as the new set of polynomials in variables r = (r ′
1, . . . ,r ′

m1
,r1,1, . . . ,r1,W3 , . . . ,rm1,1, . . . ,rm1,W3 ), r̂′

and b.

• Pair(x, y, N ). Run Pair′(x, y, N ) to obtain matrices E′ and E
′

of size 1 × m3 and w3 × m1,
respectively. Define E of size 1 × m1(1 +W3) by setting E 1,(i ′−1)W3+` to be E

′
`,i ′ for every

` ∈ [w3], i ′ ∈ [m1] (rest of the entries are set to 0). Also, define E of size 1× (m3 +m1W 2
3 n) by

setting E1,t = E′
1,t for t ∈ [m3] and E1,(i ′,`, j ,`′) to −E

′
`,i ′ ·η j ,`′ , where by the subscript (i ′,`, j ,`′)

we denote the column in E corresponding to the key-enc polynomial ki ′,`, j ,`′ .

Although the description of the transformation may seem complex, it can be understood by
considering the result of multiplying r ′

i ′ with c ′
`

in the old encoding, which is s′0r ′
i ′

∑
j η j ,`b′

j , and
how we try to mirror its effect in the new one, where we have only one polynomial c in the ciphertext
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encoding. We introduce several copies of both the common and the non-lone key-enc variables. In
lieu of multiplying r ′

i ′ with c ′
`

, we now multiply ri ′,` with c obtaining s′0ri ′,`
∑

j ,`′ η j ,`′b j ,`′ . But this
product has terms that correspond to other c ′

`′ in the old encoding.
In order to remove them, we introduce a new class of polynomials {ki ′,`, j ,`′} in the key encoding.

To remove b j ,`′ for every ` 6= `′, we can use ri ′,`b j ,`′ by multiplying it with η j ,`′ (and then pairing
with s′0), and to replace ri ′,`b j ,` with r ′

i ′b
′
j , we can use ri ′,`b j ,`−r ′

i ′b
′
j by multiplying it with η j ,` (and

then pairing with s′0). This latter step is important because we have kept the key-enc polynomials of
the old encoding intact, which are in variables r′, r̂′ and b′.

After removing/replacing various terms with the help of the new polynomials, the product
polynomial transforms to s′0r ′

i ′
∑

j η j ,`b′
j , which is exactly what we had before. More formally, one

can show that the new encoding scheme is correct by using the matrices E and E defined above. We
skip the details here.

Selective property. We first prove selective symbolic property. Suppose the base encoding satisfies
symbolic property due to the algorithms EncB′, EncS′ and EncR′. Then, the respective algorithms
for the new encoding are as follows.

• EncS(x) just outputs a vector s0 with a single entry 1.

• EncB(x) runsEncS′(x) to get s′0 andEncB′(x) to get (B′
1, . . . ,B′

n). It sets B j ,` to be the transpose

of 0◦. . .◦0◦(B′
j s′0

T)
T◦0◦. . .◦0, where 0 is a vector of size d1 occurring W3−1 times, and (B′

j s′0
T)

T

appears at the `th position. The output is (B′
1s′0

T, . . . ,B′
ns′0

T,B1,1, . . . ,B1,W3 , . . . ,Bn,1, . . . ,Bn,W3 ).

• EncR(x, y) runs EncS′(x) to get s′0 and EncR′(x, y) to get (r′1, . . . ,r′m1
), (a′, r̂′1, . . . , r̂′m2

). Set ri ′,`
to 0◦ . . .◦0◦ r′i ′ ◦0◦ . . .◦0, where 0 occurs W3 −1 times like above, and r′i ′ appears at the `th

position. Output (r′1, . . . ,r′m1
,r1,1, . . . ,r1,W3 , . . . ,rm1,1, . . . ,rm1,W3 ) and (a′s′0

T, r̂′1s′0
T, . . . , r̂′m2

s′0
T).

When substituted with the matrices and vectors defined above, c evaluates to
∑

j ,`η j ,`B j ,`sT0 =∑
`
∑

j η j ,`B j ,`. The matrix B j ,` is a column vector consisting of W3 blocks with B′
j s′0

T in the `th
one and zero everywhere else. Thus for every `, the inner-sum evaluates to zero by the selective
property of the base scheme. The borrowed key-enc polynomial k ′

t evaluates to

φt a′s′0
T + ∑

z
φt ,z r̂′z s′0

T + ∑
i ′, j
φt ,i ′, j r′i ′B

′
j s′0

T,

which is again 0 (by selective property of the base scheme) because s′0
T is a common factor in every

term. The new polynomial ri ′,`b j ,`′ for ` 6= `′ upon substitution gives ri ′,`B j ,`′ , which is zero simply
because the non-zero entries in ri ′,` and B j ,`′ occur only in the `th and `′th block, respectively.

Finally, ri ′,`b j ,`− r ′
i ′b

′
j gives ri ′,`B j ,`− r′i ′B

′
j s′0

T, which is nothing but r′i ′B
′
j s′0

T− r′i ′B
′
j s′0

T = 0.

Co-selective property. For proving co-selective property, the algorithms are defined in the following
way.

• EncS(x, y) just outputs the one vector s′0 that EncS′(x, y) does.

• EncB(y) runs EncB′(y) to obtain matrices (B′
1, . . . ,B′

n). It sets B j ,` to be the transpose of

0′◦. . .◦0′◦B′
j
T◦0′◦. . .◦0′, where 0′ is a d2×d1 matrix occurring W3−1 times, and B′

j
T appears

at the `th position. The output is (B′
1, . . . ,B′

n ,B1,1, . . . ,B1,W3 , . . . ,Bn,1, . . . ,Bn,W3 ).

• EncR(y) sets ri ′,` to be 0◦ . . .◦0◦ r′i ′ ◦0◦ . . .◦0, where 0 occurs W3 −1 times, and r′i ′ , obtained
from EncR′(y), appears at the `th position. The output consists of all the vectors that come
from running EncR′(y) and the ones just defined for i ′ ∈ [m1], ` ∈ [W3].
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Upon substitution, c evaluates to
∑

j ,`η j ,`B j ,`s′0
T =∑

`
∑

j η j ,`B j ,`s′0
T. The matrix B j ,` consists of

W3 blocks joined in a row-wise fashion with B′
j in the `th block and zero everywhere else. Thus

for every `, the inner-sum evaluates to zero by the co-selective property of the base scheme. As far
as the key-enc polynomials are concerned, (k ′

1, . . . ,k ′
m3

) upon substitution evaluate to zero simply
because they are borrowed from the base scheme, and we have not changed the vectors or matrices
corresponding to the variables in them. For the new polynomial ri ′,`b j ,`′ , we can apply the same
reasoning as in the selective case. Finally, ri ′,`b j ,`− r ′

i ′b
′
j gives ri ′,`B j ,`− r′i ′B

′
j , which is nothing but

r′i ′B
′
j − r′i ′B

′
j = 0.

6.3 Dual Predicates

Given a pair encoding scheme for any predicate, an encoding scheme for the dual predicate can be
designed.

Theorem 6.4. If aPES Γ′ = (Param′,EncCt′,EncKey′,Pair′) satisfies Sym-Prop for a predicate family
Pκ, then there exists an encoding Γ that satisfies Sym-Prop for the dual predicate of Pκ.

Proof. The algorithms for Γ′ are defined as follows:

• Param(par). If Param′(par) returns n, then output n +1. Let b′ denote the vector (b′
1, . . . ,b′

n)
and b denote (b′

1, . . . ,b′
n ,b?).

• EncCt(x, N ). Run EncKey′(x, N ) to obtain a vector k′ of polynomials in variables r′, r̂′ =
(α′, r̂ ′

1, . . . , r̂ ′
m2

), and b′. Output c = k′ as the new vector of polynomials, but with α′ replaced
by s0b?, where s0 is a new variable. Hence, the polynomials in c are in variables s = (s0,r′),
ŝ = (r̂ ′

1, . . . , r̂ ′
m2

) and b.

• EncKey(y, N ). RunEncCt′(y, N ) to obtain a vector c′ of polynomials in variables s′ = (s′0, . . . , s′w1
),

ŝ′ and b′. Output k = (c′,α−s′0b?) as the new vector of polynomials, whereα is a new variable.
Hence the polynomials in k are in variables r = s′, r̂ = (α, ŝ′) and b.

• Pair(x, y, N ). Run Pair′(y, x, N ) to obtain matrices E′ and E
′

of size (w1 +1)×m3 and w3 ×m1,
respectively. Define E of size (m1+1)×(w3+1) by setting E0,w3+1 = 1, Ei ′,` = E

′
`,i ′ for i ′ ∈ [m1],

` ∈ [w3], and rest of the entries to 0. E is just set to be the transpose of E′.

Correctness.

sEkT+cErT = ∑
i ′∈[m1]+,
`∈[w3+1]

si ′Ei ′,`k` + ∑
t∈[m3],
i∈[w1]+

ct E t ,i ri

= s0(α− s′0b?) + ∑
i ′∈[m1],
`∈[w3]

r ′
i ′E

′
`,i ′c

′
` + ∑

t∈[m3],
i∈[w1]+

k ′
t E ′

i ,t s′i

=αs0 − s0s′0b?+ (s0b?)s′0 = αs0,

where the last but one equality is true because α′ has been replaced by s0b?.

Selective property. We first prove selective symbolic property of Γ using the co-selective property
of Γ′. Specifically,

• EncS(x) outputs (s0,r′1, . . . ,r′m1
, r̂′1, . . . , r̂′m2

), where s0 = (1,0, . . . ,0) (d1 −1 zeroes) and rest of
the vectors are obtained by running EncR′(x).
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• EncB(x) runs EncB′(x) to obtain B′
1, . . . ,B′

n and EncR′(x) to get a′ (the substitute for α′). It
defines a new matrix B? of dimension d2×d1 with a′ as the first column and zero everywhere
else. It then outputs (B′T

1 , . . . ,B′T
n ,B?).

• EncR(x, y) outputs (s′0, . . . ,s′w1
,−s′0B?, ŝ′1, . . . , ŝ′w2

), where B? is obtained by running EncB(x)
and rest of the vectors from EncS′(y, x).

To verify that the selective property is satisfied, observe that B?sT0 = a′T and hence, all ct-enc
polynomials (which are the key-enc polynomials in the dual scheme) still evaluate to zero. Also, we
introduced only one new polynomial α+ s′0b? in the key encoding, and it evaluates to zero because
we set a to be −s′0B?. Further, the first entry of a is equal to −〈

s′0,a′〉, which is not zero. Hence,
〈s0,a〉 is not zero either.

Co-selective property. Before proceeding to the co-selective part of the proof, note that we cannot
apply the above approach. EncR′, which generates a′, depends on both x and y in this case, so
EncB with access to just y cannot set B? according to a′ anymore. But fortunately, EncS can depend
on both x, y , hence it can set s0 to (a′,0, . . . ,0) (so we must have d1 at least as big as d2). EncB just
sets B? to a matrix that has the d2-dimensional identity matrix in the first d2 columns and zeroes
everywhere else (so that B?sT0 is still equal to a′T).

Apart from how they set s0 and B?, the three algorithms behave in the exact same way as above.
In particular, even though EncR can only depend on y now, there is no problem because both
EncB and EncS′ need only y as input. We can easily check that all the polynomials evaluate to
zero vectors of the appropriate dimension. Further, a =−s′0B? = (−s′0,0, . . . ,0) and we know that
s0 = (a′,0, . . . ,0), so 〈s0,a〉 6= 0.

7 Security of Predicate Encryption Scheme

In this section we show that the transformation Gen-Trans leads to a secure encryption scheme if
the underlying encoding satisfies the (enhanced) symbolic property. More formally, we have:

Theorem 7.1. If a pair encoding scheme ΓP satisfies (d1,d2)-Sym-Prop? for a predicate family Pκ,
then the scheme Gen-Trans(ΓP ) defined in Section 5.4 is a fully secure predicate encryption scheme
for Pκ in dual system groups under the (d1,d2 −1)-q-ratiodsg assumption.

When the above theorem is combined with Theorem 5.2 and Lemma 5.8, we get the following
corollary:

Corollary 7.2. If a pair encoding scheme satisfies (d1,d2)-Sym-Prop for a predicate family then there
exists a fully secure predicate encryption scheme for that family in prime-order bilinear maps under
the (max(d1,d2 −1)+M1 +1,d2 +W1 +1)-q-ratio and k-linear assumptions, where M1 and W1 are
bounds on the number of key-enc and ct-enc non-lone variables, respectively, in the encoding.

The rest of this section is devoted to the proof of Theorem 7.1. We follow the same general
outline as in other papers that use dual system groups [CW14a, AC16, CGW15]. The design of
hybrids in our proof is closer to [CW14a] and [CGW15] rather than [AC16]. In particular, our hybrid
structure is simpler because, unlike [AC16], we don’t add noise to individual samples in every key.
However, since we have adopted the generic transformation from [AC16], the indistinguishability
between several hybrids follows from that of corresponding hybrids in [AC16]. (We briefly review
these hybrids and the properties they follow from below—for full proofs see [AC16].) The main
novelty in our proof, and the crucial difference from [AC16], is how the form of master secret key
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is changed: in [AC16] relaxed perfect security is used for this purpose, but we use the symbolic
property in conjunction with the q-ratiodsg assumption.

We first define auxiliary algorithms for encryption and key generation. Below we use gi ,0 (resp.
hi ,0) to denote the first element of gi (resp. hi ). Also w and m denote w1 + w2 and m1 +m2,
respectively.

• Encrypt(PP, x,msg; (g′
0,g′

1, . . . ,g′
w ), MSK): This algorithm is same as Encrypt except that it uses

g′
i ∈Gn+1 instead of the samples gi from SampG, and sets CT? to msg ·e(g ′

0,0, MSK).

• KeyGen(PP, MSK, y ; (h′
1, . . . ,h′

m)): This algorithm is same as KeyGen except that it uses h′
i ∈

Hn+1 instead of the samples hi from SampH.

Using the algorithms described above, we define alternate forms for the ciphertext, master
secret key, and secret keys.

• Semi-functional master secret key is defined to be MSK := MSK · h̃µ where µ←R ZN .

• Semi-functional ciphertext is given by Encrypt(PP, x,m;G · Ĝ, MSK), where G · Ĝ is defined as
follows: sample g1, . . . ,gw from SampG and ĝ1, . . . , ĝw from SampG (which also requires SP);
set G and G′ to be the vector of vectors (g1, . . . ,gw ) and (ĝ1, . . . , ĝw ), respectively; and denote
(g1 · ĝ1, . . . ,gw · ĝw ) by G · Ĝ.

• Ext-semi-functional ciphertext is given by Encrypt(PP, x,m;G · Ĝ · Ĝ′, MSK), where G, Ĝ are
as above, and Ĝ′ is defined to be (ĝ′

1, . . . , ĝ′
w ), where ĝ′

i = (1, ĝγ1

i ,0, . . . , ĝγn

i ,0) for i ∈ [w] and
γ1, . . . ,γn ←R ZN . (Here these γ1, . . . ,γn will be chosen once and used in both ciphertext
and key components.)

• Table 1 lists the different types of keys we need and the inputs that should to be passed to
KeyGen (besides PP and y) in order to generate them. In the table, h1, . . . ,hm are samples from
SampH; ĥ1, . . . , ĥm are samples from SampH (which also requires SP); and ĥ′

i = (1, ĥγ1

i ,0, . . . , ĥγn

i ,0)
for i ∈ [m], where γ1, . . . ,γn are the values described above for the ext-semi-functional cipher-
text.

Type of key Inputs to KeyGen (besides PP and y)

Normal MSK; (h1, . . . ,hm)

Pseudo-normal MSK; (h1 · ĥ1, . . . ,hm · ĥm)

Ext-pseudo-normal MSK; (h1 · ĥ1 · ĥ′
1, . . . ,hm · ĥm · ĥ′

m)

Ext-pseudo-semi-functional MSK; (h1 · ĥ1 · ĥ′
1, . . . ,hm · ĥm · ĥ′

m)

Pseudo-semi-functional MSK; (h1 · ĥ1, . . . ,hm · ĥm)

Semi-functional MSK; (h1, . . . ,hm)

Table 1: Six types of keys.

Let ξ denote the number of key queries made by the adversary. In Table 2, we give an outline
of the proof-structure with the first column stating the various hybrids we have (ϕ ∈ [ξ]), second
column describes the way in which a hybrid differs from the one in the previous row, and the
third column lists the properties we need to show indistinguishability from the previous one.
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To prevent the table from overflowing, we use some shorthands like ct for ciphertext, func for
functional, norm for normal, msg for message, and ind for indistinguishability. Also, Hyb0 is the
game IND-CPAb

A(λ,par) which is formally defined in Section 2.1. See Appendix D for a more formal
description of the hybrids.

Hybrid Difference from previous Properties required

Hyb0 - -

Hyb1 ct semi-func left subgroup ind
...

...
...

Hyb2,ϕ−1,5 ϕ−1 keys semi-func -

Hyb2,ϕ,1 ϕth key pseudo-norm right subgroup ind

Hyb2,ϕ,2 ct ext-semi-func, ϕth key ext-pseudo-norm parameter hiding

Hyb2,ϕ,3 ϕth key ext-pseudo-semi-func non-degeneracy, Sym-Prop?,

q-ratiodsg assumption

Hyb2,ϕ,4 ct semi-func, ϕth key pseudo-semi-func parameter-hiding

Hyb2,ϕ,5 ϕth key semi-func right subgroup ind
...

...
...

Hyb2,ξ,5 All keys semi-func -

Hyb3 ct semi-func encryption of random msg projective, orthogonality,

non-degeneracy

Table 2: An outline of the proof structure.

Our main concern here is the indistinguishability of hybrids Hyb2,ϕ,2 and Hyb2,ϕ,3 when the
ϕth key changes from ext-pseudo-normal to ext-pseudo semi-functional, while the ciphertext stays
ext-semi-functional. (Indistinguishability of the rest of the hybrids follows from [AC16] as noted
earlier.) So in the rest of this section, we prove the following lemma..

Lemma 7.3. For any PPT adversary A, there exists a PPT adversary B such that the advantage of A
in distinguishing Hyb2,ϕ,2 and Hyb2,ϕ,3 is at most the advantage of B in the q-ratiodsg assumption
plus some negligible quantity in the security parameter.

7.1 Proof of Lemma 7.3

For simplicity, we prove the lemma for dual system groups where N is a prime (this suffices for
Lemma 5.8 and thus Corollary 7.2). B gets as input a (d1,d2 −1) instance (PP, SP,td,DG,DH,T ) of
the q-ratiodsg assumption, where

DG = {ĝ ui }i∈[d2−1]+ ∪
{

ĝ
ui

u j vk

}
i , j∈[d2−1],i 6= j ,k∈[d1]

,

DH = {ĥvi }i∈[d1] ∪
{

ĥ
vi

v j uk

}
i , j∈[d1],i 6= j ,k∈[d2−1]

,
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for ĝ ← SampG0(PP, SP), ĥ ← SampH0(PP, SP), and T is either ĥ1/u0 or a fresh sample from SampH0.
B first picks MSK ←R H and outputs (PP,µ(MSK)) as the master public key. When A issues ςth

key query yς for ς 6=ϕ, B responds with

KeyGen(PP, MSK · h̃νς , yς; (h(ς)
1 , . . . ,h(ς)

m(ς) )) if ς<ϕ or

KeyGen(PP, MSK, yς; (h(ς)
1 , . . . ,h(ς)

m(ς) )) if ς>ϕ,

where νς←R ZN and h(ς)
i ← SampH(PP) for every ς ∈ [ξ] and i ∈ [m(ς)]. Also, m(ς) is the sum of m1

and m2 output by EncKey when given yς as input. (Recall that PP specifies how to sample uniformly
fromH and that SP contains h̃.)

7.1.1 Theϕth key

Running Sym-Prop? algorithms. When A issues ϕth key query yϕ, or simply y , there are two
possibilities:

• If A has not yet issued a ciphertext query, B runs the algorithms of co-selective Sym-Prop?:
EncB(y) to obtain matrices B1, . . . ,Bn ∈GN (d1,d2), and EncR(y) to obtain r1, . . . ,rm1 ∈GN (d1)
and r̂1, . . . , r̂m2 ∈GN (d2).

• If A has already issued a ciphertext query x, B will instead run EncR(x, y) of selective
Sym-Prop? to get r1, . . . ,rm1 and r̂1, . . . , r̂m2 .

Let u = (u0,u1, . . . ,ud2−1), v = (v1, . . . , vd1 ), u∗ = (1/u0,1/u1, . . . ,1/ud2−1), and v∗ = (1/v1, . . . ,1/vd1 ).
Observe that the product of vT and v∗ gives a matrix V whose (i , j )th entry is vi /v j if i 6= j , otherwise
it is 1. Let V = I+V′ where I is the identity matrix of dimension d1 and V′ is same as V except it has
0s along the diagonal instead of 1s. Similarly, U = (u∗)Tu is matrix whose (i , j )th entry is u j /ui if
i 6= j , and 1 otherwise. Let U = I+U′ where I is now the identity matrix of dimension d2.

Form ofϕth key. The ϕth key is given by KeyGen(PP, MSK′, y ;H ·Ĥ ·Ĥ′), where MSK′ is MSK · (h̃0) in
Hyb2,ϕ,2 and MSK · (h̃µ), for µ←R ZN , in Hyb2,ϕ,3. But we know that

KeyGen(PP, MSK′, y ;H · Ĥ · Ĥ′) =KeyGen(PP, MSK, y ;H) ·KeyGen(PP, h̃µ, y ;Ĥ · Ĥ′),

because of the way KeyGen is defined and bilinearity of e. The first component on the right hand
side is the same for both the hybrids and can be generated independently using PP and MSK, so
it will not be considered any further. Let SK = (SK1, . . . , SKm1 , S̃K1, . . . , S̃Km3 ) denote the output of the
second component. Then we have SKi ′ = ĥi ′,0 for i ′ ∈ [m1] and

S̃Kt = (h̃µ)φt · ∏
z ′∈[m2]

ĥ
φt ,z′
m1+z ′,0 · ∏

i ′∈[m1],
j∈[n]

(ĥi ′, j · ĥ
γ j

i ′,0)φt ,i ′ , j (6)

for t ∈ [m3], where (ĥi ,0, . . . , ĥi ,n) ← SampH(PP, SP) for i ∈ [m1 +m2] and γ1, . . . ,γn ←R ZN .

Simulatingϕth key. Recall that according to the non-degeneracy property of dual system groups,
SampH0(PP, SP) ∼= h̃δ if δ←R ZN (h̃ 6= 1H). Thus, if we draw two samples ĥ,h from SampH0(PP, SP)
then the distribution of h is statistically close to ĥσ for a randomly chosen σ as long as ĥ lies in
the subgroup generated by h̃ and ĥ 6= 1H, which happens with overwhelming probability. More

34



generally, the joint distribution of (ĥ1,0, . . . , ĥm1+m2,0) is statistically close to ĥω1 , . . . , ĥωm1+m2 for
ω1, . . . ,ωm1+m2 ←R ZN . Also, there exists a β 6= 0 such that h̃ = ĥβ.13 Hence, the distribution of

(h̃µ)φt · ∏
z ′

ĥ
φt ,z′
m1+z ′,0 · ∏

i ′, j
(ĥ

γ j

i ′,0)φt ,i ′ , j

part of S̃Kt is statistically close to

ĥφtβµ+∑
z′ φt ,z′ωm1+z′+

∑
i ′ , j φt ,i ′ , jωi ′γ j . (7)

We denote this part of S̃Kt by S̃K
′
t .

B implicitly sets ωi ′ to 〈ri ′ ,v〉 for i ′ ∈ [m1]; ωm1+z ′ to 〈r̂z ′ ,u∗〉 + εz ′v1 for z ′ ∈ [m2]14, where
ε1, . . . ,εm2 ←R ZN ; and γ j to

〈
v∗B j ,u∗〉+ ε j for j ∈ [n], where ε1, . . . ,εn ←R ZN . (If the ϕth key re-

quest is made after the challenge ciphertext phase then γ1, . . . ,γn have already been set to the same
value.) It is easy to see that the implicit assignment to variables ωm1+1, . . . ,ωm1+m2 ,γ1, . . . ,γn are in-
dependently and uniformly distributed. Also, Sym-Prop? guarantees that the vectors r1, . . . ,rm1 are
independent of each other. Hence, 〈r1,v〉 , . . . ,

〈
rm1 ,v

〉
are also uniformly distributed, independent

of other variables.
The key components SK1, . . . , SKm1 , that are just ĥω1 , . . . , ĥωm1 , can be easily generated using the

terms ĥv1 , . . . , ĥvd1 terms from the assumption. In order to generate S̃Kt , we need to generate both
S̃K

′
t and the product of ĥi ′, j terms in (6). For the first part, observe that the power of ĥ in (7) is being

implicitly set to

φtβµ + ∑
z ′
φt ,z ′

[〈
r̂z ′ ,u∗〉+εz ′v1

] + ∑
i ′, j
φt ,i ′, j 〈ri ′ ,v〉[〈v∗B j ,u∗〉+ε j

]

= φtβµ + ∑
z ′
φt ,z ′

[〈
r̂z ′ ,u∗〉+εz ′v1

]
+ ∑

i ′, j
φt ,i ′, j

〈
ri ′B j ,u∗〉+φt ,i ′, j

[〈
ri ′V

′B j ,u∗〉+〈ri ′ ,v〉ε j
]

= φtβµ +
〈∑

z ′
φt ,z ′ r̂z ′ + ∑

i ′, j
φt ,i ′, j ri ′B j , u∗

〉

+ ∑
z ′
φt ,z ′εz ′v1 + ∑

i ′, j
φt ,i ′, j

[〈
ri ′V

′B j ,u∗〉+〈ri ′ ,v〉ε j
]

,

where the second equality follows because vTv∗ = V = I+V′.
The third component in the final expression can be generated from the term ĥv1 in the assump-

tion. The fourth component is a sum over φt ,i ′, j
[〈

ri ′V′B j ,u∗〉+〈ri ′ ,v〉ε j
]
. In this, φt ,i ′, j 〈ri ′ ,v〉ε j

can be generated in the same way as previous key components, using ĥv1 , . . . , ĥvd1 . We have to
be more careful with the remaining part because 1/u0 is not available in any of the H terms of
the assumption. So we must show that the first element of the vector p := ∑

i ′, j φt ,i ′, j ri ′V′B j is 0.
This follows from Lemma 5.5 because

∑
i ′, j φt ,i ′, j bT

j ri ′ is a diagonal matrix due to Sym-Prop? (b j is

the first column of B j ) and V′ has zeroes in the diagonal. Now ĥ〈p,u∗〉 can be generated using the
ĥvi /(v j uk ) terms from the assumption.

13Recall that for simplicity we have restricted ourselves to dual system groups where N is a prime.
14The choice of v1 is arbitrary. Any other element of v is equally good.
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Suppose we have generated the third and fourth components of S̃K
′
t , as described above. The sec-

ond component is an inner product, the first vector of which is (−φt ,0, . . . ,0) due to Sym-Prop?.15

Hence, the inner product evaluates to −φt /u0. Putting the first and second components together,
we have φt (βµ−1/u0). If φt = 0 then the simulation of S̃K

′
t is complete. Otherwise, we compute

this part as T −φt where T is the challenge term in the assumption, which is either ĥ1/u0 or a fresh
sample from SampH0. Recall that µ = 0 in Hyb2,ϕ,2 and µ is random in Hyb2,ϕ,3. In the former

hybrid, ĥφt (βµ−1/u0) becomes ĥ−φt /u0 , which is exactly what we generate when T = ĥ1/u0 . In the
latter hybrid, ĥφt (βµ−1/u0) is a random element in the subgroup generated by h̃, and so is T −φt when
T is a fresh sample from SampH0 (with overwhelming probability).

In order to complete the simulation of S̃Kt , its second part which is a product of ĥi ′, j terms still
needs to be generated. This can be done using the ExtendH algorithm with inputs PP, SP, td and
ĥ〈ri ′ ,v〉. The first three come from the assumption and we have already seen how to generate the
last one (it is the implicit representation of the i ′th key component SKi ′). Let ExtendHi ′, j denote
the j th output of ExtendH when given these inputs. Now, S̃Kt is generated as:

S̃K
′
t · ∏

i ′, j
(ExtendHi ′, j )φt ,i ′ , j ,

7.1.2 The challenge ciphertext

Running Sym-Prop? algorithms. When A sends a challenge x and two messages m0,m1, there
are two possibilities:

• If A has not yet made the ϕth key query, B runs the algorithms of selective Sym-Prop?:
EncB(x) to obtain matrices B1, . . . ,Bn ∈ GN (d1,d2), and EncS(x) to obtain s0,s1, . . . ,sw1 ∈
GN (d2) and ŝ1, . . . , ŝw2 ∈GN (d1).

• If A has already issued the ϕth key query y , B will instead run EncS(x, y) of co-selective
Sym-Prop? to get s0,s1, . . . ,sw1 and ŝ1, . . . , ŝw2 .

The form of ciphertext. The challenge ciphertext is given by Encrypt(PP, x,mb ;G ·Ĝ ·Ĝ′, MSK). But
we know that

Encrypt(PP, x,mb ;G · Ĝ · Ĝ′, MSK) =Encrypt(PP, x,mb ;G, MSK) ·Encrypt(PP, x,1;Ĝ · Ĝ′, MSK).

The first component on the right hand side can be generated independently using only PP and
MSK, so it will not be considered any further. Let CT = (CT0, . . . , CTw1 , C̃T1, . . . , C̃Tw3 , CT?) denote the
output of the second component. Then we have CTi = ĝi ,0 for i ∈ [w1]+ and

C̃T` = ∏
z∈[w2]

ĝ
η`,z

w1+z,0 · ∏
i∈[w1]+,

j∈[n]

(ĝi , j · ĝ
γ j

i ,0)η`,i , j (8)

for ` ∈ [w3], where (ĝi ′,0, . . . , ĝi ′,n) ← SampG(PP, SP) for i ′ ∈ [w1 +w2]+ (and γ1, . . . ,γn are same as
before). Also, CT? is given by e(ĝ0,0, MSK).

15To see this, note that we have removed the term corresponding to φtα in the polynomial kt . Thus, the resulting
equation should be equal to −φt (1,0, . . . ,0) = (−φt ,0, . . . ,0).
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Simulating the ciphertext. The non-degeneracy property of dual system groups gives us that ∃
g̃ ∈G s.t. g̃ 6= 1G and SampG0(PP, SP) ∼= g̃α, where α←R ZN . So for a ĝ ← SampG0(PP, SP), the joint
distribution of (ĝ0,0, . . . , ĝw1+w2,0) is statistically close to (ĝδ0 , . . . , ĝδw1+w2 ) if δ0, . . . ,δw1+w2 ←R ZN (as
long as ĝ 6= 1G which happens with overwhelming probability). Therefore, the distribution of∏

z
ĝ
η`,z

w1+z,0 · ∏
i , j

(ĝ
γ j

i ,0)η`,i , j

part of C̃T` is statistically close to

ĝ
∑

z η`,zδw1+z+∑
i , j η`,i , jδiγ j . (9)

B implicitly sets δi to 〈u,si 〉 for i ∈ [w1]+; δw1+z to 〈v∗, ŝz〉+%z u0, where %z ←R ZN , for z ∈
[w2]; and γ j to

〈
v∗B j ,u∗〉+ ε j for j ∈ [n], where ε1, . . . ,εn ←R ZN . (If the ϕth key request is made

before the challenge ciphertext phase then γ1, . . . ,γn have already been set to the same value.)
Clearly, the implicit assignments to δw1+1, . . . ,δw1+w2 ,γ1, . . . ,γn are independently and uniformly
distributed. And moreover, since s0, . . . ,sw1 are independent vectors, 〈u,s0〉 , . . . ,

〈
u,sw1

〉
are also

uniformly distributed, independent of others.
Once again, the first w1 +1 ciphertext components can be easily generated because they are

just equal to ĝi ,0 or ĝδi for i ∈ [w1]+ using the terms ĝ u0 , . . . , ĝ ud2−1 from the assumption. For the
remaining components C̃T1, . . . , C̃Tw3 , the expression in the power of ĝ in (9) is being implicitly set
to ∑

z
η`,z

[〈
v∗, ŝz

〉+%z u0
] + ∑

i , j
η`,i , j

[〈
v∗B j ,u∗〉+ε j

]〈u,si 〉

= ∑
z
η`,z

[〈
v∗, ŝz

〉+%z u0
] + ∑

i , j
η`,i , j

〈
v∗,si BT

j

〉
+ η`,i , j

[〈
v∗,si U′TBT

j

〉
+ε j 〈u,si 〉

]

=
〈

v∗ ,
∑

z
η`,z ŝz + ∑

i , j
η`,i , j si BT

j

〉

+ ∑
z
η`,z%z u0 + ∑

i , j
η`,i , j

[〈
v∗,si U′TBT

j

〉
+ε j 〈u,si 〉

]
,

where the second equality follows because (u∗)Tu = U = I+U′.
The first term goes to 0 due to the symbolic property. The second can be easily computed

from the ĝ u0 term of the assumption. In the third, 〈u,si 〉 is generated in the same way as previous
ciphertext components. The remaining term has U′ but u0 is not available in the numerator or
denominator of ĝ ui /(u j vk ) terms in the assumption. Let si ,1 be the first element of si and b j be
the first column of B j . Then recall that

∑
i , j η`,i , j sTi b j and

∑
i , j η`,i , j si ,1B j are matrices with non-

zero values in the first row and first column only, respectively, due to Sym-Prop?. Thus the vector
pT :=∑

i , j η`,i , j B j U′sTi does not depend on the first row and column of U′, which are the only places

u0 appears, due to Lemma 5.3 and 5.4. Therefore, ĝ 〈v∗,p〉 can be generated from the ĝ ui /(u j vk ) terms
of the assumption.

As far as the product of ĝi , j terms in (8) is concerned, we handle them in the same manner
as the corresponding key components. B uses ExtendG with inputs PP, SP, td, and ĝ 〈u,si 〉 to get
ĝi ,1, . . . , ĝi ,n for i ∈ [w1]+.

Finally, B needs to simulate CT?. Its distribution is statistically close to e(ĝδ0 , MSK), which is
implicitly set to e(ĝ 〈u,s0〉, MSK), and can be generated by pairing CT0 with MSK.
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A Pair Encoding Schemes: Prior Formulation

We describe here the formulation of pair encoding schemes due to Agrawal and Chase [AC16],
which is same as the one given by Attrapadung [Att15].

• Param(par) → n. When given par as input, Param outputs an n ∈N that specifies the number
of common variables, which is denoted by b := (b1,b2, . . . ,bn).

• EncCt(x, N ) → (c; w2). On input N ∈N and x ∈X(N ,par), EncCt outputs a vector of w1 polyno-
mials c := (c1,c2, . . . ,cw1 ) and a non-negative integer w2, where for ` ∈ [w1],

c` = ζ`s + ∑
i∈[w2]

η`,i si + ∑
j∈[n]

θ`, j sb j + ∑
i∈[w2],

j∈[n]

ϑ`,i , j si b j ,

and ζ`,η`,i ,θ`, j ,ϑ`,i , j ∈ZN .

Further, for any i ∈ [w2], if ϑ`,i , j 6= 0 for some ` and j , then si ∈ c16. In simple words, if si

appears with a b j in any polynomial, then it must be explicitly given out. It is also required
that s ∈ c.

16We are viewing the vector c of polynomials as a set here.
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• EncKey(y, N ) → (k;m2). On input N ∈ N and y ∈ Y(N ,par), EncKey outputs a vector of m1

polynomials k := (k1,k2, . . . ,km1 ), where for t ∈ [m1],

kt = τtα + ∑
i ′∈[m2]

υt ,i ′ri ′ + ∑
i ′∈[m2],

j∈[n]

φt ,i ′, j ri ′b j ,

and τt ,υt ,i ′ ,φt ,i ′, j ∈ZN .

Once again, for any i ′ ∈ [m2], if φt ,i ′, j 6= 0 for any t and j , then ri ′ ∈ k.

• Pair(x, y, N ) → E. On input N , and both x and y , Pair outputs a matrix E of size m1 ×w1 with
entries inZN , such that for any ` and t , ifφt ,i ′, j ′ and (at least) one of θ`, j or ϑ`,i , j are non-zero
(for some i = [w2], i ′ ∈ [m2], and j , j ′ ∈ [n]), then Et ,` = 0.

Correctness. A pair encoding scheme is correct if for every κ= (N ,par), x ∈Xκ and y ∈Yκ such that
Pκ(x, y) = 1, the following holds symbolically

kEcT = ∑
t∈[m1],
`∈[w1]

Et ,`kt c` =αs.

An alternate formulation. We now describe why it is sufficient to work with a restricted form of
pair encodings without losing any generality. More formally, we show that any pair encoding of
the form above can be converted into one of a special form without affecting any known security
property like perfect, computational [Att15] or relaxed perfect [AC16].

Let V = {s, s1, . . . , sw2 ,α,r1, . . . ,rm2 } be the set of all variables in a pair encoding. We say that
a variable v ∈ V is non-lone if it appears with a b j in some polynomial (otherwise, it is lone).
Specifically, s is non-lone if θ`, j 6= 0 for some `, j ; for i ∈ [w2], si is non-lone if ϑ`,i , j 6= 0 for some `,
j ; and, for i ′ ∈ [m2], ri ′ is non-lone if φt ,i ′, j 6= 0 for some t , j . We know that α is always lone because
terms of the form αb j are not allowed.

If there is a polynomial of the form p = σv (σ ∈ ZN , v ∈ V ) in the encoding, then v can be
removed from any other polynomial p ′ by replacing p ′ with σp ′−σ′p, where σ′ is the coefficient of
v in p ′. It is easy to see that by modifying E appropriately, correctness still holds. Security properties
are not affected because an adversary can do such replacements himself, even if the polynomials
are in the exponent of some group element like in Attrapadung’s computational property.

Once the above transformation is applied, note that a non-lone variable v does not appear
with other terms in any polynomial, because by definition of pair encodings, there is always a
polynomial of the form p = v . The same holds for the variable s, so from now on we treat it as a
non-lone variable.

If a polynomial of the form p̂ =σv̂ is available for a lone variable v̂ 6=α, then we call v̂ a frivolous
variable. As discussed above, all other occurrences of v̂ can be removed from the encoding. But,
since v̂ does not occur with a b j , p̂ is the only polynomial left that has v̂ in any form. Now this
polynomial can also be removed without affecting correctness—just set all entries of E that pair p̂
with another polynomial to 0 (security properties are obviously preserved).

Call the polynomials that just have a single (non-lone) variable simple, and any other polynomial
non-simple. Once the above transformations have been applied, a non-simple polynomial can
only be one of two types: either it is a sum of lone variables only (type-I) (but it may also include
polynomials of the form σα), or it additionally has terms of the form sb j , si b j or ri ′b j (type-II). In
the following, we will get rid of all type-I polynomials.

42



Let p = σv̂ +q be a type-I polynomial where v̂ 6= α and q is a sum of lone variables. Replace
v̂ by v̂ −σ−1q in all the polynomials including p. This does not violate correctness because kEcT

does not have a v̂ term. Further, v̂ −σ−1q is an independent and uniformly distributed random
variable like v̂ , and so all the security properties are preserved. Also, note that a type-II polynomial
cannot become type-I due to this replacement.

v̂ is now a frivolous variable. Therefore, all occurrences of v̂ in other polynomials can be done
away with, and the modified polynomial p (which is now just σv̂) can also be removed. Thus, we
removed at least one type-I polynomial and a lone variable.

We can keep repeating the process above as long as we have a type-I polynomial of the form
σ1v̂1 +σ2v̂2 + . . . where at least one of the variables is not α. Since we get rid of a lone variable
each time, there could be at most w2 +m2 iterations. The only type-I polynomials that may be
left at the end are of the form p? = σα, but we claim that this is not possible. Note that all the
transformations we have applied to the original encoding preserve all the security properties, so
the resulting scheme with p? must also be secure. However, one can easily distinguish between α
being 0 or chosen at random given p? in plain or in exponent—thus, making the modified encoding
insecure. We thus conclude that no polynomials of type-I are left.

In light of the above discussion, we can simplify the description of the vector of polynomials
c and k output by EncCt and EncKey, respectively. Several of these polynomials are simple: they
consist of just a non-lone variable. Excluding them, suppose we are left with w3 and m3 number
of (type-II) non-simple polynomials in c and k respectively. Let w1 +1 and m1 be the number of
non-lone variables in the encoding of x and y respectively. Similarly, let w2 and m2 be the number
of lone variables. Then, the non-simple polynomials are given by

c` = ∑
z∈[w 2]

η`,z ŝz + ∑
i∈[w 1]+, j∈[n]

η`,i , j si b j ,

and
kt = φtα + ∑

z ′∈[m2]

φt ,z ′ r̂z ′ + ∑
i ′∈[m1], j∈[n]

φt ,i ′, j ri ′b j ,

for ` ∈ [w3] and t ∈ [m3], where we distinguish the lone variables from non-lone by using a hat
symbol, and use s0 to represent the variable s. Note that in any c` (resp. kt ), not all η`,i , j (resp.
φt ,i ′, j ) can be zero.

Finally, we turn our attention to the matrix E output by the Pair algorithm. We know that two
polynomials, one with si b j and other with ri ′b j ′ , cannot be multiplied with each other. In other
words, the non-simple polynomials we have defined above can never be paired. Further, pairing
simple polynomials, like an si with an ri ′ , is not useful either, because there is no other product
that can generate the monomial si ri ′ . Therefore, it is enough to consider the product of simple
polynomials output by EncCt with the non-simple polynomials output by EncKey, and vice versa.
So we can define a new pair algorithm that outputs two matrices E and E, with the first one taking a
linear combination of the products of the former type, and the second one of the latter type.

B Proving Symbolic Property for Encoding Schemes

We now present pair encoding schemes for several attribute-based encryption (ABE) predicates
and regular languages, and give short and easy to verify proofs of their co-selective and selective
symbolic property. This leads to fully secure ABE schemes under the q-ratiodsg assumption, by first
augmenting the encoding (if need be) so that it satisfies enhanced symbolic property (Theorem 5.2)
and then applying the generic transformation from Section 5.4. Thus our approach demonstrates
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how the process of designing fully secure encryption schemes for even sophisticated predicates can
be greatly simplified.

Specifically, we consider five types of predicates: CP-ABE with unbounded attribute re-use, CP-
ABE with short ciphertexts, unbounded KP-ABE for large universes, KP-ABE with short ciphertexts,
and the regular language predicate. The first pair encoding is new, the second one is from Agrawal
and Chase [AC16], and the rest have been adapted from Attrapadung [Att14a]. We do not provide a
pairing algorithm or prove correctness for any of the schemes, since it is either straightforward or
follows easily from the cited papers.

A careful reader would observe that we do not have as many polynomials in the encodings
adapted from Attrapadung as he originally had. The primary reason for this is that we have a more
structured definition of pair encodings where non-lone variables are not treated as polynomials.
Much like Attrapadung, both the number of non-lone variables and polynomials contribute to the
size of ciphertexts and keys in the transformation of pair encodings to encryption schemes (see
Remark 5.9).

Attribute-based encryption. In an attribute-based encryption scheme, the access policy is repre-
sented by a linear secret sharing (LSS) scheme (A,π), where A is an n1×n2 matrix with entries in ZN

and π is a mapping from [n1] to an attribute universe U . Let ai denote the i th row of A. Let S ⊆U be
a set of attributes and Λ= {i | i ∈ [n1],π(i ) ∈ S} be the indices of rows in A associated with S. Also,
ai , j denotes the element in the i th row and j th column of A.

We say that the LSS scheme (A,π) accepts S if e = (1,0, . . . ,0) lies in the span of rows associated
with S. In other words, there exists constants {εi }i∈Λ such that

∑
i∈Λ εi ai = e if S is acceptable. On

the other hand, if (A,π) does not accept (or rejects) S, then there must exist a vector w = (w1, . . . , wn2 )
such that w is orthogonal to ai for all i ∈ S but not to e. Thus we can assume that w1 = 1 without
loss of generality.

Throughout this section we will use some special matrices and vectors that have only one
non-zero entry. For d1,d2 ∈N, i ∈ [d1] and j ∈ [d2], let

• Ei , j be a d1 ×d2 matrix with 1 at i th row and j th column, and 0 everywhere else;

• e j be a vector of size d2 with 1 at the j th position and 0 everywhere else;

• ei be a vector of size d1 with 1 at the i th position and 0 everywhere else.

Note that Ei , j eTk = eTi if j = k, otherwise the product is 0T. Similarly, ek Ei , j = e j if k = i , otherwise
the product is 0.

B.1 CP-ABE with Unbounded Attribute Re-Use

The predicate family in this case is indexed by κ= (N ,T ). Xκ is the set of all LSS schemes where the
matrix has entries in ZN and the range of the mapping is [T ], and Yκ is given by the set {S | S ⊆ [T ]}.
For all (A,π) ∈ Xκ and S ∈ Yκ, Pκ((A,π),S) = 1 if and only if (A,π) accepts S. It is clear from the
definition of the predicate family that the attribute universe is [T ] and π need not be injective.

We need to set-up some more notation for this encoding. For any LSS scheme (A,π), let
ρ(i ) = |{ j |π( j ) =π(i ), j ≤ i }|. (If an attribute y is attached to the second and fifth rows, then ρ(2) = 1
and ρ(5) = 2.) Also, let σ(y,`) denote the index of the the row which has the `th occurrence of y .
We are now ready to formally describe a new encoding Πre-use:

• Param(par) → T +1. Let b = (b1,b2, . . . ,bT ,b′).
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• EncCt((A,π), N ) → c(s, ŝ,b) = (c1, . . . ,cn1 ) where

ci = ai (s0b′, ŝ2, . . . , ŝn2 )T+ sρ(i )bπ(i ),

s = (s0, s1, . . . , sd ), ŝ = (ŝ2, . . . , ŝn2 ), and d is the maximum number of times any attribute
appears in π.

• EncKey(S, N ) → k(r, r̂,b) = (k1, {k2,y }y∈S) where

k1 =α+ r b′, k2,y = r by ,

r = (r ), and r̂ = (α).

In this encoding scheme, ŝ2, . . . , ŝn2 ,α are lone variables while s0, s1, . . . , sd ,r are non-lone. We
now prove selective and co-selective symbolic property. We use the notation p : q to denote a
variable p and its corresponding matrix/vector q .

Selective symbolic property. We use Ei , j , e j and ei with d1 set to n2 and d2 set to d . The matri-
ces/vectors generated by EncB, EncS and EncR are given by

by : − ∑
`∈[d ]

∑
j∈[n2]

aσ(y,`), j E j ,` for y ∈ [T ], b′ : E1,1,

s0 : e1, ŝ j : e j for j = 2, . . . ,n2, s` : e` for ` ∈ [d ],

α : e1, r : − ∑
j∈[n2]

w j e j .

If there is no i such that π(i ) = y , then by = 0. Note that since we are proving selective symbolic
property, only the vectors output by EncR can depend on both (A,π) and S.

Upon substitution in k2,y for y ∈ S (and by 6= 0), we have(∑
j

w j e j

)( ∑
`∈[d ]

∑
j

aσ(y,`), j E j ,`

)
= ∑

`∈[d ]
aσ(y,`), j w j e` = 0.

It is easy to see that k1 goes to 0 as well because w1 = 1. Lastly, substitution in ci gives

∑
j

ai , j eTj −
(∑
`

∑
j

aσ(π(i ),`), j E j ,`

)
eTρ(i ) = ∑

j
ai , j eTj −∑

j
ai , j eTj = 0T,

because the i th row has ρ(i )th occurrence of π(i ). Further, the vectors corresponding to both α and
s0 are e1. Hence their inner product is non-zero.

Co-selective symbolic property. Here d1 and d2 are set to 1 and T , respectively. We have

by : 0 for y ∈ S and −E1,y otherwise, b′ : E1,1,

s0 : w1e1, ŝ j : w j e1 for j = 2, . . . ,n2, s` :
∑

i :ρ(i )=`
ai wTeπ(i ) for ` ∈ [d ],

α : e1, r : −e1.

Upon substitution in k1, k2,y for y ∈ S, and ci for i ∈Λ, we clearly get 0. The only remaining case
is ci for i ∉Λ, for which we have

ai wTeT1 −E1,π(i )

( ∑
t :ρ(t )=ρ(i )

at wTeTπ(t )

)
= ai wTeT1 −ai wTeT1 = 0T.

Further, the vector corresponding to α is e1, and the vector for s0 is also e1 since w1 = 1. Hence
their inner product is non-zero.
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B.2 Unbounded KP-ABE with Large Universes

The predicate family in this case is indexed by κ= (N ). Xκ is given by the set {S | S ⊆ZN } and Yκ
is the set of all LSS schemes where the matrix has entries in ZN and the range of the mapping is
also ZN . For all S ∈Xκ and (A,π) ∈Yκ, Pκ(S, (A,π)) = 1 if and only if (A,π) accepts S. It is clear from
the definition of the predicate family that the attribute universe is unbounded and π need not be
injective.

• Param(par) → 3. Let b = (b0,b1,b2).

• EncCt(S, N ) → c(s, ŝ,b) = ({cy }y∈S) where

cy = sb2 + sy (b0 +b1 y)

and s = (s, {sy }y∈S).

• EncKey((A,π), N ) → k(r, r̂,b) = ({k1,i ,k2,i }i∈[n1]) where

k1,i = ai (α, v2, . . . , vn2 )T+ ri b2, k2,i = ri (b0 +b1π(i )),

r = (r1, . . . ,rn1 ), and r̂ = (α, v2, . . . , vn2 ).

In this encoding scheme, all ct-enc variables s, {sy }y∈S are non-lone. Among key-enc variables,
r1, . . . ,rn1 are non-lone while α, v2, . . . , vn2 are lone. Also, s plays the role of s0.

We now prove selective and co-selective symbolic property. Below, v1 is used to denote α.

Selective symbolic property. Let d = |S| and S = (y1, . . . , yd ). d1 and d2 are set to d + 1 and d ,
respectively. The matrices/vectors generated by EncB, EncS and EncR are given by

b0 :
d∑

j=1
−Ed+1, j + y j E j , j , b1 : −

d∑
j=1

E j , j , b2 : Ed+1,1,

s : e1, syi : ei for i ∈ [d ],

vi : wi e1 for i ∈ [n2], ri : ai wT

(
−ed+1 +

d∑
j=1

−e j

y j −π(i )

)
if i ∉Λ,

and 0 otherwise.
Upon substitution in cyi we have

Ed+1,1eT1 +
(

d∑
j=1

(y j − yi )E j , j −Ed+1, j

)
eTi

= eTd+1 + (yi − yi )eTi −eTd+1 = 0T.

Substitution in k1,i for i ∉Λ gives

ai wTe1 +ai wT

(
−ed+1 +

d∑
j=1

−e j

y j −π(i )

)
Ed+1,1

= ai wTe1 −ai wTe1 = 0.
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Finally, substitution in k2,i for i ∉Λ yields

ai wT

(
−ed+1 +

d∑
j=1

−e j

y j −π(i )

)(
d∑

j=1
(y j −π(i ))E j , j −Ed+1, j

)

= ai wT

(
d∑

j=1
e j −

d∑
j=1

e j
y j −π(i )

y j −π(i )

)
= 0.

One could also verify with ease that k1,i and k2,i give 0 for i ∈ Λ because ai wT = 0 for those i .
Further, the vector corresponding to α is e1 since w1 = 1, and the vector for s0 (or s) is also e1.
Hence the desired inner product is non-zero.

Co-selective symbolic property. Here d1 and d2 are set to n1 and max(n1,n2), respectively. We
have

b0 : −
n1∑
`=1

E`,`π(`), b1 :
n1∑
`=1

E`,`, b2 : −
n1∑
`=1

n2∑
j=1

a`, j E`, j ,

s :
n2∑

j=1
w j e j , syi :

∑
t∉Λ

at wTet

yi −π(t )
for i ∈ [d ],

ri : ei for i ∈ [n1], vi : ei for i ∈ [n2].

Upon substitution in cyi we have(
−

n1∑
`=1

n2∑
j=1

a`, j E`, j

)
n2∑

j=1
w j eTj +

(
n1∑
`=1

E`,`(yi −π(`))

) ∑
t∉Λ

at wTeTt
yi −π(t )

= −∑
j

w j
∑
`

a`, j eT` + ∑
`∉Λ

a`wTeT` = 0T.

Substitution in k1,i gives
∑

j ai , j e j − ei
∑
`, j a`, j E`, j = 0. And finally, substitution in k2,i yields

ei
∑
`E`,`(π(i )−π(`)) = 0.

B.3 KP-ABE with Short Ciphertexts

The only difference between this predicate family and the previous one is that there is a bound on
the size of attribute sets. Specifically, the family is indexed by κ= (N ,T ), where T is the bound.

• Param(par) → T +3. Let b = (b0,b1, . . . ,bT+1,b′).

• EncCt(S, N ) → c(s, ŝ,b) = (c) where

c = sb′+ s̃(b0 +b1z0 + . . .+bT+1zT ),

s = (s, s̃), and zi is the coefficient of xi in p(x) :=Πy∈S(x − y).

• EncKey((A,π), N ) → k(r, r̂,b) = ({k1,i ,k2,i }i∈[n1]) where

k1,i = ai (α, v2, . . . , vn2 )T+ ri b′, k2,i =
(
ri b0,ri (b2 −b1π(i )), . . . ,ri (bT+1 −b1π(i )T )

)
,

r = (r1,r2, . . . ,rn1 ), and r̂ = (α, v2, . . . , vn2 ).
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Selective. Once again, let d = |S| and S = (y1, . . . , yd ). Here, Ei , j ,e j ,ei are defined in a slightly
different way. For i ∈ [T +1]+, let Ei ,1 be a (T +2)×1 matrix (or a column vector) with 1 at (i +1)th
row and first column (0 everywhere else), and let ei be a (T +2)-length unit vector with 1 at the
(i +1)th position. Also, let e1 = (1). We substitute the variables with the following.

b0 : ET+1,1 −
T∑

t ′=0
Et ′,1zt ′ , bt+1 : Et ,1 for t ∈ [T ]+, b′ : −ET+1,1,

s : e1, s̃ : e1,

vi : wi e1 for i ∈ [n2], ri : ai wT

(
eT+1 +

T∑
t=0

π(i )t et

p(π(i ))

)
if i ∉Λ,

and 0 otherwise.
Upon substitution in c we have

−ET+1,1eT1 +
(

ET+1,1 −
T∑

t ′=0
Et ′,1zt ′ +

T∑
t=0

Et ,1zt

)
eT1 = 0T.

Rest of the analysis is for i ∉ Λ; the other case is easy to see. Substitution in k1,i gives ai wTe1 −
ai wTe1 = 0. The first component of k2,i gives

ai wT

(
e1 −

T∑
t ′=0

π(i )t ′zt ′e1

p(π(i ))

)
= ai wT

(
e1 −e1

p(π(i ))

p(π(i ))

)
= 0.

And finally, substitution in the t +1th component of k2,i for t ∈ [T ] yields

ai wT
(
π(i )t e1

p(π(i ))
− e1

p(π(i ))
π(i )t

)
,

which is also 0.

Co-selective. Here d1 and d2 are set to n1 and max(n1,n2), respectively.17 Matrices and vectors
corresponding to the variables are as follows:

b0 : 0, bt :
n1∑
`=1

E`,`π(`)t−1 for t ∈ [T +1], b′ : −
n1∑
`=1

n2∑
j=1

a`, j E`, j ,

s :
n2∑

j=1
w j e j , s̃ :

∑
`∉Λ

a`wTe`
p(π(`))

,

ri : ei for i ∈ [n1], vi : ei for i ∈ [n2].

Upon substitution in c we have(
−

n1∑
`=1

n2∑
j=1

a`, j E`, j

)
n2∑

j=1
w j eTj +

(
T+1∑
t=1

zt−1

n1∑
`=1

E`,`π(`)t−1

) ∑
`∉Λ

a`wTeT
`

p(π(`))

=−∑
j

w j
∑
`

a`, j eT` +
(

n1∑
`=1

E`,`p(π(`))

) ∑
`∉Λ

a`wTeT
`

p(π(`))

=−∑
`

a`wTeT` + ∑
`∉Λ

a`wTeT` = 0T.

Substitution in k1,i gives
∑

j ai , j e j −ei
∑
`, j a`, j E`, j = 0. And finally, substitution in the t th compo-

nent of k2,i for t ∈ [2,T +1] yields ei
∑
`E`,`(π(`)t−1 −π(i )t−1) = 0.

17Ei , j ,ei ,e j are not defined as in the selective property. Rather we use the same definition that we have been using for
most of the proofs so far (see the paragraph on attribute-based encryption, just before Appendix B.1.)
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B.4 CP-ABE with Short Ciphertexts

The predicate family in this case is indexed by κ= (N ,T,n1,n2). Xκ is given by the set {S | S ⊆ [T ]}.
Yκ is the set of all LSS schemes where the matrix is of size n1 ×n2 with entries in ZN and the range
of the mapping is also ZN . (So there is a bound on the size of attribute sets but not on the universe.)
For all S ∈Xκ and (A,π) ∈Yκ, Pκ(S, (A,π)) = 1 iff (A,π) accepts S.

• Param(par) → n1(n2 +T +1). Let b =
({

bi , j
}

i∈[n1], j∈[n2] ,
{

b′
i ,t

}
i∈[n1],t∈[T ]+

)
.

• EncCt((A,π), N ) → c(s, ŝ,b) = (c) where

c = s

 ∑
i∈[n1],
j∈[n2]

ai , j bi , j +
∑

i∈[n1],
t∈[T ]+

π(i )t b′
i ,t

 ,

and s = (s).

• EncKey(S, N ) → k(r, r̂,b) =
({

k2,i , j ,k3,i ,`, j ,k4,i ,y ,k5,i ,`,t
}

i ,`∈[n1],i 6=`, j∈[n2],y∈S,t∈[T ]+

)
where

k1,i , j = ri bi , j − v j , k2,i ,`, j = ri b`, j ,

k3,i ,y = ri
∑

t∈[0,T ]
y t b′

i ,t , k4,i ,`,t = ri b′
`,t ,

r = (r1,r2, . . . ,rn1 ), and r̂ = (v1, v2, . . . , vn2 ).

Selective. Let p(x) =Πy∈S(x − y) be a polynomial of degree at most T with attributes as the roots,
and zi be the coefficient of xi in it for i ∈ [T ]+. Here d1 and d2 are set to n1(n2 +T + 1) and 1,
respectively. We have

bi , j : E(i−1)n2+ j ,1 for i ∈ [n1], j ∈ [n2], b′
i ,t : En1n2+(i−1)(T+1)+t+1,1 for i ∈ [n1], t ∈ [T ],

b′
i ,0 : − ∑

t∈[T ]
π(i )t En1n2+(i−1)(T+1)+t+1,1 −

∑
j∈[n2]

ai , j E(i−1)n2+ j ,1 for i ∈ [n1],

s : e1, v j : w j e1 for j ∈ [n2],

ri :
∑

j∈[n2]
w j e(i−1)n2+ j − ai wT

p(π(i ))

∑
t∈[T ]+

zt ·en1n2+(i−1)(T+1)+t+1 for i ∈ [n1],

for i ∉Λ. (When i ∈Λ, we just have the first term.)
Substituting these values in c, we have(∑
i , j

ai , j E(i−1)n2+ j ,1 +
∑
i ,t
π(i )t En1n2+(i−1)(T+1)+t+1,1

−∑
i ,t
π(i )t En1n2+(i−1)(T+1)+t+1,1 −

∑
i , j

ai , j E(i−1)n2+ j ,1

)
eT1 ,
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which is clearly 0. Verifying k1,i , j , k2,i ,`, j , and k4,i ,`,t is straightforward. Finally, k3,i ,y upon substitu-
tion (for i ∉Λ) gives(∑

j
w j e(i−1)n2+ j − ai wT

p(π(i ))

∑
t

zt ·en1n2+(i−1)(T+1)+t+1

)
·(∑

t

(
y t −π(i )t )En1n2+(i−1)(T+1)+t+1,1 −

∑
j

ai , j E(i−1)n2+ j ,1

)

=−∑
j

w j ai , j e1 − ai wT

p(π(i ))
e1

∑
t

zt
(
y t −π(i )t ) = −ai wTe1 + ai wT

p(π(i ))
e1p(π(i )) = 0.

Co-selective. Let p be the same polynomial as defined for the selective property. d1 and d2 are set
to n1 and n2 +1, respectively. Then, we have

bi , j : Ei , j for i ∈ [n1], j ∈ [n2], b′
i ,t : zt Ei ,n2+1 for i ∈ [n1], t ∈ [T ]+,

s :
n2∑

j=1
w j e j −

∑
i∉Λ

ai wTen2+1

p(π(i ))
,

ri : ei for i ∈ [n1], v j : e j for j ∈ [n2].

Substituting these values in c, we have(∑
i , j

ai , j Ei , j +
∑
i ,t
π(i )t zt Ei ,n2+1

)(∑
j

w j eTj − ∑
i∉Λ

ai wTeTn2+1

p(π(i ))

)

=∑
i , j

ai , j w j eTi +
(∑

i
p(π(i ))Ei ,n2+1

)(
− ∑

i∉Λ

ai wTeTn2+1

p(π(i ))

)
=∑

i
ai wTeTi − ∑

i∉Λ
ai wTeTi = 0T.

Substitution in k1,i , j gives ei Ei , j −e j = 0. Verifying k2,i ,`, j and k4,i ,`,t is straightforward. Finally,
k3,i ,y upon substitution gives ei

∑
t y t zt Ei ,n2+1 = en2+1

∑
t y t zt = 0.

B.5 Regular Languages

A deterministic finite automaton (DFA) is a 5-tuple (Q,Λ,Ψ, q0,F ) where Q is the set of states, Λ
is the alphabet set, Ψ⊆Q ×Q ×Λ is the transition table, q0 ∈Q is the start state, and F ⊆Q is the
set of final states. One can, without loss of generality, assume that there is only one final state,
and it has no outgoing transition. The predicate family for regular languages associates DFAs with
keys and strings over Λ∗ with ciphertexts. The original encryption scheme proposed by Waters
[Wat12] could only operate over small universes with selective security. Attrapadung later gave a
fully secure scheme over large universes under specialized assumptions—the `-Expanded Diffie-
Hellman Exponent Assumption-1 (EDHE1) and the (n,m)-Expanded Diffie-Hellman Exponent
Assumption-2 (EDHE2). We show that a (simplified version) of his pair encoding scheme can
be shown to have both selective and co-selective symbolic property, thus giving a fully secure
scheme (with unbounded universe) under the q-ratio assumption (Corollary 7.2). Recall that this
assumption is implied by the (n,m)-EDHE2 assumption (Theorem C.2).

Formally, the predicate family is indexed by κ = (N ). The set Yκ has all DFAs M = (Q =
{q0, . . . , qn−1},Λ,Ψ, q0, qn−1) where Λ = ZN , and Xκ = {

w | w ∈ (ZN )∗
}
. A string w = (w1, . . . , w`)
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is accepted by M if there exists a sequence of states q1, . . . , q` s.t. (qi−1, qi , wi ) ∈Ψ and q` = qn−1.
We now give a pair encoding scheme for this predicate family.

• Param(par) → 5. Let b = (b0,b1,b2,b3,b4).

• EncCt(w = (w1, . . . , w`), N ) → c(s, ŝ,b) = (c1, {c2,i }i∈[`]) where

c1 = s0b0, c2,i = si−1(b1 +b2wi )+ si (b3 +b4wi ),

and s = (s`, s0, . . . , s`−1). Here s` plays the role of the special s0 variable.

• EncKey(M = (Q,ZN ,Ψ, q0, qn−1), N ) → k(r, r̂,b) = (k1, {k2,t ,k3,t }t∈[m]) where

k1 =−u0 + r0b0, k2,t = uxt + rt (b1 +b2σt ), k3,t =−uyt + rt (b3 +b4σt ),

where Ψ = {
(qxt , qyt ,σt ) | t ∈ [m]

}
, r = (r0, . . . ,rm), and r̂ = (un−1,u0, . . . ,un−2). Here un−1

plays the role of the special α variable.

The proof of selective and co-selective symbolic properties are as follows.

Selective. Here, Ei , j ,e j ,ei are defined in a slightly different way, for i ∈ [3`+1], j ∈ [`]+. Let Ei , j be
a (3`+1)× (`+1) matrix with 1 at i th row and ( j +1)th column, and 0 everywhere else. Also, let e j

be a (`+1)-length unit vector with 1 at ( j +1)th position and ei be a (3`+1)-length unit vector with
1 at the i th position. Matrices for the common variables are

b0 :
∑̀
j=1

E j , j , b1 :
∑̀
j=1

E j , j−1, b2 : 0,

b3 :
∑̀
j=1

−w j E`+ j , j −E j , j −
∑̀
j=0

w j E2`+ j+1, j , b4 :
∑̀
j=1

E`+ j , j +
∑̀
j=0

E2`+ j+1, j .

We just have si : ei for i ∈ [0,`] in the case of ct-enc variables.
Following [Wat12, Att14a], we define some notation. Let wi denote the vector formed by the last

`−i symbols of w for i ∈ [0,`], so that w0 = w and w` is empty. Let Mk be the same DFA as M except
that the start state is set to qk , for k ∈ [0,n−1]. Now, define Vk to be the set of all i such that the DFA
Mk accepts wi . One can see that 0 ∉V0 because w0 = w is not accepted by M0 = M . Also, ` ∉Vk for
any k ∈ [0,n −2] and Vn−1 = {`} since qn−1 is the only final state and it has no outgoing transition.
If we define V +1

x = {i + 1 | i ∈ Vx } for qx ∈ Q, then it can be shown that for all (qx , qy ,σ) ∈ Ψ, if
i ∈ (V +1

x \Vy )∪ (Vy \V +1
x ) then σ 6= wi . We are now ready to define the vectors for key-enc variables:

rt :
∑

j∈V +1
xt

e j +
∑

j∈V +1
xt \Vyt

e`+ j

σt −w j
− ∑

j∈Vyt \V +1
xt

e2`+ j+1

σt −w j
for t ∈ [m],

r0 : − ∑
j∈V0

e j , uk : − ∑
j∈Vk

e j for k ∈ [0,n −1].

We now substitute the matrices and vectors defined above into the polynomials one by one.
Upon substitution in c1, we clearly get 0, and in c2,i ,(∑̀

j=1
E j , j−1

)
eTi−1 +

(∑̀
j=1

(wi −w j )E`+ j , j −E j , j +
∑̀
j=0

(wi −w j )E2`+ j+1, j

)
eTi

= eTi + (wi −wi )eT`+i + (wi −wi )eT2`+i+1 −eTi = 0T.
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Substitution in k1 gives

∑
j∈V0

e j −
∑

j∈V0

e j

(∑̀
j=1

E j , j

)
= ∑

j∈V0

e j −
∑

j∈V0

e j = 0,

because 0 ∉V0. For k2,t we have

− ∑
j∈Vxt

e j +
 ∑

j∈V +1
xt

e j +
∑

j∈V +1
xt \Vyt

e`+ j

σt −w j
− ∑

j∈Vyt \V +1
xt

e2`+ j+1

σt −w j

 ∑̀
j=1

E j , j−1

= − ∑
j∈Vxt

e j +
∑

j∈V +1
xt

e j−1 = 0,

because xt ∈ [0,n −2], so ` ∉Vxt . Finally, for k3,t ,

∑
j∈Vyt

e j +
 ∑

j∈V +1
xt

e j +
∑

j∈V +1
xt \Vyt

e`+ j

σt −w j
− ∑

j∈Vyt \V +1
xt

e2`+ j+1

σt −w j


(∑̀

j=1
(σt −w j )E`+ j , j −E j , j +

∑̀
j=0

(σt −w j )E2`+ j+1, j

)

= ∑
j∈Vyt

e j +
− ∑

j∈V +1
xt

e j +
∑

j∈V +1
xt \Vyt

e j −
∑

j∈Vyt \V +1
xt

e j

 = ∑
j∈Vyt

e j −
∑

j∈Vyt

e j ,

which is also equal to 0. The inner-product we are interested here is in between the vectors for s`
and un−1. They are given by e` and −∑

j∈Vn−1
e j =−e`, respectively. Thus the inner-product is not

zero as desired.

Co-selective. Without loss of generality, we can assume that m ≥ n −1 because if there is a qx

(except q0) such that (qy , qx ,σ) ∉Ψ for any qy , σ, then qx is an unreachable state and it can be
left out. We define Ei , j ,e j ,ei for i ∈ [m]+, j ∈ [3m]+ as follows: Ei , j has a 1 in the (i +1)th row and
( j +1)th column, and 0 everywhere else; e j is a (3m +1)-length unit vector with 1 at the ( j +1)th
position; and, ei is a (m +1)-length unit vector with 1 at the (i +1)th position.

Matrices for the common variables are

b0 : E0,0, b1 :
m∑

k=1
σk Ek,m+k −Ek,xk , b2 :

m∑
k=1

−Ek,m+k ,

b3 :
m∑

k=1
−σk Ek,2m+k +Ek,yk , b4 :

m∑
k=1

Ek,2m+k .

We just have ri : ei for i ∈ [0,m] and uk : ek for k ∈ [0,n − 1] in the case of key-enc variables.
Once again, we define some notation before moving to the other variables. Let Ui = {k ∈ [0,n −
1] | Mk accepts wi } for i ∈ [0,`], where (recall that) Mk is the DFA M but with qk as the start state
and wi is the vector with the last `− i symbols of w. One can see that 0 ∉U0 for the same reason
as 0 ∉V0. Also, U` = {n −1} because empty string can only be accepted if the start and final states
are the same. Further, it can be shown that for all i ∈ [`], if σt = wi then xt ∈ Ui−1 ∧ yt ∈ Ui or
xt ∉Ui−1 ∧ yt ∉Ui . Now, vectors for ct-enc variables are given as

si :
∑

k∈Ui

ek −
∑

xk∈Ui ,
σk 6=wi+1

em+k

wi+1 −σk
− ∑

yk∈Ui ,
σk 6=wi

e2m+k

wi −σk

52



for i ∈ [0,`].
We now substitute the matrices and vectors defined above into polynomials one by one. Upon

substitution in k1, we clearly get 0, and in k2,t ,

ext +et

(∑
k

(σk −σt )Ek,m+k −Ek,xk

)
= ext + (σt −σt )em+t −ext = 0.

Substitution in k3,t gives

−eyt +et

(∑
k

(σt −σk )Ek,2m+k +Ek,yk

)
= −eyt + (σt −σt )e2m+t +eyt = 0.

c1 gives us 0T because 0 ∉U0. And lastly, for c2,i we have

[∑
k

(σk −wi )Ek,m+k −Ek,xk

] ∑
k∈Ui−1

eTk − ∑
xk∈Ui−1,
σk 6=wi

eTm+k

wi −σk
− ∑

yk∈Ui−1,
σk 6=wi−1

eT2m+k

wi−1 −σk



+
[∑

k
(wi −σk )Ek,2m+k +Ek,yk

] ∑
k∈Ui

eTk − ∑
xk∈Ui ,
σk 6=wi+1

eTm+k

wi+1 −σk
− ∑

yk∈Ui ,
σk 6=wi

eT2m+k

wi −σk


= ∑

xk∈Ui−1,
σk 6=wi

eTk − ∑
xk∈Ui−1

eTk − ∑
yk∈Ui ,
σk 6=wi

eTk + ∑
yk∈Ui

eTk = − ∑
xk∈Ui−1,
σk=wi

eTk + ∑
yk∈Ui ,
σk=wi

eTk ,

which is also equal to 0T because when σk = wi , xk ∈Ui−1 if and only if yk ∈Ui .
It is easy to see that the inner-product of vectors corresponding to s` and un−1 is non-zero

because n −1 ∈U`.

C The New Assumption

C.1 Relationship Between the Two Versions

We argue that Chen and Wee’s prime order DSG construction [CW14a, Section 6.2], referred to as
Πprime below, satisfies the q-ratiodsg assumption (Definition 5.6) if the underlying group satisfies
the q-ratio assumption (Definition 5.7).

Fix any positive integers d1 and d2. Suppose A is a PPT adversary that can break the (d1,d2)-
q-ratiodsg assumption. We use A to design an adversary B that can break the q-ratio assumption
with the same parameters. B receives (par,DG ,DH,T ) as input where par= (N ,G,H,GT , g ,h,e) and
T is either ĥ1/u0 or a random element from H. It runs the SampP algorithm ofΠprime using par as
the output of the prime-order group generator. It gives (PP, SP,td := (f, f1, . . . , fn , f∗, f∗1 , . . . , f∗n)) to A
where (PP, SP) is the output of SampP and td is sampled during its run. The output of algorithms
SampG0 and SampH0 of Πprime is given by g ŝf and h r̂ f∗ , respectively, where ŝ, r̂ ←R Z

∗
p . Thus g ŝ and

h r̂ are uniformly distributed over G and H, respectively, except with probability 1/p in each case.
So to simulate the G andH terms in the q-ratio assumption, B can simply raise the terms in DG to f
and the terms in DH to f∗. Finally, A is given T f∗ as the challenge. If T = ĥ1/u0 , then T f∗ is identically
distributed to h r̂ /u0f∗ , otherwise T f∗ is a fresh sample from SampH0 (except with probability 1/p).
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C.2 Relationship with Other Assumptions

Here we will show that the q-ratio assumption on prime-order bilinear maps is in fact implied by
several other assumptions which have been proposed recently and used to construct ABE schemes.

We first consider the `-ED HE2 assumption, which was proposed in [Att14a] to prove co-
selective security of a construction for ABE for regular languages. The original assumption required
that G be a prime order subgroup of a composite order group. Attrapadung later proposed using
the prime order analogue to achieve a construction for ABE for regular languages in prime order
groups [Att15]. We will consider the prime order analogue here.

Definition C.1 ((n,m)-ED HE2 Assumption in group G [Att14a]). The assumption is as follows. Let
N be the order of group G. Let D,T0,T1 be sampled as follows. Choose g ←R G and a,b,c,d1, . . . ,dm , z
←R ZN . Set D to be a tuple containing the following values:

g , g a , g b , g an−1c/z

g ai /d 2
j , g ai b/d j , g d j , g

ai d j /d 2
j ′ , g ai bd j /d j ′ , g ai /d 6

j , g
ai d j /d 6

j ′ ∀ i ∈ [n], j , j ′ ∈ [m], j 6= j ′

g ai c , g ai bcd j ∀ i ∈ [n −1]+

g ai bcd 5
j ∀ i ∈ [n]+, j ∈ [m]

g
ai bcd j /d 2

j ′ , g
ai bcd 5

j /d 6
j ′ ∀ i ∈ [2n −1], j , j ′ ∈ [m], j 6= j ′

g ai bc/d j ∀ i ∈ [2n −1], i 6= n, j ∈ [m]

g ai c/d 2
j , g ai b2cd j /d j ′ , g

ai bcd j /d 6
j ′ , g ai c/d 6

j , g
ai bcd 5

j /d 2
j ′ , g ai b2cd 5

j /d j ′ ∀ i ∈ [2n −1], j , j ′ ∈ [m]

Set T0 = g abz and T1 ←R G.
Then the assumption is that the distributions (D,T0) and (D,T1) are indistinguishable to any

PPT adversary.

Here we are concerned with asymmetric bilinear groups, so we consider the natural translation
of (n,m)-ED HE2, in which the adversary is also given h ←H raised to all the same exponents.
(Note that in the generic group model, this is hard if the above symmetric group assumption is
hard.)

Theorem C.2. The asymmetric (n,m)-ED HE2 assumption implies the (n,m)-q-ratio assumption.

Proof. Suppose we have an adversary A for the (n,m)-q-ratio assumption. Then we construct an
adversary B for the (n,m)-ED HE2 assumption as follows. B receives (D,T ), and ignores all values

in D except the values of the form g an−1c/z , g d j , g ai bd j /d j ′ ,hai c ,hai bc/d j .
It will implicitly set the generators in the q-ratio assumption to be (ḡ , h̄) = (g an−1c ,hab). It

will also choose random w1, . . . , wn ← ZN and implicitly set u0 = 1/z, u j = d j

can−1 , vi = wi ai−2c
b for

i ∈ [n], j ∈ [m]. Finally, it sends A a challenge consisting of

g an−1c/z , {g d j } j∈[m], {(g an−k+1bdi /d j )1/wk }i , j∈[m],i 6= j ,k∈[n];

{(hai−1c )wi }i∈[n], {(han+i− j bc/dk )wi /w j }i , j∈[n],i 6= j ,k∈[m];

and
T := habz
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It then outputs whatever A does.
To see that this is a perfect simulation of the adversary’s view in the q-ratio game, consider the

following:

g an−1c/z = (g an−1c )1/z = ḡ u0

g d j = (g an−1c )
d j

an−1c = ḡ u j

(g an−k+1bdi /d j )1/wk = (g an−1c )
a−(k−2)b

cwk
di /d j = ḡ

ui
u j vk

(hai−1c )wi = (hab)wi ai−2c/b = h̄vi

(han+i− j bc/dk )wi /w j = (hab)
ai− j an−1cwi

dk w j = h̄
vi

v j uk

Finally,
habz = (hab)z = h̄1/u0 ,

so if B is given a challenge with habz , A’s view will be identical to that in q-ratio when he is given T0,
and if B’s challenge is random, A’s view will be identical to that in q-ratio when he is given T1.

Next we consider the source group q-parallel BDHE assumption, which was proposed in [LW12]
to prove security of a ciphertext policy ABE scheme. (This scheme is interesting because, unlike all
of the CP-ABE’s proved fully secure under non-q-type assumptions, it allows for policies in which
the same attribute appears many times, without trivially blowing up the key sizes.)

Definition C.3 (q-parallel BDHE Assumption in group G). The assumption is as follows. Let p be
the order of group G. Let D,T0,T1 be sampled as follows. Choose g ←R G and c,d , f ,b1, . . . ,bq ←R Zp .
Set D to be a tuple containing the following values:

g , g f , g d f

g c i ∀ i ∈ [2q], i 6= q +1

g c i /b j ∀ i ∈ [2q], j ∈ [q], i 6= q +1

g d f b j ∀ j ∈ [q]

g d f c i b j ′/b j ∀ i ∈ [q], j , j ′ ∈ [q], j 6= j ′

Set T0 = g dcq+1
and T1 ←R G.

Then the assumption is that the distributions (D,T0) and (D,T1) are indistinguishable to any
PPT adversary.

Here we are concerned with asymmetric bilinear groups, so we consider the natural translation
of q-parallel BDHE assumption, in which the adversary is also given h ←H raised to all the same
exponents. (Note that in the generic group model, this is hard if the above symmetric group
assumption is hard.)

Theorem C.4. The asymmetric q-parallel BDHE assumption implies the (q, q)-q-ratio assumption.
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Proof. Suppose we have an adversary A for the (q, q)-q-ratio assumption. Then we construct an
adversary B for the q-parallel BDHE assumption as follows. B receives (D,T ) and proceeds as
follows:

It will implicitly set the generators in the q-ratio assumption to be (ḡ , h̄) = (g ,hd f cq+1
). It will

also choose random w1, . . . , wq ←ZN and implicitly set u0 = f , u j = d f b j , vi = wi c i−q−1

d f for i , j ∈ [q].
Finally, it sends A a challenge consisting of

g f , {g d f b j } j∈[q], {(g d f cq+1−k bi /b j )1/wk }i , j∈[q],i 6= j ,k∈[q];

{(hc i
)wi }i∈[q], {(hcq+1+i− j /bk )wi /w j }i , j∈[q],i 6= j ,k∈[q];

and
T := hdcq+1

It then outputs whatever A does.
To see that this is a perfect simulation of the adversary’s view in the q-ratio game, consider the

following:

g f = ḡ u0

g d f b j = ḡ u j

(g d f cq+1−k bi /b j )1/wk = g (
wk ck−q−1

d f )−1bi /b j = ḡ
ui

u j vk

(hc i
)wi = (hd f cq+1

)
wi ci−q−1

d f = h̄vi

(hcq+1+i− j /bk )wi /w j = (hd f cq+1
)

wi
w j

c i− j · 1
d f bk = h̄

vi
v j uk

Finally,

hdcq+1 = (hd f cq+1
)1/ f = h̄1/u0 ,

so if B is given a challenge with hdcq+1
, A’s view will be identical to that in q-ratio when he is given

T0, and if B’s challenge is random, A’s view will be identical to that in q-ratio when he is given
T1.

D Proof of Security: Remaining Details

Hybrid structure: The following hybrids are defined for ϕ ∈ [1,ξ] (fix any b ∈ {0,1}).

• Hyb0: This is the real security game IND-CPAb
A(λ,par) described in Section 2.1.

• Hyb1: This game is same as the above except that the ciphertext is semi-functional.

• Hyb2,ϕ,1: This game is same as the above except that ϕ−1 keys are semi-functional, ϕth key
is pseudo-normal, and rest of the keys are normal.

• Hyb2,ϕ,2: This game is same as the above except that the ciphertext is ext-semi-functional
and ϕth key is ext-pseudo-normal.

• Hyb2,ϕ,3: This game is same as the above except that theϕth key is ext-pseudo-semi-functional.
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• Hyb2,ϕ,4: This game is same as the above except that the ciphertext is semi-functional and
ϕth key is pseudo-semi-functional.

• Hyb2,ϕ,5: This game is same as the above except that the ϕth key is semi-functional.

• Hyb3: This game is same as Hyb2,ξ,5 except that the ciphertext is a semi-functional encryption
of a random message in GT .

Our goal is to show that Hyb0 and Hyb3 are computationally indistinguishable from each
other, irrespective of the bit b used by Chal in the security game IND-CPAb

A(λ,par), which implies
that ΠP is a secure encryption scheme. First, Hyb0 and Hyb1 are shown to be computationally
indistinguishable due to the left subgroup indistinguishability property of DSG. After that, the keys
are taken one by one from normal to semi-functional space, starting from the first one, by going
through five hybrids.

Hyb2,0,5 (or, equivalently, Hyb1) is computationally indistinguishable from Hyb2,1,1 using the
right subgroup indistinguishability property of DSG. Further, Hyb2,1,1 and Hyb2,1,2 are identical in
the view of any adversary due to the parameter-hiding property. The transition from Hyb2,1,2 to
Hyb2,1,3 is the most complex one involving the new assumption on DSG as well as the symbolic
property of PES. The proof is detailed in Lemma 7.3. Once we are in Hyb2,1,3, we can move to
Hyb2,1,4 in (almost) the same way as we go from Hyb2,1,1 to Hyb2,1,2, using parameter-hiding. Also,
the computational indistinguishability of Hyb2,1,4 and Hyb2,1,5 is very similar to that of Hyb2,0,3 and
Hyb2,1,1.

The first key is now in the semi-functional space. The steps above are repeated to transform the
other keys as well, till we are in the hybrid Hyb2,ξ,5. The last step of the proof is to show that Hyb2,ξ,5

and Hyb3 are statistically close to each other.

E New Schemes

Due to the abstract nature of pair encoding framework and the simplicity of our new symbolic
property, we have obtained several very general transformations. This leads to several new results.
In particular, we have:

• Constant-size ciphertexts/keys for regular languages. In Appendix B.5, we proved symbolic
security for a pair encoding scheme for regular languages. In this scheme, ciphertext and keys
correspond to strings and DFAs, respectively. We can apply the dual-predicate conversion
in Section 6.3 to obtain a pair encoding scheme for the dual predicate, where ciphertexts
correspond to DFAs. Then, by applying the two transformations in Section 6.1 and 6.2, we get
a pair encoding with a single variable and polynomial in the ciphertext encoding (but with a
bound on the size of DFAs). Both these transformations preserve symbolic property. Finally,
by applying the augmentation procedure in Section 5.1 (that adds a few variables and polyno-
mials only), and then using the resulting encoding in the generic transformation (Gen-Trans)
of Section 5.4, we get a fully secure encryption scheme in dual system groups under the
q-ratiodsg assumption (Theorem 7.1). This leads to an encryption scheme with constant-size
ciphertexts in prime-order groups under the k-linear and q-ratio assumptions (Corollary 7.2).
The latter assumption is implied by several existing assumptions, see Appendix C.2.

It is also easy to see that if we don’t apply the dual-predicate conversion and apply the trans-
formations for compact keys followed by augmentation and Gen-Trans, we get a fully secure
encryption scheme for regular languages with constant-size keys (where keys correspond to
bounded-size DFAs).
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• Constant-size ciphertext/keys for doubly spatial encryption. Even though we don’t study doubly
spatial encryption in this paper, using the fact that the encoding scheme given by Attrapadung
[Att14a] is not trivially broken, and then applying Theorem 4.2, we obtain symbolic property
for it.18 Therefore, we can get fully secure encryption schemes with constant-size ciphertext
or keys by applying the transformations in Section 6, augmentation in Section 5.1, and finally
Gen-Trans in Section 5.4.

18Interestingly, the symbolic security in this case would rely on a computational assumption rather than being shown
unconditionally.
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