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Abstract. In this article, a new oblivious transfer (OT) protocol, se-
cure in the presence of erasure-free one-sided active adaptive adversaries
is presented. The new bit OT protocol achieves better communication
complexity than the existing bit OT protocol in this setting. The new bit
OT protocol requires fewer number of public key encryption operations
than the existing bit OT protocol in this setting. As a building block, a
new two-party lossy threshold homomorphic public key cryptosystem is
designed. It is secure in the same adversary model. It is of independent
interest.

1 Introduction

Oblivious transfer (OT) is a fundamental primitive of cryptography. An 1-out-
of-2 bit OT is a protocol between two parties. The input of the sender S is a pair
of bits {x0, x1}, and the input of the receiver R is a choice bit σ. The goal is that
R learns only xσ without learning x1−σ, and S remains oblivious to which bit
was requested. OT is ‘complete’ for secure multiparty computation in the sense
that if an implementation of OT is given, then it is possible to securely evalu-
ate any polynomial time computable function, without any additional primitive
[23]. Besides multiparty computation, OT can be used in private information re-
trieval, privacy preserving data mining, signing contract protocols, randomized
coin flipping protocols, and certified email transfer protocols.
In the passive adversary model, the corrupted parties try to learn the inputs and
outputs of the honest parties but still follow the protocol. In the active adversary
model, the corrupted parties may behave in any possible way, including the vio-
lation of the protocol. The active adversary model portrays the real world better.
In the covert adversary model, a corrupted party may cheat in an arbitrary way
but it is guaranteed to get caught with a fixed probability. This probability is
called the deterrence factor of the model.
In the static adversary model, the adversary fixes the set of parties to corrupt
before the protocol starts, and this set remains fixed throughout the execution
of the protocol. In the adaptive adversary model, the adversary may corrupt a



party at any time of the protocol, and even after the protocol has finished its
execution. The adaptive adversary model captures the real-world scenario better
than the static adversary model. In the adaptive adversary model with erasure, it
is assumed that parties can erase some of its local data and randomness. In the
erasure-free adaptive adversary model, it is assumed that the adversary can see
all history of a party when it corrupts that party. Assuming erasure is unrealistic
as complete erasure is sometimes impossible to achieve. Erasure is a property of
a party that cannot be verified in any way by another party.

Achieving adaptive security for OT is significantly harder than achieving static
security for OT [25]. Adaptively secure OT protocol is an important building
block in the design of two-party computation protocols secure against adaptive
adversaries.

In the common reference string (CRS) model, it is assumed that all parties have
access to a common string that is selected from some specified distribution.

The communication complexity of a protocol denotes the total size of all the
message transferred between the two parties during the protocol. Sometimes the
number of public key encryption (PKE) operations is used as an estimate on the
computational complexity of a protocol, since the PKE operations constitute the
main portion of the computational complexity of a protocol.

“Opening a ciphertext” means supplying the plaintext and randomness used dur-
ing the generation of that ciphertext. In a traditional cryptosystem, encryption
is binding; meaning that a given ciphertext can be opened to only the original
plaintext with which it was created. In a lossy public key encryption (PKE)
scheme, there are two modes of operation – injective mode and lossy mode. In
the injective mode, the encryption operation is binding. In the lossy mode, if the
private key is known, then a ciphertext can be opened to any plaintext of choice.

In a two-party threshold PKE scheme, parties jointly generate a key pair and
the private key is shared between the parties. The parties can encrypt alone but
the participation of both parties is necessary for decrypting any ciphertext.

In one-sided active adaptive adversary model for two-party computation, it is as-
sumed that the adversary is active, adaptive and it can corrupt at most one party
[21]. This is a relaxation from the standard adaptive adversary model for two-
party computation, where the adversary can corrupt both parties. This relaxed
model is used to achieve more efficient protocols. Let n denote the security pa-
rameter. Garay et al. [20] designed the most efficient OT protocol secure against
active adaptive adversaries. For string OT of size q bits, their protocol requires
O(q) PKE operations in the worst case. Here, q is a polynomial of n. Hazay
and Patra [21] designed an OT protocol for one-sided active adaptive adversary
model. For string OT of size q bits, their protocol requires constant number of
PKE operations in the expected case. So, relaxing the notion of security has
resulted in a protocol requiring significantly smaller number of PKE operations,
in the expected case. In the erasure-free adaptive adversary model, it is assumed
that the adversary can see all history of a party when it corrupts that party.
Assuming erasure is unrealistic as complete erasure is sometimes impossible to
achieve.
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Hazay and Patra [21] designed an OT protocol for one-sided active adaptive ad-
versary model. The OT protocol of [21] requires O(n2) communication complex-
ity for bit OT. One research goal is to improve the communication complexity
in this setting.

1.1 Contribution of this Article

In this article, a new OT protocol secure against erasure-free one-sided active
adaptive adversaries is presented. The new bit OT protocol needs O(n) com-
munication complexity, which is a significant improvement over the O(n2) com-
munication complexity of the bit OT protocol of [21]. The bit OT protocol of
[21] requires O(n) PKE operations in the worst case, and the new bit OT pro-
tocol needs a constant number of PKE operations in the worst case. The OT
protocol of [21] is secure in the universally composable (UC) framework. The
new OT protocol is secure according to the simulation-based security definition
of Canetti [9], which satisfies sequential composition.
As a building block, a new two-party lossy threshold homomorphic PKE scheme
is designed. It is secure against erasure-free one-sided active adaptive adversaries.
This encryption scheme is of independent interest. It can be used in other two-
party protocols.

1.2 Techniques

Aumann and Lindell [2] designed an OT protocol secure against covert adver-
saries. Their OT protocol is secure against static adversaries. The new OT proto-
col is designed by converting their OT protocol. It is secure against erasure-free
one-sided active adaptive adversaries. The new OT protocol achieves a much
stronger notion of security than the OT protocol of [2] in two senses. Firstly, the
active adversary model is a stronger security model than the covert adversary
model [2]. Secondly, the adaptive adversary model is more secure than the static
adversary model [9]. The OT protocol of [2] is modified in two ways, to obtain
the new OT protocol. The protocol of [2] uses a traditional homomorphic PKE
scheme and the new OT protocol uses a two-party lossy threshold homomorphic
PKE scheme. For verification, the protocol of [2] uses cut-and-choose technique
and the new OT protocol uses adaptive zero-knowledge arguments.
The reason for using these tools in the new OT protocol is described below.
In the protocol of [2], a traditional homomorphic encryption scheme suffices.
As the adversary is static, the adversary selects the party to corrupt before the
protocol starts. If a party is corrupted, the simulator gets its input and prepares
its ciphertexts based on its input.
In the new OT protocol, the adaptive adversary can corrupt any party at any
time. Whenever a party gets corrupted, the simulator has to supply a view that
is consistent with the actual input of that party. A lossy encryption scheme is
used to cope with adaptive adversaries. In the protocol, the parties work in the
injective mode. The lossy mode is used only by the simulator. The simulator
supplies ciphertexts based on dummy inputs for the honest parties. If an honest
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party is corrupted after the simulator already sent ciphertexts on behalf of that
party, the simulator can open those ciphertexts to the plaintexts that corresponds
to the true input of the corrupted party, due to the lossy mode.

The property of a threshold encryption scheme ensures that the private key is
not fully disclosed to a single party. The reason behind this is that from the key
pair (which consists of the public key and the private key) of a lossy encryption
scheme, it can be efficiently detected whether the key pair is an injective pair
or a lossy key pair. If a non-threshold lossy encryption scheme is used, then an
adversary controlling one party can detect whether lossy key pair or injective
key pair is used, and thereby distinguish between the ideal world and the real
world.

To prevent this, a combination of lossy encryption scheme and threshold encryp-
tion scheme is needed. The encryption scheme has to be secure against erasure-
free one-sided active adaptive adversaries. Currently there exists no such encryp-
tion scheme. So, a new lossy threshold homomorphic PKE scheme ELTA2E is
designed as a building block.

In covert adversary model, cut-and-choose technique is sufficient for verification
since the any attempt to cheat can go undetected with a probability of (1−ε). In
the active adversary model, any attempt to cheat must be detected with proba-
bility very close to one. To achieve security against active adaptive adversaries,
adaptive zero-knowledge arguments are used.

2 Background

2.1 Notation

Let n denote the security parameter. Let Zq = {0, 1, . . . , q−1} where q is a prime.
Let Z∗q = {1, 2, . . . , q − 1}. For all elements a and b 6= 1 in group G, the discrete

logarithm of a in base b is denoted by logb(a). For a set R, let r
$← R denote that r

is selected uniformly at random from R. Let A be a probabilistic polynomial-time
algorithm. Let coins(A) denote the distribution of the internal randomness of A.
y ← A(x) means that y is computed by running A on input x and randomness r

where r
$← coins(A). Let Epk(m, r) denote the result of encryption of plaintext

m using encryption key pk and randomness r. Let Dsk(c) denote the result of
decryption of ciphertext c using decryption key sk. Let Comµ(a, r) denote the
commitment of secret a using commitment key µ and randomness r.

2.2 The DDH Assumption

The decisional Diffie-Hellmann (DDH) assumption for cyclic group G of order
prime q says that, for random generator g ∈ G∗ (G∗ denotes the generators of G),
the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguishable,

where a, b, c
$← Zq.
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2.3 Trapdoor Commitment Scheme

A trapdoor commitment scheme is a commitment scheme such that a trapdoor is
generated during the key generation. With the trapdoor, one can efficiently com-
pute a randomness to open a given commitment to any value of choice. Without
the trapdoor, the binding property of the commitment scheme holds. Pedersen
[28] designed a trapdoor commitment scheme based on the DDH assumption.
In Pedersen’s commitment scheme, the commitment key is µ = gδ, and δ is the
trapdoor.

2.4 Adaptive Zero-Knowledge Arguments and Σ-Protocols

An interactive proof is a protocol between two parties. One party is called the
prover and the other party is called the verifier. There is a common input of an
interactive proof. The objective of an interactive proof is that the prover can con-
vince the verifier that a mathematical statement is true, without disclosing the
prover’s secret. Adaptive zero-knowledge argument is a type of interactive proof.
Σ-protocol is another type of interactive proof. Non-erasure Σ-protocols are Σ-
protocols with a special property called non-erasure. The non-erasure property
is necessary when a Σ-protocol is used in a multiparty protocol secure against
erasure-free adaptive adversaries. The adaptive zero-knowledge arguments used
in this article are designed by converting non-erasure Σ-protocols into adaptive
zero-knowledge arguments. The adaptive zero-knowledge arguments designed in
this way are communication efficient.
The definition of zero-knowledge argument, Σ-protocol, non-erasure Σ-protocol
and proof of knowledge are presented in AppendixAppDefn.

2.5 Converting Σ-Protocol to Adaptive Zero-Knowledge Argument

Damg̊ard [15] described how to convert aΣ-protocol for a given relation to a zero-
knowledge proof for the same relation. Damg̊ard described this conversion in the
common reference string model. The conversion needs a trapdoor commitment
scheme. The commitment key µ is used as the common reference string. By
definition, a Σ-protocol is an honest-verifier zero-knowledge proof. The honesty
required from the verifier is that it generates its challenge e, irrespective of
the first message a of the prover. The commitment scheme is used to ensure
this honesty, thereby converting to zero-knowledge. In the first step, the prover

computes its first message a in the original Σ-protocol, selects a string rc
$←

coins(Com), computes a commitment c of its first message a using randomness
rc, and then sends the commitment c to the verifier. The verifier selects its

challenge e
$← {0, 1}t, and then sends e to the prover. Since a is hidden by

the hiding property of the commitment scheme, the verifier cannot generate
its challenge e based on the value of a. Then, the prover computes its second
message z of the original Σ-protocol, and sends a, z, and the randomness rc
used in the commitment, to the verifier. The verifier checks that (a, e, z) is an
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Adaptive Zero-Knowledge Argument ΠR
AdZKA implementing functionality

FRZK .
The protocol ΠR

AdZKA runs with two parties – the prover P and the verifier V . P
acts as the requester of the key of V for a trapdoor commitment scheme Com. The
common reference string µ is the commitment key and δ is the trapdoor.

Common Reference String : µ ∈ Zq.
Original Σ-Protocol for Relation R : ΠΣR.
Security Parameter : k.
Inputs :

1. Common Input : x.
2. Witness of P : w.

1. On input (x,w), P computes its first message a of the Σ-protocol ΠΣR.

P selects rc
$← coins(Com), and computes c = Comµ(a, rc).

P sends c to V .
2. V selects its challenge e

$← {0, 1}t.
3. P computes its second message z for challenge e for the Σ-protocol ΠΣR.

P sends (z, a, rc) to V .
V accepts if and only if (a, e, z) is an accepting conversation for the original
Σ-protocol ΠΣR and c = Comµ(a, rc).

Fig. 1: Adaptive Zero-Knowledge Argument designed from a Σ-protocol [15,27].

accepting conversation for the original Σ-protocol, and also that committing a
using randomness rc yields c. The full protocol is given in Figure 1.

The trapdoor property of the commitment is needed for simulating the con-
versation. The simulator generates a commitment key along with its trapdoor.
In order to ensure security against an adaptive adversary, it is maintained that
the simulator uses the trapdoor to generate randomness only if the verifier is
corrupted [27]. If the prover is corrupted after sending the commitment c, the
simulator uses the trapdoor to compute randomness ra such that everything is
consistent. In this way, it is secure against an adaptive adversary. The security
proof of this type of zero-knowledge proof against an adaptive adversary can be
found in [[27],Chapter 5].

In the zero-knowledge proof systems where the prover commits in the first step
and later opens the commitment, the perfect soundness condition holds only if
the commitment scheme is perfectly binding. If the zero-knowledge proof has to
be secure against adaptive adversaries, then the simulator has to open commit-
ments to any possible value for the case where the adversary corrupts verifier at
start and prover at the end. It is possible using a trapdoor commitment scheme.
However, in that case, the soundness condition of the zero-knowledge proof is
violated; since a computationally unbounded prover can find the trapdoor and
use that trapdoor to make the verifier accept a false claim. That means, when a
trapdoor commitment scheme is used in a zero-knowledge proof, it only achieves
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computational soundness; that is, a polynomial-time prover cannot make the ver-
ifier accept a false claim. By definition, the resulting system is a zero-knowledge
argument.
The security proof of ΠR

AdZKA is given in Appendix B.

2.6 Additive Homomorphic PKE Scheme

In an additive homomorphic PKE scheme, one can efficiently compute an encryp-
tion c of (m1 +m2) from ciphertexts c1 and c2 encrypting plaintexts m1 and m2,
respectively. This is called homomorphic addition and denoted by c = c1 +hm2.
In an additive homomorphic PKE scheme, one can also efficiently compute an en-
cryption c2 of (m1×m2) from an encryption c1 of m1 and the plaintext m2. This
is called homomorphic multiplication by constant, and denoted by c2 = m2×h c1.

2.7 Randomizable PKE Scheme

In a randomizable PKE scheme, there exists a probabilistic polynomial-time
algorithm Blind, which, on input public key pk and an encryption c of plaintext
m, produces another encryption c1 of plaintext m such that c1 is distributed

identically to Epk(m, r) where r
$← Coins(E).

2.8 Lossy Encryption Scheme

Bellare et al. [6] defined lossy encryption schemes, extending the definition of
dual-mode encryption schemes by Peikert et al. [29], and the definition of mean-
ingful/meaningless encryption schemes by Kol and Naor [24].

Definition 1. (Lossy PKE Scheme [6])
A lossy PKE scheme is a tuple (G,E,D) of probabilistic polynomial time algo-
rithms such that keys generated by G(1k, 1) and G(1k, 0) are called injective keys
and lossy keys,respectively. The algorithms must satisfy the following properties.
1. Correctness on Injective Keys: For all plaintexts m,

Pr

[
(pk, sk)← G(1k, 1

)
; r

$← coins(E) : Dsk

(
Epk(m, r)

)
= m

]
= 1.

2. Indistinguishability of Keys: The lossy public keys are computationally
indistinguishable from the injective public keys. If proj : (pk, sk)→ pk is the

projection map, then {proj(KG(1k, 1))} c≡ {proj(KG(1k, 0))}.
3. Lossiness on Lossy Keys: If (pk`, sk`)← G(1k, 0), then, for all m0,m1,

the distributions Epk`(m0, R) and Epk`(m1, R) are statistically indistinguish-
able.

4. Openability: If (pk`, sk`) ← G(1k, 0) and r0
$← coins(E), then, for all

m0,m1, with overwhelming probability, there exists r1 ∈ coins(E) such that
Epk`(m0, r0) = Epk`(m1, r1). That is, there exists a (possibly inefficient)
algorithm Opener that can open a lossy ciphertext to any arbitrary plaintext
with all but negligible probability.
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The semantic security of a lossy encryption scheme is implied by definition [6].
For a lossy key pair, the semantic security follows from the fact that the encryp-
tions of two different plaintexts are statistically indisinguishable by the “lossiness
on lossy keys” property. For an injective key pair, the semantic security follows
from the “indistinguishability of keys” property and “lossiness on lossy keys”
property, as follows.
For any m0,m1,

Eproj(G(1k,1))(m0, R)
c≡ Eproj(G(1k,0))(m0, R)

s≡ Eproj(G(1k,0))(m1, R)
c≡ Eproj(G(1k,1))(m1, R).

Here,
c≡ denotes computational indistinguishability, and

s≡ denotes statistical
indistinguishability.

2.9 Single Inconsistent Party Technqiue and Persistently
Inconsistent Party Technqiue

Canetti et al. [10] and Frankel et al. [19] independently introduced the single
inconsistent party (SIP) technique for proving the security of distributed key
generation protocols in the presence of adaptive adversaries with erasure. At
the start of simulation of a subprotocol of a threshold scheme, the simulator
generates the identity of the single inconsistent party (SIP) uniformly at random
from the set of participating parties. The simulator is constructed in such a way
that, the view of any party, except the SIP, in the simulation is guaranteed to be
computationally indistinguishable from its view in the real world. It is guaranteed
that the view of the adversary is independent from the choice of the SIP. During
the simulation, if the adversary corrupts that party, then the simulator rewinds
to the start step of that subprotocol, generates a new party uniformly at random
from the set of parties, and proceeds again. To ensure that the simulations of
consecutive subprotocols of a threshold scheme remain independent, the parties
erase most of the local data produced during each subprotocol.
Jarecki and Lysyanskaya [22] extended the SIP technique to persistently incon-
sistent party technique for proving the security of distributed key generation pro-
tocol for erasure-free adaptive adversary model. In the persistently inconsistent
party technique, the identity of an inconsistent player remains fixed throughout
the simulation of a threshold scheme. At start of the simulation of the whole
threshold scheme, the identity of the SIP is picked uniformly at random from
the set of parties. If the adversary does not corrupt that party, then the simu-
lation proceeds without rewinding. If the adversary corrupts that party at some
point, then whole simulation of the threshold scheme is started from scratch.
The persistently inconsistent party technique of Jarecki and Lysyanskaya [22] is
used in the security proofs in this article. The technique was used for multiparty
case, but the technique is applicable in the one-sided adaptive adversary model
for two-party case as well. Let A be a one-sided active adaptive adversary. At
start of the simulation of the whole encryption scheme, the simulator selects I,
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the identity of the SIP, uniformly at random from {P1, P2}. During the simula-
tion, if A corrupts I, then the simulator generates a new I uniformly at random
from {P1, P2}, and starts the simulation of the whole encryption scheme again.
A corrupts at most one party; so the probability of a randomly selected party
I being corrupted is at most 1

2 . That means, the expected number of trials for
successful simulation of the encryption scheme is at most two, and the simu-
lation can be performed in expected polynomial time. To bound the running
time of simulation to strictly polynomial time, execution can be continued up to
k`1 steps where `1 is a predetermined constant. If the simulation is not finished
within k`1 steps, then the simulator fails. Note that the probability of failure of
simulation is negligible.

2.10 Security Model

The security of the new protocols are proved following the simulation based
security definition by Canetti [9].

3 Definition of Two-Party Lossy Threshold PKE Scheme

A definition of two-party lossy threshold PKE scheme secure against one-sided
active adaptive adversaries is presented below.

Definition 2. (Lossy Threshold PKE Scheme Secure against Erasure-Free One-
Sided Active Adaptive Adversaries)
A lossy threshold PKE scheme secure against erasure-free one-sided
active adaptive adversaries for the set of parties P = {P1, P2}, and security
parameter n, is a 4-tuple (K,KG,E,ΠDEC) having the following properties.
Key Space: The key space K is a family of finite sets (pk, sk1, sk2). pk is the

public key and ski is the secret key share of Pi. Let Mpk denote the message
space for public key pk.

Key Generation: There exists a probabilistic polynomial-time key generation
algorithm KG, which, on input (1n,mode), generates public output pk and
a list {vk, vk1, vk2} of verification keys, and secret output ski for Pi, where
(pk, sk1, sk2) ∈ K. By setting mode to zero and one, key in lossy mode and
injective mode can be generated, respectively. vk is called the verification key,
vki is called the verification key of Pi.

Encryption: There exists a probabilistic polynomial-time encryption algorithm

E, which, on input pk, m ∈ Mpk, r
$← coins(E), outputs an encryption

c = Epk(m, r) of m.
Decryption: There exists a two-party decryption protocol ΠDEC secure against

erasure-free one-sided active adaptive adversaries. On common public input
(c, pk, vk, vk1, vk2), and secret input ski for each Pi, i ∈ {1, 2}, where ski is
the secret key share of Pi for the public key pk (as generated by KG), and
c is an encrypted message, ΠDEC returns a message m, or the symbol ⊥
denoting a decryption failure, as a common public output.
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Lossy Encryption Properties: The encryption scheme is a lossy encryption
scheme according to Definition 1.

Threshold Semantic Security: Consider the following game G for an erasure-
free one-sided active adaptive adversary A.

G1. A may corrupt at most one party. If A corrupts Pi, then A learns the
history of Pi.

G2. The challenger executes algorithm KG. The challenger broadcasts the
public key and the verification keys. For each i ∈ {1, 2}, the challenger
sends ski to Pi. If there is a corrupted party Pi, then A learns ski.

G3. A adaptively makes the following types of queries.

1. Corruption query
A may corrupt a party, if no party was corrupted before. If A corrupts
Pi, then A learns ski and the history of Pi.

2. Decryption query
A selects a message m ∈ Mpk, and sends it to the challenger. The
challenger sends A the decryption shares and the validity proofs of
P1 and P2, for an encryption of m.

A repeats step G3 as many times as it wishes.

G4. A selects two message m0 and m1 from Mpk, and sends them to the
challenger. The challenger randomly selects a bit b, and sends an en-
cryption c of mb, to A.

G5. A repeats step G3 as many times as it wishes. A cannot request mes-
sage m0 or m1 in step G3(2).

G6. A outputs a guess bit b1.

A threshold encryption scheme is said to be semantically secure against
erasure-free one-sided active adaptive adversaries if, for any prob-
abilistic polynomial-time erasure-free one-sided active adaptive adversary,
b = b1 with probability only negligibly greater than 1

2 .

The verification keys are used for validity proofs in ΠDEC . During ΠDEC , each
party Pi uses validity proof such that Pi can convince the remaining party that
Pi performed its calculation in ΠDEC correctly, without disclosing its secret.

Note that A can only request for ciphertexts for which it knows the plaintext.
It is not like the chosen ciphertext attack (CCA) where the adversary can ask
for decryption shares for any chosen ciphertext.

Step G3(2) is used in game G to denote that, despite learning all the decryption
shares and validity proofs for several chosen plaintexts, the adversary still does
not gain any advantage in guessing the plaintext from the ciphertext.

Let FKG be the ideal functionality for the key generation. In a two-party lossy
threshold encryption scheme, there may exist a two-party distributed key genera-
tion (DKG) protocol that computes FKG securely against erasure-free one-sided
active adaptive adversaries.
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4 A New Two-Party Lossy Threshold Homomorphic
Encryption Scheme

In this section, a new two-party lossy threshold homomorphic public key encryp-
tion scheme ELTA2E = (K,KG,E,ΠDEC) is presented. The name ELTA2E
denotes an encryption scheme that is lossy, threshold, secure against adap-
tive adversaries, for two parties and based on the ElGamal encryption scheme.
ELTA2E is based on the DDH assumption. All protocols of ELTA2E work in
the CRS model.

Bellare and Yilek [7] designed a non-threshold lossy encryption scheme with
efficient Opener algorithm, based on the DDH assumption. Let EncLossy denote
their encryption scheme. ELTA2E is created by adding the threshold properties
to EncLossy.

4.1 Group

One possible group G for ELTA2E is as follows. Safe primes are primes of the
form p = 2q + 1 where q is also a prime. On input n, using known methods to
generate safe primes, an n-bit safe prime p is generated, with generator g0 of
Z∗p. There is exactly one subgroup G of Z∗p of order q. Let g be the generator of

G. g = g0
p−1
q = (g0)

2
. (p, q, g) is the description of group G. Unless otherwise

specified, all computations are performed in group G. Pedersen commitment
scheme [28] is used as the trapdoor commitment scheme in ELTA2E.

4.2 Generation of the Description of the Group

At first, parties have to generate the group G for ELTA2E. One possible way
to perform this operation is as follows. P1 generates a description (p, q, g) of
group G using Bach’s algorithm [3]. P1 sends (p, q, g) to P2. P2 checks whether
it is valid or not. If the description is invalid, then P1 and P2 repeat the same
process.

4.3 Key Generation

The key generation algorithm KG of ELTA2E is described in Figure 2.

4.4 Encryption

The encryption algorithm E is presented in Figure 3.

The result of encryption is c = (y, z). So, the ciphertext space of ELTA2E is
G × G. G is a subgroup of Z∗p and p is a k-bit prime. So, the size of ciphertext
is 2k.
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Key Generation Algorithm, KG.

Common Reference String: µ ∈ Zp.
Group description: (p, q, g).
Input:

1. Security Parameter: n.
2. Mode: mode ∈ {0, 1}.

mode = 1 denotes injective mode,
mode = 0 denotes lossy mode.

1. Select α1, α2
$← Zq.

Set

sk1 = α1,

sk2 = α2,

α = (α1 + α2) mod q,

h = gα,

vk = g,

vk1 = gα1 ,

vk2 = gα2 .

2. Select γ
$← Zq.

Set j = gγ .
3. If mode = 1, then set

` = gγα.

If mode = 0, then select ρ
$← Zq \ {α}, and set

` = gγρ.

4. Set pk = (q, g, j, h, `).
5. Send (pk, vk, vk1, vk2, sk1) as the output to P1.

Send (pk, vk, vk1, vk2, sk2) as the output to P2.

Fig. 2: Key generation algorithm KG.
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Encryption Algorithm, E.

Group description: (p, q, g).
Input:

– Public Key: pk = (q, g, j, h, `).
– Plaintext: m ∈ {0, 1}.
– Randomness: s, t ∈ Zq × Zq.

1. Set y = gsjt.
2. Set z = hs`tgm.
3. Return c = (y, z).

Fig. 3: Encryption algorithm E.

Threshold Decryption Protocol, ΠDEC .

Common Reference String: µ ∈ Zp.
Group description: (p, q, g).
Common Inputs:

– Public Key: pk = (q, g, j, h, `).
– Verification Keys: (vk, vk1, vk2).
– Ciphertext: c = (y, z).

Input of P1 : Secret Key Share sk1.
Input of P2 : Secret Key Share sk2.

1. P1 sends ds1 = ysk1 .
2. P1 proves that logy (ds1) = logvk (vk1). If P1 fails, then P2 aborts.

3. P2 sends ds2 = ysk2 .
4. P2 proves that logy (ds2) = logvk (vk2). If P2 fails, then P1 aborts.
5. P1 and P2 compute

w =
z

ds1 · ds2
.

6. From w, P1 and P2 compute m where m ∈ {0, 1}, and gm = w in G.
If there is such a value m, then P1 and P2 output m.
Otherwise, P1 and P2 output ⊥, denoting decryption failure.

Fig. 4: Threshold decryption protocol ΠDEC .
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4.5 Protocol for Threshold Decryption

The protocol ΠDEC for threshold decryption is presented in Figure 4.
Adaptive zero-knowledge argument for equality of discrete logarithm is used
as the validity proof in ΠDEC . The communication cost of the adaptive zero-
knowledge argument for equality of discrete logarithm is 7k. The communication
cost of the threshold decryption protocol ΠDEC is 16k.

Private Threshold Decryption to One Party Similar to the protocol
ΠDEC , where both parties learn the output, it is possible to perform a private
threshold decryption of a ciphertext known to both parties to just one party Pi.
In this case, only Pi is supposed to learn the result of decryption. The remaining
party P2−i computes ds2−i = y(sk2−i), and sends ds2−i to Pi. Then P2−i proves
the correctness of this calculation by the zero-knowledge argument as above, to
Pi. If P2−i fails in the proof, then Pi aborts. Pi computes dsi = yski . Then Pi
computes w and the output as above.

4.6 Distributed Key Generation Protocol

ELTA2E has a distributed key generation protocol ΠDKG. The objective of
protocol ΠDKG is that parties P1 and P2 together generate the public key and
the secret key shares according to the distribution given by encryption scheme
ELTA2E without any trusted dealer in such a way that the secret key is not
stored in a single location. Along with the public key and the private key shares,
ΠDKG also generates the verification keys. For encryption scheme ELTA2E,
protocol ΠDKG has the following requirements.

1. α
$← Z∗q . α is additively shared between P1 and P2. h = gα is made public.

2. γ
$← Zq. j = gγ is made public.

3. If mode = 1, then ` = gγα. If mode = 0, then ` = gγρ where ρ
$← Zq \ {α}. `

is made public.

The protocol ΠDKG is presented in Figure 5.
The proofs in steps 2,4,9, and 11 are performed using adaptive zero-knowledge
arguments. For simplicity of presentation, the adaptive zero-knowledge argu-
ments are not described with the explicit communication with the trusted party
computing the zero-knowledge argument. In each case, the prover sends the mes-
sage (ZK − prover, V, x, w) to FRZK where V is the identity of the verifier, x is
the common input and w is the witness of the prover. If (x,w) ∈ R, then FRZK
sends (ZK−proof, x) to the verifier. There is no communication between prover
and verifier in the adaptive zero-knowledge argument in the hybrid world. The
CRS µ is used as the commitment key for Pedersen commitment scheme. The
CRS µ also acts as the CRS for the zero-knowledge arguments.
The reason for using commitments in ΠDKG is to ensure that no party can
affect the distribution of the generated key. If commitments are not used, then
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Distributed Key Generation Protocol, ΠDKG.

Common Reference String: µ ∈ Zp.
Group description: (p, q, g).
Inputs:

1. Security Parameter: k.
2. Mode: mode ∈ {0, 1}.

mode = 1 denotes injective mode,
mode = 0 denotes lossy mode.

1. P1 selects α1, γ1, β1, θ1
$← Zq. P1 sets sk1 = α1. P1 computes h1 = gα1 , j1 =

gγ1 . P1 computes commitments b1 = Comµ(h1, β1), c1 = Comµ(j1, θ1). P1 sends
(b1, c1).

2. P1 proves the knowledge of committed secret for commitments b1 and c1. If P1

fails in any proof, then P2 aborts.

3. P2 selects α2, γ2
$← Zq. P2 sets sk2 = α2. P2 computes h2 = gα2 , j2 = gγ2 . P2

sends (h2, j2).
4. P2 proves knowledge of discrete logarithm of h2 and j2. If P2 fails in any proof,

then P1 aborts.
5. P1 sends the openings (h1, β1) and (j1, θ1) of its commitments.
6. P2 verifies that b1 = Comµ(h1, β1), and c1 = Comµ(j1, θ1). If any of these two

equalities does not hold, then P2 aborts.
7. P1 and P2 set vk = g, vk1 = h1, vk2 = h2, h = h1h2, j = j1j2.

8. If mode = 0, then P1 selects τ1
$← Zq \ {α1}, and sets `1 = jτ1 .

If mode = 1, then P1 sets `1 = jα1 . P1 sends `1.
9. If mode = 1, then P1 proves that logj (`1) 6= logvk (vk1).

If mode = 1, then P1 proves that logj (`1) = logvk (vk1).
If P1 fails, then P2 aborts.

10. P2 sends `2 = jα2 .
11. P2 proves that logj (`2) = logvk (vk2). If P2 fails, then P1 aborts.
12. P1 and P2 set ` = `1`2, pk = (q, g, j, h, `).
13. P1 outputs (pk, sk1, (vk, vk1, vk2)).
14. P2 outputs (pk, sk2, (vk, vk1, vk2)).

Fig. 5: Distributed Key Generation Protocol ΠDKG.
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P1 selects α1, γ1, and sends h1 = gα1 , and j1 = gγ1 to P2. After viewing h1 and j1,
P2 can select its shares α2 and γ2 in such a way that it can affect the distribution
of the generated key h and j. To prevent this, a commitment scheme is used. At
first, P1 sends commitments of h1 and j1 to P2. By the hiding property of the
commitment scheme, P2 does not learn about h1 and j1. Then, P2 selects α2, γ2,
and sends h2 = gα2 , and j2 = gγ2 to P1. Since P2 does not know h1 and j1, P2

cannot affect the distribution of h or j. After that, P1 opens its commitments
to P2. By the binding property of the commitment scheme, P1 cannot open its
commitments to anything other than what it used in the original commitments.
That means P1 cannot affect the distribution of h or j, after seeing h2 and j2.
As a result, the generated key h and j are uniformly distributed in G.
If injective mode is chosen, then ` = `1`2 = jα1jα2 = jα1+α2 = jα. Then,
logg(h) = logj(`) = α, as required for an injective key pair. If lossy mode is
selected, then ` = `1`2 = jτ1jα2 = jτ1+α2 6= jα1+α2 since τ1 6= α1. Then,
logg(h) 6= logj(`), as required for a lossy key pair.

4.7 ELTA2E is Additive Homomorphic

The following lemma proves the additive homomorphic property of ELTA2E.

Lemma 1. ELTA2E is additive homomorphic.

Proof. Homomorphic Addition. Let c1 = (gs1jt1 , hs1`t1gm1), and c2 = (gs2jt2 ,
hs2`t2gm2) be two ciphertexts encrypting plaintexts m1 and m2, respectively.
c = c1 +h c2 = (gs1jt1 · gs2jt2 , hs1`t1gm1 · hs2`t2gm2)
= (gs1+s2jt1+t2 , hs1+s2`t1+t2gm1+m2).
Homomorphic Multiplication by Constant. Let c1 = (y1, z1) = (gs1jt1 ,
hs1`t1gm1) be a ciphertext encrypting plaintextm1. Letm2 be a known plaintext.
c2 = c1 ×h m2 =

(
(gs1jt1)

m2 , (hs1`t1gm1)
m2
)

= (gs1m2jt1m2 ,
hs1m2`t1m2gm1m2).

4.8 ELTA2E is Randomizable.

Let c = (y, z) = (gsjt, hs`tgm) be a ciphertext encrypting plaintext m. The
Blind function on input (pk, c) = ((q, g, j, h, `), (y, z)) works as follows. Select

s1, t1
$← Zq × Zq. Set y1 = y · gs1jt1 , z1 = z · hs1`t1 . Return c1 = (y1, z1). Then,

c1 = (gsjt · gs1jt1 , hs`tgm · hs1`t1) = (gs+s1jt+t1 , hs+s1`t+t1gm).

Thus, c1 encrypts m. Since s1, t1
$← Zq ×Zq, (s+ s1) and (t+ t1) are uniformly

distributed in Zq.

5 Security of the DKG Protocol ΠDKG

The following thoerem describes the security of protocol ΠDKG.

Theorem 1. Provided that the DDH assumption holds, and trapdoor commit-
ment scheme and adaptive zero-knowledge arguments exist, protocol ΠDKG com-
putes FKG securely against erasure-free one-sided active adaptive adversaries.

The proof of Theorem 1 is presented in Appendix C.
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6 Security of Encryption Scheme ELTA2E

The following lemma proves the lossy encryption property of ELTA2E.

Lemma 2. If the decisional Diffie-Hellman assumption holds, then ELTA2E is
a lossy encryption scheme. ELTA2E has an efficient (polynomial-time) Opener
algorithm.

Proof. Correctness of Decryption in the Injective Mode. In the injective
mode, pk = (q, g, j, h, `) = (q, g, gγ , gα, gα·γ) . Then, w = z

ds1·ds2 = z
ysk1 ·ysk2 =

z
yα1+α2

= z
yα = hs`tgm

(gsjt)α = (gα)s(gγα)tgm

(gs(gγ)t)
α = gαs+αγt+m

gαs+αγt = gm.

Indistinguishability of Keys. In the injective mode, pk = (q, g, j, h, `) =
(q, g, gγ , gα, gγα). In the lossy mode, pk = (q, g, j, h, `) = (q, g, gγ , gα, gγρ). By
the DDH assumption, the public key in injective mode is computationally indis-
tinguishable from the public key in lossy mode.
Lossiness on Lossy Keys. Let pk = (q, g, j, h, `) = (q, g, gγ , gα, gγρ) be a lossy
public key. Encryption of a message m with randomness (s, t) is c = (y, z) =
(gs+γt, gαs+γρt · gm) . Since ρ 6= α, (s+γt) and (αs+γρt) are linearly independent
combinations of s and t. Then, y and z are uniformly random group elements.
Efficient Opener Algorithm. Let pk = (q, g, j, h, `) = (q, g, gγ , gα, gγρ) be a
lossy public key. Let the corresponding secret key be sk = (γ, ρ, α). Let c = (y, z)
be an encryption of plaintext m with randomness r = (s, t). Then, c = (y, z) =
(gs+γt, gαs+γρt · gm) . Let m1 be the plaintext with which the ciphertext c has
to be opened. On input (pk, sk, (y, z),m, (s, t),m1), the algorithm Opener has
to find randomness r1 = (s1, t1) ∈ Zq × Zq such that s + γt = s1 + γt1, and
αs+ γρt+m = αs1 + γρt1 +m1. These two equations are two linear equations
on the variables (s1, t1). The Opener algorithm solves these two equations to
find s1 and t1 in polynomial time. There is only one such pair (s1, t1) ∈ Zq ×Zq
such that these two equalities hold.
Note that without the knowledge of the secret key sk = (γ, ρ, α), finding such s1
and t1 takes exponential time. In that case, to solve for s1, t1, it is necessary to
solve for five variables (s1, t1, α, γ, ρ) from two equations, which takes exponential
time. In other words, without the knowledge of the secret key, no polynomial-
time machine can open a given ciphertext created under a lossy key to any
plaintext of its choice. Without the knowledge of the secret key, encryption is
binding for lossy keys.

The following lemma proves the threshold semantic security of ELTA2E.

Lemma 3. Provided that the decisional Diffie-Hellman assumption holds, and
trapdoor commitment scheme and adaptive zero-knowledge arguments exist, the
encryption scheme ELTA2E achieves threshold semantic security in the pres-
ence of erasure-free one-sided active adaptive adversaries.

The proof of Lemma 3 is presented in Appendix D. The following theorem de-
scribes the security of encryption scheme ELTA2E.
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Theorem 2. Provided that the DDH assumption holds, and trapdoor commit-
ment scheme and adaptive zero-knowledge arguments exist, the encryption scheme
ELTA2E is a two-party lossy threshold encryption scheme secure against erasure-
free one-sided active adaptive adversaries.

Proof. By Lemma 2, ELTA2E satisfies the lossy encryption properties. By
Lemma 3, ELTA2E satisfies the threshold semantic security requirement given
in Definition 2. Then, ELTA2E is a two-party lossy threshold encryption scheme
secure against erasure-free one-sided active adaptive adversaries.

7 Oblivious Transfer against One-Sided Active Adaptive
Adversaries

In this section, a new protocol ΠOTAA for bit OT is presented. In Figure 6
the ideal functionality FOT for oblivious transfer is presented, following [12].
Protocol ΠOTAA uses the following tools.

Functionality FOT .
Common Reference String : µ ∈ Zp.
FOT proceeds as follows, running with a sender S, a receiver R, and an adversary A:

– Upon receiving (sender, x0, x1) from S, where each xj ∈ {0, 1}, record (x0, x1).
– Upon receiving (receiver, σ) from S, where σ ∈ {0, 1}, send xσ to R, and received

to A, and halt.
If there was no previous message of the form (sender, ..), then send nothing to R.

Fig. 6: Ideal functionality FOT .

1. A two-party lossy threshold homomorphic public key cryptosystem secure
against one-sided active adaptive adversaries with efficient (polynomial-time)
Opener algorithm. For this purpose, a new encryption scheme ELTA2E =
(K,KG,E,ΠDEC) is designed. ELTA2E is presented in Section 4.
As mentioned in Section 4, FKG denotes the ideal functionality for the key
generation of ELTA2E. A two-party protocol ΠDKG that implements this
functionality is described in Section 4.6. ΠDKG is secure against erasure-free
one-sided active adaptive adversaries.

2. Adaptive zero-knowledge arguments. The adaptive zero-knowledge arguments
used in the protocol are described in Section 11.

The relations of the adaptive zero-knowledge arguments used in the OT protocol
are described below. Let p, q be primes such that q divides (p− 1). Let g be an
element of order q in Z∗p.
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Let REQ be the relation denoting equality of discrete logarithm. Let the common
input be (y, z, g, h) = (gw mod p, hw mod p, g, h). The prover P knows witness
w ∈ Zq.

REQ = {((y, z, g, h), w) : y ≡ gw mod p, z ≡ hw mod p}.

Let RMULT be the relation denoting correctness of multiplication for ELTA2E.
Let c1 = (u1, v1) be a ciphertext of ELTA2E. Let m2 ∈ Zq be a known plaintext
to prover P . P computes ciphertext c2 = (u2, v2) by performing homomorphic
multiplication of c1 by m2, that is, c2 = m2 ×h c1. Then P obtains ciphertext
c3 = (u3, v3) by applying Blind function on ciphertext c2. Let the randomness
used in the Blind operation be (s3, t3). The relationship RMULT is used to
denote a relationship between the ciphertexts c1 and c3. Let the common input
be (c1, c3) = (u1, v1, u3, v3). The witness w for relation RMULT consists of the
known plaintext m2 and the randomness (s3, t3) used in the Blind operation.
That is, w = (m2, s3, t3). The prover P knows witness w = (m2, s3, t3) ∈ Zq ×
Zq × Zq.
RMULT =
{((u1, v1, u3, v3), (m2, s3, t3)) : u3 ≡ (u1)

m2gs3jt3 mod p, v3 ≡ (v1)
m2hs3`t3 mod

p}.
Let RZERO be the relation denoting that a given ciphertext encrypts zero, for
ELTA2E. If m = 0, then the encryption for the injective mode of ELTA2E is
c = (u, v) =

(
gs+γt, gαs+αγtg0

)
= (gs+γt, hs+γt). Proving that a given ciphertext

c = (u, v) is an encryption of zero is equivalent to prove that logg(u) = logh(v).
Let the common input be c = (u, v). The prover P knows witness w ∈ Zq.

RZERO = {((u, v), w) : u ≡ gw mod p, v ≡ hw mod p}.

For proving that one of two given ciphertexts encrypts zero without disclos-
ing which one, the OR-construction of Σ-protocols are performed [14]. Let
ROR−ZERO be the relation denoting the OR-composition of the relation RZERO,
for ELTA2E. Let the common input be (c0, c1) = ((u0, v0), (u1, v1)). Let b ∈
{0, 1} be such that cb is an encryption of zero. Then the prover P knows witness
wb ∈ Zq. ROR−ZERO((u0, v0, u1, v1), (w0, w1))
= RZERO((u0, v0), w0) ∨RZERO((u1, v1), w1).
The protocol ΠOTAA is presented in Figure 7. The protocol ΠOTAA works in the
common reference string model. The protocol ΠOTAA works in the (FKG,FRZK)-
hybrid world. For simplicity of presentation, the zero-knowledge arguments are
not described with the communication of parties to the ideal functionality FRZK .
One possibility to generate the auxiliary inputs p, q, g is as follows. S generates
the description (p, q, g) of the group G for ELTA2E, using Bach’s algorithm [3].
S sends (p, q, g) to R. R checks its validity. If the description is invalid, then S
and R repeat the same process. The proofs in steps 3, 4(b) and 5(b) ofΠOTAA are
performed by adaptive zero-knowledge arguments. The CRS µ acts as the CRS
for functionality FKG and all the zero-knowledge arguments. In step 3, R proves
that one of c0 and c1 encrypts zero, without disclosing which one. If R could
set both ciphertexts c0 and c1 to encryptions of one, then R could learn both
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Protocol ΠOTAA.

Common Reference String: µ
$← Zp.

Input of S : (x0, x1) ∈ {0, 1}2.
Input of R : σ ∈ {0, 1}.
Auxiliary Input : (k, p, q, g) where k is the security parameter, and (p, q, g) is a

representation of a group G for the encryption scheme ELT2DDH .

1. S and R jointly generate an injective key for ELT2DDH , by executing FKG with
input (1n, 1).
Here, S and R acts as P1 and P2, respectively.
Both parties get the public key pk = (q, g, j, h, `) and the verification keys
(vk, vk1, vk2).
S gets its secret key share sk1 and R gets its secret key share sk2.

2. R selects s0, t0, s1, t1
$← Zq.

R computes

c0 = Epk (1− σ, (s0, t0)) , and

c1 = Epk (σ, (s1, t1)) .

R sends (c0, c1) to S.
3. R proves by an adaptive zero-knowledge argument that one of (c0, c1) is an en-

cryption of zero.
If R fails in the proof, then S aborts.

4. (a) For each i ∈ {0, 1}, S computes

di = xi ×h ci,
vi = Blind(pk, di).

S sends (v0, v1) to R.
(b) S proves the correctness of homomorphic multiplication for v0 and v1, by

using adaptive zero-knowledge arguments.
If S fails in any of the proofs, then R aborts.

Fig. 7: Protocol ΠOTAA.
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Protocol ΠOTAA.
5. For each i ∈ {0, 1}, S and R jointly perform private decryption of vi to R, so only

R gets the output wi of decryption, as follows.
(a) Let vi = (yi, zi).

S computes
ds1,i = (yi)

(sk1) .

S sends ds1,i to R.
(b) S proves, by an adaptive zero-knowledge argument, that

log(yi)
(ds1,i) = logg (vk1) .

If S fails in the proof, then R aborts.
(c) R performs the following steps.

i. R computes
ds2,i = (yi)

(sk2) .

ii. R computes

θi =
zi

ds1,i · ds2,i
.

iii. From θi, R computes wi where wi ∈ {0, 1} and gwi = θi in G.
6. R outputs wσ.

Fig. 7: Protocol ΠOTAA (continued).

x0 and x1 at step 5. This zero-knowledge argument is incorporated to prevent
this type of cheating by R. In step 4, S computes di = xi ×h ci, vi = Blind(di).
S sends vi. R knows the ciphertext ci. The Blind function is included so that
new randomness is added to the result di. Then, R cannot learn the constant xi
after seeing vi.

7.1 Correctness of Protocol ΠOTAA.

If S and R both follow the protocol, then the following events occur. S and
R generate an injective key for ELTA2E. R honestly computes c0 and c1. cσ
encrypts one, and c1−σ encrypts zero. R passes in the proof in step 3. S honestly
performs step 4, and passes in the proofs. vσ encrypts xσ and v1−σ encrypts zero.
In step 5, S and R honestly perform two private decryption processes. By the
“correctness on injective keys” property of ELTA2E, wσ = xσ and w1−σ = 0.
Therefore, R learns xσ.

7.2 Extension to String OT.

In a string OT, S has a pair of bit strings of length q as input : (x0, x1) =({
x10, x

2
0, . . . , x

q
0

}
,
{
x11, x

2
1, . . . , x

q
1

})
. Here q is a polynomial of n. R has input

σ ∈ {0, 1}. The output of R is xσ =
{
x1σ, x

2
σ, . . . , x

q
σ

}
, and the output of S is an

empty string. The bit OT protocol ΠOTAA is extended to a string OT protocol as
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follows. In step 4, for each i ∈ {0, 1}, j ∈ {1, 2, . . . , q}, S computes vji = xji ×h c
j
i .

In step 5, for each i ∈ {0, 1}, j ∈ {1, 2, . . . , q}, S and R jointly perform private
decryption of vji to R, so R obtains result wji . R outputs

{
w1
σ, w

2
σ, . . . , w

q
σ

}
.

8 Security of Protocol ΠOTAA

The following theorem describes the security of protocol ΠOTAA.

Theorem 3. Assume that the DDH assumption holds and there exists a trap-
door commitment scheme and adaptive zero-knowledge arguments. Assume that
there exists a two-party lossy threshold public key cryptosystem which is secure
against erasure-free one-sided active adaptive adversaries, is additive homomor-
phic, randomizable, and has an efficient (polynomial-time) Opener algorithm.
Then, protocol ΠOTAA is a protocol for oblivious transfer secure under sequen-
tial composition, in the presence of erasure-free one-sided active adaptive adver-
saries. Protocol ΠOTAA requires O(n) communication complexity and constant
number of public-key operations in the worst case.

The proof of Theorem 3 is presented in Appendix E.

9 Comparison with Related Work

Hazay and Patra [21] designed an OT protocol for erasure-free one-sided active
adaptive adversaries. Their protocol for bit OT requires (288n2 + 100n+ 16) ∈
O(n2) communication complexity. Protocol ΠOTAA needs 101n ∈ O(n) commu-
nication complexity. The worst case number of PKE operations of the protocol
of [21] for bit OT is (16n+6) ∈ O(n). The worst case number of PKE operations
of ΠOTAA is constant (only four).
For OT of strings of size n, the OT protocol of [21] requires (288n2 + 110n+ 16)
communication complexity and (16n+ 6) PKE operations in the worst case. For
OT of strings of size n, protocol ΠOTAA requires (38n2 + 98n) communication
complexity and (2n + 2) PKE operations in the worst case. For string OT of
size n, protocol ΠOTAA requires seven times less communication complexity and
eight times less PKE operations than the OT protocol of [21].

10 Main Factor in the Communication Complexity of the
OT Protocol by Hazay and Patra [21]

In this section, the main factor of the complexity of the OT protocol by Hazay
and Patra [21] is described. They have different efficiency for polynomial-size
message space and exponential-size message space, with respect to the secu-
rity parameter n. Here, the efficiency of bit OT, which falls in the category of
polynomial-size message space, is described.
The OT protocol of [21] uses a non-committing encryption (NCE) scheme se-
cure against one-sided active adaptive adversaries. They designed a protocol
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ΠOSC that for this purpose. ΠOSC uses the somewhat non-committing encryp-
tion (SNCE) of [20]. The SNCE protocol of [20] uses the non-committing en-
cryption scheme (NCE) of [16]. There was another more recent NCE scheme
[13] which is error-free but requires more communication complexity and com-
putational complexity than the NCE of [16] [31]. The NCE scheme of [16] uses a
subroutine named attempt. In [Theorem 2, [16]], it is mentioned that the NCE
scheme of [16] has to repeat 4n calls of attempt in order to ensure that the prob-
ability of failure of subroutine attempt remains negligible in n. That means, the
worst case number of repeats of attempt is 4n. Each call of attempt has commu-
nication cost (12n + 1). The communication complexity of the NCE scheme of
[16] is O(n2) for message size of one bit. Each call of attempt uses one encryption
operation of a simulatable PKE scheme, so the number of PKE operations for
attempt is 1. Then, the NCE scheme of [16] needs 4n PKE operations in the
worst case. The communication complexity of the SNCE protocol of [20], with
equivocality parameter ` = 2, is O(n2). It uses the NCE protocol of [16] for
sending an index i ∈ {1, . . . , `}. As mentioned in [20], the expected number of
PKE operations for this step is O(log `). In the worst case, this step requires
4n ∈ O(n) PKE operations. The communication complexity of the bit OT pro-
tocol of [21] is O(n2). The number of PKE operations of the bit OT of [21], in
the worst case, is O(n).

Hazay and Patra claims that their OT protocol needs a constant number of
PKE operations [Theorem 2,[21]]. One possibility is that they were counting
one encryption of the NCE scheme ΠOSC secure against one-sided adaptive
adversaries (or one encryption of the dual-mode encryption scheme of [29]), each
of them as a single PKE operation. But the encryption scheme ΠOSC uses other
PKE schemes (the non-committing encryption scheme for the sender (NCES)
of [6], the non-committing encryption scheme for the receiver (NCER) of [22]
and the SNCE scheme of [20]) as its subroutines inside its implementation. The
notion of atomic PKE scheme is necessary for the analysis of the number of
PKE operations. An atomic PKE scheme denotes a PKE scheme that does not
use any other PKE scheme as a subroutine in its implementation. To get the
actual number of PKE scheme of a protocol, it should be counted that how many
operations of atomic PKE scheme are invoked inside that protocol.

More details on the efficiency analysis of the OT protocol of [21] is provided in
Appendix H.

11 Adaptive Zero Knowledge Arguments

In this section, the adaptive zero-knowledge arguments used in the protocols are
described. First, the non-erasure Σ-protocols for the corresponding relations are
presented. Then, it is described how to convert them to adaptive zero-knowledge
arguments.

Non-Erasure Σ-Protocol for Knowledge of Discrete Logarithm. Scnorr
[30] suggested a non-erasure Σ-protocol for knowledge of discrete logarithm [14].
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Non-Erasure Σ-Protocol for Equality of Discrete Logarithm. A non-
erasure Σ-protocol for equality of discrete logarithm is given in [14].

Non-Erasure Σ-Protocol for Knowledge of Committed Secret for Ped-
ersen Commitment Scheme. Damg̊ard [14] presented a non-erasure Σ-
protocol for proving knowledge of committed secret for Pedersen commitment
scheme.

Non-Erasure Σ-Protocol for Proving that one of two given Cipher-
texts Encrypts Zero. If m = 0, then the encryption for the injective mode
of ELTA2E is c = (x, y) =

(
gs+γt, gαs+αγtg0

)
= (gs+γt, hs+γt). Proving that

a given ciphertext c = (x, y) is an encryption of zero is equivalent to prove
that logg(x) = logh(y). For proving that one of two given ciphertexts encrypts
zero without disclosing which one, the OR-construction of Σ-protocols [14] is
performed.

11.1 Σ-Protocol for Inequality of Discrete Logarithm

If mode = 0, then, in step 2 of stage 2 of ΠDKG, P1 has to prove that logj(`1) 6=
logvk(vk1). This can be called a proof for inequality of discrete logarithm. The
relation can be defined as follows.

Let RNEQ be the relation denoting inequality of discrete logarithm. Let the
common input be(
x1, x2, y1, y2

)
=
(
(y1)

w1 mod p, (y2)
w2 mod p, y1, y2

)
. The prover P knows wit-

ness w1, w2 ∈ Zq.
RNEQ ={(

(x1, x2, y1, y2), (w1, w2)
)

: x1 ≡ (y1)
w1 mod p, x2 ≡ (y2)

w2 mod p, w1 6= w2

}
.

A new Σ-protocol ΠΣNEQ for proving the inequality of discrete logarithm is
designed. The protocol is presented in Figure 8.

The security proof of protocol ΠΣNEQ is given below.

Lemma 4. The protocol ΠΣNEQ is a non-erasure Σ-protocol for RNEQ.

The proof of Lemma 4 is given in Appendix ??.

11.2 Non-Erasure Σ-Protocol for Proving Multiplication Correct

A new Σ-protocol for relation RMULT for ELTA2E is designed. The Σ-protocol
ΠΣMULT is presented in Figure 9.

Lemma 5. The protocol ΠΣMULT is a non-erasure Σ-protocol for RMULT for
ELTA2E.

The proof of Lemma 5 is given in Appendix G.
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Σ Protocol ΠΣNEQ for RNEQ.

Inputs:
1. Common Input: (x1, x2, y1, y2) ∈ Zp × Zp × Zp × Zp.
2. Witness of P : (w1, w2) ∈ Zq × Zq.

1. P chooses r
$← Zq.

P computes

a1 = (y1)r mod p,

a2 = (y2)r mod p.

P sends a = (a1, a2).

2. V chooses a challenge e
$← Zq and sends it.

3. P computes

z1 = r + ew1 mod q,

z2 = r + ew2 mod q.

P sends (z1, z2).
V accepts if and only if

(y1)z1 = a1(x1)e mod p,

(y2)z2 = a1x2
e mod p,

(y1)z2 6= a1(x1)e mod p, and

(y2)z1 6= a2(x2)e mod p.

Fig. 8: Σ Protocol ΠΣNEQ for RNEQ.
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Σ Protocol ΠΣMULT for RMULT for ELTA2E.

Inputs:
1. Common Input: (c1, c3) = (u1, v1, u3, v3)) ∈ G×G.
2. Witness of P : m2, s3, t3 ∈ Zq.

1. P chooses r1, r2, r3
$← Zq.

P computes

a1 = (u1)r1gr2jr3 mod p,

a2 = (v1)r1hr2`r3 mod p.

P sends a = (a1, a2).

2. V chooses a challenge e
$← Zq and sends it.

3. P computes

z1 = r + em2 mod q,

z2 = r2 + es3 mod q,

z3 = r3 + et3 mod q.

P sends z = (z1, z2, z3).
V accepts if and only if

(b1)z1gz1jz3 = a1(b3)e mod p,

and
(d1)z1hz1`z3 = a2(d3)e mod p.

Fig. 9: Σ Protocol ΠΣMULT for RMULT for ELTA2E.
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12 Future Work

One future research work is to design an efficient two-party computation protocol
for one-sided active adaptive adversary model, using the new efficient oblivious
transfer protocol. Another research direction is to design efficient oblivious trans-
fer protocol for the fully adaptive adversary model, that is, when the adversary
may corrupt both parties at some point.
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A Some Definitions

A.1 Zero-Knowledge Arguments

Brassard et al. [8] introduced zero-knowledge arguments. Let P denote the prover
and V denote the verifier.

Definition 3. (Zero-Knowledge Argument [26])
A pair of interactive machines (P, V ) is a zero-knowledge argument for a
language L if both machines are probabilistic polynomial time and the followings
hold.

1. Completeness. For every x ∈ L, there exists a witness y such that for every
string z,

Pr [〈P (y), V (z)〉(x) = 1] ≥ 2

3
.

It is said that the completeness is perfect if, for every x ∈ L, there exists
a witness y such that for every string z,

Pr [〈P (y), V (z)〉(x) = 1] = 1.

2. Computational Soundness. For every probabilistic polynomial-time in-
teractive machine B and all sufficiently long x /∈ L, and every y and z,

Pr [〈B(y), V (z)〉(x) = 1] ≤ 1

3
.

3. Zero-Knowledge. For every probabilistic polynomial-time interactive ma-
chine V ∗, there exists a probabilistic algorithm M∗, running in time polyno-
mial in the length of its first input, such that, on any positive instance x ∈ L
and auxiliary input y for the prover and z for the verifier, the following two
ensembles are computationally indistinguishable (when the distinguishing gap
is considered as a function of |x|):
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– {〈P (y), V ∗(z)〉(x)}x∈L,z∈{0,1}∗
– {M∗(x, z)}x∈L,z∈{0,1}∗

A.2 Adaptive Zero-Knowledge Arguments

Beaver defined adaptive zero-knowledge proofs [4]. An adaptive zero-knowledge
proof system is a zero-knowledge proof system secure against adaptive adver-
saries. It is defined through the existence of polynomial-time simulator for adap-
tive adversaries. Similarly, an adaptive zero-knowledge argument is a zero-knowledge
argument secure against adaptive adversaries.
Figure 10 defines the ideal functionality FRZK for adaptive zero-knowledge argu-
ment. FRZK returns 1 only if the instance, witness pair (x,w) satisfies the relation
R. FRZK works in the common reference string model.

Functionality FRZK .
Common Reference String : µ.
FRZK proceeds as follows, running with a prover P , a verifier V , the common reference
string µ, an adaptive adversary A, and parametrized with a relation R:

– Upon receiving (ZK-prover, V, x, w) from P , do:
if R(x,w) = 1, then
send (ZK-proof, x) to V and A, and halt.
Otherwise, halt.

Fig. 10: Ideal functionality FRZK .

A.3 Σ-Protocols

Damg̊ard [14] defined Σ-protocols. In this dissertation, Σ-protocol is used as
a tool in the design of adaptive zero-knowledge arguments. The definition of
Σ-protocols is given below, following [14,27].
Let R be a binary relation; that is, R is a subset of {0, 1}∗ × {0, 1}∗, where the
only restriction is that if (x,w) ∈ R, then the length of w is at most p(|x|), for
some polynomial p(). For some(x,w) ∈ R, x may be thought as an instance of
some computational problem, and w as the solution to that instance. w is called
a witness for x.

Definition 4. (Σ-Protocols [14,27])
A protocol Π is said to be a Σ-protocol for relation R if the following prop-
erties hold.

– Let x be the common input to P, V . P has a private input w such that
(x,w) ∈ R. Protocol Π is of the following form:

30



1. P sends a message a.

2. V sends a challenge e
$← {0, 1}t.

3. P sends a reply z.
V decides to accept or reject based on the data it has seen, that is,
(x, a, e, z).

– Completeness:
If P, V follow the protocol on input x and private input w to P where (x,w) ∈
R, V always accepts.

– Special Soundness:
From any x and any pair {(a, e, z), (a, e′, z′)} of accepting conversations on
input x where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.

– Special Honest-Verifier Zero-Knowledge:
There exists a polynomial-time simulator hvs, which on input x and a ran-
dom e, outputs an accepting conversation of the form (a, e, z), with the same
probability distribution as conversations between the honest P, V on input x.
The algorithm hvs is called the honest verifier simulator. hvs takes as input
x ∈ L(R), e ∈ {0, 1}t, and a uniformly random bit-string rhvs, and produces
as output (a, z) which is supposed to be distributed as the (a, z) produced by
a honest prover with instance x receiving challenge e.

A.4 Non-Erasure Σ-Protocols

Nielsen [27] defined non-erasure Σ-protocols.

Definition 5. (Non-Erasure Σ-Protocols [27])
A protocol Π is said to be a non-erasure Σ-protocol for relation R if Π is
a Σ-protocol and the following property holds.
Special Non-Erasure Honest Verifier Zero-Knowledge:
Let EXEC(x,w, e) = (x,w, a, rp, e, z) where (a, e, z) is the sequence of messages
of the Σ-protocol Π, and rp denotes the randomness used by P in protocol Π. Let
SIM(x,w, e) = (x,w, a′, r′p, e, z

′) where (a′, z′) = hvs(x, e, rhvs), rhvs denotes
the randomness used by simulator hvs, and
r′p = rbs(x,w, e, rhvs). The algorithm rbs is called the random bits simulator. rbs
takes as input (x,w) ∈ R, a challenge e ∈ {0, 1}t and the randomness rhvs used
by hvs in a run (a′, z′)← hvs(x, e, rhvs). rbs produces as output a bit-string r′p
where r′p is the randomness used by P in protocol Π. Then, the random variables
EXEC(x,w, e) and SIM(x,w, e) are identically distributed for all (x,w) ∈ R
and all e ∈ {0, 1}t.

That means, in the definition of non-erasure Σ-protocols, the extra property
non-erasure that is required from the definition of Σ-protocols is the simulation
of random bits. This property is necessary when a Σ-protocol is used in a multi-
party protocol secure against erasure-free adaptive adversaries. For erasure-free
adaptive adversaries, the simulator has to supply randomness for a party when a
party gets corrupted in the middle of a protocol or after the protocol is finished.
The random bit simulator algorithm rbs is useful to generate randomness in this
case.
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Proof of Knowledge Bellare and Goldreich [5] defined the concept of proof of
knowledge. Their definition is given below.

Definition 6. (Proof of Knowledge [5]) Let κ() be a function from bit strings to
the interval [0 . . . 1]. The protocol Π is called a proof of knowledge for relation
R with knowledge error κ, if the following two properties are satisfied.

1. Completeness: On common input x, if the honest prover P gets w as pri-
vate input where (x,w) ∈ R, then the verifier V always accepts.

2. Knowledge Soundness: There exists a probabilistic polynomial-time algo-
rithm M called the knowledge extractor. The algorithm M gets input x
and rewindable black-box access to the prover and tries to compute w such
that (x,w) ∈ R. For any prover P ∗, let ε(x) be the probability that V accepts
on input x. There exists a constant c such that whenever ε(x) > κ(x), M
outputs a correct w in expected time at most

|x|c

ε(x)− κ(x)

where access to P ∗ counts as one step only.

Damg̊ard [14] proved that a Σ-protocol for relation R with challenge length t is
a proof of knowledge with knowledge error 2−t. That means, an adaptive zero-
knowledge argument converted from a Σ-protocol is also a proof of knowledge.
The knowledge extractor of this type of adaptive zero-knowledge arguments are
used in the security proofs later.

B Security Proof of Protocol ΠR
AdZKA

Protocol ΠR
AdZKA is presented in Figure 1. The security proof of ΠR

AdZKA against
an adaptive adversary is given below, following [27].

Lemma 6. If trapdoor commitment scheme exists and ΠΣR is a non-erasure Σ-
protocol for relation R, then ΠR

AdZKA is an adaptive zero-knowledge argument
for relation R.

Proof. The simulator SAdZKA for ΠR
AdZKA works as follows. SAdZKA selects δ

$←
Zq and sets common reference string to µ = gδ mod p. The common reference
string µ is used as the commitment key for Pederesn commitment scheme, so
SAdZKA knows the trapdoor of the commitment key µ.

1. If P is corrupted, then receive c from A.

If P is honest, then generate a challenge e1
$← {0, 1}t. Select rhvs

$← coins(hvs)

and compute (a1, z1)← hvs(x, e1, rhvs). Select rc1
$← coins(Com). Compute

c = Comµ(a1, rc1). Send c to V .
If A corrupts P after this step, then corrupt P in the ideal world. Receive
(x,w) from Z. Compute rp1 ← rbs(x,w, e1, rhvs). Send (rp1, rc1) as the
randomness used by P to environment Z.
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2. If V is corrupted, then receive e from A.
If V is honest, then send challenge e = e1.
If A corrupts V after this step, then corrupt V in the ideal world.

3. If V is honest and P is honest, then send (z1, a1, rc1).
If A corrupts P after this step, then perform the same steps if P was cor-
rupted after step 1.
If V is honest and P is corrupted, then receive (z, a, rc) from A. Act as an
honest verifier. If (a, e1, z) is not an accepting conversation of ΠΣR or if
Comµ(a, rc) 6= c, then send abortP to the trusted party and halt.
If A corrupts V after this step, then corrupt V in the ideal world.
If V is corrupted, then, with overwhelming probability, e 6= e1. If P is honest,
then proceed as follows. Generate (a2, z2)← hvs(x, e, rhvs). Using trapdoor
δ of the commitment key µ, compute rc2 such that c = Comµ(a2, rc2). Send
(a2, rc2, z2) to V .
If A corrupts P after this step, then corrupt P in the ideal world. Receive
(x,w) from Z. Compute rp2 ← rbs(x,w, e, rhvs). Send (rp2, rc2) as the ran-
domness used by P to environment Z.

Next, it is proved why the global output generated by SAdZKA is computation-
ally indistinguishable from the global output in the real world.

1. If P is corrupted, then SAdZKA receives c from A.

If P is honest, then SAdZKA generates a challenge e1
$← {0, 1}t. Then,

SAdZKA selects rhvs
$← coins(hvs) and computes (a1, z1)← hvs(x, e1, rhvs).

SAdZKA selects rc1
$← coins(Com) and computes c = Comµ(a1, rc1). SAdZKA

sends c to V . In the real world, honest P computes its first message a using

its input and randomness. Then, honest P selects rc
$← coins(Com) and

computes c = Comµ(a, rc). Honest P sends c to V . By the unconditional
hiding property of Pedersen commitment scheme, the distribution of c in two
worlds are identical.
If A corrupts P after this step, then SAdZKA corrupts P in the ideal world.
SAdZKA receives the input (x,w) of P from Z. As P was honest, it holds
that (x,w) ∈ R. SAdZKA computes rp1 ← rbs(x,w, e1, rhvs). SAdZKA sends
(rp1, rc1) as the randomness used by P to environment Z. The “special non-
erasure honest verifier zero-knowledge” property of ΠΣR implies that rp1 is
identically distributed to the randomness used by honest P in step 1 of ΠΣR

in the real world. In the ideal world, rc1
$← coins(Com). In the real world,

rc
$← coins(Com). So, the distribution of rc1 and rc are identical.

2. If V is honest, then SAdZKA sends challenge e = e1. The challenge in two
worlds are identically distributed.
If A corrupts V after this step, then SAdZKA corrupts V in the ideal world.
There is no private input of V in the protocol, so SAdZKA does not receive
any input.

3. If V is honest and P is honest, then SAdZKA sends (z1, a1, rc1). SAdZKA
computed (a1, z1) ← hvs(x, e1, rhvs) in step 1. The “special honest verifier
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zero-knowledge” property of ΠΣR implies that (a1, z1) is identically dis-
tributed to (a, z) where (a, e1, z) is the sequence of message between honest
P and honest V in the real world, for challenge e. As argued in step 1, the
distribution of rc1 and rc are identical.

If A corrupts P after this step, then SAdZKA performs the same steps if P
was corrupted after step 1.

If V is honest and P is corrupted, then SAdZKA receives (z, a, rc) from A.
SAdZKA acts as an honest verifier. If (a, e1, z) is not an accepting conversation
ofΠΣR or if Comµ(a, rc) 6= c, then SAdZKA sends abortP to the trusted party
and halts. In this case, honest V detects the same problem in the real world
and aborts.

If A corrupts V after this step, then SAdZKA corrupts V in the ideal world.

If V is corrupted, then, with overwhelming probability, e 6= e1. If P is hon-
est, then SAdZKA generates (a2, z2) ← hvs(x, e, rhvs). Using trapdoor δ of
the commitment key µ, SAdZKA computes rc2 such that c = Comµ(a2, rc2).
SAdZKA sends (a2, rc2, z2) to V . By the “special honest verifier zero-knowledge”
property ofΠΣR, (a2, z2) is identically distributed to (a3, z3) where (a3, e, z3)
is the sequence of message between honest P and honest V in the real world,
for challenge e. By the trapdoor property of Pedersen commitment scheme,
the opening rc2 computed is consistent. In the ideal world, P passes the
proof. In the real world, honest P passes the proof. The randomness rc2 is
identically distributed to the randomness used by honest P in the ideal world
during commitment.

If A corrupts P after this step, then SAdZKA corrupts P in the ideal world.
SAdZKA receives the input (x,w) of P from Z. As P was honest, it holds
that (x,w) ∈ R. SAdZKA computes rp2 ← rbs(x,w, e, rhvs). SAdZKA sends
(rp2, rc2) as the randomness used by P to environment Z. By the “special
non-erasure honest verifier zero-knowledge” property of ΠΣR, rp2 is identi-
cally distributed to the randomness used by honest P in step 1 of ΠΣR in the
real world. As argued above, the randomness rc2 is identically distributed to
the randomness used by honest P in the ideal world during commitment.

C Proof of Theorem 1

Let A be an one-sided adaptive adversary and Z be the environment. Let SDKG
be the simulator of protocol ΠDKG for adversary A and environment Z. The
inputs of SDKG are the public key pk = (q, g, j, h, `), mode parameter mode,
and the identity I of the SIP.

At start of simulation, the simulator SDKG generates δ
$← Zp, and sets the

common reference string to µ = gδ. As the common reference string µ is used as
the commitment key, so SDKG knows the trapdoor δ of the commitment key µ.

The simulator for the two cases where the SIP is P1 and P2, are presented
separately.

Simulation for the case where P1 is the SIP
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Simulator SDKG for protocol ΠDKG for the case I = P1.

1. Select α2, γ2
$← Zq. Compute h2 = gα2 , j2 = gγ2 . Compute h1 = h

h2
, j1 = j

j2
.

Select β1, θ1
$← Zq. Compute b1 = Comµ(h1, β1), c1 = Comµ(j1, θ1).

2. Act as an honest prover in the proofs.
3. If P2 is honest, then use h2, j2 computed in step 1.
4. If P2 is corrupted, then act as an honest verifier.

If P2 passes the proofs, then extract α2 and γ2.
If P2 fails in any proof, then send abortP2 to the trusted party and halt.
If P2 is honest, then act as an honest prover in the proofs.

5. Compute ĥ1 = h
h2
, ĵ1 = j

j2
.

Using trapdoor δ, compute randomness β̂1 and θ̂1 for commitments that are
consistent to ĥ1 and ĵ1.
Use (ĥ1, β̂1), (ĵ1, θ̂1) as the message from P1 for this step.

6. Proceed to next step.
7. Set vk = g, vk1 = ĥ1, vk2 = h2.

Use (h, j) of the input.
8. Compute ˆ̀

1 = `

j(α2) .

9. If mode = 1, then generate a proof transcript using the simulator of the zero-
knowledge argument and trapdoor δ.
If P2 is honest, then act as an honest verifier.

10. If P2 is honest, then honestly compute `2.
11. If P2 is corrupted, then act as an honest verifier.

If P2 fails, then send abortP2 to the trusted party and halt.
If P2 is honest, then act as an honest prover.

12. Use (`, pk) of input.
13. Set (pk, vk, vk1, vk2, α1) as the output of P1.

If P2 is honest, then set (pk, vk, vk1, vk2, α2) as the output of P2.

Fig. 11: Simulator SDKG for protocol ΠDKG for the case I = P1.
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The simulator SDKG for the case where P1 is the SIP, that is, I = P1, is presented
in Figure 11.
Since P1 is the SIP, P1 is uncorrupted in this case. If A corrupts P2 after any
step of protocol ΠDKG, then SDKG corrupts P2 in the ideal world. There is no
input of any party in this protocol, so after corrupting a party, SDKG does not
learn any input.
Next, it is proved why the global output produced by SDKG is computationally
indistinguishable from the global output in the real world. If P2 is honest, then
SDKG performs the actions on behalf of P2 in the simulation. The simulator is
designed in such a way that if, A corrupts P2 after any step of ΠDKG, then A
would see that P2 performed up to that step honestly. If P2 is corrupted and
P2 fails in some proof, then the honest P1 aborts in the real world. In the ideal
world, SDKG sends abortP2

to the trusted party and halts. Then, the trusted
party sends abortP2 to P1 and the honest P1 aborts. In that case, P2 fails in the
real world and honest P1 aborts in the real world.
If P2 does not fail in any proof, then the following things happen.

1. SDKG selects α2, γ2
$← Zq, computes h2 = gα1 , j2 = gγ2 , h1 = h

h2
, j1 =

j
j2

. SDKG selects β1, θ1
$← Zq and computes b1 = Comµ(h1, β1), c1 =

Comµ(j1, θ1). By the hiding property of the commitment scheme, the dis-
tribution of (b1, c1) in two worlds are identical.

2. SDKG honestly performs step 2. The proof transcript in two worlds are
identically distributed.

3. If P2 is honest, then SDKG uses h2, j2 computed in step 1. Since SDKG
honestly computed them, the distribution of (h2, j2) are identical in two
worlds.

4. If P2 is corrupted, SDKG acts as an honest verifier. If P2 passes the proofs,
then SDKG extracts α2 and γ2 using the knowledge extractor of the zero-
knowledge argument. Since a Σ-protocol is a proof of knowledge [14], any
adaptive zero-knowledge argument converted from a Σ-protocol is a proof of
knowledge. By definition, there exists a probabilistic polynomial-time knowl-
edge extractor that, given common input x, can extract an input, witness
pair (x,w) ∈ R. If P2 is honest, then SDKG acts as an honest prover.

5. SDKG computes ĥ1 = h
h2
, ĵ1 = j

j2
. Using the trapdoor δ of the commit-

ment key µ, SDKG computes β̂1, θ̂1 such that b1 = Comµ(ĥ1, β̂1), and

c1 = Comµ(ĵ1, θ̂1). SDKG uses (ĥ1, β̂1), (ĵ1, θ̂1) as the message from P1.
If A corrupts P2 before step 3, then, corrupted P2 sends h2 and j2 in step 3.
The value of h and j are fixed since they are part of the input of SDKG. A
sees that the openings of the commitments are consistent, and h = ĥ1h2 and
j = ĵ1j2, as required. h2 is supplied by A in step 3 in both worlds. Since the
message seen by A up to step 2 is identically distributed in two worlds, the
distribution of h2 in two worlds are identical. Then, the value of ĥ1 = h

h2
is

identically distributed to the value of h1. Similarly, ĵ1 and j1 are identically
distributed. By the trapdoor property of the commitment scheme, the values
(β̂1, θ̂1) are consistent.
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If P2 is honest up to step 3, then ĥ1 = h
h2

= h1. β̂1 = β1 since ĥ1 = h1.

Similarly, ĵ1 = j1, and θ̂1 = θ1. In both cases, openings of the commitments
are identically distributed in two worlds.

6. P1 passes the verification tests in the ideal world.
7. SDKG sets vk = g, vk1 = ĥ1, vk2 = h2, and uses (h, j) of the input. As

argued in step 5 and 3, either ĥ1 = h1 or ĥ1 is identically distributed to h1,
and the distribution of h2 in two worlds are identical.

8. SDKG computes ˆ̀
1 = `

j(α2) where α2 is the value extracted in step 3. In the

real world, if `2 6= jα2 , then P2 would fail the proof in step 11 and honest P1

would abort. Since the full key is given as input, so ΠDKG executed fully,
`2 = j(α2), so `1 = `

j(α2) in the real world. ` is fixed in both worlds.

If A corrupts P2 before step 3, then A selects α2 in step 3 in both worlds.
Since the message seen by A up to step 2 is identically distributed in two
worlds, the distribution of α2 in two worlds are identical. Then, ˆ̀

1 and `1
are identically distributed.

If P2 is honest up to step 3, then SDKG selects α2
$← Zq in step 1. The

distribution of α2 in two worlds are identical. Then, ˆ̀
1 and `1 are identically

distributed.
9. SDKG generates a proof transcript using trapdoor δ. By definition of zero-

knowledge argument, the proof transcript in two worlds are computationally
indistinguishable.

10. If P2 is honest, then SDKG honestly performs step 10. The distribution of
`1 in the two worlds are identical.

11. If P2 is corrupted, SDKG acts as an honest verifier. If P2 is honest, then
SDKG acts as an honest prover.

12. SDKG uses (`, pk) of input. They are identical in two worlds.
13. The output of honest P1 is (pk, vk, vk1, vk2, α1). Then, the output of the

honest P1 in two worlds are identically distributed.
14. If P2 is honest, then SDKG sets (pk, vk, vk1, vk2, α2) as the output of P2.

Only the last part α2 of the output of P2 is different from the last part α1

of the output of P1. SDKG computed sk2 = α2 honestly on behalf of P2 in
step 5, so the distribution of sk2 in two worlds are identical.

If A corrupts P2 after the execution of ΠDKG is finished, then SDKG corrupts
P2 in the ideal world, and gets the output (pk, vk, vk1, vk2, sk2) of P2.
Simulation for the case P2 is the SIP
The simulator SDKG for the case where P2 is the SIP, that is, I = P2, is presented
in Figure 12.
Next, it is proved why the global output produced by SDKG is computationally
indistinguishable from the global output in the real world. If P1 is honest, then
SDKG performs the actions on behalf of P1 in the simulation. The simulator is
designed in such a way that if, A corrupts P1 after any step of ΠDKG, then A
would see that P1 performed up to that step honestly. If P1 is corrupted and
P1 fails in some proof, then the honest P2 aborts in the real world. In the ideal
world, SDKG sends abortP1 to the trusted party and halts. Then, the trusted
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Simulator SDKG for protocol ΠDKG for the case I = P2.

1. If P1 is honest, then honestly perform step 1.
2. If P1 is corrupted, then act as an honest verifier in the proofs.

If P1 fails in any proof, then send abortP1 to the trusted party and halt.
If P1 passes the proofs, then extract h1 and j1.
If P1 is honest, then act as an honest prover.

3. Set ĥ2 = h
h1

, and ĵ2 = j
j2

.

Use (ĥ2, ĵ2) as the message from P2 for this step.
4. Generate proof transcripts using the simulator of the zero-knowledge argument

and trapdoor δ.
5. If P1 is honest, then use ((h1, β1), (j1, θ1)) selected in step 1 as the message from

P1 for this step.
6. If P1 is corrupted, then honestly verify the equalities on behalf of P2. If any of

them does not hold, then send abortP1 to the trusted party and halt.
If P1 is honest, then proceed to next step.

7. Set vk = g, vk1 = h1, vk2 = ĥ2.
Use h, j of input.

8. If P1 is honest, then compute `1 honestly.
9. If P1 is corrupted and mode = 1, then act as an honest verifier in the proof. If P1

fails the proof, then send abortP1 to the trusted party and halt.
If P1 is honest, then act as an honest prover.

10. Compute ˆ̀
2 = `

`1
.

11. Generate a proof transcript using the simulator of the zero-knowledge argument
and trapdoor δ.

12. Use (`, pk) of input.
13. If P1 is honest, then set (pk, vk, vk1, vk2, α1) as the output of P1.

Select α2
$← Zq.

Set sk2 = α2.
Use (pk, vk, vk1, vk2, sk2) as the output of P2.

Fig. 12: Simulator SDKG for protocol ΠDKG for the case I = P2.
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party sends abortP1
to P2 and the honest P2 aborts. In that case, P1 fails in the

real world and honest P2 aborts in the real world.

If P1 does not fail in any proof, then the following thing happen.

1. If P1 is honest, then SDKG honestly performs step 1 on behalf of P1. The
distribution of (b1, c1) in two worlds are identical.

2. If P1 is corrupted, then SDKG acts as an honest verifier in the proofs. If P1

passes the proofs, then SDKG extracts h1 and j1 by using the knowledge
extractor of the zero-knowledge arguments.

If P1 is honest, then SDKG acts as an honest prover using (h1, β1) and
(j1, θ1) selected in step 1 as the witness. The proof transcript in two worlds
are identically distributed.

3. SDKG computes ĥ2 = h
h1

, and ĵ2 = j
j1

.

If P1 is corrupted, then SDKG extracts the values of h1 and j1 in step 2.
Since h1 and j1 are sent by A in step 1 in both worlds, the distribution of
(h1, j1) in two worlds are identical. Since the value of (h, j) are fixed, the
distribution of (h2, j2) in two worlds are identical.

If P1 is honest, then SDKG selected (h1, j1) honestly in step 1 on behalf of P1.
In the real world, honest P1 selects (h1, j1) similarly. Then, the distribution
of (h1, j1) in two worlds are identical. Since the value of (h, j) are fixed, the
distribution of (h2, j2) in two worlds are identical.

4. SDKG generates proof transcripts using the simulator of the zero-knowledge
argument and trapdoor δ. In the real world, honest P2 acts as an honest
prover based on witness α2 and γ2. By definition of zero-knowledge argu-
ments, the proof transcript in two worlds are computationally indistinguish-
able.

5. If P1 is honest, then SDKG uses ((h1, β1), (j1, θ1)) selected in step 1 as the
message from P1 for this step. Since SDKG performed step 1 honestly, the
distribution of (h1, β1, j1, θ1) in two worlds are identical.

6. If P1 is corrupted, then SDKG honestly verifies the equalities on behalf of
honest P2. If any of them does not hold, then SDKG sends abortP1

to the
trusted party and halts. The trusted party sends abortP1 to P2 and halts.
Honest P2 halts. In this case, in the ideal world, the honest P2 finds out that
some of the equalities do not hold. So, honest P2 aborts in the ideal world.

If P1 is honest, then SDKG proceeds to next step. As SDKG performed step
1 honestly, P1 is supposed to pass the tests in the ideal world. In the real
world, honest P1 passes the tests.

7. SDKG sets vk = g, vk1 = h1, vk2 = ĥ2. SDKG uses (h, j) of the input. As
argued in step 3, the distribution of h1 and h2 in two worlds are identical.
SDKG uses (h, j) of the input. These values are identical in two worlds.

8. If P1 is honest, then SDKG computes `1 honestly. The distribution of `1 in
two worlds are identical.

9. If P1 is corrupted and mode = 1, then SDKG acts as an honest verifier in
the proof. If P1 fails in some proof, then SDKG sends abortP1

to the trusted
party and halts. Proof argument is similar to step 2 of stage 1.
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If P1 is honest, then SDKG acts as an honest prover using α1 selected in
step 1 as the witness. The proof transcript in two worlds are identically
distributed.

10. SDKG computes ˆ̀
2 = `

`1
. The value of ` is fixed as it is part of the input. If

A corrupts before step 1 of stage 2, then A sends `1 in step 1 of stage 2.
If mode = 1, then `1 = jα1 . The reason is that if `1 6= jα1 then corrupted P1

would fail in step 2 of stage 2, honest P2 would abort and the execution of
ΠDKG would stop at that point. Since the full key is generated and given as
input to the simulator, it holds that `1 = jα1 in the real world. Since the value
seen by A up to step 7 of stage 1 in two worlds are identically distributed, `1
supplied by A in step 1 of stage 2 in two worlds are identically distributed.
The value of ` is fixed in two worlds as it is party of the input. Then, ˆ̀

2 and
`2 are identically distributed.
If mode = 0, then `1 supplied by A in step 1 of stage 2 in two worlds are
identically distributed, since the value seen by A up to step 7 of stage 1
in two worlds are identically distributed. Then, ˆ̀

2 and `2 are identically
distributed.
If P1 is honest up to step 1 of stage 2, then SDKG selects α1 honestly in
step 1 and computes `1 = jα1 in step 1 of stage 2. The distribution of `1 is
identical in two worlds and the value of ` is fixed. So, the distribution of `2
in two worlds are identical.

11. SDKG generates a proof transcript using the simulator of the zero-knowledge
argument and trapdoor δ. In the real world, honest P2 acts as an honest
prover based on witness α2. By definition of zero-knowledge arguments, the
proof transcript in two worlds are computationally indistinguishable.

12. SDKG uses (`, pk) of input. These values are identical in two worlds. If P1 is
honest, then SDKG sets (pk, vk, vk1, vk2, α1) as the output of P1. pk and vk
are identical in both worlds. As argued in step 7 of stage 1, the distribution of
vk1 and vk2 in two worlds are identical. SDKG computed sk1 = α1 honestly
on behalf of P1 in step 1 of stage 1, so the distribution of sk1 in two worlds
are identical.
The output of honest P2 is (pk, vk, vk1, vk2, α2). Only the last part α2 of the
output of P2 is different from the last part α1 of the output of P1. SDKG
selects α2

$← Zq. SDKG sets sk2 = α2. So, the distribution of sk2 in two
worlds are identical. Therefore, the output of the honest party P1 in two
worlds are identically distributed. Note that A does not see the output of
honest P2.

D Proof of Lemma 3

Proof. The threshold semantic security is proved by reduction, following the idea
in [18]. The lossy encryption properties of EncLossy are proved in [7]. Since any
lossy PKE scheme is semantically secure [6], EncLossy is semantically secure.
Assume that there exists a probabilistic polynomial-time one-sided active adap-
tive adversary A1 that can break the semantic security of the two-party lossy
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threshold encryption scheme ELTA2E. It is described how to construct a prob-
abilistic polynomial-time one-sided active adaptive adversary A2, using A1, that
can break the semantic security of the non-threshold lossy encryption scheme
EncLossy. As EncLossy is semantically secure, a contradiction is reached. In
this way, it will demonstrate that ELTA2E is also semantically secure.

To convert A1 to A2, it is necessary to simulate the extra information that are
not available in the non-threshold lossy cryptosystem. In step G2, the verification
key and the secret key share of the corrupted party have to be simulated. In steps
G3 and G5, the decryption shares and the validity proofs of the honest parties
are simulated. The simulator is designed using the SIP technique. The inputs of
the simulator are the public key pk = (q, g, j, h, `), the mode parameter mode,
and the identity I of the SIP.

In step G1, if A1 corrupts a party Pi, then A2 corrupts Pi. A2 receives the
history of Pi from Z.

In step G2, A2 simulates the verification key and the secret key share of the
corrupted party as follows. When P1 is the SIP, A2 works as follows. A2 selects

α1, α2
$← Zq. A2 sets sk1 = α1, sk2 = α2, vk = g, vk2 = gα2 , vk1 = h

vk2
. A2 sends

((pk, vk, vk1, vk2, sk1), (pk, vk, vk1, vk2, sk2)) to A1 in step G2. The distribution
of sk1, sk2 are identical in two worlds. A2 sets vk1 = h

vk2
. The value of h is fixed

and the distribution of vk2 in two worlds are identical. Therefore, the distribution
of vk1 in two worlds are identical. Here h = vk1 · vk2, so it is consistent. As P1

is the SIP, the adversary does not corrupt P1. So the adversary never learns the
inconsistency that vk1 6= gsk1 . If the adversary corrupts P2, then it sees that
vk2 = gsk2 so everything is consistent for P2.

When P2 is the SIP, A2 selects α1, α2
$← Zq. A2 sets sk1 = α1, sk2 = α2, vk =

g, vk1 = gα1 , vk2 = h
vk1

. Proof argument is similar to case 1.

In step G3(1), if A1 corrupts a party Pi, then A2 corrupts Pi. A2 receives the
secret key share and the history of Pi from Z. As argued in step G2, the secret
key share and history of the corrupted party is consistent.

In step G3(2), A1 selects a message m ∈Mpk and sends m to A2. A2 computes
cm = (ym, zm) = (gsjt, hs`tgm). cm is a valid encryption of m. A2 simulates the
decryption shares and the validity proofs of the honest parties as follows.

If P1 is the SIP, then A2 simulates the steps of protocol ΠDEC as follows. In step
1, A2 computes ds1 = (ym)

sk1 where sk1 is the secret key share of P1 computed
by A2 in step G2 of game G. As argued in step G2, the distribution of sk1 in two
worlds are identical. Then, the distribution of ds1 in two worlds are identical. In
step 2, A2 acts as an honest prover using sk1 as witness. The proof transcript
in two worlds are identically distributed. In step 3, if P2 is honest, then A2

computes ds2 = (ym)
sk2 where sk2 is the secret key share of P2 computed by

A2 in step G2 of game G. Proof argument is similar to step 1. In step 4, if P2 is
honest, then A2 acts as an honest prover using sk2 as witness. Proof argument
is similar to step 2. If P2 is corrupted, then A2 acts as an honest verifier in the
proof. If P2 fails, then A2 sends abortP2

to the trusted party and halt. Then, the
trusted party sends abortP2

to P1 and honest P1 halts. Honest P1 aborts in the
real world. In step 5, A2 computes w = gm. The value of w is identical in two
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worlds. In step 6, A2 uses m. The simulation of step G3(2) when P2 is the SIP
is similar. So, it is not given separately.
In step G4, A1 chooses two plaintexts m0,m1 ∈Mpk and sends them to A2. A2

sends (m0,m1) to the challenger of the non-threshold lossy encryption scheme
EncLossy. Then, the challenger of EncLossy selects a random bit b, computes
an encryption c of mb and returns c to A2. A2 sends c to A1. Step G5 is similar
to step G3. In step G6, A1 returns a guess b1. A2 returns b1.

E Proof of Theorem 3

The security of ΠOTAA is proved following the simulation based security defi-
nition by Canetti [9]. As the adversary is one-sided, it can corrupt at most one
party. The security is proved using the persistently inconsistent party technique
of Jarecki and Lysanskaya [22].
Let A be a one-sided active adaptive adversary and Z be the environment. Let
SOT be the simulator for protocol ΠOTAA for adversary A and environment
Z. The security argument is described for two cases below. In both cases, at

start, SOT selects δ
$← Zq, and sets the common reference string to µ = gδ.

The common reference string µ is used as the commitment key in the adaptive
zero-knowledge arguments. SOT stores δ as the trapdoor of the commitment
key µ. This trapdoor δ is necessary for generating a proof transcript for the
zero-knowledge arguments.
At start of the simulation of ΠOTAA, SOT selects I, the identity of the SIP,
uniformly at random from {S,R}. The identity of I remains fixed in any sub-
protocol called within ΠOTAA. One possible subprotocol is the distributed key
generation protocol ΠDKG of ELTA2E.
In the simulation, after each step, a special step is denoted as the “action upon
corruption”. This step describes how the simulator performs if an honest party
gets corrupted after completing the corresponding step. This tagging is used to
clarify the description of the simulation.

E.1 Security for the case where the Sender S is the SIP

The simulator SOT for the case I = S is given in Figure 13.
It is proved below why the global output produced by simulator SOT in the
hybrid world is computationally indistinguishable from the global output pro-
duced in the real world. The following things happen during the steps of protocol
ΠOTAA.

1. SOT generates a lossy key pair of ELTA2E as follows. SOT selects α1, α2
$←

Zq. SOT sets α = (α1+α2) mod q, h = gα. SOT selects γ
$← Zq. SOT sets j =

gγ . SOT selects ρ
$← Zq \ {α}, and sets ` = gγρ. SOT sets pk = (q, g, j, h, `).

SOT stores the corresponding secret key sk = (α, γ, ρ).
SOT generates the lossy key pair in a similar way to the way the key gen-
eration algorithm KG of ELTA2E generates a lossy key pair. That means,
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Simulator SOT for protocol ΠOTAA for the case I = S.
1. Generate a lossy key pair of ELTA2E.

Simulate using the simulator SDKG on the generated key.
Action upon corruption: If A corrupts R after this step, then corrupt R in
the hybrid world, and receive the input σ of R from Z.

2. If R is honest, then compute c0, c1 based on σ = 0.
Action upon corruption: If A corrupts R after this step, then perform the
same steps listed as the action upon corruption after step 1.

3. If R is corrupted, then act as an honest verifier in the proof.
If R fails, then send abortR to the trusted party and halt.
If R passes, then extract the plaintexts of c0 and c1.
From these values, learn the possibly modified input σ1 of corrupted R.
Send σ1 to the trusted party, and receive back its output xσ1 .
Set σ = σ1 and the output of R to xσ1 .
If R is honest, then generate a proof transcript.
Action upon corruption: If A corrupts R after this step, then perform as
follows.
If σ1 = 1, then, using the efficient Opener algorithm, compute randomness (ŝ0, t̂0)
and (ŝ1, t̂1) that are consistent with ciphertexts c0, c1 and the receiver input σ = 1.
Use ŝ0, t̂0, ŝ1, t̂1 as the randomness of R for step 2.

4. (a) For each i ∈ {0, 1}, select x̂i
$← {0, 1} and compute

di = x̂i ×h ci, v̂i = Blind(pk, di).

Use (hatv0, v̂1) as the message from S.
(b) Generate two proof transcripts.
Action upon corruption: If A corrupts R after this step, then perform the
same steps listed as the action upon corruption after step 3.

5. Set wσ = xσ, w1−σ = 0.
For each i ∈ {0, 1}, perform the following steps.
(a) Compute

θi = gwi , ds2,i = (vyi)
sk2 , d̂s1,i =

vzi
θi · ds1,i

.

Use d̂s1,i as the message from S.
(b) Generates a proof transcript.
(c) If R is honest, then perform the computation honestly.
Action upon corruption: If A corrupts R after any substep of this step, then
perform the same steps listed as the action upon corruption after step 3.

6. Do nothing.
Post-Execution Corruption : If A corrupts R after the execution of ΠOTAA is
finished, then perform the same steps listed as the action upon corruption after step
3.

Fig. 13: Simulator SOT for protocol ΠOTAA for the case I = S.
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the distribution of the key pair (pk, sk) is identically distributed to a lossy
key pair generated by algorithm KG.

The reason for generating the components of the keys, without using algo-
rithm KG is as follows. When SOT generates the values, it can obtain the
values of α, γ and ρ. These three values constitute the secret key of the lossy
key pair. The secret key is necessary to use the efficient Opener algorithm
of ELTA2E. SOT uses the efficient Opener algorithm in later step of the
simulation. If SOT used algorithm KG to generate a lossy key pair, then
SOT would not obtain the values of α, γ and ρ. In that case, SOT could not
use the efficient Opener algorithm.

If protocol ΠDKG is used to implement step 1, then SOT uses the simulator
SDKG of protocol ΠDKG on input (pk, 0, P1). That means SOT invokes sim-
ulator SDKG on input public key pk, mode parameter set to zero to denote
lossy mode, and the identity I of the SIP set to P1. S acts as P1 in the
execution of protocol ΠDKG in step 1. So, I is set to S.

In the real world, S and R generate an injective key by using protocol ΠDKG.

Since S is the SIP, S is honest and A does not learn the secret key share
sk1 of S. Without the knowledge of the secret key, by the “indistinguisha-
bility of keys” property of ELTA2E, the public key in the hybrid world is
computationally indistinguishable from the public key in the real world.

By Lemma 5, the message that SDKG generates in the hybrid world is com-
putationally indistinguishable from the message that A views during the
execution of protocol ΠDKG in the real world.

If A corrupts R after this step, then SOT corrupts R in the hybrid world
and receives the input σ of R from Z. In this case, the newly corrupted R
may change its input by supplying the ciphertexts in step 2 according to the
input of its choice. For this reason, SOT does not send σ to the trusted party
of FOT yet. SOT will extract the modified input of corrupted R in step 3
and send that modified input to the trusted party of FOT in that step.

2. If R is honest, then SOT computes c0, c1 based on σ = 0, as follows. SOT se-

lects s0, t0, s1, t1
$← Zq. SOT computes c0 = Epk (1, (s0, t0)) , c1 = Epk (0, (s1, t1)) .

In the real world, honest R computes c0 and c1 in such a way that cσ encrypts
one and c1−σ encrypts zero. By threshold semantic security of ELTA2E, the
distribution of c0, c1 in two worlds are computationally indistinguishable.

If A corrupts R after step 2, then A cannot replace the input σ as the value
of σ is already fixed by the message supplied up to step 2. SOT corrupts R
in the hybrid world and receives its input σ from Z. SOT sends σ to the
trusted party of FOT , and receives back its output xσ.

3. If R is corrupted, then SOT acts as an honest verifier in step 3.

If R fails, then SOT sends abortR to the trusted party and halts. The trusted
party sends abortR to S and S aborts. In this case, honest S aborts in the
real world.

If R passes, then SOT extracts the plaintexts of c0 and c1 by using the
knowledge extractor of the zero-knowledge arguments. From these plaintexts,
SOT learns the possibly modified input σ1 of corrupted R. SOT sends σ1 to
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the trusted party of FOT , and receives back its output xσ1
. SOT sets σ = σ1

and the output of R to xσ1
.

In the real world, the generated key pair is injective, so A cannot open a
ciphertext encrypting one to be a ciphertext encrypting zero. In the hybrid
world, SOT generates a lossy key pair. Since A corrupts at most one party,
A cannot learn the secret key. Without the knowledge of the secret key, A
cannot use the efficient Opener algorithm as the efficient Opener algorithm
requires the secret key as one of its inputs. That means, in the hybrid world,
A cannot open a ciphertext encrypting one to be a ciphertext encrypting zero
in polynomial time. That means the result of the zero-knowledge argument
will be identical in both worlds.
If R is honest, then SOT generates a proof transcript using the simulator
of the adaptive zero-knowledge argument and trapdoor δ. SOT sets the key
to a lossy key in step 1. The proof of this step does not work for a lossy
key for ELTA2E. For this reason, SOT generates a proof transcript. In the
real world, honest R acts as an honest prover based on its witness for the
ciphertext encrypting zero. By the definition of zero-knowledge arguments,
the proof transcript in two worlds are computationally indistinguishable.
If A corrupts R after this step, then SOT proceeds as follows.
If σ1 = 0, then SOT performs no additional updates since SOT calculated
c0, c1 based on σ = 0.
If σ1 = 1, then SOT computes randomness ŝ0, t̂0, ŝ1, t̂1 using the efficient
Opener algorithm, such that c0 = Epk(0, (ŝ0, t̂0)) and c1 = Epk(1, (ŝ1, t̂1)).
SOT supplies ŝ0, t̂0, ŝ1, t̂1 as the randomness for step 2. Since SOT knows the
secret key of the lossy key, algorithm Opener produces output in polynomial
time. By the “openability” property of ELTA2E, the generated randomness
is consistent. The randomness in two worlds are identically distributed. After
this update it holds that Epk(0, (ŝ0, t̂0) = c0, and Epk(1, (ŝ1, t̂1) = c1. Then,
c0 is an encryption of zero and c1 is an encryption of one, which is consistent
with the actual value of σ1 = 1.

4. (a) For each i ∈ {0, 1}, the following holds.
In the real world, the ciphertext vi is based on the actual input xi of

S. In the hybrid world, SOT selects x̂i
$← {0, 1} and computes di =

x̂i ×h ci, v̂i = Blind(pk, di).
By the threshold semantic security of ELTA2E, the distribution of the
ciphertexts vi in two worlds are computationally indistinguishable.

(b) SOT sets the key to a lossy key in step 1. The proof for correctness
of multiplication does not work for a lossy key for ELTA2E. So, SOT
generates two proof transcripts for this step using the simulator of the
zero-knowledge argument and trapdoor δ. In the real world, honest S acts
as an honest prover, using x0, x1 and the randomness used in the exe-
cution of Blind function as the witness. By definition of zero-knowledge
argument, the proof transcript in two worlds are computationally indis-
tinguishable.

If A corrupts R after this step, then SOT performs the same steps listed as
action after corruption after step 3.
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5. If R is corrupted after step 2, then A cannot replace the input of R as the
input of R is already fixed by the message sent by honest R in step 2. In this
case, SOT sends σ as input of R to the trusted party of FOT and receives
back output xσ. SOT sets the output of R to xσ.
If R is corrupted before step 2, then SOT extracts the possibly replaced input
σ1 of R in step 3. SOT sends σ1 as input of R to the trusted party of FOT
and receives back output xσ1 . SOT sets the output of R to xσ1 . SOT sets
σ = σ1. This modification is necessary for the uniform treatment of step 5
described below.
SOT sets wσ = xσ, w1−σ = 0.
For each i ∈ {0, 1},SOT performs the following steps.
(a) SOT computes

θi = gwi ,

ds2,i = (vyi)
sk2 ,

d̂s1,i =
vzi

θi · ds1,i
.

SOT uses d̂s1,i as the message from S.
The reason for this type of adjusting by SOT is that correctness of de-
cryption does not hold for a lossy key for ELTA2E. SOT sets the key to
a lossy key, so normal calculation will not yield the decryption correctly.
But SOT knows the output of decryption. SOT adjusts the value of ds1,i
to d̂s1,i so that in step 5(c), the required decryption result is obtained.

In the real world, honest S sends ds1,i = (yi)
sk1 .

Since S is the SIP, S is honest andA does not know sk1. By the decisional
Diffie-Hellman assumption, the distribution of ds1,i in two worlds are
computationally indistinguishable.

(b) SOT generates a proof transcript for this step using the simulator of the
zero-knowledge argument and trapdoor δ. The proof of step 5(b) does
not work for a lossy key for ELTA2E. In the real world, honest S acts
as an honest prover using witness sk1. By definition of zero-knowledge
argument, the proof transcripts in two worlds are computationally indis-
tinguishable.

(c) If R is honest, then SOT honestly performs step 5(c).
If R is corrupted, then, in the hybrid world, A obtains wi. In the real
world, A obtains wi due to the “correctness on injective keys” property
of ELTA2E.

If A corrupts R after any substep of this step, then SOT performs the same
steps listed as modifications after corruption after step 3.

6. SOT produces nothing as this is a step where R produces its output.
If R is corrupted before step 2, then SOT extracts the possibly replaced input
σ1 of R and sets the output xσof R to xσ1 where xσ1 is the output of R that
SOT obtains by sending σ1 as input of R to the trusted party of FOT .
If R is corrupted after step 2, then SOT sets the output of R to xσ where
xσ is the output of R that SOT obtains by sending σ as input of R to the
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trusted party of FOT . Note that the adversary cannot replace the input of
R if it corrupts R after step 2.
If R is corrupted, then A will obtain the same value xσ in step 6 in the
hybrid world that it obtains in the real world.
In an OT protocol, S has no output. So, trivially, the output of the honest
party S is identical (an empty string) in both worlds.

Post-Execution Corruption : IfA corrupts R after the execution of the proto-
col is finished, then SOT performs the same steps listed as action upon corruption
after step 4. Indistinguishability follows due to the reasoning stated above.

E.2 Security for the case where the receiver R is the SIP

The simulator for the case I = R is presented in Figure 14.

Simulator SOT for protocol ΠOTAA for the case I = R.
1. Generate a lossy key pair of ELTA2E.

Simulate using the simulator SDKG on the generated key.
Action upon corruption: If A corrupts S after this step, then corrupt S in the
hybrid world, and receive the input (x0, x1) of S from Z.

2. Set σ = 0.
Compute c0, c1 based on σ = 0.
Action upon corruption: If A corrupts S after this step, then perform the
same steps listed as the action upon corruption after step 1.

3. Generate a proof transcript using the simulator of the adaptive zero-knowledge
argument and trapdoor δ.
Action upon corruption: If A corrupts S after this step, then perform the
same steps listed as the action upon corruption after step 1.

4. (a) If S is honest, then perform the following steps for each i ∈ {0, 1}. Select

x̂i
$← {0, 1}.

Compute
d̂i = x̂i ×h ci, v̂i = Blind(d̂i).

Use (v̂0, v̂1) as the message from S.
Action upon corruption: If A corrupts S after this step, then corrupt S
in the hybrid world, and receive the input (x0, x1) of S from Z.
Set x̃0 = x0, x̃1 = x1.

(b) If S is corrupted, then act as an honest verifier in the proofs.
If S fails in any proof, then send abortS to the trusted party of FOT and halt.
If S passes the proofs, then extract the possibly replaced input (x̃0, x̃1) of
corrupted S.
If S is honest, then generate two proof transcripts using the simulator of the
zero-knowledge argument and trapdoor δ.
Action upon corruption: If A corrupts S after this step, then perform the
same steps listed as action upon corruption after step 4(a).

Fig. 14: Simulator SOT for protocol ΠOTAA for the case I = R.
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Simulator SOT for protocol ΠOTAA for the case I = R.
5. Set wσ = x̃σ, w1−σ = 0.

For each i ∈ {0, 1}, perform the following steps.
(a) If S is honest, then compute

θi = gwi , ds2,i = (vyi)
sk2 , d̂s1,i =

vzi
θi · ds1,i

.

Use d̂s1,i as the message from S.
(b) If S is corrupted, then act as an honest verifier in the proof.

If S fails, then send abortS to the trusted party and halt.
If S is honest, then generate a proof transcript using the simulator of the
zero-knowledge argument and trapdoor δ.

(c) Perform the computations honestly.
Action upon corruption: If A corrupts S after any substep of this step, then
perform the same steps listed as the action upon corruption after step 4(a).

6. Send (x̃0, x̃1) to the trusted party of FOT .
Post-Execution Corruption : If A corrupts S after the execution of ΠOTAA is
finished, then perform the same steps listed as the action upon corruption after step
4(a).

Fig. 14: Simulator SOT for protocol ΠOTAA for the case I = R (continued).

It is proved below why the global output produced by simulator SOT in the
hybrid world is computationally indistinguishable from the global output pro-
duced in the real world. The following things happen during the steps of protocol
ΠOTAA.

1. SOT generates a lossy key pair of ELTA2E in a similar way as step 1 of
simulation where I = S. SOT stores the corresponding secret key sk =
(α, γ, ρ). Let pk be the public key generated by SOT . If protocol ΠDKG is
used to implement step 1, then SOT uses the simulator SDKG of protocol
ΠDKG on input (pk, 0, P2). That means SOT invokes simulator SDKG on
input public key pk, mode parameter set to zero to denote lossy mode, and
the identity I of the SIP set to P2. R acts as P2 in the execution of protocol
ΠDKG in step 1. So, I is set to R.
Indistinguishability can be proven similar to step 1 of the simulation where
I = S.

2. SOT computes c0, c1 based on σ = 0. In the real world, honest R computes
c0 and c1 in such a way that cσ encrypts one and c1−σ encrypts zero. By
threshold semantic security of ELTA2E, the distribution of c0, c1 in two
worlds are computationally indistinguishable.

3. SOT generates a proof transcript using the simulator of the zero-knowledge
argument and trapdoor δ. The indistinguishability argument is similar to
step 1 of the simulation when I = S and R is honest.

4. (a) If S is honest, then SOT performs the following steps for each i ∈ {0, 1}.
SOT selects x̂i

$← {0, 1}.
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SOT computes d̂i = x̂i ×h ci, v̂i = Blind(d̂i). SOT uses (v̂0, v̂1) as the
message from S.
In the real world, the ciphertexts v0 and v1 are based on the actual input
(x0, x1) of honest S.
By the threshold semantic security of ELTA2E, the distribution of the
ciphertexts v0, v1 in two worlds are computationally indistinguishable.
If A corrupts S after this step, then SOT corrupts S in the hybrid world,
and receives the input (x0, x1) of S from Z. In this case, A cannot
modify the input of S as the input of S is already fixed by the message
sent by honest S up to step 4(a). So, SOT sets x̃0 = x0, x̃1 = x1. This
modification is necessary for the uniform treatment for two cases – the
first case where A corrupts S before step 4(a), and the second case where
A corrupts S after step 4(a).

(b) If S is corrupted, then SOT acts as an honest verifier in the proofs.
If S fails in any proof, then SOT sends abortS to the trusted party of
FOT and halts. The trusted party sends abortS to R and R aborts. In
this case, honest R aborts in the real world.
If S passes the proofs, then SOT extracts the possibly replaced input
(x̃0, x̃1) of corrupted S by using the knowledge extractor of the zero-
knowledge arguments.
If S is honest, then SOT generates two proof transcripts using the simula-
tor of the zero-knowledge argument and trapdoor δ. Indistinguishability
argument is similar to step 4(b) of simulation where I = S.
If A corrupts S after this step, then SOT performs the same steps listed
as action upon corruption after step 4(a).

5. SOT sets wσ = x̃σ, w1−σ = 0.
For each i ∈ {0, 1}, the following holds.
(a) If S is honest, then SOT computes

θi = gwi ,

ds2,i = (yi)
sk2 ,

d̂s1,i =
zi

θi · ds2,i
.

SOT uses the d̂s1,i as the message from S. Indistinguishability argument
is similar to step 5(a) of simulation where I = S.

(b) If S is corrupted, then SOT acts as an honest verifier in the proof.
If S fails, then SOT sends abortS to the trusted party and halts. The
trusted party sends abortS to R and R aborts. In this case, honest R
aborts in the real world.
If S is honest, then SOT generates a proof transcript using the simula-
tor of the zero-knowledge argument and trapdoor δ. Indistinguishability
argument is similar to step 4(b) of simulation where I = S.

(c) SOT performs the computations honestly on behalf of R. This is a step
where R computes wi locally. Since R is honest, so A obtains nothing in
this step.
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If A corrupts S after any substep of this step, then SOT performs the same
steps listed as the action upon corruption after step 4(a).

6. SOT sends (x̃0, x̃1) to the trusted party. Let σ be the input of honest R.
Then, the trusted party sends the output x̃σ to the honest R.
In the real world, honest R outputs the value x̃σ that it obtains, based on
the calculations in step 5.
Then, it follows that the output of the honest party R is identical in two
worlds.

Post-Execution Corruption : If A corrupts S after the execution of the
protocol is finished, then SOT performs the same steps listed as action after
corruption after step 4(a). Indistinguishability follows due to the reasoning stated
above.
Efficiency:
In the encryption scheme ELTA2E, the size of a ciphertext is 2n. It is possible
to use a distributed key generation protocol ΠDKG for implementing FKG in
step 1 of ΠOTAA. The communication complexity of protocol PiDKG is 51n.
The communication cost of the adaptive zero-knowledge arguments for ΠOTAA

are presented in Table 1.

Relation Communication Cost

REQ 7n

RMULT 7n

ROR−ZERO 15n

Table 1: Communication cost of the adaptive zero-knowledge arguments for
ΠOTAA.

The communication complexity of protocol ΠOTAA, including the communica-
tion complexity of protocol ΠDKG, is 101n ∈ O(n).
In step 2, R performs two encryption operations of ELTA2E. In step 4, S
performs two homomorphic multiplication by constant and two Blind function
evaluations. One homomorphic multiplication by constant and one Blind func-
tion together is similar in computational complexity to one encryption operation
of ELTA2E. So, the total number of PKE operation of ΠOTAA is four, in the
worst case.
Next, the efficiency of the extension of ΠOTAA for string OT is described. If the
strings x0, x1 are of length k, then the worst case communication complexity is
20n2 + 81n ∈ O(n2). In that case, the number of PKE operations is (2n+ 2), in
the worst case.

F Proof of Lemma 4

Proof. The properties of a non-erasure Σ-protocol of Definition 5 for protocol
ΠΣNEQ are proved below.
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Completeness: If P, V follow the protocol on common input (x1, x2, y1, y2) and
private input (w1, w2) where ((x1, x2, y1, y2), (w1, w2)) ∈ REQ, then the follow-
ings hold.
(y1)

z1 = (y1)
r+ew1 mod p = (y1)

r · (y1)
ew1 mod p = a1(x1)e mod p.

(y2)
z2 = (y2)

r+ew2 mod p = (y2)
r · (y2)

ew2 mod p = a2(x2)e mod p.
(y1)

z2 = (y1)
r+ew2 mod p = (y1)

r · (y1)
ew2 mod p = a1 · (y1)

ew2 mod p
6= a1(x1)e mod p since w1 6= w2.
(y2)

z1 = (y2)
r+ew1 mod p = (y2)

r · (y2)
ew1 mod p = a2(y2)

ew1 mod p
6= a2(x2)e mod p since w1 6= w2.
Then, V accepts.
Special Soundness: Let ((a1, a2), e, (z1, z2)) and ((a1, a2), e′, (z′1, z

′
2)) be two ac-

cepting conversations such that e 6= e′. Then (y1)
z1 = a1(x1)

e
mod p, (y2)

z2 =

a2(x2)
e

mod p, (y1)
z′1 = a1(x1)

e′
mod p, (y2)

z′2 = a2(x2)
e′

mod p. Then,

(y1)
z1−z′1 = (x1)

e−e′
mod p and (y2)

z2−z′2 = (x2)
e−e′

mod p. Since e 6= e′ mod q,
there exists a multiplicative inverse of (e−e′) modulo q. Raising both sides of the

first equation with power (e−e′)−1 mod q gives x1 = (y1)
(z1−z′1)(e−e

′)−1 mod q
mod

p, implying w1 = (z1 − z′1)(e− e′)−1 mod q. Similarly, raising both sides of the
second equation with power (e− e′)−1 mod q gives

x2 = (y2)
(z2−z′2)(e−e

′)−1 mod q
mod p, implying w2 = (z2 − z′2)(e− e′)−1 mod q.

Special Non-Erasure Honest Verifier Zero-Knowledge: For a given input

(x1, x2, y1, y2) and challenge e, the honest verifier simulator hvs selects z1, z2
$←

Zq and computes a1 = (y1)
z1(x1)

−e
mod p and a2 = (y2)

z2(x2)
−e

mod p. Then
((x1, x2, y1, y2), e, (z1, z2)) has the same distribution of a real conversation be-
tween an honest prover and an honest verifier.
On input ((x,w) ∈ REQ, e, (z1, z2)) where rhvs = (z1, z2) is the randomness
used by hvs, the random bits simulator rbs computes r = z1 − ew1 mod q. In

the real execution, r
$← Zq. In the simulation, z1

$← Zq and r = z1 − ew mod q,

so r
$← Zq.

G Proof of Lemma 5

The properties of a non-erasure Σ-protocol of Definition 5 are proved below.

Completeness: If P, V follow the protocol on common input (u1, v1, u3, v3)
and private input m2, s3, t3 where ((u1, v1, u3, v3), (m2, s3, t3)) ∈ RMULT for
ELTA2E, then the followings hold.
(u1)

z1gz2jz3 = (u1)
r1+em2gr2+es3jr3+et3 = (u1)

r1(u1)
em2gr2ges3jr3jet3

= (u1)
r1gr2jr3 ·

(
(u1)

m2gs3 · jt3
)e

= a1(u3)
e
.

(v1)
z1hz2`z3 = (v1)

r1+em2hr2+es3`r3+et3 = (v1)
r1(v1)

em2hr2hes3`r3`et3

= (v1)
r1hr2`r3 ·

(
(v1)

m2hs3 · `t3
)e

= a2(v3)
e
. Then, it follows that V accepts.

Special Soundness: Let ((a1, a2), e, (z1, z2, z3)) and ((a1, a2), e′, (z′1, z
′
2, z
′
3)) be

two accepting conversations such that e 6= e′. Then,

(u1)
z1gz2jz3 = a1(u3)

e
mod p,
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and
(u1)

z′1gz
′
2jz
′
3 = a1(u3)

e′
mod p.

Then,

(u1)
z1−z′1gz2−z

′
2jz3−z

′
3 = (u3)

e−e′
mod p.

Since e 6= e′ mod q, there exists a multiplicative inverse of (e − e′) modulo q.
Raising both sides with power (e− e′)−1 mod q gives

u3 = (u1)
(z1−z′1)(e−e

′)−1 mod q
g(z2−z

′
2)(e−e

′)−1 mod qj(z3−z
′
3)(e−e

′)−1 mod q mod p,

implying m2 = (z1 − z′1)(e− e′)−1 mod q, s3 = (z2 − z′2)(e− e′)−1 mod q, t3 =

(z3 − z′3)(e− e′)−1 mod q .
Special Non-Erasure Honest Verifier Zero-Knowledge: For a given input

(u1, v1, u3, v3) and challenge e, the simulator selects z1, z2, z3
$← Zq and com-

putes a1 = (u1)
z1gz2jz3(u3)

−e
mod p and a2 = (v1)

z1hz2`z3(v3)
−e

mod p. Then
((a1, a2), e, (z1, z2, z3)) has the same distribution of a real conversation between
an honest prover and an honest verifier.
On input ((u1, v1, u3, v3), (m2, s3, t3)) ∈ RDL, e, z1, z2, z3) where rhvs = (z1, z2, z3)
is the randomness used by hvs, the random bits simulator rbs computes r1 =
z1 − em2 mod q, r2 = z2 − es3 mod q, r3 = z3 − et3 mod q.

H Efficiency of the OT Protocol by Hazay and Patra [21]

In this section, the efficiency of the OT protocol by Hazay and Patra [21] is
described. They have different efficiency for polynomial-size message space and
exponential-size message space, with respect to the security parameter n. Some
details on the calculation of the efficiency of bit OT is provided below.
The OT protocol of [21] uses the following tools.
1. A non-committing encryption scheme secure against one-sided active adap-

tive adversaries. They designed a protocol ΠOSC that for this purpose.
2. The dual-mode PKE scheme by Peikert et al. [29].
3. Witness-equivocal zero-knowledge proofs of knowledge.

The efficiency of protocol ΠOSC of [21] for polynomial-size message space is de-
scribed below. ΠOSC for polynomial-size message space is based on the decisional
Diffie-Hellman assumption. The protocol ΠOSC uses the following tools.
1. The sender non-committing encryption scheme by Bellare et al. [6]. For the

scheme of [6], the size of a ciphertext is 3(n+ 1).
2. The receiver non-committing encryption scheme by Jarecki and Lysyanskaya

[22] and Canetti et al. [11]. For the scheme of [22,11], the size of a ciphertext
is 2(n+ 1).

3. The somewhat non-committing encryption by Garay et al. [20], with equiv-
ocality parameter ` = 2.

Next, the efficiency of the somewhat non-committing encryption protocol of [20]
for equivocality parameter ` = 2 is analyzed. This scheme uses the following
tools.

52



1. A simulatable PKE scheme. ElGamal encryption scheme [17] is a simulatable
PKE scheme.

2. A secret key encryption scheme (SKE). One possible choice for the SKE is
AES in CBC mode.

3. The non-committing encryption scheme by Damg̊ard and Nielsen [16].

The non-committing encryption scheme by Damg̊ard and Nielsen [16] uses a
subroutine named attempt. The sender and the receiver jointly execute the sub-
routine attempt sequentially until one call of attempt becomes successful. The
subroutine attempt has a success probability of 1

2 . It follows that the expected
number of repeats of attempt is two. In [Theorem 2, [16]], it is mentioned that
4n calls of attempt gives n successful ones except with probability exp{−n/2},
which is negligible in the security parameter n. This follows from the Markov in-
equality. In order to ensure that the probability of failure of subroutine attempt
remains negligible in n, the non-committing encryption scheme of [16] has to
repeat 4n calls of attempt. That means, the worst case number of repeats of
attempt is 4n to ensure that the probability of failure of attempt remains negli-
gible in the security parameter.

The function attempt uses a simulatable PKE scheme. ElGamal cryptosystem
[17] is a simulatable encryption scheme. For ElGamal cryptosystem [17], the size
of a plaintext is n and the size of a ciphertext is 2n. Each call of attempt has
communication cost (12n + 1). The non-committing encryption scheme of [16]
needs communication complexity of (48n2 + 4n+ 1) for message size of one bit.
Each call of attempt uses one encryption operation of a simulatable PKE scheme,
so the number of PKE for attempt is 1. Then the non-committing encryption
scheme of [16] needs 4n PKE operations in the worst case.

The communication complexity of somewhat non-committing encryption of [20],
with equivocality parameter ` = 2, for transmitting message of size q1(n) is(
48n2 + 14n+ 1 + 2q1(n)

)
.

The somewhat non-committing encryption protocol of [20] uses the non-committing
encryption protocol of [16] for sending an index i ∈ {1, . . . , `}. As mentioned in
[20], the expected number of PKE operations for this step isO(log `). In the worst
case, this step requires 4n PKE operations. The somewhat non-committing en-
cryption protocol of [20] uses one more encryption operation of a simulatable
encryption scheme. So, the worst case number of PKE operations of the some-
what non-committing encryption protocol of [20] is (4n+ 1).

Next, the efficiency of protocol ΠOSC of [21] for sending message of length q2(n)
is analyzed. Here, q2(n) is a polynomial of n. In protocol ΠOSC , in step 1, the
receiver sends a message of size q1(n) = 4n, using the somewhat non-committing
encryption of [20] with equivocality parameter ` = 2. The communication cost
for step 1 is 48n2 + 14n + 1 + 2 × 4n = 48n2 + 22n + 1. The number of PKE
operations for step 1 is (4n+1). In step 2 of ΠOSC , the sender sends two messages
of size

(
q2(n) · 1n · (3n+ 3)

)
and

(
q2(n) · 1n · (2n+ 2)

)
using two instances of the

somewhat non-committing encryption of [20] with equivocality parameter ` = 2.
The communication cost for step 2 is 96n2 + 28n+ 2 + q2(n) · 1n · (5n+ 5). The
number of PKE operations for step 2 is (4n+ 1).
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Total communication cost of ΠOSC for sending message of size q2(n) is(
144n2 + 50n+ 3 + q2(n) · 1n · (5n+ 5)

)
. Total number of PKE operations of

ΠOSC is 4n+ 1 + 4n+ 1 = 8n+ 2.
The OT protocol by Hazay and Patra [21] uses the dual-mode PKE scheme
ΠDUAL by Peikert et al. [29]. The size of ciphertext for ΠDUAL is 2n. The bit
OT protocol performs two encryptions of ΠDUAL. The bit OT protocol sends
two ciphertexts of ΠDUAL using two instances of ΠOSC .
Total communication cost of the bit OT protocol of [21] (excluding the zero-
knowledge proofs) is 2× (144n2 + 50n+ 8) = 288n2 + 100n+ 16 ∈ O(n2).
The total number of PKE operations of the bit OT of [21], in the worst case, is
2 + 2× (8n+ 2) = 16n+ 6.
For string OT of size n by the protocol of [21], the communication complexity
is (288n2 + 110n + 16) and the number of PKE operations in the worst case is
(16n+ 6).
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