Forkable Strings are Rare

Alexander Russell ${ }^{1}$, Cristopher Moore ${ }^{2}$, Aggelos Kiayias ${ }^{3}$, and Saad Quader ${ }^{1}$
${ }^{1}$ University of Connecticut
${ }^{2}$ University of Edinburgh
${ }^{3}$ Santa Fe Institute

March 8, 2017

A fundamental combinatorial notion related to the dynamics of the Ouroboros proof-of-stake blockchain protocol is that of a forkable string. The original description and analysis of the protocol [1] established that the probability that a string of length n is forkable, when drawn from a binomial distribution with parameter $(1-\epsilon) / 2$, is $\exp (-\Omega(\sqrt{n}))$. In this note we improve this estimate to $\exp (-\Omega(n))$.

Definition 1 (Generalized margin and forkable strings). Let $\eta \in\{0,1\}^{*}$ denote the empty string. For a string $w \in\{0,1\}^{*}$ we define the generalized margin of w to be the pair $(\lambda(w), \mu(w))$ given by the following recursive rule: $(\lambda(\eta), \mu(\eta))=(0,0)$ and, for all nonempty strings $w \in\{0,1\}^{*}$,

$$
\begin{aligned}
& (\lambda(w 1), \mu(w 1))=(\lambda(w)+1, \mu(w)+1), \text { and } \\
& (\lambda(w 0), \mu(w 0))= \begin{cases}(\lambda(w)-1,0) & \text { if } \lambda(w)>\mu(w)=0 \\
(0, \mu(w)-1) & \text { if } \lambda(w)=0 \\
(\lambda(w)-1, \mu(w)-1) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Observe that for all strings $w, \lambda(w) \geq \mu(w)$. We say that a string w is forkable if $\mu(w) \geq 0$.
Our goal is to prove the following theorem.
Theorem 1. Let $\epsilon>0$ and let $w \in\{0,1\}$ be chosen randomly according to the probability law that independently assigns w_{i} to the value 1 with probability $(1-\epsilon) / 2$. Then $\operatorname{Pr}[w$ is forkable $]=\exp \left(-2 \epsilon^{4}(1-O(\epsilon)) n\right)$.

In preparation for the proof, we record a standard large deviation bound for supermartingales.
Theorem 2 (Azuma; Hoeffding. See [2, 4.16] for discussion). Let X_{0}, \ldots, X_{n} be a sequence of real-valued random variables so that, for all $t, \mathbb{E}\left[X_{t+1} \mid X_{0}, \ldots, X_{t}\right] \leq X_{t}$ and $\left|X_{t+1}-X_{t}\right| \leq c$ for some constant c. Then for every $\Lambda \geq 0$

$$
\operatorname{Pr}\left[X_{n}-X_{0} \geq \Lambda\right] \leq \exp \left(-\frac{\Lambda^{2}}{2 n c^{2}}\right)
$$

Proof of Theorem 1 Let w_{1}, w_{2}, \ldots be a sequence of independent random variables so that $\operatorname{Pr}\left[w_{i}=1\right]=(1-\epsilon) / 2$ as in the statement of the theorem. For convenience, we define the associated $\{ \pm 1\}$-valued random variables $W_{t}=(-1)^{1+w_{t}}$. Observe that $\mathbb{E}\left[W_{t}\right]=-\epsilon$.

Define $\lambda_{t}=\lambda\left(w_{1} \ldots w_{t}\right)$ and $\mu_{t}=\mu\left(w_{1} \ldots w_{t}\right)$ to be the components of the generalized margin for the string $w_{1} \ldots w_{t}$. The analysis will rely on the ancillary random variable $\bar{\mu}_{t}=\min \left(0, \mu_{t}\right)$. Observe that $\operatorname{Pr}[w$ forkable $]=$ $\operatorname{Pr}[\mu(w) \geq 0]=\operatorname{Pr}\left[\bar{\mu}_{n}=0\right]$, so we may focus on the event that $\bar{\mu}_{n}=0$. As an additional preparatory step, define the constant $\alpha=(1+\epsilon) /(2 \epsilon) \geq 1$ and define the random variables $\Phi_{t} \in \mathbb{R}$ by the inner product

$$
\Phi_{t}=\left(\lambda_{t}, \bar{\mu}_{t}\right) \cdot\binom{1}{\alpha}=\lambda_{t}+\alpha \bar{\mu}_{t}
$$

The Φ_{t} will act as a "potential function" in the analysis: we will establish that $\Phi_{n}<0$ with high probability and note, additionally, that $\alpha \bar{\mu}_{n} \leq \lambda_{n}+\alpha \bar{\mu}_{n}=\Phi_{n}$ so that this implies $\bar{\mu}_{n}<0$, as desired.

Let $\Delta_{t}=\Phi_{t}-\Phi_{t-1}$; we observe that-conditioned on any value $\left(\lambda_{t}, \mu_{t}\right)=(\lambda, \mu)$-the random variable $\Delta_{t+1} \in$ $[-(1+\alpha), 1+\alpha]$ has expectation no more than $-\epsilon$. The analysis has four cases, depending on the various regimes of the definition of generalized margin. When $\lambda>0$ and $\mu<0, \lambda_{t+1}=\lambda_{t}+W_{t}$ and $\bar{\mu}_{t+1}=\bar{\mu}_{t}+W_{t}$ so that $\Delta_{t}=(1+\alpha) W_{t}$ and $\mathbb{E}\left[\Delta_{t}\right]=-(1+\alpha) \epsilon \leq-\epsilon$. When $\lambda>0$ and $\mu \geq 0, \lambda_{t+1}=\lambda_{t}+W_{t}$ but $\bar{\mu}_{t+1}=\bar{\mu}_{t}$ so that $\Delta_{t}=W_{t}$ and $\mathbb{E}\left[\Delta_{t}\right]=-\epsilon$. Similarly, when $\lambda=0$ and $\mu<0, \bar{\mu}_{t+1}=\bar{\mu}_{t}+W_{t}$ while $\lambda_{t+1}=\lambda_{t}+\min \left(0, W_{t}\right)$; we may compute

$$
\mathbb{E}\left[\Delta_{t}\right]=\frac{1-\epsilon}{2}(1+\alpha)-\frac{1+\epsilon}{2} \alpha=\frac{1-\epsilon}{2}-\epsilon \alpha=\frac{1-\epsilon}{2}-\epsilon\left(\frac{1}{\epsilon} \cdot \frac{1+\epsilon}{2}\right)=-\epsilon .
$$

Finally, when $\lambda_{t}=\mu_{t}=0$ exactly one of the two random variables λ_{t+1} and $\bar{\mu}_{t+1}$ changes value: if $W_{t}=1$ then $\left(\lambda_{t+1}, \bar{\mu}_{t+1}\right)=\left(\lambda_{t}+1, \bar{\mu}_{t}\right)$; likewise, if $W_{t}=-1$ then $\left(\lambda_{t+1}, \bar{\mu}_{t+1}\right)=\left(\lambda_{t}, \bar{\mu}_{t}-1\right)$. It follows that

$$
\mathbb{E}\left[\Delta_{t}\right]=\frac{1-\epsilon}{2}-\frac{1+\epsilon}{2} \alpha \leq-\epsilon,
$$

as $\alpha \geq 1$.
Thus $\mathbb{E}\left[\Phi_{n}\right]=\mathbb{E}\left[\sum_{i}^{n} \Delta_{i}\right] \leq-\epsilon n$ and we wish to apply Azuma's inequality to conclude that $\operatorname{Pr}\left[\Phi_{n} \geq 0\right]$ is exponentially small. For simplicity, we transform the random variables Φ_{t} to a supermartingale by shifting them: specifically, define $\tilde{\Delta}_{t}=\Delta_{t}+\epsilon$ and $\tilde{\Phi}_{t}=\sum_{i}^{t} \tilde{\Delta}_{t}=\Phi_{t}+\epsilon t$. Then $\mathbb{E}\left[\tilde{\Phi}_{t+1} \mid W_{1}, \ldots, W_{t}\right] \leq \tilde{\Phi}_{t}, \tilde{\Delta}_{t} \in[-(1+\alpha)+\epsilon, 1+\alpha+\epsilon]$, and $\tilde{\Phi}_{n}=\Phi_{n}+\epsilon n$. It follows from Azuma's inequality that

$$
\begin{aligned}
\operatorname{Pr}[w \text { forkable }] & =\operatorname{Pr}\left[\bar{\mu}_{n}=0\right] \leq \operatorname{Pr}\left[\Phi_{n} \geq 0\right]=\operatorname{Pr}\left[\tilde{\Phi}_{n} \geq \epsilon n\right] \\
& \leq \exp \left(-\frac{\epsilon^{2} n^{2}}{2 n(1+\alpha+\epsilon)^{2}}\right)=\exp \left(-\left(\frac{2 \epsilon^{2}}{1+3 \epsilon+2 \epsilon^{2}}\right)^{2} \cdot \frac{n}{2}\right) \leq \exp \left(-\frac{2 \epsilon^{4}}{1+5 \epsilon} \cdot n\right) .
\end{aligned}
$$

References

[1] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report 2016/889, 2016. http://eprint.iacr. org/2016/889.
[2] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, New York, NY, USA, 1995.

