Forkable Strings are Rare

Alexander Russell¹, Cristopher Moore², Aggelos Kiayias³, and Saad Quader¹

¹University of Connecticut ²University of Edinburgh ³Santa Fe Institute

March 8, 2017

A fundamental combinatorial notion related to the dynamics of the Ouroboros proof-of-stake blockchain protocol is that of a *forkable string*. The original description and analysis of the protocol [1] established that the probability that a string of length *n* is forkable, when drawn from a binomial distribution with parameter $(1 - \epsilon)/2$, is $\exp(-\Omega(\sqrt{n}))$. In this note we improve this estimate to $\exp(-\Omega(n))$.

Definition 1 (Generalized margin and forkable strings). Let $\eta \in \{0, 1\}^*$ denote the empty string. For a string $w \in \{0, 1\}^*$ we define the generalized margin of w to be the pair $(\lambda(w), \mu(w))$ given by the following recursive rule: $(\lambda(\eta), \mu(\eta)) = (0, 0)$ and, for all nonempty strings $w \in \{0, 1\}^*$,

$$(\lambda(w1), \mu(w1)) = (\lambda(w) + 1, \mu(w) + 1), and$$

$$(\lambda(w0), \mu(w0)) = \begin{cases} (\lambda(w) - 1, 0) & \text{if } \lambda(w) > \mu(w) = 0, \\ (0, \mu(w) - 1) & \text{if } \lambda(w) = 0, \\ (\lambda(w) - 1, \mu(w) - 1) & \text{otherwise.} \end{cases}$$

Observe that for all strings w, $\lambda(w) \ge \mu(w)$. We say that a string w is forkable if $\mu(w) \ge 0$.

Our goal is to prove the following theorem.

Theorem 1. Let $\epsilon > 0$ and let $w \in \{0, 1\}$ be chosen randomly according to the probability law that independently assigns w_i to the value 1 with probability $(1 - \epsilon)/2$. Then $\Pr[w \text{ is forkable}] = \exp(-2\epsilon^4(1 - O(\epsilon))n)$.

In preparation for the proof, we record a standard large deviation bound for supermartingales.

Theorem 2 (Azuma; Hoeffding. See [2, 4.16] for discussion). Let X_0, \ldots, X_n be a sequence of real-valued random variables so that, for all t, $\mathbb{E}[X_{t+1} | X_0, \ldots, X_t] \le X_t$ and $|X_{t+1} - X_t| \le c$ for some constant c. Then for every $\Lambda \ge 0$

$$\Pr[X_n - X_0 \ge \Lambda] \le \exp\left(-\frac{\Lambda^2}{2nc^2}\right)$$

Proof of Theorem 1. Let $w_1, w_2, ...$ be a sequence of independent random variables so that $\Pr[w_i = 1] = (1 - \epsilon)/2$ as in the statement of the theorem. For convenience, we define the associated $\{\pm 1\}$ -valued random variables $W_t = (-1)^{1+w_t}$. Observe that $\mathbb{E}[W_t] = -\epsilon$.

Define $\lambda_t = \lambda(w_1 \dots w_t)$ and $\mu_t = \mu(w_1 \dots w_t)$ to be the components of the generalized margin for the string $w_1 \dots w_t$. The analysis will rely on the ancillary random variable $\overline{\mu}_t = \min(0, \mu_t)$. Observe that $\Pr[w \text{ forkable}] = \Pr[\mu(w) \ge 0] = \Pr[\overline{\mu}_n = 0]$, so we may focus on the event that $\overline{\mu}_n = 0$. As an additional preparatory step, define the constant $\alpha = (1 + \epsilon)/(2\epsilon) \ge 1$ and define the random variables $\Phi_t \in \mathbb{R}$ by the inner product

$$\Phi_t = (\lambda_t, \overline{\mu}_t) \cdot \begin{pmatrix} 1 \\ \alpha \end{pmatrix} = \lambda_t + \alpha \overline{\mu}_t \,.$$

The Φ_t will act as a "potential function" in the analysis: we will establish that $\Phi_n < 0$ with high probability and note, additionally, that $\alpha \overline{\mu}_n \le \lambda_n + \alpha \overline{\mu}_n = \Phi_n$ so that this implies $\overline{\mu}_n < 0$, as desired.

Let $\Delta_t = \Phi_t - \Phi_{t-1}$; we observe that—conditioned on any value $(\lambda_t, \mu_t) = (\lambda, \mu)$ —the random variable $\Delta_{t+1} \in [-(1+\alpha), 1+\alpha]$ has expectation no more than $-\epsilon$. The analysis has four cases, depending on the various regimes of the definition of generalized margin. When $\lambda > 0$ and $\mu < 0$, $\lambda_{t+1} = \lambda_t + W_t$ and $\overline{\mu}_{t+1} = \overline{\mu}_t + W_t$ so that $\Delta_t = (1+\alpha)W_t$ and $\mathbb{E}[\Delta_t] = -(1+\alpha)\epsilon \leq -\epsilon$. When $\lambda > 0$ and $\mu \geq 0$, $\lambda_{t+1} = \lambda_t + W_t$ but $\overline{\mu}_{t+1} = \overline{\mu}_t$ so that $\Delta_t = W_t$ and $\mathbb{E}[\Delta_t] = -\epsilon$. Similarly, when $\lambda = 0$ and $\mu < 0$, $\overline{\mu}_{t+1} = \overline{\mu}_t + W_t$ while $\lambda_{t+1} = \lambda_t + \min(0, W_t)$; we may compute

$$\mathbb{E}[\Delta_t] = \frac{1-\epsilon}{2}(1+\alpha) - \frac{1+\epsilon}{2}\alpha = \frac{1-\epsilon}{2} - \epsilon\alpha = \frac{1-\epsilon}{2} - \epsilon\left(\frac{1}{\epsilon} \cdot \frac{1+\epsilon}{2}\right) = -\epsilon.$$

Finally, when $\lambda_t = \mu_t = 0$ exactly one of the two random variables λ_{t+1} and $\overline{\mu}_{t+1}$ changes value: if $W_t = 1$ then $(\lambda_{t+1}, \overline{\mu}_{t+1}) = (\lambda_t + 1, \overline{\mu}_t)$; likewise, if $W_t = -1$ then $(\lambda_{t+1}, \overline{\mu}_{t+1}) = (\lambda_t, \overline{\mu}_t - 1)$. It follows that

$$\mathbb{E}[\Delta_t] = \frac{1-\epsilon}{2} - \frac{1+\epsilon}{2}\alpha \le -\epsilon,$$

as $\alpha \geq 1$.

Thus $\mathbb{E}[\Phi_n] = \mathbb{E}[\sum_i^n \Delta_i] \leq -\epsilon n$ and we wish to apply Azuma's inequality to conclude that $\Pr[\Phi_n \geq 0]$ is exponentially small. For simplicity, we transform the random variables Φ_t to a supermartingale by shifting them: specifically, define $\tilde{\Delta}_t = \Delta_t + \epsilon$ and $\tilde{\Phi}_t = \sum_i^t \tilde{\Delta}_t = \Phi_t + \epsilon t$. Then $\mathbb{E}[\tilde{\Phi}_{t+1}|W_1, \ldots, W_t] \leq \tilde{\Phi}_t, \tilde{\Delta}_t \in [-(1+\alpha) + \epsilon, 1+\alpha+\epsilon]$, and $\tilde{\Phi}_n = \Phi_n + \epsilon n$. It follows from Azuma's inequality that

$$\Pr[w \text{ forkable}] = \Pr[\overline{\mu}_n = 0] \le \Pr[\Phi_n \ge 0] = \Pr[\Phi_n \ge \epsilon n]$$
$$\le \exp\left(-\frac{\epsilon^2 n^2}{2n(1+\alpha+\epsilon)^2}\right) = \exp\left(-\left(\frac{2\epsilon^2}{1+3\epsilon+2\epsilon^2}\right)^2 \cdot \frac{n}{2}\right) \le \exp\left(-\frac{2\epsilon^4}{1+5\epsilon} \cdot n\right).$$

References

- Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report 2016/889, 2016. http://eprint.iacr. org/2016/889.
- [2] Rajeev Motwani and Prabhakar Raghavan. *Randomized Algorithms*. Cambridge University Press, New York, NY, USA, 1995.