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A fundamental combinatorial notion related to the dynamics of the Ouroboros proof-of-stake blockchain protocol
is that of a forkable string. The original analysis of the protocol [2]] established that the probability that a string of
length n is forkable, when drawn from a binomial distribution with parameter (1 — €)/2, is exp(—Q(+/n)). In this note
we provide an improved estimate of exp(—Q(n)).

Definition (Generalized margin and forkable strings). Let n € {0, 1}* denote the empty string. For a string w € {0, 1}*
we define the generalized margin of w to be the pair (A(w), u(w)) € Z X Z given by the following recursive rule:
(A(n), u(n)) = (0,0) and, for all strings w € {0, 1}",

Awl), uwl)) = (Aw) + 1, u(w) + 1), and

(Aw) - 1,0) if Aw) > p(w) =0,
(A(wO0), u(w0)) = 1 (0, u(w) = 1) if Aw) =0,
(Aw) = L, u(w) — 1) otherwise.

Observe that A(w) = 0 and A(w) > u(w) for all strings w. We say that a string w is forkable if u(w) > 0.
Our goal is to prove the following theorem.

Theorem 1. Let w € {0, 1} be chosen randomly according to the probability law that independently assigns each w;
to the value 1 with probability (1 — €)/2 for € > 0. Then Pr[w is forkable] = exp(—Q(n)).

We prove two quantitative versions of this theorem, reflected by the bounds below. The first bound follows from
analysis of a simple related martingale. The second bound requires more detailed analysis of the underlying variables,
but establishes a stronger estimate.

Bound 1. With the random variable w1 . .. wy, € {0, 1}" defined as above so that Pr[w; = 1] = (1 — €)/2,
Prw is forkable] = exp(—2€*(1 — O(€))n).
Bound 2. With the random variable wy . .. w, € {0, 1}" defined as above so that Pr[w; = 1] = (1 — €)/2,
Pr[w is forkable] = exp(—€3(1 — O(e))n/2) .
We begin with a proof of Bound|[T} which requires the following standard large deviation bound for supermartingales.

Theorem 2 (Azuma; Hoeffding. See [3l 4.16] for discussion). Let Xy, ..., X, be a sequence of real-valued random
variables so that, for all t, B[ X;+1 | Xo, ..., X;] < X; and | X;+1 — X¢| < ¢ for some constant c. Then for every A > 0

A2
Pr[X, — Xo = A] < exp (—2—2) .
nc
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Proof of Bound[I] Let wi,w, ... be a sequence of independent random variables so that Pr[w; = 1] = (1 — €)/2 as
in the statement of the theorem. For convenience, define the associated {+1}-valued random variables W, = (=1)+"
and observe that E[W;] = —e.

Define A, = A(wy...w;) and g, = p(wy ...w;) to be the components of the generalized margin for the string
w1 ...w;. The analysis will rely on the ancillary random variables &, = min(0, ;). Observe that Pr[w forkable] =
Pr[u(w) = 0] = Pr[u,, = 0], so we may focus on the event that 1z, = 0. As an additional preparatory step, define the
constant @ = (1 + €)/(2¢€) > 1 and define the random variables @, € R by the inner product
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The @, will act as a “potential function” in the analysis: we will establish that ®,, < 0 with high probability and,
considering that au,, < A, + ap, = @,, this implies u,, < 0, as desired.

Let A, = ®, — ®,_1; we observe that—conditioned on any fixed value (4, u) for (4, u,)—the random variable
Ary1 € [-(1 + @), 1 + @] has expectation no more than —e. The analysis has four cases, depending on the various
regimes of the definition of generalized margin. When A > O and u < 0, A;41 = A+ Wiyq and 14, = g + Wpiq, where
u = max(0, u); then A;rq; = (1 + @)W;yq and E[A;41] = —(1 + @)e < —e. When A > 0and p > 0, 441 = A + Wiy
but 7, = u so that A;yy = Wiy and E[A;41] = —e. Similarly, when A = 0 and ¢ < 0, @,,; = & + W1 while
Ar41 = A+ max(0, W;41); we may compute
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E[At+1] =

1+e€ _1—6 1-€ 1 1+e€ B
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Finally, when 4 = u = 0 exactly one of the two random variables A,,1 and p,, differs from zero: if W;,; = 1 then
(Ar+1 1) = (1, 0); likewise, if Wy = —1 then (A41, 1) = (0, —1). It follows that

l-€¢ 1+e€

E[Ar+1] = a < —€.
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Thus E[®,] = E[X] A;] < —en and we wish to apply Azuma’s inequality to conclude that Pr[®, > 0] is

exponentially small. For this purpose, we transform the random variables @, to a related supermartingale by shifting
them: specifically, define ®; = ®; + e and A; = A; + € so that @, = Zl’. A;. Then

E[®;41 | D1,..., D] = B[@spq | Wi,..., W;] < Dy, Ae[-0l+a)+e6l+a+e],
and @, = ®,, + en. It follows from Azuma’s inequality that

Pr[w forkable] = Pr[, = 0] < Pr[®, > 0] = Pr[®, > en]

< 264 O
< ex o njy .
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We give a more detailed argument that achieves a bound of the form exp(—€3(1 + O(e))n/2) (Bound [2|above).

Proof of Bound[2] Anticipating the proof, we make a few remarks about generating functions and stochastic dominance.
We reserve the term generating function to refer to an “ordinary” generating function which represents a sequence
ap, ai, . . . of non-negative real numbers by the formal power series A(Z) = Y ;2 a,Z". When A(1) = ), a; = 1 we say
that the generating function is a probability generating function; in this case, the generating function A can naturally
be associated with the integer-valued random variable A for which Pr[A = k] = ai. If the probability generating
functions A and B are associated with the random variables A and B, it is easy to check that A - B is the generating
function associated with the convolution A + B (where A and B are assumed to be independent). In general, we say that
the generating function A stochastically dominates B if 3, .y a; < ;<7 by for all T > 0; we write B < A to denote
this state of affairs. Observe that when these are probability generating functions and may be associated with random
variables A and B it follows that Pr[A > T > Pr[B > T]forevery T. If B; < A and By < Ay then By - B < A1 - A
and aB; + By < aA; + BAs (for any @, 8 > 0). Finally, we remark that if A(Z) is a generating function which



converges as a function of Z for |Z| < R, it follows that lim,_,. a,R" = 0 and a,, = O(R™); if A is a probability
generating function associated with the random variable A then it follows that Pr[A > T] = O(R™T).

We define p = (1 — €)/2 and ¢ = 1 — p and, as above, consider the independent {0, 1}-valued random variables
W1, Wa, . .. where Pr[w; = 1] = p. As above we define the associated {+1}-valued random variables W, = (=1)1*":,
Our strategy is to study the probability generating function

L(Z) = Z 07"
t=0

where £; = Pr[t is the last time g, = 0]. Controlling the decay of the coefficients ¢, suffices to give a bound on the
probability that wy . .. w, is forkable because
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Pr[wy ...w, is forkable] < 1 t = Z ¢ .

t=n
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It seems challenging to give a closed-form algebraic expression for the generating function L; our approach is to develop
a closed-form expression for a probability generating function L= > 6,7 which stochastically dominates L and apply
the analytic properties of this closed form to bound the partial sums },, {,. Observe that if L < L then the series L
gives rise to an upper bound on the probability that wy ... w,, is forkable as },;2, €, < .72, &

The coupled random variables A, and y, are Markovian in the sense that values (A, us) for s > t are entirely
determined by (A, y;) and the subsequent values W;.1, . .. of the underlying variables W;. We organize the sequence
(Ao, t0), (A1, t1), - - . into “epochs” punctuated by those times ¢ for which A; = g, = 0. With this in mind, we define
M(Z) = Y, m; Z" to be the generating function for the first completion of such an epoch, corresponding to the least r > 0
for which 4, = y; = 0. As we discuss below, M(Z) is not a probability generating function, but rather M(1) = 1 —€. It
follows that , 6
Below we develop an analytic expression for a generating function M for which M < M and define L = e/(1 — M(Z)).
We then proceed as outlined above, noting that L < L and using the asymptotics of L to upper bound the probability
that a string is forkable.

In preparation for defining M, we set down two elementary generating functions for the “descent” and “ascent”
stopping times. Treating the random variables W1, . .. as defining a (negatively) biased random walk, define D to be
the generating function for the descent stopping time of the walk; this is the first time the random walk, starting at
0, visits —1. The natural recursive formulation of the descent time yields a simple algebraic equation for the descent
generating function, D(Z) = ¢Z + pZD(Z)?, and from this we may conclude

1-+/1-4pqZ?

D(Z) = 37

We likewise consider the generating function A(Z) for the ascent stopping time, associated with the first time the walk,
starting at 0, visits 1: we have A(Z) = pZ + gZA(Z)? and

1—+/1-4pqZ?

A) = 27

Note that while D is a probability generating function, the generating function A is not: according to the classical
“gambler’s ruin” analysis [1]], the probability that a negatively-biased random walk starting at O ever rises to 1 is exactly
p/q; thus A(1) = p/q.

Returning to the generating function M above, we note that an epoch can have one of two “shapes”: in the first
case, the epoch is given by a walk for which W; = 1 followed by a descent (so that A returns to zero); in the second
case, the epoch is given by a walk for which W; = —1, followed by an ascent (so that u returns to zero), followed by the
eventual return of A to 0. Considering that when A, > 0 it will return to zero in the future almost surely, it follows that



the probability that such a biased random walk will complete an epoch is p + g(p/q) = 2p = 1 — €, as mentioned in the
discussion of (T)) above. One technical difficulty arising in a complete analysis of M concerns the second case discussed
above: while the distribution of the smallest # > 0 for which g, = 0 is proportional to A above, the distribution of the
smallest subsequent time ¢’ for which A = 0 depends on the value . More specifically, the distribution of the return
time depends on the value of A;. Considering that 4, < ¢, however, this conditional distribution (of the return time of
A to zero conditioned on 1) is stochastically dominated by D’, the time to descend 7 steps. This yields the following
generating function M which, as described, stochastically dominates M:

M(Z) = pZ - D(Z) + gZ - D(Z) - A(Z - D(Z)).

It remains to establish a bound on the radius of convergence of L. Recall that if the radius of convergence
of L is exp(s) it follows that Pr[w ... w, is forkable] = O(exp(=6n)). A sufficient condition for convergence of
I:(z) =€/(1- |\7|(z)) at z is that that all generating functions appearing in the definition of Y/ converge at z and that the
resulting value M(z) < 1.

The generating function D(z) (and A(z)) converges when the discriminant 1 — 4pgz? is positive; equivalently
lz] < 1/V1-¢€2 or |z] < 1 + €2/2 + O(e¢*). Considering M, it remains to determine when the second term,
qzD(z)A(zD(z)), converges; this is likewise determined by positivity of the discriminant, which is to say that

1_m)2>0

1—(1—62)( -

Equivalently,

l1+e \/1_62_1+e

Note that when the series pz - D(z) converges, it converges to a value less than 1/2; the same is true of gz - A(z). It
follows that for |z| = 1 + €3/2 + O(e*), IM(z)| < 1 and L(z) converges, as desired. We conclude that

|Z|<\/ L ( 2 L )=1+e3/2+0(e4).

Pr[w; ... w, is forkable] = exp(—€3(1 + O(e))n/2). O
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