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Abstract

Blockchain protocols achieve consistency by instructing parties to remove a su�x of a certain length from
their local blockchain. The current state of the art in Proof of Stake (PoS) blockchain protocols, exempli�ed by
Ouroboros (Crypto 2017), Ouroboros Praos (Eurocrypt 2018) and Sleepy Consensus (Asiacrypt 2017) suggests
that the length of the segment should be Θ(k2) for the consistency error to be exponentially decreasing in k. This
is in contrast with Proof of Work (PoW) based blockchains for which it is known that a su�x of length Θ(k)
is su�cient for the same type of exponentially decreasing consistency error. This quadratic gap in consistency
guarantee is quite signi�cant as the length of the su�x is a lower bound for the time required to wait for
transactions to settle. Whether this is an intrinsic limitation of PoS—due to issues such as the “nothing-at-stake”
problem—or it can be improved is an open question. In this work we put forth a novel and general probabilistic
analysis for PoS consistency that improves the required su�x length from Θ(k2) to Θ(k) thus showing, for the
�rst time, how PoS protocols can match PoW blockchain protocols for exponentially decreasing consistency
error. Moreover, our detailed analysis provides an explicit polynomial-time algorithm for exactly computing the
(exponentially-decaying) error function which can directly inform practice.

1 Introduction
The success of Bitcoin and, in general, usage of blockchains for supporting and archiving the results of consensus
protocols has led to a concerted e�ort to develop rigorous formal tools for reasoning about blockchain dynamics.
These e�orts were motivated both by the Bitcoin proof-of-work blockchain itself and the desire for alternative
blockchain protocols that are organized around other resources (e.g., proof-of-space, proof-of-stake, etc.). In this
article, we establish rigorous, quantitative bounds on the time necessary for transactions to settle for a broad
family of blockchain protocols adopting the longest chain rule, notably including proof-of-stake blockchains such
as SnowWhite [2] and the Ouroboros family [7, 3, 1]. The principal feature of our new analysis is that it applies to
proof-of-stake based blockchain systems, which must contend with challenging adversarial behavior that does not
exist in proof-of-work systems:

• Nothing at stake attacks. When an adversary has the right to extend a proof-of-stake blockchain, he may
produce many di�erent blocks that extend di�erent chains of the system or, similarly, yield many di�erent
extensions of a particular longest chain—this corresponds to “nothing-at-stake” attacks that can permit an
adversary to construct, on-the-�y, competing blockchains at no cost; in contrast, the total number of blocks
produced by a minority adversary in a proof-of-work based system is dominated by the number of blocks
that are honestly produced.
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• Known leader schedules. In some proof-of-stake based blockchains, (portions of) the future schedule of
participants permitted to add to the chain is public. In contrast, the right to add a block in proof-of-work
settings is determined in a stochastic online fashion that does not permit the adversary signi�cant “look-
ahead”.

We organize our general model around a simple family of blockchain axioms. The axioms themselves are easy to
interpret and few in number. This permits us to abstract many features of the underlying blockchain protocol
(e.g., the details of the leader-election process, the cryptographic security of the relevant signature schemes and
hash functions, and randomness generation), while still establishing results that are strong enough to plug in to
existing analyses.

Our most interesting �nding is a quite tight theory of blockchain settlement times that depends only on the
schedule of participants certi�ed to add a block. The theory builds on the combinatorial notion of a forkable string
which plays a fundamental role in the security and functionality guarantees of the recent proof-of-stake protocols
Ouroboros [7], Ouroboros Praos [3], and Ouroboros Genesis [1]. In particular, our techniques o�er a signi�cant
improvement over the original analysis [7], which established that the probability of a “depth-k” settlement failure
at time T was no more than T exp(−Ω(

√
k)). Our new techniques establish that the probability of a settlement

failure at time T is no more than exp(−Ω(k)). Note that this is independent of T, the position in the blockchain,
and dramatically improves the scaling in the exponent from

√
k to k. We remark that at the expense of weaker

dependence on the power of the adversary, our techniques can also be applied to quite broad classes of schedule
distributions. While we discuss this in detail later, we remark that this is important for applying our techniques to
security proofs involving adaptive adversaries.

From a technical perspective, we contrast the structure of our proofs with existing techniques for the PoW
case. The PoW results �nd a direct connection between persistence and the behavior of a biased, one-dimensional
random walk. Curiously, our results give a tight relationship between the PoS case and a pair of coupled biased
random walks. A major challenge in the analysis is to bound the behavior of this richer stochastic process. Finally,
we remark that our tools yield precise, explicit upper bounds on the probability of persistence violations that can
be directly applied to tune the parameters of deployed PoS systems. See Section 7 where we record some concrete
results of the general theory. The importance of these results in the practice of PoS blockchain systems cannot be
understated: they provide, for the �rst time, exact error bounds for settlement times for any PoS blockchain that
follows longest chain rule.

Direct consequences. Our results establish consistency bounds in a quite general setting–see below: In par-
ticular, they directly imply exp(−�(k)) consistency for the Ouroboros [7], Ouroboros Praos [3], and Ouroboros
Genesis [1] blockchain protocols. (The Ouroboros Praos and Ouroboros Genesis analyses in fact directly rely on
this article for their settlement estimates.)

Related work. Blockchain protocol analysis in the POW-setting was initiated in [4] and further improved in
[14, 5]. The security bounds for consistency proven are linear in the security parameter. Sleepy consensus [11,
Theorem 13] provides a consistency bound of the form exp(−Ω(

√
k)). Note that [11] is not a PoS protocol per-se

but it is possible to turn it into one as was demonstrated in [2]. The analysis of the Ouroboros blockchain [7]
achievedT exp(−Ω(

√
k). We remark that the analyses of Ouroboros Praos [3] andOuroboros Genesis [1] developed

signi�cant newmachinery for handling other challenges (e.g., adaptive adversaries, partial synchrony), but directly
refered to a preliminary version of this paper to conclude their guarantees of T exp(−Ω(k)).

As we focus on the longest chain rule, our analysis is not applicable to protocols like Algorand [8] which, in
fact, o�er settlement in expected constant time without invoking blockchain reorganisation or forks; however,
Algorand lacks the ability to operate in the “sleepy” [11] or “dynamic availability” [1] setting (which permits an
evolving population of participants). In our combinatorial analysis, a synchronous mode of operation is assumed
against a rushing adversary; this is without loss of generality vis-a-vis the result of [3] where it was shown how
to reduce the combinatorial analysis in the partially synchronous setting to the synchronous one. We note that
a number of works have shown how to use a blockchain protocol to bootstrap a cryptographic protocol that
can o�er faster settlement time under stronger assumptions than honest majority, e.g., Hybrid Consensus [12]
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or Thunderella [13]; our results are orthogonal and synergistic to those since they can be used to improve the
settlement time bounds of the blockchain protocol that operates as a fallback mechanism.

Outline. We begin in Section 2 by describing a simple general model for blockchain dynamics. Section 3 builds
on this to set down a number of basic de�nitions required for the proofs. The �rst part of the proof is described in
Section 4, which develops a “relative” version of the theory of margin from [7]; most details are then relegated to
Section 6 in order to move quickly to the settlement estimates. We then provide two di�erent settlement estimates
in Section 5; roughly, the two bounds trade o� generality with the strength of the �nal estimates. Finally, in
Section 7 we compute exact settlement probabilities for a variety of values of k.

2 The blockchain axioms and the settlement security model
Typical blockchain consensus protocols call for each participant to maintain a blockchain; this is a data structure
that organizes transactions and other protocol metadata into an ordered historical record of “blocks”. A basic
design goal of these systems is to guarantee that participants’ blockchains always agree on a common pre�x; the
di�ering su�xes of these chains held by various participants roughly correspond to the possible future states
of system. Thus the major analytic challenge is to ensure that—despite evolving adversarial control of some of
the participants—the portion of honest participants’ blockchains that might pairwise disagree is con�ned to a
short su�x. This provides the fundamental guarantee of persistence for these algorithms which asserts that data
appearing deep enough in the chain can be considered to be stable, or “settled.”

We adopt a discrete notion of time organized into a sequence of slots {sl0, sl1,…} and assume all protocol
participants have the luxury of synchronized clocks that report the current slot number. The protocols we consider
rely on two critical algorithmic devices:

• A leader election mechanism, which randomly assigns to each time slot a set of “leaders” permitted to post a
new block in that slot.

• The longest chain rule, which calls for the leader(s) of each slot to add a block to the end of the longest
blockchain she has yet observed, and broadcast this new chain to other participants.

The Bitcoin protocol uses a proof-of-workmechanism to carry out leader election which is modeled using a random
oracle, [4, 14, 5]; proof-of-stake systems typically require more intricate leader election mechanisms. (For example,
the Ouroboros protocol [7] uses a full MPC to distribute clean randomness, while SnowWhite [2], Algorand [8],
and Ouroboros Praos [3] use hashing and a family of values determined on-the-�y.) Despite these di�erences all
existing analyses show that the leader election mechanism suitably approximates an ideal distribution, which is
also the approach we will adopt for our analysis. With this in hand, analyses of these protocols then study the
properties of the blockchains that can arise via the longest chain rule—this second stage of the analysis will be our
primary focus.

2.1 The blockchain axioms and forks
To simplify our analysis, we assume a synchronous communication network in the presence of a rushing adversary:
in particular, any message broadcast by an honest participant at the beginning of a particular slot is received by
the adversary �rst, who may decide strategically and individually for each recipient in the network whether to
inject additional messages and in what order all messages are to be delivered prior to the conclusion of the slot.
(See §2.3 below for comments on this network assumption.) Given this, the behavior of the protocol when carried
out by a group of honest participants (who follow the protocol) in the presence of an adversary is clear. Assuming
that the system is initialized with a common “genesis block” corresponding to sl0 and the leader election process
in fact elects a single leader per slot, each participant’s state is a linearly growing blockchain:

0 1 2 1…
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(It is worth noting that even when all the participants are honest, it is possible for a network adversary to induce
divergent views between the players by taking advantage of possible slots where more than a single honest
participant wins the leader election.)

The blockchain axioms. The introduction of adversarial participants further complicates the family of possible
blockchains that could emerge from this process. To explore this in the context of our protocols, we work with an
abstract notion of blockchain, which ignores all internal structure: Speci�cally, we treat a blockchain as a sequence
of abstract blocks, each labeled with a slot number, so that:

A1. The blockchain begins with a �xed “genesis” block, assigned to slot sl0.

A2. The (slot) labels of the blocks are in strictly increasing order.

Thus we model a “blockchain” as a labeled, directed graph which represents each block with a vertex; speci�cally,
a blockchain is a path beginning with a special “genesis” vertex, labeled 0, followed by vertices with strictly
increasing labels which indicate which slot is associated with the block. (See the example below.)

0 2 4 5 7 9

A basic property of the actual blockchains created by such algorithms is that they are immutable in the sense
that any block in the chain in fact commits to the entire previous history of the chain; in particular, it contains a
cryptographic hash of the previous block. Additionally, a proof mechanism should be used to ensure that any
block labeled with slot slt was indeed produced by an elected leader of slot slt. Of course, an immediate property
of the protocol above is that an honest player will add a single block (to a single previous chain in its local state)
during any slot. In particular:

A3. If a slot slt was assigned to a single honest player, then a single block is created—during the entire protocol—
with the label slt.

In particular, these properties imply that any blockchain produced during the protocol that includes a block in
a slot slt assigned to a unique honest player must contain (as a pre�x) the unique blockchain broadcast by that
player during slt.

As we analyze the dynamics of blockchain algorithms, it is convenient to maintain an entire family of
blockchains at once. As a matter of bookkeeping, when two blockchains agree on a common pre�x, we can
glue together the associated paths to re�ect this, as indicated below.

0 2 4 5
7 9

8 9

When we glue together many chains to form such a diagram, we call it a “fork”—the precise de�nition appears
below. Observe that while these two blockchains agree through the vertex (block) labeled 5, they contain (distinct)
vertices labeled 9; this re�ects two distinct blocks associated with slot 9.

Finally, in light of the fact that messages from honest players are delivered immediately, we note a direct
consequence of the longest chain rule:

A4. If two honestly generated blocks B1 and B2 are labeled with slots sl1 and sl2 for which sl1 < sl2, then the
length of the unique blockchain terminating at B1 is strictly less than the length of the unique blockchain
terminating at B2.

(In particular, note that the honest participant assigned to slot sl2 will be aware of the blockchain terminating at
B1 that was broadcast by the honest player in slot sl1; according to the longest chain rule, it must have placed B2
on a chain that was at least this long.)
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Characteristic strings. Note that with the axioms we have set down above, whether or not a particular fork
diagram (such as the one just above) can be realized depends on how the slots have been awarded to the parties by
the leader election mechanism. To re�ect this information, we introduce the notion of a “characteristic” string.

De�nition 1 (Characteristic string). Let sl1,… , sln be a sequence of slots. A characteristic string w is an element of
{0, 1}n de�ned for a particular execution of a blockchain protocol so that

wt = {
0 if slt was assigned to a single honest participant,
1 otherwise.

With this discussion behind us, we set down the formal object we use to re�ect the various blockchains
broadcast by honest players during the execution of a blockchain protocol.

De�nition 2 (Fork). Let w ∈ {0, 1}n and let H = {i ∣ wi = 0}. A fork for the string w consists of a directed and
rooted tree F = (V, E) and a labeling l ∶ V → {0, 1,… , n}. We insist that each edge of F is directed away from the
root vertex and further require that

(F1.) the root vertex r has label l(r) = 0;

(F2.) the labels of vertices along any directed path are strictly increasing;

(F3.) each index i ∈ H is the label for exactly one vertex of F;

(F4.) for any vertices i, j ∈ H, if i < j, then the depth of vertex i in F is strictly less than the depth of vertex j in F.

If F is a fork for the characteristic string w, we write F ⊢ w. Note that the conditions (F1.)–(F4.) are direct
analogues of the axioms A1–A4 above. See Fig. 1 for an example fork. A �nal notational convention: If F ⊢ x and
F̂ ⊢ w, we say that F is a pre�x of F̂, written F ⊑ F̂, if the string x ∈ {0, 1}l is a pre�x of the string w ∈ {0, 1}l+m
and F appears as a consistently-labeled subgraph of F̂. (Speci�cally, each tine of F appears, with identical labels,
in F̂.)

w = 0

1

1

2

2

0

3

1

4

4

4

0

5

0

6

1

7

1

8

0

90

Figure 1: A fork F for the characteristic stringw = 010100110; vertices appear with their labels and honest vertices
are highlighted with double borders. Note that the depths of the (honest) vertices associated with the honest
indices of w are strictly increasing. Note, also, that this fork has two disjoint paths of maximum depth.

2.2 Adversarial attacks on settlement time; the settlement game.
We are now in a situation to explore the power of an adversary in this setting who has control of a �xed fraction
� < 1∕2 of the participants of the protocol. The most pressing question is whether the adversary can produce two
signi�cantly diverging blockchains, both having the maximal length among all blockchains broadcast by the system
at some slot slt. Note that in such a case the adversary has produced two alternate views of history that each look
equally valid to an honest participant viewing the protocol at slt; furthermore, if these chains diverge at (the
earlier) sls, it is clear that we cannot treat any block associated with slots sls+1,… , slt as “settled”.
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To explicitly study settlement, we consider the (D, T; s, k)-settlement game, played between an adversary A
and a challenger C with a leader election mechanism modeled byD; intuitively, the game should re�ect the ability
of the adversary to produce two blockchains that diverge prior to slot sls and both chains have the maximal length
among all chains produced by the protocol at some (later) time t > s + k. The challenger plays the role(s) of the
honest players during the protocol.

The (D, T; s, k)-settlement game

1. A characteristic stringw ∈ {0, 1}T is drawn fromD. [This re�ects the results of the leader election
mechanism.]

2. Let F0 ⊢ � denote the initial fork for the empty string � consisting of a single node corresponding
to the genesis block.

3. For each slot slt = {sl1,… , slT} in increasing order:

(a) (Adversarial augmentation.) A determines an arbitrary fork At−1 ⊢ w1… , wt−1 for which
Ft−1 ⊑ At−1 (that is, At−1 contains, as a consistently-labeled subgraph, the fork Ft−1).

(b) If wt = 0, this is an honest slot. In this case, the challenger is given the fork At−1 ⊢
w1…wt−1 and must determine a new fork Ft ⊢ w1…wt by adding a single vertex (labeled
with t) to the end of a longest path in At−1. (If there are ties, the adversary may choose
which path the challenger adopts.)

(c) If wt = 1, this is an adversarial slot. The adversary may set Ft ⊢ w1…wt to be an arbitrary
fork for which At−1 ⊑ Ft.

We say that A wins the settlement game if, for some t ≥ s + k, there are two paths in the fork At
where both paths (i.) have the maximal length among all paths in the fork, and (ii.) “diverge prior to
sls”—speci�cally, they either contain di�erent vertices labeled with s or one contains a vertex labeled s
and the other does not.

De�nition 3. LetD be a distribution on {0, 1}T . Then de�ne the (s, k)-settlement insecurity ofD to be

Ss,k[D] ≜ max
A

Pr[A wins the (D, T; s, k) settlement game],

this maximum taken over all adversariesA.

Remarks. A few remarks are in order about the settlement game: First of all, observe that the behavior of
the challenger in the game is entirely deterministic, as it simply plays according to the longest chain rule (even
permitting the adversary to break ties). Thus the result of the game is entirely determined by the characteristic
string w drawn fromD and the choices of the adversary. We record the following immediate conclusion:

Lemma 1. LetD be a distribution on {0, 1}T . Then

Ss,k[D] ≤ Pr
w

⎡
⎢
⎣

there exists a pre�x ŵ of w of length at least
s + k and a fork F ⊢ ŵ with two maximal
length paths that diverge prior to slot s

⎤
⎥
⎦
,

where the string w is drawn from the distributionD.

In the next section, we will develop some further notation and tools to analyse this event. In any case, we can
state our main theorem.

Theorem 1 (Main theorem). Let ℬ be the binomial distribution B(T, (1 − �)∕2); speci�cally, a string w ∈ {0, 1}T
drawn fromℬ has the property that each bit is independent and Pr[wi = 1] = (1 − �)∕2. Then

Ss,k[ℬ] ≤ exp
(
−Ω(�3(1 − O(�))k)

)
.
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More generally, let D be a distribution so that when w ∈ {0, 1}T is drawn according to D, for each t, Pr[wt = 1 ∣
w1,… , wt−1] ≤ (1 − �)∕2. Then

Ss,k[D] ≤ exp
(
−Ω(�4(1 − O(�))k)

)
.

(Here the asymptotic notation hides constants that do not depend on � or k.)

Additionally, we provide a polynomial time algorithm (in T) for computing an explicit upper bound on these
probabilities (cf. Section 7).

2.3 Comments on the model
Network synchrony. The model above assumes a synchronous network with immediate delivery. In fact, the
model can be easily adapted to the∆-synchronousmodel adopted by the SnowWhite andOuroboros Praos protocols
and analyses. In particular, David et al. [3] developed a “∆-reduction” mapping on the space of characteristic
strings that permits analyses of forks (and the related statistics of interest, cf. §3) in the ∆-synchronous setting by
direct appeal to the synchronous setting.

Public leader schedules. One attractive feature of thismodel is that it gives the adversary full information about
the future schedule of leaders. The analysis of some protocols indeed demand this (e.g., Ouroboros, Snow White).
Other protocols—especially those designed to o�er security against adaptive adversaries (Praos, Genesis)—in fact
contrive to keep the leader schedule private. Of course, as our analysis is in the more di�cult “full information”
model, it applies to all of these systems.

3 De�nitions
We rely on the elementary framework of forks and margin from Kiayias et al. [7]. We restate and brie�y discuss
the pertinent de�nitions below. With these basic notions behind us, we then de�ne a new “relative” notion of
margin, which will allow us to signi�cantly improve the e�cacy of these tools for reasoning about settlement
times. In particular, these tools will allow us to reason about the possibility that an adversary can produce two
alternate histories of the blockchain that diverge prior to a particular block.

Recall that for a given execution of the protocol, we record the result of the leader election process via a
characteristic string: w ∈ {0, 1}T is de�ned so that wi = 0 when a unique and honest party is assigned to slot i;
otherwise, wi = 1.

De�nition 4 (Tines, length and height). Let F ⊢ w be a fork for a characteristic string. A tine of F is a directed
path starting from the root. For any tine t we de�ne its length to be the number of edges in the path, and for any
vertex v we de�ne its depth to be the length of the unique tine that ends at v. The height of a fork (as usual for a tree)
is the length of the longest tine, denoted height(F). A vertex of a fork is said to be honest if it is labeled with an honest
index of w.

De�nition 5 (The∼x relations). For two tines t1 and t2 of a fork F, it is convenient to de�ne an equivalence relation
that re�ects whether t1 and t2 share an edge of F. If so, we write t1 ∼ t2; otherwise we write t1 ≁ t2. We generalize this
to re�ect whether the tines share an edge over a particular su�x ofw: speci�cally, writingw = xy we de�ne t1 ∼x t2
if t1 and t2 share an edge that terminates at some node labeled with an index in y; otherwise, we write t1 ≁x t2—note
that in this case the paths share no vertex labeled by a slot associated with y. We sometimes call such pairs of tines
disjoint (or, if t1 ≁x t2 for a string w = xy, disjoint over y). Note that ∼ and ∼� are the same relation.

The basic structure we use to use to reason about settlement times is that of a “balanced fork”.

De�nition 6 (Balanced fork). A fork F is balanced if it contains a pair of tines t1 and t2 for which t1 ≁ t2 and
length(t1) = length(t2) = height(F). We de�ne a relative notion of balance as follows: A fork F ⊢ xy is x-balanced
if it contains a pair of tines t1 and t2 for which t1 ≁x t2 and length(t1) = length(t2) = height(F).
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Figure 2: A balanced fork
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Figure 3: An x-balanced fork, where x = 00

Thus, balanced forks contain two completely disjoint, maximum-length tines, while x-balanced forks contain
two maximum-length tines that may share edges in x but must be disjoint over the rest of the string. (See Figures 2
and 3 for examples.)

Balanced forks and settlement time. A fundamental question arising naturally in typical blockchain settings
is that of settlement time: speci�cally, settlement time is the delay after which a transaction appearing in a particular
block of a blockchain can be considered stable. The existence of a balanced fork is a precise indicator for “settlement
violations” in this sense. Speci�cally, consider a characteristic string xy and a transaction appearing in a block
associated with the �rst slot of y (that is, slot |x|+ 1). In order to violate the stability at this point of the execution,
the adversary must arrange for two chains—each of maximum length—which diverge prior to y; in particular,
this indicates that there is an x-balanced fork F for xy. Observe now that to provide a rigorous k-slot settlement
guarantee—which is to say that the transaction can be considered settled once k slots have gone by—it su�ces to
show that with overwhelming probability in choice of the characteristic string determined by the leader election
process (of a full execution of the protocol), no such forks are possible. Speci�cally, if the protocol runs for a
total of T time steps yielding the characteristics string w = xy (where w ∈ {0, 1}T and the transaction of interest
appears in slot |x|+1 as above) then it su�ces to ensure that there is no x-balanced fork for xŷ, where ŷ is a pre�x
of y of length at least k. Note that for systems adopting the longest chain this condition must necessarily involve
the entire future dynamics of the blockchain. We remark that our analysis below will in fact let us take T = ∞.

De�nition 7 (Closed fork). A forkF is closed if every leaf is honest. For convenience, we say the trivial fork is closed.

The next few de�nitions are the start of a general toolkit for reasoning about an adversary’s capacity to build
highly diverging paths in forks based on the underlying characteristic string.

De�nition 8 (Gap, reserve, and reach). For a closed fork F ⊢ w and its unique longest tine t̂, we de�ne the gap of
a tine t to be

gap(t) = length(t̂) − length(t) .

Furthermore, we de�ne the reserve of t, denoted reserve(t), to be the number of adversarial indices inw that appear
after the terminating vertex of t. More precisely, if v is the last vertex of t, then

reserve(t) = |{ i |wi = 1 and i > l(v)}| .
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These quantities together de�ne the reach of a tine:

reach(t) = reserve(t) − gap(t) .

The notion of reach can be intuitively understood as a measurement of the resources available to our adversary.
A large, negative value for reach corresponds to a tine that has fallen too far behind to be useful to the adversary,
while a tine with nonnegative reach could be extended using a sequence of dishonest blocks until it is as long as
(or longer than) the longest tine. Such a tine could be o�ered to an honest player who would prefer it over, e.g.,
the currently longest tine in the fork.
De�nition 9 (Maximum reach). For a closed fork F ⊢ w, we de�ne �(F) to be the largest reach attained by any
tine of F, i.e.,

�(F) = max
t

reach(t) .

Note that reach(F) is never negative (as the longest tine of any fork always has reach at least 0). We overload this
notation to denote the maximum reach of a given characteristic string:

�(w) = max
F⊢w

F closed

[
max
t

reach(t)
]
.

De�nition 10 (Margin). Themargin of a fork F ⊢ w, denoted �(F), is de�ned as

�(F) = max
t1≁t2

(
min{reach(t1), reach(t2)}

)
,

where this maximum is extended over all pairs of disjoint tines of F; thus margin re�ects the “second best” reach
obtained over all disjoint tines. In order to study forks over particular portions of a string, we generalize this to de�ne
a “relative” notion of margin: If w = xy for two strings x and y and, as above, F ⊢ w, we de�ne

�x(F) = max
t1≁xt2

(
min{reach(t1), reach(t2)}

)
.

Note that ��(F) = �(F).
For convenience, we once again overload this notation to denote the margin of a string. �(w) refers to the maxi-

mum value of �(F) over all possible closed forks F for a characteristic string w:

�(w) = max
F⊢w,
F closed

�(F) .

Likewise, if w = xy for two strings x and y we de�ne

�x(y) = max
F⊢w,
F closed

�x(F) .

It is not immediately obvious that margin is an interesting quantity; however, because our adversary is
attempting to make two entirely disjoint tines of maximum length, it turns out to be a critical indicator. Previous
work showed that a balanced fork can be constructed for a given characteristic string w if and only if there exists
some closed F ⊢ w such that �(F) ≥ 0 [7]. We record a relative version of this theorem below.
Fact 1. Let xy ∈ {0, 1}n be a characteristic string. Then there is an x-balanced fork F ⊢ xy if and only if �x(y) ≥ 0.

Proof. The proof is immediate from the de�nitions. We sketch the details for completeness.
Suppose F is an x-balanced fork for xy. Then F must contain a pair of tines t1 and t2 for which t1 ≁x t2 and

length(t1) = length(t2) = height(F). This implies that gap(ti) = 0, and reserve is always a nonnegative quantity,
so reach(ti) ≥ 0. Because t1 and t2 are edge-disjoint over y andmin{reach(t1), reach(t2)} ≥ 0, we conclude that
�x(y) ≥ 0, as desired.

Suppose �x(y) ≥ 0. Then there is some closed fork F for xy such that �x(F) ≥ 0. By the de�nition of relative
margin, we know that F has two tines t1 and t2 such that t1 ≁x t2 and reach(ti) ≥ 0. Recall that we de�ne reach
by reach(t) = reserve(t) − gap(t), and so it follows in this case that reserve(ti) − gap(ti) ≥ 0. Therefore, we can
build an x-balanced fork F′ by appending a path of gap(ti) adversarial vertices from our reserve to each ti .
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An important consequence of Fact 1 (in light of Lemma 1) is that we can formulate the success probability of
the settlement game directly in terms of margin.

Lemma 2. LetD be a distribution on {0, 1}T . Then

Ss,k[D] ≤ Pr
xy
[∃ŷ, a pre�x of y, so that |ŷ| ≥ k and �x(ŷ) ≥ 0] ,

where the string xy is drawn from the distributionD and |x| = s.

4 A simple recursive formulation of relative margin
A signi�cant �nding of Kiayias et al. [7] is that the margin of a characteristic string �(w)—the maximum value of
a quantity taken over a (typically) exponentially-large family of forks—can be given a simple, mutually recursive
formulation with the associated quantity of reach �(w). Speci�cally, they prove the following lemma.

Lemma 3 ([7, Lemma 4.19]). �(�) = 0 and, for all nonempty strings w ∈ {0, 1}∗,

�(w1) = �(w) + 1 , and �(w0) = {
0 if �(w) = 0,
�(w) − 1 otherwise.

(1)

Furthermore, margin satis�es the mutually recursive relationship �(�) = 0 and for all w ∈ {0, 1}∗,

�(w1) = �(w) + 1 , and �(w0) =
⎧

⎨
⎩

0 if �(w) > �(w) = 0,
�(w) − 1 if �(w) = 0,
�(w) − 1 otherwise.

(2)

Additionally, there exists a closed fork F ⊢ w such that �(F) = �(w) and �(F) = �(w). (It is convenient to separate
the case �(w) = 0 from the other case which also yields �(w) − 1 in the proof, so we re�ect that in the statement of
the theorem.)

We prove an analogous recursive statement for relative margin, recorded below.

Lemma 4 (Relative margin). Given a �xed string x ∈ {0, 1}*, �x(�) = �(x) and, for all nonempty stringsw = xy ∈
{0, 1}*,

�x(y1) = �x(y) + 1 , and �x(y0) =
⎧

⎨
⎩

0 if �(xy) > �x(y) = 0 ,
�x(y) − 1 if �(xy) = 0 ,
�x(y) − 1 otherwise.

(3)

Additionally, there exists a closed fork F ⊢ xy such that �(F) = �(xy) and �x(F) = �x(y).

Wedelay the full proof of Lemma 4 to Section 6, preferring to immediately focus on the application to settlement
times.

Discussion. The proof of Lemma 4 sharesmany technical similarities with the proof of Lemma 3 given byKiayias
et al. [7]. However, there is an important respect in which the proofs di�er. Each of the proofs require de�nition
of a particular adversary (which, in e�ect, constructs a fork achieving the worst case reach and margin guaranteed
by the lemma). The adversary constructed by [7] can create a balanced fork for w whenever �(w) ≥ 0 (i.e., w
is “forkable”). However, the adversary only focuses on the problem of producing disjoint tines over the entire
string w (consistent with the de�nition of �(⋅)). The “relative adversary,” developed during the proof of Lemma 4,
uses a more sophisticated rule for extending chains (tines) of the fork, which allows it to simultaneously maximize
relative margin over all pre�xes of the string. This remarkable property is important for the settlement proof below.
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5 General settlement guarantees
With the recursive formulation from the previous section in hand, we are prepared to study the stochastic
process that arises when the characteristic string w is chosen from the binomial distribution. As mentioned
in the introduction, we additionally study �x(y) when these random variables are drawn from more general
distributions—see below. For clarity, this section is organized around two di�erent proofs of the following theorem
which states the main result in a more qualitative fashion. The proofs themselves will yield the various concrete
versions of the main theorem (Theorem 1) advertised in §2.

Theorem 2. Let x ∈ {0, 1}m and y ∈ {0, 1}k be independent random variables, each chosen according to the
probability law that independently assigns each coordinate to the value 1 with probability (1 − �)∕2 for � > 0. Then

Pr[there exists an x-balanced fork F ⊢ xy] = Pr[�x(y) ≥ 0] = exp(−Ω(k)).

Remarks. Note that the �nal bound does not depend onm—indeed, the reach of a binomially distributed string
x ∈ {0, 1}m converges to a �xed exponential distribution (asm →∞) which stochastically dominates the other
distributions of interest—this is discussed in detail below. We note the following corollary.

Corollary 1. Let x ∈ {0, 1}m and y = y1, y2,… be independent random variables, chosen randomly according to
the probability law that independently assigns each coordinate to the value 1 with probability (1 − �)∕2 for � > 0.
Then

Pr[∃ŷ, a pre�x of y, so that |ŷ| ≥ n and �x(ŷ) ≥ 0 ] = exp(−Ω(n)).

We note another corollary (obtained by setting m = 0 above), as it signi�cantly strengthens the bound of
exp(−Ω(

√
n)) obtained in [7].

Corollary 2 (cf. [7]). Let y ∈ {0, 1}n be chosen randomly according to the probability law that independently assigns
each coordinate to the value 1 with probability (1 − �)∕2 for � > 0. We say that string y is forkable if �(y) ≥ 0. Then

Pr[y is forkable] = Pr[�(y) ≥ 0] = exp(−Ω(n)) .

The proofs. We prove two quantitative versions of Theorem 2, which each establish a part of Theorem 1. The
�rst bound follows from analysis of a simple related martingale and has the advantage that it applies to a more
general class of probability distributions for characteristic strings. (In particular, the martingale-based proof can
handle characteristic strings that are themselves drawn from a martingale; we remark that there are settings where
this �exibility is important [1].) The second bound requires binomially-distributed variables, but establishes a
stronger estimate.

It is useful to give a name to this broader family of distributions we will consider.

De�nition 11 (�-martingale condition). We say that a sequence of random variablesW1,… ,Wk ∈ {0, 1}k satisfy
the �-martingale condition if for each t,

Pr[Wt = 1 ∣W1,⋯ ,Wt−1] = E[Wt ∣W1,⋯ ,Wt−1] ≤ (1 − �)∕2 .

( In particular, Pr[Wt = 1 ∣W1,⋯ ,Wt−1] ≤ (1−�)∕2 for any arbitrary conditioning on the variablesW1,⋯ ,Wt−1.
As a consequence, Pr[Wt = 1] ≤ (1 − �)∕2. )

Note that if theWi are binomially distributed—that is, independent and each with expectation (1− �)∕2—then
they satisfy the �-martingale condition with equality.

The two bounds we prove are the following.

Bound 1. Let x ∈ {0, 1}m and y ∈ {0, 1}k be random variables, satisfying the �-martingale condition (with respect
to the ordering x1,… , xm, y1,… , yk). Then

Pr[�x(y) ≥ 0] ≤ 3 exp
(
−�4(1 − O(�))k∕64

)
.
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Observe that by summing the probabilities
∑

l≥k
Pr[�x(y) ≥ 0] = O(1) ⋅ exp

(
−�4(1 − O(�))k∕64

)

(where |x| = m and |y| = l), Bound 1 immediately yields the “martingale” part of Theorem 1.

Bound 2. Letx ∈ {0, 1}m and y ∈ {0, 1}k be independent random variables, each chosen according to the probability
law that independently assigns each coordinate to the value 1 with probability (1 − �)∕2 for � > 0. Then

Pr[�x(y) ≥ 0] ≤ exp(−�3(1 − O(�))k∕2) .

Observe that by summing the probabilities
∑

l≥k
Pr[�x(y) ≥ 0] = O(1) ⋅ exp

(
−�3(1 − O(�))k∕2

)

(where |x| = m and |y| = l), Bound 2 immediately yields the “binomial” part of Theorem 1.
In preparation for the proofs, we record the notion of stochastic dominance and study the distribution of �(w),

where w is a string drawn from the binomial distribution.

De�nition 12 (Stochastic dominance). Let X and Y be random variables taking values in ℝ. We say that X
stochastically dominates Y, written Y ⪯ X if

Pr[X ≥ Λ] ≥ Pr[Y ≥ Λ]

for every Λ ∈ ℝ. We extend this notion to probability distributions in the natural way. As a rule, we denote the
probability distribution associated with a random variable using upper case script letters.

Observe that if Y ⪯ X and Z is independent (of both X and Y) then Z + Y ⪯ Z + X.

Lemma 5. Let n > 0 and consider a sequence of random variables W = W1,… ,Wn ∈ {0, 1}n satisfying the �-
martingale conditions. De�ne R = �(W) and de�ne R∞ to be a random variable, taking values in {0, 1,…} and
having the distributionℛ∞ ∶ ℤ→ [0, 1] de�ned as

ℛ∞(k) ∶= Pr[�(x) = k] = (1 + �
2� ) ⋅ (1 − �

1 + �)
k
. (4)

Then R ⪯ R∞.

Remark. When theWi are binomially distributed (with parameter (1 − �)∕2, as indicated above), the random
variables R actually converge to R∞ as n →∞; however, we will only require dominance for our proofs. In addition,
let ℛ be the distribution associated with the random variable R in the statement of Lemma 5. Then it follows that
ℛ ⪯ ℛ∞. Since �x(�) = �(x) and Pr[�x(y) ≥ 0] increases monotonically with an increase in Pr[�x(�) ≥ r] for any
r ≥ 0, it su�ces to take |x| →∞ when reasoning about Pr[�x(y) ≥ 0].

Proof of Lemma 5. LetW1,… ,Wn denote random variables as described in the statement of the theorem. The
proof constructs a sequence of binomially distributed random variables X = (X1,… , Xn) ∈ {0, 1}n (for which
Pr[Xi = 1] = (1 − �)∕2) and proceeds in two steps, �rst establishing that �(W) ⪯ �(X) and then that �(X) ⪯ R∞.

As a matter of notation, for any �xed values w1,… , wk ∈ {0, 1}k, let

�[w1,… , wk] = Pr[Wk+1 = 1 ∣Wi = wi , for i ≤ k] ≤ (1 − �)∕2

and �[] = Pr[W1 = 1]. Then consider n uniform and independent real numbers (A1,… , An) each taking
values in the unit interval [0, 1]; we use these random variables to construct a monotone coupling between
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W and X, a binomially distributed random variable. Speci�cally, de�ne X ∶ [0, 1]n → {0, 1}n by the rule
X(�1,… , �n) = (x1,… , xn) where

xt = {
1 if �t ≤ (1 − �)∕2,
0 if �t > (1 − �)∕2,

and de�ne X = (X1,… , Xn) = X(A1,… , An); these are binomially distributed with parameter (1 − �)∕2. Likewise
de�ne the functionW ∶ [0, 1]k → {0, 1}n so thatW(�1,… , �n) = (w1,… , wn) where each wt is assigned by the
iterative rule

wk+1 = {
1 if � ≤ �[w1,… , wt],
0 if � > �[w1,… , wt],

and observe that the probability law ofW(A1,… , An) is precisely that ofW = (W1,… ,Wn). For convenience, we
simply identify the random variableW withW(A1,… , An). Note that for any � = (�1,… , �n) and for each i, the
ith coordinates of X andW satisfyW(�)i ≤ X(�)i (which is to say thatWi ≤ Xi). It follows immediately that
�(W(�)) ≤ �(X(�)) with probability 1 and hence that R = R(W) ⪯ R(X).

To complete the proof, we now establish that �(X) ⪯ R∞. We remark that the random variables R(X) (and R∞)
have an immediate interpretation in terms of the Markov chain corresponding to a biased random walk on ℤ with
a “re�ecting boundary” at -1. Speci�cally, consider the Markov chain on {0, 1,…} given by the transition diagram

0 1 2 3…

where edges pointing right have probability (1 − �)∕2 and edges pointing left—including the loop at 0—have
probability (1 + �)∕2. Examining the recursive description of �(w), it is easy to con�rm that the random variable
R(X1,… , Xn) is precisely given by the result of evolving the Markov chain above for n steps with all probability
initially placed at 0. It is further easy to con�rm that the distribution given by (4) above is stationary for this chain.

To establish stochastic dominance, it’s convenient to work with the underlying distributions and consider
walks of varying lengths: let ℛn ∶ ℤ→ ℝ denote the probability distribution given by R(X1,… , Xn) where the Xi
are binomial, as above; likewise de�ne ℛ∞. For a distribution ℛ on ℤ, we de�ne [ℛ]0 to denote the probability
distribution obtained by shifting all probability mass on negative numbers to zero; that is

[ℛ]0(x) =
⎧

⎨
⎩

ℛ(x) if x > 0,
∑

t≤0ℛ(t) if x = 0,
0 if x < 0.

We observe that if A ⪯ B then [A]0 ⪯ [B]0 for any distributions A and B on ℤ. It will also be convenient to
introduce the shift operators: for a distribution ℛ ∶ ℤ→ ℝ and an integer k, we de�ne Skℛ to be the distribution
given by the rule Skℛ(x) = ℛ(x − k). With these operators in place, we may write

ℛt = (1 − �
2 ) S1ℛt−1 + (1 + �

2 )
[
S−1ℛt−1

]
0 ,

with the understanding that ℛ0 is the distribution placing unit probability at 0. The proof now proceeds by
induction. It is clear that ℛ0 ⪯ ℛ∞. Assuming that ℛn ⪯ ℛ∞, we note that for any k

Skℛn ⪯ Skℛ∞ and, additionally, that [S−1ℛn]0 ⪯ [S−1ℛ∞]0 .

Finally, it is clear that stochastic dominance respects convex combinations, in the sense that if A1 ⪯ B1 and
A2 ⪯ B2 then �A1 + (1 − �)A2 ⪯ �B1 + (1 − �)B2 (for 0 ≤ � ≤ 1). We conclude that

ℛt+1 = (1 − �
2 ) S1ℛt + (1 + �

2 )
[
S−1ℛt

]
0 ⪯ (1 − �

2 ) S1ℛ∞ + (1 + �
2 )

[
S−1ℛ∞

]
0 = ℛ∞ ,

as desired. Hence R(X) ⪯ R∞, as desired.
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5.1 Proof of Bound 1
The proof requires the following standard large deviation bound for supermartingales.

Theorem 3 (Azuma’s inequality (Azuma; Hoe�ding). See [9, 4.16] for discussion). Let X0,… , Xn be a sequence
of real-valued random variables so that, for all t, E[Xt+1 ∣ X0,… , Xt] ≤ Xt and |Xt+1 −Xt| ≤ c for some constant c.
Then for every Λ ≥ 0

Pr[Xn − X0 ≥ Λ] ≤ exp (− Λ2
2nc2

) .

Proof of Bound 1. Letw1, w2,… be a sequence of random variables obeying the �-martingale condition. Speci�cally,
Pr[wt = 1 ∣ E] ≤ (1 − �)∕2 conditioned on any event E expressed in the variables w1,… , wt−1. For convenience,
de�ne the associated {±1}-valued random variablesWt = (−1)1+wt and observe that E[Wt] ≤ −�.

We �rst analyze the special case |x| = 0. Observe that in this case, the relative margin �x(y) reduces to the
non-relative margin �(y) from Lemma 3.

Case 1: when x is an empty string. De�ne �t = �(w1…wt) and �t = �(w1…wt) to be the two random
variables from Lemma 3 acting on the string w = w1…wt . The analysis will rely on the ancillary random variables
�t = min(0, �t). Observe that Pr[w forkable] = Pr[�(w) ≥ 0] = Pr[�k = 0], so we may focus on the event that
�k = 0. As an additional preparatory step, de�ne the constant � = (1 + �)∕(2�) ≥ 1 and de�ne the random
variables Φt ∈ ℝ by the inner product

Φt = (�t, �t) ⋅ (
1
� ) = �t + ��t .

The Φt will act as a “potential function” in the analysis: we will establish that Φk < 0 with high probability and,
considering that ��k ≤ �k + ��k = Φk, this implies �k < 0, as desired.

Let ∆t = Φt − Φt−1; we claim that—conditioned on any �xed value (�, �) for (�t, �t)—the random variable
∆t+1 ∈ [−(1 + �), 1 + �] has expectation no more than −�. The analysis has four cases, depending on the various
regimes of � and � from Lemma 3. When � > 0 and � < 0, �t+1 = � +Wt+1 and �t+1 = � +Wt+1, where
� = max(0, �); then ∆t+1 = (1+�)Wt+1 and E[∆t+1] ≤ −(1+�)� ≤ −�. When � > 0 and � ≥ 0, �t+1 = �+Wt+1
but �t+1 = � so that ∆t+1 = Wt+1 and E[∆t+1] ≤ −�. Similarly, when � = 0 and � < 0, �t+1 = � +Wt+1 while
�t+1 = � +max(0,Wt+1); we may compute

E[∆t+1] ≤
1 − �
2 (1 + �) − 1 + �

2 � = 1 − �
2 − �� = 1 − �

2 − � (1� ⋅
1 + �
2 ) = −� .

Finally, when � = � = 0 exactly one of the two random variables �t+1 and �t+1 di�ers from zero: ifWt+1 = 1 then
(�t+1, �t+1) = (1, 0); likewise, ifWt+1 = −1 then (�t+1, �t+1) = (0,−1). It follows that

E[∆t+1] ≤
1 − �
2 − 1 + �

2 � ≤ −� .

ThusE[Φk] = E
∑k

t=1 ∆t ≤ −�k. We wish to apply Azuma’s inequality to conclude that Pr[Φk ≥ 0] is exponentially
small. For this purpose, we transform the random variables Φt to a related supermartingale by shifting them:
speci�cally, de�ne Φ̃t = Φt + �t and ∆̃t = ∆t + � so that Φ̃t =

∑t
i ∆̃t. Then

E[Φ̃t+1 ∣ Φ̃1,… , Φ̃t] = E[Φ̃t+1 ∣W1,… ,Wt] ≤ Φ̃t , ∆̃t ∈ [−(1 + �) + �, 1 + � + �] ,
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and Φ̃k = Φk + �k. It follows from Azuma’s inequality that

Pr[w forkable] = Pr[�k = 0] ≤ Pr[Φk ≥ 0] = Pr[Φ̃k ≥ �k]

≤ exp (− �2k2

2k(1 + � + �)2
) = exp

⎛
⎜
⎝
− ( 2�2

1 + 3� + 2�2
)
2

⋅ k2
⎞
⎟
⎠

≤ exp (− 2�4
1 + 35� ⋅ k) . (5)

Case 2: when x is not empty. De�ne the reach distribution ℛm ∶ ℤ→ [0, 1] as

ℛm(r) = Pr
x
[�(x) = r ∣ x has lengthm] . (6)

Lemma 5 implies that ℛm ⪯ ℛ∞. We reserve the symbol �(r)x for the relative margin random walk �x which starts
at a non-negative initial position r. Thus �(x) = �x(�) = r, and

Pr[�x(y) ≥ 0] =
∑

r≥0
ℛm(r) Pr[�

(r)
x (y) ≥ 0] ≤

∑

r≥0
ℛ∞(r) Pr[�

(r)
x (y) ≥ 0] (7)

since the sequence ( Pr[�(r)x (y) ≥ 0] )∞r=0 is non-decreasing and ℛm ⪯ ℛ∞. Fix a “large enough” positive integer r∗
whose value will be assigned later in the analysis. Let us de�ne the following events:

• Event Br: when r ∈ [0, r∗] and the �(r)x walk is strictly positive on every pre�x of y with length at most k∕2;
and

• Event Cr,s: when r ∈ [0, r∗] and ŷ is the smallest pre�x of y of length s ∈ [r, k∕2] such that �(r)x (ŷ) = 0. We
say that ŷ is a witnesses to the event Cr,s.

The right hand side of (7) can be written as

∑

r>r∗
ℛ∞(r) Pr[�

(r)
x (y) ≥ 0]+

∑

r≤r∗
ℛ∞(r) Pr[Br] ⋅ Pr[�

(r)
x (y) ≥ 0 ∣ Br]+

∑

r≤r∗
ℛ∞(r)

k∕2∑

s=r
Pr[Cr,s] ⋅ Pr[�

(r)
x (y) ≥ 0 ∣ Cr,s] .

We observe that the probabilities Pr[�(r)x (y) ≥ 0] and Pr[�(r)x (y) ≥ 0 ∣ Br] are at most one. In addition, recall that
for two non-negative sequences (ai), (bi) with

∑
ai ≤ 1, we have

∑
aibi ≤ max bi . Thus (7) can be simpli�ed as

Pr[�x(y) ≥ 0] ≤
∑

r>r∗
ℛ∞(r) +

∑

r≤r∗
ℛ∞(r) Pr[Br] +

∑

r≤r∗
ℛ∞(r) max

r≤s≤k∕2
Pr[�(r)x (y) ≥ 0 ∣ Cr,s]

≤
∑

r>r∗
ℛ∞(r) + max

r≤r∗
Pr[Br] + max

r≤r∗
r≤s≤k∕2

Pr[�(r)x (y) ≥ 0 ∣ Cr,s] . (8)

The �rst term in (8) is the right-tail of the distribution ℛ∞. Using Lemma 5, this quantity is at most �r∗ where
� ∶= (1 − �)∕(1 + �). Furthermore, it can be easily checked that the above quantity is at most exp(−5�∕3).

The second term in (8) concerns the event Br and calls for more care. De�ne

S(r)k ∶=
k∑

t=0
Wt

whereW0 = r and the random variablesWt are de�ned at the outset of this proof for t ≥ 1. We know that the
�(r)x walk starts with �(x) = �(x) = r ≥ 0. Since Br holds, both the margin �x(ŷ) and the reach �(xŷ) remain
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non-negative for all pre�xes ŷ of length t = 1, 2,⋯ , k∕2. These two facts imply that the random variable �(r)x (ŷ) is
identical to the sum S(r)t for all pre�xes ŷ of length t = 1, 2,⋯ , k∕2.

To be precise,
Pr[Br] = Pr[S(r)t ≥ 0 for all t ≤ k∕2] .

The latter probability is at most Pr[S(r)k∕2 ≥ 0] because the event S(r)k∕2 ≥ 0 does not constrain the intermediate sums

S(r)t for t < k∕2. Since Pr[S(r)k∕2 ≥ 0] increases monotonically in r, we conclude that the second term in (8) is at

most Pr[S(r
∗)

k∕2 ≥ 0]. Now we are free to shift our focus from the relative margin walk to the sum of a martingale
sequence.

For notational clarity, let us write S ∶= S(r
∗)

k∕2 . Since the sequence (wt) obeys the �-martingale condition, E S is
at mostM ∶= r∗ − k�∕2. Let us set r∗ =W0 = k�∕4. Then E S is at most −k�∕4 and Azuma’s inequality gives us

Pr[S ≥ 0] = Pr[(S − E S) ≥ k�∕4] ≤ exp (−
(k�∕4)2

2(k∕2) ⋅ 22
) = exp (−k�

2

64 ) .

This is an upper bound on the second term in (8).
The third term in (8) concerns the event Cr,s and it can be bounded using our existing analysis of the |x| = 0

case. Speci�cally, suppose y = ŷz where ŷ is a witness to the event Cr,s. Since the �(r)x walk remains non-
negative over the entire string ŷ, it follows that �(xŷ) = �(xŷ) = 0 and as a consequence, the �xŷ walk on z is
identical to the � walk on z. Our analysis in the |x| = 0 case suggests that Pr[�(z) ≥ 0] is at most A(k − s, �)
where |z| = k − s and A(k, �) is the bound in (5). Since A(⋅, �) decreases monotonically in the �rst argument,
A(k − s, �) is at most A(k∕2, �). However, since the last quantity is independent of r, the third term in (8) is at
most A(k∕2, �) = exp

(
−k�4∕(1 + 35�)

)
.

Returning to (8) and using r∗ = k�∕4, we get

Pr[�x(y) ≥ 0] ≤ exp (−5�3 ⋅ k�4 ) + exp (− 2�4
1 + 35� ⋅

n
2) + exp (−k�

2

64 ) .

It is easy to check that the above quantity is at most 3 exp
(
−k�4∕(64 + 35�)

)
= 3 exp

(
−�4(1 − O(�))k∕64

)
.

5.2 Proof of Bound 2
Proof of Bound 2. Anticipating the proof, we make a few remarks about generating functions and stochastic
dominance. We reserve the term generating function to refer to an “ordinary” generating function which represents
a sequence a0, a1,… of non-negative real numbers by the formal power series A(Z) =

∑∞
t=0 atZ

t. When A(1) =∑
t at = 1 we say that the generating function is a probability generating function; in this case, the generating

function A can naturally be associated with the integer-valued random variable A for which Pr[A = k] = ak. If
the probability generating functions A and B are associated with the random variables A and B, it is easy to check
that A ⋅ B is the generating function associated with the convolution A + B (where A and B are assumed to be
independent). Translating the notion of stochastic dominance to the setting with generating functions, we say that
the generating function A stochastically dominates B if

∑
t≤T at ≤

∑
t≤T bt for all T ≥ 0; we write B ⪯ A to denote

this state of a�airs. If B1 ⪯ A1 and B2 ⪯ A2 then B1 ⋅ B2 ⪯ A1 ⋅ A2 and �B1 + �B2 ⪯ �A1 + �A2 (for any �, � ≥ 0).
Moreover, if B ⪯ A then it can be checked that B(C) ⪯ A(C) for any probability generating function C(Z), where
we write A(C) to denote the composition A(C(Z)).

Finally, we remark that if A(Z) is a generating function which converges as a function of a complex Z for
|Z| < R for some non-negative R, R is called the radius of convergence of A. It follows from [15, Theorem 2.19]
that limk→∞ akRk = 0 and |ak| = O(R−k). In addition, if A is a probability generating function associated with
the random variable A then it follows that Pr[A ≥ T] = O(R−T).

We de�ne p = (1 − �)∕2 and q = 1 − p and as in the proof of Bound 1, consider the independent {0, 1}-valued
random variables w1, w2,… where Pr[wt = 1] = p. We also de�ne the associated {±1}-valued random variables
Wt = (−1)1+wt .
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Although our actual interest is in the random variable �x(y) from (3) on a characteristic string w = xy, we
begin by analyzing the case when |x| = 0.

Case 1: when x is empty. In this case, the random variable �x(y) is identical to �(w) from (2) with w = y. Our
strategy is to study the probability generating function

L(Z) =
∞∑

t=0
ltZt

where lt = Pr[t is the last time �t = 0]. Controlling the decay of the coe�cients lt su�ces to give a bound on
the probability that w1…wk is forkable because

Pr[w1…wk is forkable] ≤ 1 −
k−1∑

t=0
lt =

∞∑

t=k
lt .

It seems challenging to give a closed-form algebraic expression for the generating function L; our approach is to
develop a closed-form expression for a probability generating function L̂ =

∑
t l̂tZ

t which stochastically dominates
L and apply the analytic properties of this closed form to bound the partial sums

∑
t≥k l̂k. Observe that if L ⪯ L̂

then the series L̂ gives rise to an upper bound on the probability that w1…wk is forkable as
∑∞

t=k lt ≤
∑∞

t=k l̂t.
The coupled random variables �t and �t are Markovian in the sense that values (�s, �s) for s ≥ t are entirely

determined by (�t, �t) and the subsequent valuesWt+1,… of the underlying variablesWi . We organize the sequence
(�0, �0), (�1, �1),… into “epochs” punctuated by those times t for which �t = �t = 0. With this in mind, we de�ne
M(Z) =

∑
mtZt to be the generating function for the �rst completion of such an epoch, corresponding to the

least t > 0 for which �t = �t = 0. As we discuss below,M(Z) is not a probability generating function, but rather
M(1) = 1 − �. It follows that

L(Z) = �(1 +M(Z) +M(Z)2 +⋯) = �
1 −M(Z)

. (9)

Belowwe develop an analytic expression for a generating function M̂ for whichM ⪯ M̂ and de�ne L̂ = �∕(1−M̂(Z)).
We then proceed as outlined above, noting that L ⪯ L̂ and using the asymptotics of L̂ to upper bound the probability
that a string is forkable.

In preparation for de�ning M̂, we set down two elementary generating functions for the “descent” and “ascent”
stopping times. Treating the random variablesW1,… as de�ning a (negatively) biased random walk, de�ne D to
be the generating function for the descent stopping time of the walk; this is the �rst time the random walk, starting
at 0, visits −1. The natural recursive formulation of the descent time yields a simple algebraic equation for the
descent generating function, D(Z) = qZ + pZD(Z)2, and from this we may conclude

D(Z) =
1 −

√
1 − 4pqZ2
2pZ .

We likewise consider the generating function A(Z) for the ascent stopping time, associated with the �rst time the
walk, starting at 0, visits 1: we have A(Z) = pZ + qZA(Z)2 and

A(Z) =
1 −

√
1 − 4pqZ2
2qZ .

Note that while D is a probability generating function, the generating function A is not: according to the classical
“gambler’s ruin” analysis [6], the probability that a negatively-biased random walk starting at 0 ever rises to 1 is
exactly p∕q; thus A(1) = p∕q.

Returning to the generating functionM above, we note that an epoch can have one of two “shapes”: in the �rst
case, the epoch is given by a walk for whichW1 = 1 followed by a descent (so that � returns to zero); in the second
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case, the epoch is given by a walk for whichW1 = −1, followed by an ascent (so that � returns to zero), followed
by the eventual return of � to 0. Considering that when �t > 0 it will return to zero in the future almost surely, it
follows that the probability that such a biased random walk will complete an epoch is p + q(p∕q) = 2p = 1 − �,
as mentioned in the discussion of (9) above. One technical di�culty arising in a complete analysis ofM concerns
the second case discussed above: while the distribution of the smallest t > 0 for which �t = 0 is proportional
to A above, the distribution of the smallest subsequent time t′ for which �t′ = 0 depends on the value t. More
speci�cally, the distribution of the return time depends on the value of �t. Considering that �t ≤ t, however,
this conditional distribution (of the return time of � to zero conditioned on t) is stochastically dominated by Dt,
the time to descend t steps. This yields the following generating function M̂ which, as described, stochastically
dominatesM:

M̂(Z) = pZ ⋅ D(Z) + qZ ⋅ D(Z) ⋅ A(Z ⋅ D(Z)) .

It remains to establish a bound on the radius of convergence of L̂. Recall that if the radius of convergence
of L̂ is exp(�) it follows that Pr[w1…wk is forkable] = O(exp(−�k)). A su�cient condition for convergence of
L̂(z) = �∕(1 − M̂(z)) at z is that that all generating functions appearing in the de�nition of M̂ converge at z and
that the resulting value M̂(z) < 1.

The generating function D(z) (and A(z)) converges when the discriminant 1 − 4pqz2 is positive; equivalently
|z| < 1∕

√
1 − �2 or |z| < 1 + �2∕2 + O(�4). Considering M̂, it remains to determine when the second term,

qzD(z)A(zD(z)), converges; this is likewise determined by positivity of the discriminant, which is to say that

1 − (1 − �2) (
1 −

√
1 − (1 − �2)z2
1 − � )

2

> 0 .

Equivalently,

|z| <

√
√√√ 1

1 + � ( 2
√
1 − �2

− 1
1 + �) = 1 + �3∕2 + O(�4) .

Note that when the series pz ⋅D(z) converges, it converges to a value less than 1∕2; the same is true of qz ⋅A(z). It
follows that for |z| = 1 + �3∕2 + O(�4), |M̂(z)| < 1 and L̂(z) converges, as desired. We conclude that

Pr[w1…wk is forkable] = exp(−�3(1 + O(�))k∕2) . (10)

Case 2: when x is non-empty. The relative margin before y begins is �x(�). Recalling that �x(�) = �(x) and
conditioning on the event that �(x) = r, let us de�ne the random variables {�̃t} for t = 0, 1, 2,⋯ as follows:

�̃0 = �(x) , and Pr[�̃t = s] = Pr[�x(y) = s ∣ �(x) = r and |y| = t] .

If the �̃ random walk makes the rth descent at some time t < n, then �̃t = 0 and the remainder of the walk is
identical to an (k − t)-step � random walk which we have already analyzed. Hence we investigate the probability
generating function

Br(Z) = D(Z)rL(Z) with coe�cients b(r)t ∶= Pr[t is the last time �̃t = 0 ∣ �̃0 = r]

where t = 0, 1, 2,⋯. Our interest lies in the quantity

bt ∶= Pr[t is the last time �̃t = 0] =
∑

r≥0
b(r)t ℛm(r) ,

where ℛm is the reach distribution from (6). Let Rm(Z) be the probability generating function for the distribution
ℛm. Using Lemma 5 and De�nition 12, we deduce that Rm ⪯ R∞ for everym ≥ 0 since ℛm ⪯ ℛ∞. In addition,

18



it is easy to check from (4) that the probability generating function for ℛ∞ is in fact R∞(Z) = (1 − �)∕(1 − �Z)
where � ∶= (1 − �)∕(1 + �). Thus the generating function corresponding to the probabilities {bt}∞t=0 is

B(Z) =
∞∑

t=0
btZt =

∞∑

r=0
ℛm(r)

∞∑

t=0
b(r)t Zt =

∞∑

r=0
ℛm(r)Br(Z)

= L(Z)
∞∑

r=0
ℛm(r)D(Z)r = L(Z) Rm(D(Z)) ⪯ L̂(Z) R∞(D(Z)) =

(1 − �)L̂(Z)
1 − �D(Z)

.

The dominance notation above follows because L ⪯ L̂ and Rm ⪯ R∞.
For B(Z) to converge, we need to check that D(Z) should never converge to 1∕�. One can easily check that the

radius of convergence of D(Z)—which is
√
1 − �2—is strictly less than 1∕� when � > 0. We conclude that B(Z)

converges if both D(Z) and L(Z) converge. The radius of convergence of B(Z) would be the smaller of the radii of
convergence of D(Z) and L(Z). We already know from the previous analysis that L̂(Z) has the smaller radius of
the two; therefore, the bound in (10) applies to the relative margin �x(y) for |x| ≥ 0.

6 The optimal online adversary and the proof of themargin equalities
The adversary discussed in [7] processes a characteristic string in an online setting: she watches each new 1 or 0
appear and makes real-time decisions about which chains to build on and which blocks to release. The analysis in
[7] shows that she that will always succeed in building a balanced fork, if one exists for that characteristic string.

This result naturally suggests the possibility of a new adversary who maximizes relative margin. A chain split
that a�ects a large portion of the characteristic string is potentially problematic for the normal functioning of a
blockchain, even if the split does not span the full length of the characteristic string.

In this section, we will de�ne a new adversary who seeks to maximize �x(y). Like the original adversary,
she also processes a characteristic string and makes decisions in an online setting. We will prove that this new
adversary is able to maximize �x(y) for all possible decompositions of a characteristic string w into components
w = xy.

6.1 The optimal online adversary
We again adopt the notation used in [7], with a few additions: let t1 and t2 be the disjoint tines of F for which
�(F) = reach(t1) and �(F) = reach(t2), and let t̂ be the longest tine of F. Finally, let S represent the set of tines t
of F such that reach(t) = 0. (We will sometimes refer to such tines as critical tines.)

The optimal online adversary has a simple set of rules that govern her decision-making. Suppose the adversary
has a current characteristic string w and a fork-in-progress, F. If the next token of the characteristic string is
revealed to be a 1, she makes no changes to F. If the next token of the characteristic string is a 0, she looks for
tines with reach precisely 0, chooses the tine t that branches from t1 earliest in the fork, and extends it by 1gap(t)0.
If there are no tines with reach exactly 0, she extends t̂. She will always extend minimally, i.e., play no more
adversarial blocks than are needed to convince the next honest party to play on her chosen tine.

6.2 Proof of optimality
Before we dive into the proof of Lemma 4, we note two results that will be referenced frequently in the main proof.
Recall from Section 2 the de�nition of inclusion (denoted ⊑) for forks.

De�nition 13 (Fork pre�xes). If w is a pre�x of some string w′ ∈ {0, 1}∗, F ⊢ w, and F′ ⊢ w′, then F is a pre�x of
F′ if F is a consistently labeled subgraph of F′ (i.e., all vertices and edges of F also appear in F′, and the label of any
vertex appearing in both F and F′ is identical). We denote this relationship by F ⊑ F′.
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We are especially interested in forks F ⊢ w and F′ ⊢ w′ such that F is a pre�x of F′ and w′ = wc for c ∈ {0, 1}.
By considering the possible “extended" forks F′ that can arise from some F, we will build intuition for how forks
grow and change with each new slot. In particular, in the special case when F and F′ are closed forks andw′ = w0,
then F′ di�ers from F by exactly one closed tine, consisting of (0 or more) adversarial vertices and and exactly one
honest leaf. We will sometimes call such tines extensions.

We can immediately derive two useful results related to extensions. As in [7], we use the notation reach□(t)
(or reserve□(t), or gap□(t), etc.) to indicate the reach (or reserve, or gap) of the tine t in the context of a particular
fork. This is usually pertinent when we have two forks F, F′ such that F ⊑ F′ and we would like to compare the
reach of the same tine t as it appeared in each fork.

Claim 1 (Reach of extended tines). Consider a closed fork F ⊢ w and some closed fork F′ ⊢ w0 such that F ⊑ F′.
If a tine t of F′ is an extension, i.e. it did not exist in F and now exists in F′, then reachF′(t) = 0.

Proof. The tine t is the “new” tine containing the new honest node. By de�nition, reachF′(t) = reserveF′(t) −
gapF′(t). Honest players will only place nodes at a depth strictly deeper than all other honest nodes, so we infer
that t is the longest tine of F′, and so gapF′(t) = 0. Moreover, we observe that there are no 1s occurring later in
the characteristic string, and so reserveF′(t) = 0. Plugging these values into our de�nition of reach we see that
reachF′(t) = 0 − 0 = 0.

Intuitively, a tine that arises by extension in an honest slot must be the longest tine of the fork, because honest
players will only extend a chain with maximum length. Moreover, there are no dishonest slots after the �nal
honest slot, so the remaining reserve is 0. Therefore, reach is exactly 0.

Claim 2 (Reach of non-extended tines). Consider a closed fork F ⊢ w and some closed fork F′ ⊢ w0 such that
F ⊑ F′. If a tine t of F′ did not arise from extension, i.e., it existed in F, then reachF′(t) < reachF(t).

Proof. De�nitionally, we know that reachF′(t) = reserveF′(t) − gapF′(t). From F to F′, the length of the longest
tine increases, and the length of t does not change, so we observe that gapF′(t) > gapF(t). The reserve of t does
not change, because there are no new 1s in the characteristic string. Therefore,

reachF′(t) = reserveF′(t) − gapF′(t) < reserveF(t) − gapF(t) = reachF(t) .

Now we are ready to proceed with our proof of Lemma 4. The structure of the proof closely follows the
analogous proof for the recursive de�nition of margin given in Lemma 4.19 of [7]; however, as discussed above, it
incorporates the de�nition and analysis of the new adversary.

Proof of Lemma 4. Let F be a fork for the characteristic string xy. In the base case, where y = �, we observe that
any two tines of F are disjoint over y. Moreover, even a single tine t1 is disjoint with itself over �! Therefore, the
relative margin �x(�)must be greater than or equal to the reach of the tine t that achieves reach(t) = �(x). The
relative margin must also be less than or equal to �(x), because that is, by de�nition, the maximum reach over all
tines in all forks F ⊢ w. Putting these facts together, we have �x(�) = �(x).

Moving beyond the base case, we will consider a pair of closed forks F ⊢ xy and F′ ⊢ xyc such that F ⊑ F′,
x, y ∈ {0, 1}∗, y is nonempty, and c ∈ {0, 1}.

Suppose the next slot is dishonest. Then F′ must necessarily be equal to F, because we are dealing with closed
forks and have not introduced any new honest nodes. The reach of each tine increases by 1 from F to F′ because
the gap has not changed and reserve has increased by one.

If instead, the next slot is honest, there are more possibilities to consider. We will break this part of the proof
into several cases based on the relative reach and margin of the fork. In each case, we will prove the lower bound
by showing how the adversary can achieve some value of �x(y), and then use a proof by contradiction to show
that this value is in fact the upper bound.

Case 1: �(xy) > 0 and �x(y) = 0. Let F be some fork for xy such that �(F) = �(xy) and �x(F) = �x(y). The
optimal online adversary will build on some tine t with reach(t) = 0, and break ties by choosing to extend
the tine that branches from t1 as early as possible. In fact, in this case we are guaranteed that any tine
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she chooses will diverge from t1 prior to the beginning of y: because �x(y) = 0, we know that the tine t2
associated with �x(y) is disjoint with t1 over y and is in the set of critical tines. Based on our description of
the optimal online adversary, we know that she will either build on t2, or on another tine that diverges from
t1 even earlier, and is also disjoint with t1 over y. This shows that any such extension guarantees �x(y0) is
at least 0, as the extension and t1 form a pair of tines disjoint over y0.
In order to prove that the relative margin in this case must be exactly 0, we need to show the corresponding
upper bound. Let F′ be a closed fork for the characteristic string w = xy0 such that �(F′) = �(xy0) and
�x(F′) = �x(y0), and let F ⊢ xy be the unique closed fork such that F ⊑ F′. Let t1 and t2 be the tines of
F′ that achieve �(xy0) and �x(y0), respectively. Suppose (toward a contradiction) that �x(y0) > 0. Then
neither t1 or t2 is an extension because, as we proved in Claim 1, extensions have reach exactly 0. This
means that t1 and t2 existed in F, and had strictly greater reach in F than they do presently in F′ (by Claim
2). Because t1 and t2 have been implicitly assumed to be disjoint over y0, they must also be disjoint over y;
therefore the margin of F must be at leastmin{reachF(t1), reachF(t2)}. Following this line of reasoning, we
have

�x(y) ≥ min{reachF(t1), reachF(t2)} > min{reachF′(t1), reachF′(t2)} = �x(y0) > 0.

This contradicts our original assumption for the case, which states that �x(y) = 0.We can conclude that
�x(y0) ≤ 0, as desired.

Case 2: �(xy) = 0. Wewill analyze this case with the help of subcases based on the contents of S, the set of critical
tines. If S = {t1}, our adversary will extend t1. The extension has reach 0, so �(xy0) ≥ 0. Additionally, t2’s
reach decreases by 1, and the extension and t2 are still disjoint over y, so �x(y0) ≥ �x(y) − 1. If S contains
both t1 and t2, the adversary extends t2, because it is totally disjoint from t1 over y and has reach 0. The
extension still has reach 0, so �(xy0) ≥ 0. Furthermore, the reach of t1 decreases by 1, and the extension and
t1 are disjoint over y, so �x(y0) ≥ �(xy) − 1 ≥ �x(y) − 1. Lastly, if S contains some critical tine s distinct
from t1 but S does not contain t2, the adversary will extend s. The extension of s has reach 0, so �(xy0) ≥ 0.
Note that because t2 is not in S, reach(t2) < 0. This implies that s (and its extension) must share an edge
with t1 somewhere over y, as otherwise we would achieve �x(y) = 0. As a result, t2 and the extension of s
must be disjoint over y, and they have reach �x(y) − 1 and 0 respectively, so they act as witnesses to prove
that �x(y0) ≥ �x(y) − 1.
Next, we want to prove the corresponding upper bound. Suppose F′ ⊢ xy0 is a closed fork such that
�(xy0) = �(F′) and �x(y0) = �x(F′), and let F ⊢ xy be the unique closed fork such that F ⊑ F′. De�ne t1,
t2 to be a pair of tines disjoint over y in F′ such that reachF′(t1) = �(F′) and reachF′(t2) = �x(F′) = �x(y0).
First, it will be helpful to determine some facts about t1. Speci�cally, we claim that t1 must be an extension.
Suppose t1 is not an extension. The fact that t1 achieves maximum reach implies that t1 has non-negative
reach, because the longest tine always achieves reach 0, so t1 must do at least as well as the longest tine.
Furthermore, Claim 2 states that all tines other than the extended tine see their reach decrease. Therefore,
if t1 was not extended, then t1 as it appeared in F must have had strictly positive reach. This contradicts the
central assumption of the case, i.e., that �(xy) = 0. Therefore, we conclude that t1 arose from extension.
Having established that t1 must arise from extension, we know that the tine pre�x of t1 that is present in F
must have reach of at least 0 (otherwise it couldn’t be extended). Additionally, we have assumed �(xy) = 0, so
reachF(t2) ≤ 0. Together, these statements tell us that reachF(t1) = 0.Restricting our view toF, we see that t1
(as it appeared inF) and t2 are disjoint over y, and so itmust be true thatmin{reachF(t1), reachF(t2)} ≤ �x(y).
Because reachF(t1) = 0 and reachF(t2) ≤ �(xy) = 0, we can simplify that statement to reachF(t2) ≤ �x(y).
Finally, because t2 was not extended from F to F′, Claim 2 tells us that reachF′(t2) < reachF(t2). Taken
together, these two inequalities show that reachF′(t2) < reachF(t2) ≤ �x(y). Reach is always an integer, and
so reachF′(t2) < �x(y) implies reachF′(t2) ≤ �x(y) − 1, as desired.

Case 3: �(xy) > 0, �x(y) ≠ 0. Suppose by induction that we have F ⊢ xy and tines t1, t2 such that �(xy) =
�(F) = reachF(t1) and �x(y) = �x(F) = reachF(t2). Our adversary will minimally extend a tine s with
reach 0, if one exists, or t̂. As a result of this extension, we know that reachF′(ti) = reachF(ti) − 1. The
witnesses t1 and t2 will still be disjoint over y0, so �x(y0) ≥ �x(y) − 1.
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Now we need to prove the corresponding upper bound. Let F′ ⊢ xy0 be a closed fork such that �x(y0) =
�x(F′), and let F ⊢ xy be the unique closed fork such that F ⊑ F′. Additionally, let t1 and t2 be tines disjoint
over y such that reachF′(t1) = �(F′) and reachF′(t2) = �x(y0). We will break this case into sub-cases. In the
�rst sub-case, suppose that neither t1 nor t2 arose from extension. Thenmin{reachF(t1), reachF(t2)} ≤ �x(y),
because t1 and t2 existed in F and must be disjoint over y (by virtue of being disjoint over y0). Furthermore,
our claim about reach of non-extended tines implies that reachF′(ti) < reachF(ti) for i ∈ {1, 2}. Therefore,

�x(y0) = min{reachF′(t1), reachF′(t2)} < min{reachF(t1), reachF(t2)} ≤ �x(y),

as desired. For the second sub-case, suppose either t1 or t2 arose from extension. It must be true that
reachF′(t2) ≤ 0, because either t2 is the extension (and therefore has reach exactly 0) or t1 is the extension
and we have reachF′(t2) = �x(y0) ≤ �(xy0) = reachF′(t1) = 0. Recall that we have assumed �x(y) ≠ 0.
If �x(y) > 0, we are done: certainly �x(y0) ≤ 0 < �x(y). If, however, �x(y) < 0, there is more work to
do. Suppose �x(y) < 0. In this case, it is not possible for t2 to have been the extension. If t2 arose from
extension, then it must have had some precursor in F with non-negative reach. Additionally, by our claim
about non-extended tines, we see that reachF(t1) > reachF′ ≥ 0. Therefore, t1 and the precursor to t2
would be a pair of tines that achieve margin greater than or equal to 0. By contradiction, t2 cannot have
arisen from extension, so we do not need to worry about this case. The last remaining scenario is the one in
which �x(y) < 0 and t1 arises from extension. In this scenario, t2 cannot have been the extension (since
there is only one!) so we can invoke our claim about reach of non-extended tines once again to see that
reachF(t2) > reachF′(t2). Using a now-familiar line of reasoning, note that t2 and t1 (prior to its extension)
are a valid choice for a pair of tines achieving margin in F, and therefore reachF(t2) ≤ �x(y).We now have
�x(y) ≥ reachF(t2) > reachF′(t2) = �x(y0). Because reach is always an integer, the value of �x(y0)must be
less than or equal to �x(y) − 1, as desired.

Observe that the lower bounds are actually derived by showing that our new online adversary is able to achieve
the that value of �x(y) in each case. Because that value actually matches the upper bound, we know that the
adversary maximizes �x(y).

Perhaps surprisingly, this strategy allows our adversary to maximize relative reach and margin over all possible
decompositions w = xy. This is because her strategy is independent of any particular decomposition; she will
always build pairs of viable tines that are edge-disjoint over as much of the string as possible, which is the best she
can hope to do with respect to any decomposition.

7 Exact settlement probabilities
Given an � ∈ (0, 1] and an n, let ℬ(k, �) be the binomial distribution with parameter k and � = (1 − �)∕2. The
recursive de�nition of relative margin provides a polynomial-time algorithm (in m and k) for computing, for
m, k ≥ 0 and any � > 0, the probability Pr[�x(y) ≥ 0], where |x| = m and |y| = k. In typical circumstances,
however, it is more interesting to establish an explicit upper bound on Pr[�x(y) ≥ 0] where |x| → ∞; this
corresponds to the case where the distribution of the initial reach �(x) is the dominant distribution ℛ∞ discussed
in the proofs and (due to dominance) serve as an upper bound for any �nitem. For this purpose, one can implicitly
maintain a sequence of matrices (Mt) for t = 0, 1, 2,⋯ , k such thatM0(r, r) = ℛ∞(r) for all 0 ≤ r ≤ 2k and the
invariant

Mt(r, s) = Pr
y∼ℬ(t,�)

[�(xy) = r ∧ �x(y) = s]

is satis�ed for every integer t ∈ [1, k], r ∈ [0, 2k], and s ∈ [−2k, 2k]. Observe thatMt(r, s) can be computed solely
from the neighboring cellsMt−1(r ± 1, s ± 1) depending on which transitions are valid according to Lemma 3 and
Lemma 4.

Finally, one can compute Pr[�x(y) ≥ 0] by summingMk(r, s) for r, s ≥ 0. Table 1 contains these probabilities
where � ranges from 0.05 to 0.40 and k ranges from 50 to 1000. In addition, the base-10 logarithms of these
probabilities appears in Figure 4. The points corresponding to a �xed � appear to form a straight line, validating
Bound 2 which claims that the probability should decay exponentially in k.
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Table 1: Exact probabilities Pr[�x(y) ≥ 0] where y ∼ ℬ(k, �).

k Adversarial Fraction, �
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

50 5.37E-15 1.16E-09 1.02E-06 8.68E-05 1.96E-03 1.86E-02 9.36E-02 2.92E-01
100 1.23E-28 5.10E-18 3.52E-12 2.28E-08 1.03E-05 8.00E-04 1.72E-02 1.37E-01
150 2.83E-42 2.24E-26 1.22E-17 6.05E-12 5.54E-08 3.57E-05 3.30E-03 6.74E-02
200 6.49E-56 9.82E-35 4.21E-23 1.61E-15 2.98E-10 1.60E-06 6.40E-04 3.36E-02
250 1.49E-69 4.31E-43 1.46E-28 4.27E-19 1.61E-12 7.21E-08 1.25E-04 1.69E-02
300 3.42E-83 1.89E-51 5.05E-34 1.14E-22 8.67E-15 3.25E-09 2.44E-05 8.52E-03
350 7.84E-97 8.29E-60 1.75E-39 3.02E-26 4.67E-17 1.46E-10 4.78E-06 4.31E-03
400 1.80E-110 3.64E-68 6.06E-45 8.02E-30 2.52E-19 6.59E-12 9.37E-07 2.18E-03
450 4.13E-124 1.60E-76 2.10E-50 2.13E-33 1.36E-21 2.97E-13 1.84E-07 1.11E-03
500 9.47E-138 7.00E-85 7.26E-56 5.67E-37 7.32E-24 1.34E-14 3.60E-08 5.62E-04
550 2.17E-151 3.07E-93 2.51E-61 1.51E-40 3.95E-26 6.02E-16 7.05E-09 2.86E-04
600 4.98E-165 1.35E-101 8.70E-67 4.00E-44 2.13E-28 2.71E-17 1.38E-09 1.45E-04
650 1.14E-178 5.91E-110 3.01E-72 1.06E-47 1.15E-30 1.22E-18 2.71E-10 7.37E-05
700 2.62E-192 2.59E-118 1.04E-77 2.83E-51 6.19E-33 5.51E-20 5.31E-11 3.75E-05
750 6.02E-206 1.14E-126 3.61E-83 7.52E-55 3.33E-35 2.48E-21 1.04E-11 1.91E-05
800 1.38E-219 4.99E-135 1.25E-88 2.00E-58 1.80E-37 1.12E-22 2.04E-12 9.69E-06
850 3.17E-233 2.19E-143 4.33E-94 5.31E-62 9.69E-40 5.04E-24 4.00E-13 4.93E-06
900 7.27E-247 9.61E-152 1.50E-99 1.41E-65 5.23E-42 2.27E-25 7.84E-14 2.50E-06
950 1.67E-260 4.22E-160 5.19E-105 3.75E-69 2.82E-44 1.02E-26 1.54E-14 1.27E-06
1000 3.83E-274 1.85E-168 1.80E-110 9.98E-73 1.52E-46 4.61E-28 3.01E-15 6.48E-07
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Figure 4: The probabilities from Table 1 drawn in the base-10 logarithmic scale.
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