
Cache-Based Application Detection in the Cloud
Using Machine Learning

Berk Gulmezoglu, Thomas Eisenbarth, and Berk Sunar

Worcester Polytechnic Institute, Worcester, MA, USA
bgulmezoglu,teisenbarth,sunar@wpi.edu

Abstract. Cross-VM attacks have emerged as a major threat on com-
mercial clouds. These attacks commonly exploit hardware level leakages
on shared physical servers. A co-located machine can readily feel the pres-
ence of a co-located instance with a heavy computational load through
performance degradation due to contention on shared resources. Shared
cache architectures such as the last level cache (LLC) have become a
popular leakage source to mount cross-VM attack. By exploiting LLC
leakages, researchers have already shown that it is possible to recover
fine grain information such as cryptographic keys from popular software
libraries. This makes it essential to verify implementations that handle
sensitive data across the many versions and numerous target platforms,
a task too complicated, error prone and costly to be handled by human
beings.
Here we propose a machine learning based technique to classify applica-
tions according to their cache access profiles. We show that with minimal
and simple manual processing steps feature vectors can be used to train
models using support vector machines to classify the applications with
a high degree of success. The profiling and training steps are completely
automated and do not require any inspection or study of the code to be
classified. In native execution, we achieve a successful classification rate
as high as 98% (L1 cache) and 78% (LLC) over 40 benchmark applica-
tions in the Phoronix suite with mild training. In the cross-VM setting
on the noisy Amazon EC2 the success rate drops to 60% for a suite of 25
applications. With this initial study we demonstrate that it is possible
to train meaningful models to successfully predict applications running
in co-located instances.

Keywords: Cross-VM Attacks, Machine Learning, SVM, Prime&Probe.

1 Motivation

In the last decade the cloud infrastructure has matured to the point where
companies, government agencies, hospitals and schools alike have outsourced
their infrastructure to cloud service providers. The main benefit of moving to
the cloud is the reduction of money spent on IT by pooling servers and storages in
bigger cloud services. In many cases, rented servers are instances shared through
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virtualization among many users. Sharing is the basis for the reduction in the
IT costs. Despite the clear cost benefit, given the vast amount of personal and
sensitive information kept on shared resources, rightfully security concerns have
been steadily growing among cloud customers.

Naturally, the cloud infrastructure has come under the scrutiny of security
researchers. The first breakthrough result was reported by Ristenpart et al. [30]
who showed that it is possible to co-locate in a controlled manner with possi-
ble target instances on commercial public clouds, e.g. Amazon EC2. This work
opened the door to a series of investigations that examined the threats from an
attacker, i.e. a legitimate cloud user, exploiting cross VM leakage to steal sensi-
tive information. A number of methods have been proposed to steal private keys
or valuable information between VMs in IaaS and PaaS clouds [21,18,15,37,38].
In these works, the cryptographic keys and other sensitive information are stolen
by attacker by exploiting leakages at the microarchitectural level, i.e. through
the shared cache architecture. Especially, the shared last-level cache (LLC) is a
dangerous information leakage source in public clouds. IaaS instance allocation
policy commonly allocate an instance per core. This means that the LLC is a
shared resource among multiple user instances. Thus by timing his own LLC ac-
cess times, a user can gleam information on another user’s co-located instance’s
cache access behavior. LLC attacks proliferated to the point that the most recent
LLC Prime&Probe attacks do not depend on the de-duplication feature [19,24]
to be enabled to mount cross core cache attacks in public commercial clouds.

Cross-VM leakage attacks are extremely destructive in nature. They require
almost no privileges. Anyone can rent an instance on EC2 for a small fee and
run an attack code on an instance co-located typically with multiple target
instances out of potentially millions of targets. The attack code does only le-
gitimate accesses, e.g. collection of cache access times, for accesses in its own
memory/application space. Thus, Cross-VM attacks pose a great threat. Po-
tentially, one could automate the attack and mine the entire compute cloud
for cryptographic keys. There are practical difficulties in carrying out such at-
tacks on a mass scale. Cross-VM security attacks on public clouds require a
sophisticated methodology to extract the sensitive information from data. For
instance, the cache pattern is extracted and by using personal effort the relation
between pattern and key is established [18]. This makes discovery of vulnerabili-
ties, a manual process, rather costly and time-consuming. Cryptographic library
designers experience a similar difficulty. Cryptographic libraries are constantly
patched for newly discovered leakages and emerging vulnerabilities. This in itself
is a painstaking process requiring careful inspection of the code for any potential
leakage for a target platform1. Software bugs may result in secondary leakages
confounding the problem further. Thus, in practice, even constant execution
flow/time implementation may be compromised due to bugs.

With the growing complexity of cryptographic libraries, or more broadly of
code that handles sensitive data, it becomes impossible to manually verify the

1 A code that is considered secure on one platform, may not be on another due to
microarchitectural differences.
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code for leakages across the numerous platforms exhaustively. Clearly, there is
a great need for automated verification and testing of sensitive code against
leakages. Firstly, Brumley et al. [10] proposed vector quantization and HMM to
classify ECC ops with respect to L1-D cache. Then, an automated profiling at-
tack on LLC was introduced by Gruss et al. [13]. In this work, the access pattern
of different events are first extracted in a non-virtualized (less noisy) environ-
ment. The attacker learns the cache access templates from the cache. During an
attack the new data is compared against the learned templates. While this is
a worthy effort, machine learning (ML) algorithms have advanced to the point
where they offer sophisticated solutions to complicated recognition, classification,
clustering, and regression problems. For instance, image and speech recognition,
sense extraction in text and speech [28], recommendation systems and search
engines, as well as malicious behavior detection [11]. Further, cryptographers re-
cently started to consider machine learning algorithms for side channel analysis,
[23,16].

In this work we take another step in this direction. We are motivated by the
need for automation in cross-VM leakage analysis. Our goal is to minimize the
need for human involvement in formulating an attack. While more sophisticated
techniques such as deep neural networks can solve more complicated problems,
they require significantly more training data and take longer. Instead here we
focus on more traditional ML techniques for classification. In particular, we are
interested in automating classification of applications through their cache leak-
age profiles in the Cross-VM setting. A successful classification technique would
not only compromise the privacy of a co-located user, but could also serve as
the initial discovery phase for a more advanced follow-up high precision attack
to extract sensitive information. To this end, in this work we first profile the
cache fingerprints of representative benchmark applications, we then identify
the minimal processing steps required to extract robust features. We train these
features using support vector machines and report success rates across the stud-
ied benchmarks for experiments repeated for L1 and LLC. Finally, we take the
attack to AWS EC2 to solve a specific problem, i.e. we use the classification
technique to show that it is possible to detect other co-located VMs. We achieve
this by sending ping requests to open ports by simultaneously monitoring LLC
on Amazon EC2. If the ping receiver code is detected running on the co-located
instance we infer co-location with the targeted IP.

Our Contribution

We present a study in automation of cache attacks in modern processors using
machine learning algorithms. In order to extract fine grain information from
cache access patterns, we apply frequency transformation on data to extracted
fingerprints to obtain features. To classify a suite of representative applications
we train a model using a support vector machine. This eliminates the need for
manually identifying patterns and crafting processing steps in the formulation of
the cache attack. In our experimental work, we classify the applications bundled
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in the Phoronix Test Suite. Note that we do not have any information about the
content of the code and nor have we studied any internal execution patterns.
In summary, this work

– for the first time implements machine learning algorithm, i.e. SVM, to profile
the activity of other users on the cloud

– extracts the feature vectors from cache access data for different types of
applications using a straightforward FFT computation,

– demonstrates that there is no need for synchronization between spy and
target to profile an application while SVM based approach is implemented,

– shows that targeted co-location is achievable by sending ping requests on
Amazon EC2 if the targeted IP is known by spy

The rest of the study is divided as follows. We first review the related work
and give the background knowledge in Section 2. The approach is presented in
Section 3. The experiment setup and results are explained in Section 4 and the
paper is concluded in Section 6

2 Background

In this section we give a brief overview of the related work in terms of cache
attacks and several implementations of machine learning techniques in different
side channel analysis.

2.1 Related Work

Co-location detection techniques: In 2009, Ristenpart et al. [30] demon-
strated the possibility of the co-location between attacker and victim in public
IaaS clouds. After two years, Zhang et al. [36] detected the co-location by simply
monitoring the L2 cache if attacker and victim reside on the same core. In 2012,
Bates et al. [6] showed that if the network traffic is analyzed it is possible to
detect the co-location. In 2014, it is shown that deduplication enables the co-
location detection in Paas clouds by Zhang et al. [38]. Recently, Varadarajan et
al. [33] and Inci et al. [17] showed that the co-location detection is still possible
on Amazon EC2, Google Compute Engine and Microsoft Azure using memory
bus locking.

Cache Attacks: Cache attacks are widely used to extract information from
cryptographic libraries. In 2003, Tsunoo et al. [32] presented a cache attack
on DES using cryptanalysis. In 2004, AES cache attacks were firstly presented
by Bernstein [7] using microarchitectual timing differences for different look-
up table positions in cache. In the same year, Osvik et al. [27] implemented
two new cache attacks (Evict+Reload and Prime&Probe) on AES. Both attacks
recovered the AES encryption key with different number of encryption. After
it is shown that it is possible to recover AES encryption key the community
focused on analyzing the potential thread of cache attacks on both AES and
RSA.
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In 2006, Bonneau et al. [8] implemented cache collision attacks in the last
round of AES. In 2007, the similar collision attacks are exploited by Acıicmez
et al. [3]. In the same year, Acıicmez et al. [4] the first attack against RSA
was implemented by monitoring instruction cache accesses. In 2011, Gullasch et
al. [14] presented a new cache attack on AES namely, Flush and Reload.

With the increasing popularity of cloud computing systems, the attacks are
implemented on public clouds. In 2012, Zhang et al. [37] presented the first cache
attack on cloud by recovering an ElGamal encryption key in the same core.

In 2013, the first cross-core cache attacks are studied. Yarom et al. [34] used
the same technique in [14] to recover a full RSA key in LLC. In 2014, Irazoqui
et al. [22] recovered first AES key among cross-VM scenario using Flush and
Reload. The Flush and Reload attack is also implemented in different scenarios
such as on PaaS clouds and cache template attacks [38,13].

However, the Flush and Reload attack is applicable if deduplication is enabled
among VMs. It is known that deduplication is disabled on public clouds. In order
to overcome this difficulty, Liu et al. [24] and Irazoqui et al. [19] implemented a
new Prime&Probe attack in the LLC by using hugepages. Recently, Inci et al. [18]
showed the applicability of this attack by stealing 2048 bit RSA key on Amazon
EC2 cloud. At the same time, Oren et al. [26] implemented Prime&Probe attack
in javascript to monitor different web browser scenarios.

Exploiting cache slice selection methods: In Intel processors there are two
types of slice selection methods. The first one is the linear slice selection al-
gorithm where the same lines can be used to create eviction sets by simply
changing the set number. The recovering techniques for linear cache selection
was presented in Irazoqui et al. [20] and Maurice et al. [25] using the coincidence
of the functions across processors. Recently, Yarom et al. [35] recovered a 6 core
slice selection algorithm using the time differences of cache in different cores.
Finally, 10-core Intel architecture is reverse engineered in [18] by creating many
lines and analyzing the possible algorithms.

Machine Learning Techniques on side channel analysis: Firstly, machine
learning techniques were applied to side channel analysis in 2011 by Lerman
et al. [23]. In this work, the relation between 3DES encryption and power con-
sumption was studied using dimensionality reduction and model selection. For
dimensionality reduction classical Principal Component Analysis (PCA) was im-
plemented and for model selection Self Organizing Map (SOM), Support Vector
Machine (SVM) and Random Forest (RF) techniques were compared. In the
same year, Hospodar et al. [16] applied Least Square Support Vector Machine
(LS-SVM) to extract information from power consumption of AES. In 2012,
Zhang et al. [37] implements SVM to classify multiplication, modular reduction
and square operations to extract the ElGamal decryption key. In this work, Hid-
den Markov Model (HMM) is applied to probably estimates of SVM to reduce
the noise and the success rate becomes higher.
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2.2 Prime&Probe Technique

In the modern computer architecture, it is not possible for users to see the
physical address of a line because of the security issues. Therefore, the virtual
address is translated from the physical address and it is visible to users. In
virtual address the first 12 bits are exactly same with the first 12 bits of physical
address. However, this is not enough to find the corresponding cache set for the
line in LLC. Thus, it is not possible to create an eviction set with regular 4KB
pages in LLC.

The Prime&Probe technique is the most widely applicable profiling technique
on the cloud since all major Cloud Service Providers (CSPs) have disabled dedu-
plication, making Flush and Reload attacks infeasible. To achieve an eviction set
in LLC the spy needs to know more than 12 bits of the physical line. If Huge
pages (2MB) are allocated by the spy, it is possible to know the first 21 bits
of the line which is enough to know the corresponding set in LLC. After find-
ing the eviction set for the desired set, the eviction can be implemented. The
Prime&Probe profiling is divided into three main stages:

1. Prime stage: This stage is used to create an eviction set. To create an
eviction set the spy generates distinct lines which reside on the monitored
set. The number of lines in the eviction set is equal to number of ways in the
monitored set. After all lines accessed by the spy the eviction set is ready.

2. Waiting stage: In this stage, the spy waits for the target to evict some lines
from the primed set. The waiting time is crucial to determine the resolution
of the profiling. While the time is increasing the frequency and resolution
are getting lower.

3. Probe stage: In the probe stage, the spy accesses the addresses used in the
prime stage. If the monitored set was not accessed by another process, no
data has been evicted; all accesses result in a cache hit, giving a low access
time. If another process has accessed the monitored set, its data must have
evicted at least one of the lines of the spy’s data. Hence, the probe access
will include accesses to memory, resulting in measurably higher access times.

In native and cloud environment experiments we used non-linear slice selec-
tion algorithm since EC2 Cloud uses 10 core non-linear slice selection algorithm.
In non-linear slice selection algorithm for each set the eviction set should be
created by implementing the algorithm. This makes the process harder because
to find the eviction set for all sets in LLC by hand takes huge amount of time.
Therefore, the algorithm in [15] is implemented in 10 core machine to create
LLC eviction sets faster. The ratio of noisy sets should remain the same for
linear and non-linear slice selection algorithms. Hence, we believe the proposed
work is applicable to all Intel Ivy bridge processors.

2.3 Support Vector Machine (SVM)

SVM is a data classification technique used in many areas such as speech recog-
nition, image recognition and so on [28,5]. The aim of SVM is to produce a model
based on the training data and give classification results for testing data.
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Firstly, SVM is built for binary classification. For a training set of instance-
label pairs (xi, yi), i = 1, . . . , k where xi ∈ Rn and y ∈ {1,−1}k, SVM require
the solution of the following optimization problem:

min
w,b,ξ

1

2
wTw + C

k∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi

where ξi ≥ 0

(1)

The function ξ maps the training vectors into a higher dimensional space. In
this higher dimensional space a linear separating hyperplane is found by SVM
where C > 0 is the penalty parameter of the error term. For the kernel function
in our paper we use linear kernel:

K(xi, xj) = xTi xj (2)

In our work, we have many application to classify. Therefore, multi-class
SVM library LIBSVM [12] is used.

In addition, we apply the cross-validation (CV) technique. In K-fold CV,
the training data D is partitioned into N subsets D, . . . , DN . Each data in
D is randomly separated to each subset with equal size. So, we define Dti =⋃
j=1,...,N(j 6=i) where Dti is the union of all data except those in Di. For each

subset a model is built by applying the algorithm to the trainingDti . The average
of N results are evaluated as cross-validation (test) performance.

3 Methodology

In this section, we show how machine learning can be used on cache profiles
to detect running programs. One specific use case is the detection of the ping
service, which can serve as an implicit co-location test.

3.1 Extracting Feature Vectors from Applications on Cache

Our thesis is to show that programs have unique fingerprints in cache and it
is possible to learn and classify application fingerprints using ML algorithms
with a high accuracy. The proposed approach starts by creating profiles for
every software using the Prime&Probe technique. This way, dynamic and static
functions of the application are detected, resulting in fairly reliable fingerprints.
The raw cache timing traces are first turned into hits and misses, followed by a
Fourier transform. Performing a Fourier transform on the cache profiles removes
the need for tight synchronization and makes the approach more resilient to
noise. The FFT output can then directly be fed into a machine learning method
of choice. The process to obtain application fingerprints is visualized in Figure 1.
Our approach differs from previous works in cache-based information extraction
in several ways:
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Fig. 1. The flow chart of the approach for both L1 and LLC profiling

Fourier Transform Most previous works [13,18,22], assume the monitoring
process to be synchronized. The synchronization is handled by triggering
the event, then the profiling phase is started. However, it is not trivial when
the monitoring process and the target do not have communication. In ad-
dition, the functions periodically accessed in the application would give a
certain information which could be exploited by using Fourier transform.
Therefore, we transform the data to frequency domain from time domain in
order to eliminate a strong assumption like synchronization and to extract
the periodic functions’ cache accesses as fingerprints of the applications.

No Deduplication Deduplication enables incredibly powerful side channel at-
tacks [13,9,29], most prominently the Flush and Reload technique [34,13].
However, public cloud service providers are aware of this issue and have dis-
abled deduplication. Therefore, it is impossible to track data of other VMs
in shared memory in IaaS and most PaaS clouds. Hence, the Prime&Probe
technique is preferred to implement in our scenario instead of the Flush
and Reload method to eliminate the strong assumption for deduplication.
Prime&Probe technique is simply based on fill all ways in the monitored
LLC set by enabling Huge pages which is possible in all public clouds.

The resolution of the resulting analysis is lower than Flush and Reload
method in LLC, however the results show that after training enough data it
is efficient to detect programs used by other co-located VMs.

Detecting Dynamic Code Our method does not make any assumption on
whether code is dynamic, static or a shared function. Instead, we profile one
of the columns in the cache, as shown in Figure 2. This means the location
of a line in LLC might change from one run to another run if the function
is dynamic. However, the offset bits (o) never change therefore, it resides on
one of the set-slice pairs solving s mod 64 = o.

Long profiles Our method shows that even if the entire process of a program
is not profiled, the spectral density of a small part of the program can give
enough information to detect the program (in fact, the length of the analyzed
programs varies from two seconds to 3.5 hours).
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Fig. 2. Visualization of 10 core LLC. Gray set-slice pairs are noisy, white set-slice pairs
are unused sets and black set-slice pairs are actively used by target application.

Our approach starts by creating cache profiles for every application by using
the Prime&Probe technique in the same core to monitor all L1 cache sets. The
analysis of L1 cache leakage provides a very high-resolution channel, thereby
describing a best-case scenario for the learning technique. In addition, the L1
cache experiments provide valuable information which cache sets are actively
used by the application. This information can be used as a preparatory step for
LLC profiling to find the corresponding active sets in LLC. After the data is
collected for a set of application, the Fourier transform is applied to extract the
feature vectors subsequently used in an ML algorithm.

3.2 Extracting feature vectors from L1 cache

We assume that the number of L1-instruction and L1-data cache sets are SL1
for either cache. In L1 cache, the data and instruction cache are monitored
separately, while profiling process and target application are running in the same
core. The overall process to monitor L1 sets and creating feature vectors for
different applications is given in Algorithm 1.

For L1-data and L1-instruction monitoring, a total of NT traces is collected
per set for each data set. Therefore, for each data set we have SL1 · NT traces
in total. After collecting several data sets, the total number of traces is equal to
SL1 ·NT ·ND where ND is the total number of data sets per application collected
by the spy.
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The outliers in the data should be filtered before the raw data (R) is converted
to binary data (B). Hence, the L1-data and L1-instruction sets are monitored
in idle case and base Probe values are recorded. The outlier threshold (τo) and
binary conversion threshold (τc) are obtained based on the idle values.

Table 1. Symbol Descriptions

Symbols Description

SL1 Number of sets in L1 cache
NT Number of traces collected
ND Number of data sets per test
NS Number of applications
NC Number of cores
NA Number of active sets
τo Outlier threshold for samples
τc Hit&Miss threshold
Fs Sampling Frequency
FCPU CPU frequency
Tcc Prime&Probe time
Lf Length of fingerprint

The Probe timings are compared to τo and τc. The values are higher than
τo are set to median value of idle case of that set to get rid of the outliers. The
conversion from R to B is also implemented by comparing with τc. If the Probe
time is higher than τc, then the trace is converted to 1, implying an access to the
cache set. If it is below than τc, the trace is converted to 0, implying no cache
access. The resulting binary trace is converted by using Fourier transform.

In the transformation phase, the sampling frequency should be computed. In
order to calculate the sampling frequency (Fs), the total Prime&Probe time for
monitored set is computed in clock cycle (Tcc), then the CPU frequency (Fcpu)
is divided by Tcc to get Fs for L1-data and L1-instruction cache. We assume that
the sampling frequency is same for all sets in L1-data and L1-instruction cache.
To calculate the frequency components of binary data, Fs is used in FFT and
the length of the outcome is NT . However, the result has two symmetric sides
of which only the first half is used as a fingerprint. Therefore, the length of a
fingerprint obtained from one data set is NT /2.

For each process there are SL1 different fingerprints hence, these fingerprints
are concatenated from set 0 to set SL1 − 1 sequentially. Thus, the total length
of the fingerprint of a process is Lf = SL1 · NT /2. If the total number of data
sets is ND then, the size of a training matrix of a process is ND · Lf .

The SVM then processes all matrices combined and labeled from 1 to NS
where NS is the number of different applications. The final success rate is com-
puted using 10-fold cross-validation.
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Algorithm 1 L1 Profiling Algorithm

Fs = FCPU/Tcc

for i from 1 to NS do
for j from 1 to ND do

for k from 0 to SL1 − 1 do
for l from 1 to NT do

if R(i, j, k, l) ≥ τo then
R(i, j, k, l) = median(R(i, j, k, 1 : NT ))

end if
if R(i, j, k, l) ≥ τc then

B(i, j, k, l) = 1
else

B(i, j, k, l) = 0
end if

end for
L(i, j, k) = FFT [B(i, j, k, 1 : NT )]

end for
Li,j

f = L(i, j, 0 : SL − 1)
end for

end for

3.3 Extracting feature vectors from LLC

Next, we apply the approach on LLC leakage. LLC has the advantage that is
accessible for all processes on the same system. Hence, as long as the monitored
process runs on the same system as the monitor, the side channel is accessible,
even if the two processes run in different VMs.

After finding the most used L1 set, the corresponding sets in LLC should
satisfy s mod 64 = o where o is the L1 set number. The number of corresponding
sets vary with the number of cores NC . In total, the number of LLC set-slice
pairs on current Intel CPUs can be determined by

SL3 = 2NLLCB−No ·NC (3)

where NLLCB is the number of LLC bits and No is the number of offset bits.
After the eviction set for each set-slice pair is created by using the algorithm [15],
the Prime&Probe profiling starts. For LLC profiling NT is same with L1 profiling
and after NT traces are monitored in one set-slice pair, the next set-slice pair
is profiled. The reason behind this is to increase the temporal resolution for
each set-slice pair which is crucial to catch dominant frequency components in
frequency domain.

After collecting NT · SL3 data, the same process in L1 profiling is applied to
LLC traces to get rid of the outliers. Before the binary data is derived from the
raw data, the noisy set-slice pairs need to be eliminated. For this purpose, the
number of cache misses are calculated in idle case and if the number of cache
misses are higher than 1% of NT that set-slice pair is marked as noisy, as shown
in Figure 3. After noisy sets are determined all of them are excluded from the
next steps since the spectral density of these sets is not stable.
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Fig. 3. Eliminated noisy sets in LLC
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Fig. 4. One of the active sets for an application

The active set-slice pairs are determined by checking the number of cache
misses in the data. If the number of cache misses is higher than 3% of NT in
Figure 4, then the set-slice pair is marked as an active set. After all active sets
are derived, they can be converted to binary data with the same process in L1
profiling in Figure 5 before the Fourier transform starts.

For the Fourier transform Fs should be calculated for LLC sets. Fs is lower
in LLC profiling since the number of ways in the sets are higher than L1 sets
and the access time to lines reside on LLC is greater than L1 lines. Therefore,
the total Prime&Probe time for each set-slice pair should be calculated and the
average of all of them are used as LLC Fs. After Fs is calculated, the active
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sets are transformed to frequency domain in Figure 6. The number of frequency
components per NT is same with the L1 profiling.

The number of active sets (NA) may vary for each process therefore, the
concatenated active sets have different length for each software. To solve this
issue we propose to combine all frequency components of active sets. All fre-
quency components are summed up element-wise and a fingerprint is obtained
from each data set. In LLC profiling the length of the fingerprint is smaller than
L1 profiling because in LLC scenario we cannot concatenate all active sets.

After obtaining all data sets for each application the total size of matrix for
LLC training data is ND · (NT /2). The SVM algorithm is applied as in the L1
profiling case and the results are recorded.
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3.4 Targeted co-location by ping detection on the cloud

Another use case of the described methodology is the detection of whether or not
a specific application is being executed. For this purpose we propose to detect
ping requests sent to a target VM. We then try to detect the execution of the ping
response process to verify and detect co-location with that target VM. In order
to detect the co-location on the cloud, different types of covert channels such
as LLC [17] and memory bus locking [33] have been used. These methods can
be effective to verify the co-location between spy and target VMs. Our method
also uses LLC, but, due to the omnipresence of ping support, this method is
very widely applicable. The scenario is as follows: the spy VM monitors LLC
sets by Prime&Probe to check the co-location with the target VM in the same
cloud region. Another collaborating process of the spy sends ping requests to the
target VMs with a certain frequency. These ping requests trigger executions of
the ping service, which is then observable by the spy VM.

The used approach is similar to the previous cases: The monitored sets are
determined by s mod 64 = 0. The reason behind this is the ping receptions are
seen random sets. Therefore, we find that it is sufficient to monitor these sets to
detect the ping. The steps to detect ping on the cloud are as follows:

1. Spy VM1 finds the noisy sets and excludes them from SL3 sets in VM1
2. Ping requests are sent by spy VM2 with a certain frequency
3. Spy VM1 begins to implement Prime&Probe on remaining sets
4. Spy VM1 determines the active sets in LLC
5. Fourier Transform is applied to the active sets
6. The frequency components are compared with the ping frequency

In our method, first the active IPs and the open ports should be found. In
Amazon EC2 every region has different IP ranges. We focus on South America
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Fig. 8. The scenario for ping detection on Amazon EC2

region and the IP range is documented [1]. Open ports can be found using the
nmap tool.

There are two types of ping namely hping and ping commands. The hping
command is more useful since specific ports can be pinged such as port 22 which
is used for SSH connection. Furthermore, the frequency of ping requests for hping
command can be set higher than in the ping command. There is a need to have
more frequent ping requests, as high-frequent calls to ping strengthen the LLC
profile and thus decrease the number of traces needed to detect the ping requests
in LLC. Therefore, we used hping in our Amazon EC2 experiments.

4 Application Detection Results

In this section, we explain the experiment setup used to collect data and make
our scenario applicable.

4.1 Experiment Setup

For the experiments, we have used the following two setups;

– Native Environment: In this setup, the applications are running on a
native Ubuntu 14.04 version with no virtualization. The processor is a 10 core
Intel(R) Xeon(R) E5-2670 v2 CPU clocked at 2.50 GHz. The purpose of this
scenario is to run experiments in a controlled environment with minimal
noise and to show the high success rate of our methods. In addition, this
processor is the same type of processor mainly used in Amazon EC2 cloud.

– Cloud Environment: In this setup, Amazon EC2 cloud servers are used to
implement our experiments in a cross-VM scenario. In Sao Paulo region, the
processors are same with the one used in native environment with a modified
Xen hypervisor. The instance type is medium.m3 which has 1 vCPU. The
aim of this setup is to show the huge thread of our scenario in a public cloud.
In this setup, there are two co-located VMs in the same physical machine
sharing the LLC which is verified by the techniques [17].
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To evaluate our approach on a broad range of commonly used yet different
applications, we decided to use the Phoronix test benchmarks as sample appli-
cations for classification [2]. We performed classification experiments on these
applications in three different scenarios. As baseline experiments we first per-
formed the experiments in the above-described native scenario, both by monitor-
ing L1 cache leakages and also by monitoring LLC leakages. The former shows
the potential of L1 cache leakages if they are accessible. The latter assumes a
realistic observation scenario for any process running on the same system. Fi-
nally, we performed the same experiments on Amazon EC2 cloud to show the
feasibility in a noisy and cross-VM scenario. In this public cloud scenario, only
LLC is profiled to classify benchmarks since each VM has only one thread in
the core and they do not reside on the same core. For both L1 cache and LLC
experiments, our methodology is applied to 40 different Phoronix benchmark
tests in including cryptography, gaming, compressing, SQL, apache and so on
Appendix. Last but not least, we present a scenario where we only try to detect
the presence of a single application, the ping detection described in Section 3.4.

4.2 Application Detection in Native Environment

We first performed experiments in the native environment.

Monitoring L1 Cache In native case, first we implemented our profiling on
L1 cache. There are two types of cache structure namely, data and instruction.
Therefore, in our experiments we profiled each of them separately. In our pro-
cessor there are SL1 = 64 sets for each L1-data and L1-instruction cache and
the sets are 8 way associative.

The profiling and application code run on the same core to detect misses in
L1 cache. Hence, the hyper-threading feature of Intel processors is used. Before
the training data is collected, an idle case of L1-data and L1-instruction sets are
monitored and base Probe values are recorded. For L1-data the base value is
around 65 clock cycles and for L1-instruction it is around 75 clock cycles. Hence,
the outlier threshold is chosen as τo = 150 for both data and instruction cache.
For the conversion from raw data to binary data the threshold value is τo,d = 80
for data cache and τo,d = 90 for instruction cache. The number of traces collected
per set for each data set is NT = 10, 000. Therefore, the total number of traces
is equal to 640,000 which belongs to one data set for L1-instruction or L1-data.

To compute the sampling frequency, we checked the total Prime&Probe time
and it is almost same for all sets in L1 cache which is around Tcc = 200 clock
cycle. Hence, the sampling frequency is Fs = 2.5GHz/200 = 12.5MHz for L1
cache profiling. Fs for L1 cache is higher than LLC profiling because the number
of ways in L1 sets is smaller than LLC sets and accessing to L1 cache lines is
faster than LLC lines. Thus, the resolution of L1 profiling is higher than LLC
profiling which results more distinct feature vectors and high success rates in
ML algorithm.

After Fs is determined, FFT can be applied to traces. The outcome of FFT
is NT /2 which is equal to 5,000 frequency components in our case. This process
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Fig. 9. Success rate graph for varying number of sets to train the data

is applied to all 64 sets in data and instruction cache for each test. Hence, the
feature vector of a test consists of 320,000 frequency components after all sets
are concatenated. The number of data sets per test is ND = 60 which means the
training data is a matrix of the size 2, 400× 320, 000.

To classify the training data, first 10-fold cross validation is implemented in
SVM. For cross-validation we implement both C-SVC and nu-SVC SVM types
in the LIBSVM library. Our results show that C-SVC gives better success rates,
so we preferred this option. For the kernel type, the linear option is chosen since
the success rate is much higher than for the other options. After these options
are chosen kernel parameters and the penalty parameter for error are optimized
by LIBSVM. In both training and test phases the chosen parameters are used
to implement SVM. Therefore, there is no user interaction to choose the best
parameters and the steps are automated.

In cross-validation experiments, we show the effect of number of L1 sets on
success rate. If only 1 set is used to generate the training model, the cross-
validation success rate is 46.8% for instruction and 60.71% for data cache. With
the increasing number of sets, the cross-validation success rate for data and
instruction cache is increasing to 95.74% and 97.95%, respectively in Figure 9.

For training and individual success rate of test, 60 data sets per test are
trained where the SVMMODEL is obtained with C-SVC and linear kernel op-
tions. With the cross-validation technique, the success rate for instruction cache
is higher than data cache. The reason behind this is some of the Phoronix tests
do not use L1-data cache however all tests use L1-instruction cache. Therefore,
extracting the feature vectors for tests in instruction cache is more successful
than L1-data cache.

The results also show that the cross-validation success rate is 98.65% if all
information in L1 cache (both instruction and data) is used in the machine
learning algorithm. To achieve this success rate we used all 64 cache sets and in
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Fig. 10. Success rate for different tests in L1-data (blue) and L1-instruction (yellow).
The last bar represents the average of success rates for 40 tests

total we have 50 × 640, 000 size feature vectors per test. Therefore, the size of
training data is 2, 000× 640, 000.

LLC Results L1 profiling is not realistic in the real world since the probability
of two co-located VMs in the same core is really low. Therefore, before switching
to public cloud we implemented our attack in LLC with a cross-core scenario.
The number of cores is NC = 10 in our processor and the number of set-slice
pairs solving the equation in 3 s mod 64 = o is SL3 = 25 · 10 = 320 where
NLLCB = 11 because of 2,048 LLC sets in total and the number of offset bits is
No = 6. o is the set number which is the most used one in L1 profiling for that
test. Therefore, we have 320 set-slice pairs in total to monitor.

Before collecting data for every test, the idle case of each set is monitored to
determine the base value (τb). τb changes between 90 and 110 clock cycle among
different set-slice pairs. Hence, for each set-slice pair τb is different. The outlier
threshold (τo) is 250 clock cycle. The threshold value (τc) for the conversion from
raw data to binary data is τb + 15 clock cycle. After obtaining the binary data,
it is trivial to find the noisy sets. If the number of cache misses is higher than
100 in a set-slice pair, it is marked as noisy. These noisy sets are not processed
when the data is collected.

While collecting the training data 10,000 traces are collected per set-slice
pair. The active sets are determined by checking the number of cache misses
in each set-slice pair excluding the noisy sets. If the number of cache misses is
higher than 300, then that set-slice pair is marked as active and they are included
in Fourier transform.

The Prime&Probe timings change between 1,800 and 2,200 clock cycle so the
sampling frequency (Fs) is taken 1.3 MHz. After FFT is applied to active sets,
the left symmetric side of the outcome is recorded. The length of the fingerprint
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for a set-slice pair consists of 5,000 frequency components. If there are 6 active
sets for a test, the fingerprint of each active set are combined by element-wise
in each data set and final fingerprint is obtained from one data set per test.

For LLC experiments, we used 40 different benchmark tests to profile in LLC.
The number of data set per test is 50 and the length of vector for each feature
vector is 5,000. After collecting the data the training model is generated and the
cross-validation is applied to training data.

For the cross-validation, same options in L1 profiling are used in SVM. The
success rate for LLC test in average is 77.65% with 5,000 frequency components.
With the decreasing number of frequency components the success rate drops to
45% in Figure 11.

The details of success rates for different tests are presented in Figure 12 by
using 10-fold cross-validation technique. The results are obtained from 5,000
frequency components and 60 data sets per test. The lowest recognition rate is
13% for GMPBENCH test since the success rate for this test is low in L1-data
cache in Figure 10.

4.3 Application Detection on EC2 Cloud

To show the applicability of ML technique to real world, we also perform our
profiling method on Amazon EC2. The challenges of performing the experiments
on a public cloud are hypervisor noise and the noise of other VMs in the mon-
itored sets. Therefore, some set-slice pairs are marked as active even if those
pairs are not used by target VM. Redundant cache misses in the active sets also
pose a problem. During Fourier Transform, these cache misses may cause shifts
in frequency domain. To overcome these difficulties, SVM technique is applied
to the data, and as a result, the success rate gets higher.

The number of tests decreases in cross-VM scenario since some tests do not
work properly and some of them have installation problems on Amazon EC2.
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the success rate for different tests. The last bar shows the average success rate for all
25 tests

Thus, the number of tests used in this experiment decreases to 25. To classify the
different benchmark tests, same process in LLC profiling is used, then training
data is processed in SVM. The result is lower than native case because of the
aforementioned types of noise. The 10-fold cross-validation result is 60.22% in
Figure 11 with 5,000 frequency components. This result shows that on public
cloud the classification success rate drops with increasing noise.

The success rates for individual tests change between 16% and 100% in Fig-
ure 13. The success rate decreases when the hypervisor and other VMs noise
affect the cache miss patterns. Even though the success rate is lower than native
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Fig. 14. Cache miss pattern of received ping requests in LLC

scenario, this result demonstrates the applicability of out method in the cloud
platform.

4.4 Ping detection on EC2

To detect the co-located VMs with spy VM, ping requests are sent by one of the
VMs controlled by the spy in the same region. The purpose of this is to decrease
RTT and increase the frequency of ping requests. At the same time, spy VM 2
monitors 320 set-slice pairs since the processor has 10 slices and 32 different set
numbers satisfying s mod 64 = 0.

The set-slice pairs are very noisy on the cloud therefore even if the candidate
VM is not co-located with the spy VM, there are some active sets in LLC because
of the noise from other VMs. However, when the frequency domain of active sets
is checked by the spy, there is no dominant frequency component or the dominant
frequency components are not consistent with the ping frequency. If the target
VM is co-located with the spy VM, then the periodic cache misses can be seen
in one of the active sets in Figure 14.

After applying Fourier Transform with an appropriate Fs, the dominant fre-
quencies are clearly seen in Figure 15. In order to calculate the frequency domain
the sampling frequency Fs should be computed before the frequency transforma-
tion is applied to the data. After averaging all LLC sets, Fs is determined to be
around 1,800 clock cycle. The normal CPU frequency of the processor is 2.5 GHz
so Fs is equal to 1.56 MHz on Amazon EC2 VMs. When the ping requests are
sent every 0.4 ms from Spy VM2, then Spy VM1 can monitor the cache misses
in active sets as in Figure 14. When the frequency domain is generated, the
frequency components overlap with the frequency of ping requests in Figure 15.
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5 Countermeasures

In this section we discuss some details to prevent LLC profiling in the cloud.

Disabling Huge Pages: In order to create eviction sets for Prime&Probe pro-
filing Huge Pages should be allocated by the spy. Therefore, if the Huge Pages
are disabled by the VMM, then creating eviction sets process becomes harder
and the efficiency of the monitoring other VMs drops significantly.

Private LLC Slices: Co-located VMs can use whole LLC if they are physically
in the same machine. Therefore, if LLC is separated for each VM in the cloud,
the profiling phase will be impossible. Nevertheless, this change in the cache
architecture is a painful process for cloud providers and it is not efficient.

Adding Noise to LLC: One way to avoid LLC profiling is to add noise by
flushing some cache lines. Therefore, even if there is no evicted line in a LLC
set by the monitored application, the spy assumes there is a cache miss. With
additional noise the frequency domain representation of the hit-miss trace will
change and the success rate of the ML algorithms will decrease.

Page Coloring: Page coloring is a software technique that manages how mem-
ory pages are mapped to cache lines. Shi et al. [31] introduced page coloring to
partition LLC dynamically to limit cache side channel leakage in multi-tenant
clouds. Hence, spy VMs cannot interfere with other VMs in the cloud. How-
ever, this method introduces performance overheads and the performance of a
program can drastically change between runs.

6 Conclusion

In this paper we tackled the problem of automating cache attacks using machine
learning. Specifically, we devised a technique to extract features from cache ac-
cess profiles which subsequently are used to train a model using support vector
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machines. The model is used later for classification applications based on their
cache access profiles. This allows, for instance, a cloud instance to spy on appli-
cations co-located on the same server. Even further, our technique can be used
as a discovery phase of a vulnerable application, to be succeeded by a more
sophisticated fine grain attack. We validated our models on test executions of
40 applications bundled in the Phoronix benchmark suite. Using L1 and LLC
cache access profiles our trained model achieves classification rates of 98% and
78%, respectively. Even further, our model achieves a 60% (for a suite of 25
applications) in the noisy cross-VM setting on Amazon EC2.
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Table 2. APPENDIX

Test Number in Fig. 10,12 Type Time(s) Test Number in Fig. 13 Description

1) APACHE System 61 19 Apache benchmark program
2) DCRAW PC 67 20 Convert a RAW image to PPM image
3) FFTW PC 292 21 Computes discrete Fourier transform (DFT)
4) GNUPG PC 15 Encrypts a file using GnuPG
5) HIMENO PC 62 22 Implements point-Jacobi method
6) OPENSSL PC 22 Implements SSL and TSL
7) DOLFYN PC 34 23 Implements Computational Fluid Dynamics
8) JAVA-SCIMARK2 PC 34 Runs Java version of Scimark
9) JOHN-THE-RIPPER PC 68 Password cracker
10) BOTAN PC 401 Implements AES-256
11) ESPEAK PC 49 Speech synthesizer
12) GMPBENCH PC 480 Test of the GMP 4.3.0 math library
13) HMMER PC 60 Implements Hidden Markov Models
14) MAFFT PC 39 Performs an alignment process
15) GCRYPT PC 30 25 Libgcrypt with CAMELLIA256-ECB
16) NPB PC 1440 High-end computer systems benchmark
17) CLOMP PC 48 1 Measures OpenMP overheads
18) BORK PC 20 2 Cross-platform encryption utility
19) C-RAY PC 147 3 Tests the floating-point CPU performance
20) FFMPEG PC 37 Tests audio/video encoding performance
21) MINION PC 74 4 Constraint solver
22) NERO2D PC 650 5 Two-dimensional TM/TE solver
23) NGINX System 43 6 Apache program against nginx
24) PERL-BENCHMARK PC 88 7 Implementing different versions of perl
25) POSTMARK Disk 56 8 Small-file testing in Web and mail servers
26) SMALLPT PC 558 C++ global illumination renderer
27) STOCKFISH PC 6 Chess benchmark
28) SUDOKUT PC 14 9 Sudoku puzzle solver
29) SYSTEM-LIBXML2 PC 96 24 Parse a random XML file with libxml2
30) VPXENC PC 84 10 Video encoding test of Google’s libvpx
31) COMPRESS-GZIP PC 14 11 Implements Gzip compression
32) CRAFTY PC 86 12 Chess engine
33) POLYBENCH-C PC 8 13 C-language polyhedral benchmark
34) PRIMESIEVE PC 418 14 Generates prime numbers
35) TTSIOD-RENDERER PC 168 15 A portable GPL 3D software renderer
36) MENCODER PC 31 Tests audio/video encoding performance
37) FHOURSTONES PC 143 16 Integer benchmark for connect-4 game
38) EBIZZY PC 22 17 Generates workloads onweb server workloads
39) HPCC PC 12600 Cluster focused benchmark
40) N-QUEENS PC 260 18 solves the N-queens problem


