
Indistinguishability Obfuscation from
Bilinear Maps and Block-Wise Local PRGs

Huijia Lin∗ Stefano Tessaro †

University of California, Santa Barbara
{rachel.lin,tessaro}@cs.ucsb.edu

Abstract

Recent works (Lin, EUROCRYPT’16, ePrint’16; Lin and Vaikunthanathan, FOCS’16; Ananth
and Sahai, EUROCRYPT’17) establish a tight connection between constructions of indistin-
guishability obfuscation from L-linear maps and pseudo-random generators (PRGs) with out-
put locality L. This approach appears however not to be suitable to obtain instantiations from
bilinear maps, as no polynomial-stretch PRG with locality lower than 5 exists.

This paper presents new candidate constructions of indistinguishability obfuscation from
(i) L-linear maps for any L ≥ 2, and (ii) PRGs with block-wise locality L. A PRG has block-wise
locality L if every output bit depends on at most L (disjoint) input blocks, each consisting of up
to log λ input bits. In particular, we give:

• A construction of a general-purpose indistinguishability obfuscator from L-linear maps
and a subexponentially-secure PRG with block-wise locality L and polynomial stretch.

• A construction of general-purpose functional encryption from L-linear maps and any
slightly super-polynomially secure PRG with block-wise localityL and polynomial stretch.

All our constructions are based on the SXDH assumption on L-linear maps and subexponential
Learning With Errors (LWE) assumption. In the special case of L = 2, our constructions can
be alternatively based on bilinear maps with the Matrix Diffie-Hellman assumption and the
3-party Decision Diffie Hellman assumption, without assuming LWE.

Concurrently, we initiate the study of candidate PRGs with block-wise locality L ≥ 2 based
on Goldreich’s local functions, and their security. In particular, lower bounds on the locality
of PRGs do not apply to block-wise locality for any L ≥ 2, and the security of instantiations
with block-wise locality L ≥ 3 is backed by similar validation as constructions with (conven-
tional) locality 5. We complement this with hardness amplification techniques that weaken the
pseudorandomness requirement on our candidates to qualitatively weaker requirements.

∗Huijia Lin was partially supported in part by NSF grants CNS-1528178 and CNS-1514526.
†Research supported in part by NSF grants CNS-1423566, CNS-1528178, CNS-1553758 (CAREER), and IIS-152804.

Contents

1 Introduction 1
1.1 Block-Wise Locality . 2
1.2 From Block-Wise Locality to IO and FE . 4

2 Preliminaries 6
2.1 µ-Hardness and µ-Indistinguishability . 6
2.2 Indistinguishability Obfuscation . 7

2.2.1 i`-bit-Input IO . 7
2.3 Puncturable Pseudo-Random Functions . 8
2.4 Randomized Encodings . 8
2.5 Functional Encryption . 9

2.5.1 Public-Key Functional Encryption . 9
2.5.2 FE for P/poly, NC1 and Compactness . 10

2.6 Zero-Testing FE for Arithmetic Functions . 11
2.7 Degree-D Asymmetric Multilinear Maps with SXDH Assumption 12

3 Block-Wise Local PRGs 12
3.1 Pseudorandom Generators, Locality, and Block-Wise Locality 12
3.2 Graph-Based Block-Wise local Functions . 13
3.3 Pseudorandom and Unpredictability Generators . 15
3.4 Block-Wise local Small-Bias Generators . 17
3.5 Hardness Amplification via the XOR Construction . 19
3.6 The Extraction Construction . 21

4 IO from Block-Wise Locality-(L, log λ) PRG and L-Linear Maps 22
4.1 Step 1: Constructing Weakly-Compact FE . 24
4.2 Step 2: Tight Construction of IO from Weakly-Compact FE 29

4.2.1 IO in the CRS model . 29
4.2.2 IO in the CRS Model from Weakly-Compact FE 31

5 FE from ω(log λ)-Bit-Input IO for P/poly 38
5.1 From 1-key to Collusion-Resistant FE, Generically . 38

i

1 Introduction

Indistinguishability obfuscation (IO), first defined in the seminal work of Barak et al. [BGI+01a],
aims to obfuscate functionally equivalent programs into indistinguishable ones while preserving
functionality. IO is an extraordinarily powerful object that has been shown to enable a whole
set of new cryptographic possibilities. Currently, all IO constructions [GGH+13b, BR14, BGK+14,
PST14, AGIS14, GLSW15, Zim15, AB15, GMS16, MSZ16a, Lin16a, LV16, Lin16b, AS16] rely on
multilinear maps or graded encodings. In particular, the power of an L-linear map stems from the
fact that it essentially allows to evaluate degree-L polynomials on secret encoded values, and to
test whether the output of such polynomials is zero or not.

While the case L = 2 corresponds to bilinear maps, which can be efficiently instantiated from
elliptic curves, the instantiation of L-linear maps with L ≥ 3 appears to be a challenging prob-
lem. Garg, Gentry, and Halevi [GGH13a] proposed in particular noisy (i.e., approximate) versions
of L-linear maps for L ≥ 3, and gave the first candidate construction. Unfortunately, vulnerabil-
ities [CHL+15, CGH+15, MSZ16b, CGH16] were later demonstrated against this and subsequent
candidates [CLT13, LSS14, GGH15, CLT15]. These attacks have motivated efforts towards building
IO from L-linear maps, where L is as small as possible. The current state-of-the-art [Lin16b, AS16]
shows that 5-linear maps suffice (under appropriate assumptions), but it remains unclear whether
such maps are more likely to exist than L-linear maps for a higher L.

Therefore, the obvious goal would be to provide a construction of IO from bilinear maps, thus
completely dispensing with multilinear maps for L ≥ 3. The challenge here is to be traced back
to the clear gap between the functionality IO demands — evaluating arbitrary polynomial-sized
circuits — and the functionality offered by bilinear maps — evaluating only quadratic polynomials.
The perhaps most striking indication of this challenge is the mere fact that we do not even have a
plausible correct IO construction from bilinear maps, let alone a secure one.

This paper, in a nutshell This paper presents the first IO candidate construction which relies on
L-linear maps for L ≥ 2. In particular, we obtain the first IO candidate construction from bilinear
maps, based on well-specified assumptions we discuss below.

We fundamentally rely on the recent line of works on building IO from constant-degree mul-
tilinear maps [Lin16a, LV16, Lin16b, AS16], which all rely on so-called local pseudo-random gen-
erators (PRGs) – a PRG with locality L has every output bit depend on L input bits. It is known
that if PRGs with locality L and polynomial stretch exist, then IO can be constructed from L-
linear maps [Lin16b, AS16]. Unfortunately, we do not even have locality-4 (polynomial stretch)
PRGs [CM01, MST03], and candidate PRGs only exist starting from locality 5 [Gol01, MST03,
OW14]. To circumvent the lower bound on PRG locality, we propose a new, relaxed, notion of
locality, called block-wise locality. We build upon Lin’s [Lin16b] recent IO construction, but show
that in order to obtain IO from L-linear maps, it suffices to use PRGs with block-wise locality L.
As we will discuss below, such PRGs can exist for L as low as two.

Block-wise locality and IO We say that a PRG mapping n × ` input bits to m output bits has
block-wise locality L and block-size `, if when viewing its input (i.e., the seed) as a matrix of n × `
bits, every output bit depends on at most L columns in the matrix (as opposed to L input bits), as
depicted in Figure 1. Observe that that the actual locality of such PRGs can go up to L × `, yet, it
has the special structure that all these input bits come from merely L input columns. This special
structure is the key feature that allows for replacing local PRGs with block-wise-local PRGs, in the
following applications.

1

• Application I: If there exists a subexponentially-secure PRG with block-wise-localityL, and any
block-size ` = O(log λ), then we can construct general-purpose IO from L-linear maps.

• Application II: If the block-wise local PRG is only slighly superpolynomially secure, we can still
build special-purpose IO for circuits with super-logarithmic length inputs, which implies
full-fledged Functional Encryption (FE), from L-linear maps.

All our constructions come with security reductions to (1) the security of block-wise-local PRGs,
(2) the SXDH assumption on L-linear maps, with the same level of hardness as that of the PRG,
and (3) the subexponential Learning With Errors (LWE). When L = 2, our constructions can be
alternatively based on two other assumptions on bilinear maps and without assuming LWE.

Concurrently, we investigate the existence of block-wise local PRGs. We propose candidates
following the common paradigm for candidate local PRGs [CM01, MST03, App12, OW14, AL16],
which are variants of Goldreich’s functions [Gol00]. We simply replace every PRG input bit with
a column of ` input bits. Such a block-wise local PRG is parameterized by an bipartite expander
graph and a predicate (or potentially a set of predicates) over L × ` input bits. We discuss the se-
curity of these candidates, against known attacks, in relation to the choice of graph and predicate.
Furthermore, aiming at weakening the assumption on our candidates, we present two hardness
amplification techniques that amplify respectively the weaker next-bit-unpredicatability property
and pseudo-min-entropy generation property to different levels of pseudorandomness guarantees.

A perspective We see our study of block-wise local PRGs as a first step towards understanding
their (in)security, and we call for more extensive study, especially for the case of block-wise locality
2. Still, two important comments are in order.

First, for block-wise locality L ≥ 3, our assumption is implied by that made by recent works
in the area of local PRGs and PRFs, c.f. e.g. the pseudorandomness assumptions from the recent
work by Applebaum and Raykov [AR16] — and in fact, our amplification results show that even
less needs to be achieved by the local function. Second, while the case L = 2 requires extra care,
we note that this gives at the very least the first obfuscator candidate with a clear reduction to
well-defined assumption for bilinear maps.

1.1 Block-Wise Locality

A (n × `,m)-PRG maps n × ` input bits to m output bits. As introduced above, a PRG has block-
wise locality L and block-size `, if when viewing the input as a n × ` matrix, every output bits
depend on input bits in at most L columns. Such a function is fully specified by the input-output
dependency graph G describing which input columns each output bit depends on, and the set of
predicates {Pj}j∈[m] that each output bit is evaluated through.

In all our applications, we consider block-wise local PRGs with sufficiently large polynomial
input- and output-lengths, n and m (in the security parameter λ) and logarithmic block-size ` =
O(log(λ)). In this setting, a PRG has polynomial-stretch if m = n1+α for some positive constant
α > 0. For convenience, below we assume such parameters are fixed in our discussion.

When compared with traditional local PRGs (which can be thought as the special case with
block size ` = 1), the advantage of block-wise local PRGs is that while they will still permit in-
stantiations with L-linear maps in our applications, their output bits depend on L × ` input bits,
and hence we can use more complex, say logarithmic-degree, predicates. For this reason, known
lower bounds on the locality of PRGs do not apply to block-wise locality, even when L = 2, when
the block size satisfies ` = Ω(log(λ)). Observe that inverting functions with block-wise locality 2

2

y1 yi yj ym
·· · ·· · ·· · ·· · ·· · ·· ·

x1 xi xn
·· · ·· · ·· · ·· ·

y1 yi yj ym
·· · ·· · ·· · ·· · ·· · ·· ·

x1 xi xn·· · ·· · ·· · ·· · `

Figure 1: Left: PRG with locality L = 3. Right: PRG with block-wise locality L = 3 and block size `.

corresponds to Constraint Satisfaction Problems (CSPs) where every constraint depends on two
input variables from a polynomial-sized alphabet. Such CSPs are not known to be solvable in
polynomial time. In constrast, if ` = 1, then the problem collapses to a 2SAT instance, which is
easily solvable. Moreover, the lower bounds in [CM01, MST03] show that for conventional locality,
PRGs with polynomial stretch require L ≥ 5, but they crucially rely on the fact that any locality-4
predicate is correlated with two of its input bits to rule out the existence of locality-4 PRGs. In
contrast, a PRG with block-wise locality 2 can use predicates that depend on 2 log λ input bits;
setting the predicate to be uncorrelated with any subset of log λ input bits circumvents the lower
bound argument in [CM01, MST03].

Block-wise local PRGs via local PRGs Every function with block-wise locality L and block size
` is a function with locality L`. Therefore, the rich literature on the security of Goldreich’s lo-
cal functions (see Applebaum’s survey [App15]) provides guidelines on how to choose candidate
block-wise local PRGs, more specifically, the dependency graph G and predicates {Pj}. In par-
ticular, the graph G should be (k, c)-expanding, i.e., every subset of k′ ≤ k output bits depends
on at least c × k′ input columns, for appropriately large k and c. We show that for L ≥ 3, a
large 1 − o(1) fraction of graphs G is (n1−η, (1 − η)L)-expanding. This in turn means that we can
think of this as an instance of Goldreich’s function with locality L` built from a graph which is
(n1−η, (1− η)L`)-expanding, thus taking us back to the classical setting studied in the literature.

Using this analogy, we can show for example that for block-wise locality 3 and block size
2, for most graphs G, the resulting function withstands all linear attacks with sub-exponential
bias ε when using the predicate outputting x0

1 ⊕ x0
2 ⊕ x0

3 ⊕ (x1
1 ∧ x1

2) on input three columns
(x0

1, x
1
1), (x0

2, x
1
2), (x0

3, x
1
3). This is a criterion that has been adopted so far to validate PRG secu-

rity of local functions.
Moving even one step further, Applebaum and Raykov [AR16] recently postulated the follow-

ing (even stronger) pseudorandomness assumption on functions with logarithmic locality:

Assumption 1 (Informal). For locality D = O(log λ), and arbitrarily polynomial output length m =
n1+α, there exist a suitable predicate, P ′, such that, for any dependency graph G′ that is (n1−η, (1− η)D)-
expanding for some 0 < η < 1/2, the locality-D function specified by P ′ and G′ is 2−n

1−η -pseudorandom
again 2n

1−η -time distinguishers.

In our setting, for block-wise locality L ≥ 3 and block-size log λ, we show that when choosing
the dependency graph G at random, the obtained block-wise local function can be thought as a
function with locality D = L log λ satisfying the properties specified by the Applebaum-Raykov
assumption, with 1 − o(1) probability. In particular, such functions withstand myopic inversion
attacks (cf. e.g. [CEMT09]). In fact, our applications only need pseudorandomness to hold for
output length m = n1+α for some arbitrarily small constant α > 0, and against polynomial time

3

attackers, thus a much weaker requirement than what is guaranteed by the Applebaum-Raykov
assumption.

For the case L = 2, the assumption that a block-wise local PRG exists is not backed by any
of the past results. Indeed, they all fail since the resulting graphs G is not sufficiently expanding,
specifically, the graphs are (n1−η, βD)-expanding with D = 2 log λ, for some expansion factor β <
1/2 and η < 1; however, the proofs of previous works only go through if β > 1/2. Nevertheless,
this still implies something highly non-trivial, namely that each set of output bits depends on a
sufficiently large number of input bits. This is already enough to prevent basic attacks, like those
studied by Goldreich [Gol00], and we are not aware at this point of any attack.

Amplification In order to validate our assumptions even further, we present two transforma-
tions meant to enhance security of functions with block-wise locality. We consider two different
techniques:

• Amplification Technique I produces a PRG construction with quasi-polynomial indistinguishability-
gap (to polynomial-time distinguishers), from any unpredictable generator satisfying just poly-
nomial next-bit unpredictability (i.e., the probability of predicting any output bit given previ-
ous output bits is at most 1

2 + 1
poly(λ) , albeit for predictors in quasi-polynomial time). Though

such PRGs are not strong enough for constructing IO, it suffices for constructing FE from
L-linear maps; see the next section.

• Amplification Technique II produces a PRG construction with sub-exponential indistinguishability-
gap, from certain special pseudo-min-entropy-generator whose output has sufficiently-high
pseudo-min-entropy.

1.2 From Block-Wise Locality to IO and FE

We now move to an overview of our constructions from block-wise local PRGs.

IO from subexponentially secure block-wise-local PRGs Recent IO constructions from low-
degree multilinear maps [LV16, Lin16b, AS16] follow a common two-step approach: They first
implement appropriate FE schemes, and then transform them into an IO scheme; we refer to the
second step as the (FE-to-IO) bootstrapping step. In more detail, they use locality-L PRGs in the
bootstrapping step in order to start with FE schemes that support only computation of degree-L
polynomials; they then show that such FE schemes can be constructed from L-linear maps. In this
work, following the blueprint and technique in [Lin16b], we show how to replace the use of local
PRGs with block-wise local PRGs within the bootstrapping step.

Theorem 1 (Bootstrapping using block-wise local PRGs). Let L be any positive integer. There is a
construction of IO for P/poly from the following primitives:

• Public-key fully-selectively-secure (collusion-resistant) FE for degree-L polynomials whose encryp-
tion time is linear in the input length (i.e., poly(λ)N);

or with a secret-key FE scheme with the same properties, assuming additionally the subexponential
hardness of LWE with subexponential modulus-to-noise ratio.

• a PRG with block-wise locality L, block-size log λ, and n1+α-stretch for some positive constant α.

where both FE and PRG need to have subexponential security.

4

The type of secret-key FE schemes for degree-L polynomials needed above was constructed
by Lin [Lin16b] assuming the SXDH assumption on L-linear maps.

Theorem 2 ([Lin16b]). Let L be any positive integer. Assuming the SXDH assumption on asymmetric
L-linear maps, there is a construction of secret-key fully-selectively-secure (collusion-resistant) FE schemes
for degree-L polynomials whose encryption time is linear in the input length (i.e., poly(λ)N). Moreover,
the security reduction has a polynomial security loss.

Therefore, combining our new bootstrapping theorem with Lin’s FE construction, we obtain
IO from the subexponential SXDH assumption on L-linear maps, subexponentially-secure PRG
with block-wise locality L, and subexponential LWE.

In the special case of L = 2, public-key FE schemes for quadratic polynomials needed above
can be constructed from asymmetric bilinear maps with the Matrix Diffie-Hellman assumption
and the 3-party Decision Diffie Hellman Assumption [Gay16, BCFG17]. Thus, if there is a block-
wise locality 2 PRG, there is an indistinguishability obfuscator from bilinear maps (without LWE).

The power of super-polynomially secure block-wise local PRGs While constructing full-fledged
IO for all polynomial-sized programs requires block-wise local PRGs with subexponentially-security,
we ask what can be built from PRGs with weaker (slightly) superpolynomial-security. In particu-
lar, such PRGs can be obtained using the aforementioned amplification technique I, from unpre-
dictable generator satisfying just polynomial next-bit unpredictability. As we will show, a lot can
be achieved already. To this end, we first give a parameterized version of Theorem 1 that shows
a tight relation between the level of security of the PRG and L-linear maps, and the class of cir-
cuits that the IO construction can obfuscate. More specifically, if the PRG and L-linear maps are
(2−i` negl)-secure, then we can build IO schemes for circuits with i`-bit inputs.

Theorem 3 (Parameterized version of Theorem 1). Let L be any positive integer. Then, there is a
construction of IO for P/polyi` — the class of polynomial-sized circuits with i`-bit inputs — from the
same primitives as in Theorem 1, and if FE and PRG are (2−(i`+κ) negl)-secure, the resulting IO scheme is
(2−κ negl)-secure.

Therefore, as discussed above, from slightly superpolynomially secure L-linear maps and a
PRG with block-wise locality L (and subexponential LWE when L > 2), we obtain IO for circuits
with super-logarithmic, ω(log λ), length inputs, and if the primitives are quasi-polynomially se-
cure, we obtain IO for circuits with poly-logarithmic log1+ε(λ) length inputs. We observe that such
IO schemes are sufficient for instantiating two types of natural applications of IO:

• Type 1: Applications where IO is used to obfuscate a circuit with short inputs. For instance,
for building FHE without relying on circular security [CLTV15], and constructing succinct
randomized encoding for bounded space Turning machines [BGL+15]. In these applications,
IO is used to obfuscate a circuit that receive as input an index from an arbitrary polynomial
range.

• Type 2: Applications where the input length of the obfuscated circuit is determined by the
security parameter of some other primitive. Then, by assuming exponential security of the
other primitive, the input length can be made poly-logarithmic. For instance, as observed
in [BNPW16, KS17], in the construction of public key encryption from one-way functions via
IO, if assuming exponentially secure one-way functions, then IO for circuits with ω(log λ) bit
inputs suffices for the application.

5

Going beyond, we show that IO for circuits with super-logarithmic length inputs actually im-
plies full-fledged functional encryption.

Theorem 4 (Functional Encryption from ω(log λ)-Input IO). Let i` be any super-logarithmic poly-
nomial, that is, i` = ω(log λ). Assume IO for the class of polynomial-sized circuits with i`-bit inputs
and public key encryption, both with (2−i` negl)-security. Then, there exist collusion resistant (compact)
public-key functional encryption for P/poly, satisfying adaptive-security.

Combining the above two theorems, we immediately have that the existence of a PRG with
block-wise locality L and L-linear maps, both with slighly super-polynomial security (and as-
suming subexponential LWE when L > 2), implies the existence of full-fledged functional en-
cryption, and all its applications, including, for instance, non-interactive key exchange (NIKE) for
unbounded users [GPSZ16], trapdoor permutations [GPSZ16], PPAD hardness [BPR15, GPS16],
publicly-verifiable delegation schemes in the CRS model [PRV12], and secure traitor tracing scheme
[GGH+13b, BSW06, CFN94], which further implies hardness results in differential privacy [DNR+09,
Ull13].

Outline of this Paper

We review standard security notions (including security definitions for functional encryption)
in Section 2. Section 3 discusses candidate constructions of block-wise local PRGs. Section 4
discusses our bootstrapping method using block-wise local PRGs. Finally, in Section 5, we discuss
constructions of functional-encryption schemes in Section 5.

2 Preliminaries

Let Z and N denote the set of integers, and positive integers, respectively. Let [n] denote the set
{1, 2, . . . , n}. We use R to denote either a ring, or an ensemble of rings R = {Rλ}, which will be
clear in the context.

We denote by PPT probabilistic polynomial time Turing machines. The term negligible is used
for denoting functions that are (asymptotically) smaller than any inverse polynomial. More pre-
cisely, a function ν(?) from non-negative integers to reals is called negligible if for every constant
c > 0 and all sufficiently large n, it holds that ν(n) < n−c.

We use boldface to denote vectors, for example, u,v, c etc., and use ui, vi, ci to denote the ith

elements in the vectors.

2.1 µ-Hardness and µ-Indistinguishability

Definition 1 (µ-Hard One-Way Functions). Let µ : N → [0, 1] be a function. A one-way function f
is µ-hard if for every family of polynomial-sized adversaries {Aλ}λ∈N, and every sufficiently large security
parameter λ ∈ N, it holds that

Pr[x
$← {0, 1}n; y = f(x) : f(Aλ(y)) = y] ≤ µ(λ)

Definition 2 (µ-indistinguishability). Let µ : N→ [0, 1] be a function. A pair of distribution ensembles
{Xλ}λ∈N, {Yλ}λ∈N are µ-indistinguishable if for every family of polynomial-sized distinguishers {Dλ}λ∈N,
and every sufficiently large security parameter λ ∈ N, it holds that

|Pr[x
$← Xλ : D(1λ, x, z) = 1]− Pr[y

$← Yλ : D(1λ, y, z) = 1]| ≤ µ(λ)

6

Definition 3 (Computational and Sub-exponential Indistinguishability). A pair of distribution en-
sembles {Xλ}λ∈N, {Yλ}λ∈N are computationally indistinguishable if they are 1/p-indistinguishable for
every polynomial p, and are sub-exponentially indistinguishable if they are µ-indistinguishable for some
sub-exponentially small µ(λ) = 2λ

ε with a constant ε > 0.

Note that the above definition of sub-exponential indistinguishability is weaker than standard
sub-exponential hardness assumptions that consider distinguishers running in sub-exponential
time.

Below, we provide definitions of standard cryptographic primitives using the terminology
of µ-indistinguishability, which implicitly defines variants with polynomial or sub-exponential
security. As a matter of convention, we will drop µ when µ is a negligible function, and say sub-
exponential security when µ is a sub-exponentially small function.

2.2 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuit defined by [BGI+01b].

Definition 4 (Indistinguishability Obfuscator (iO) for a circuit class). A uniform PPT machine iO is
an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N, if the following conditions are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every input x, we have that

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

where the probability is taken over the coin-tosses of the obfuscator iO.

µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ∈N satisfying thatCb,λ ∈ Cλ,
|C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x, the following ensembles of distributions are µ-
indistinguishable: {

C1,λ, C2,λ, iO(1λ, C1,λ)
}
λ∈N{

C1,λ, C2,λ, iO(1λ, C2,λ)
}
λ∈N

Definition 5 (IO for P/poly). A uniform PPT machine iOP/poly(?, ?) is an indistinguishability obfuscator
for P/poly if it is an indistinguishability obfuscator for the class {Cλ}λ∈N of circuits of size at most λ.

2.2.1 i`-bit-Input IO

In this work, we consider IO for polynomial-sized circuits with bounded input-length. Formally,
we define IO for i`-bit-input circuits, or referred to as i`-bit-input IO, as follows.

Definition 6 (i`-bit-input IO for P/poly). A uniform PPT machine iO(?, ?) is an i`-bit-input indistin-
guishability obfuscator for P/poly if it is an indistinguishability obfuscator for the class

{
Ci`
λ

}
λ∈N of circuits

with size at most λ and input-length at most i`(λ) ≤ λ.

7

2.3 Puncturable Pseudo-Random Functions

We recall the definition of puncturable pseudo-random functions (PPRF) from [SW14]. Since in
this work, we only use puncturing at one point, the definition below is restricted to puncturing
only at one point instead of at a polynomially many points.

Definition 7 (Puncturable PRFs). Let n be a computable polynomial. A puncturable family of PRFs
with domains {0, 1}n(λ) is given by a triple of uniform PPT machines PPRF = (PRF.Gen,PRF.Punc,F)
satisfying the following conditions:

Correctness: For every λ ∈ N, and every output K of PRF.Gen(1λ), every input i ∈ {0, 1}n(λ), and
K{i} = PRF.Punc(K, i), we have that F(K{i}, x) = F(K,x) for all x 6= i.

µ-pseudorandomness at punctured point: For every ensemble
{
iλ ∈ {0, 1}n(λ)

}
, the following en-

sembles (where i = iλ) are µ-indistinguishable.{
K

$← PRF.Gen(1λ),K{i} = PRF.Punc(K, i) : K{i}, i,F(K, i)
}

{
K

$← PRF.Gen(1λ),K{i} = PRF.Punc(K, i) : K{i}, i, Uλ)
}

As observed by [BW13, BGI14, KPTZ13], the GGM tree-based construction of PRFs [GGM86]
from one-way functions yields PPRFs. Furthermore, their construction incurs only a polynomial
security loss, and hence, if the underlying one-way functions are µ-hard, then the resulting PPRF
is µ-pseudorandom.

2.4 Randomized Encodings

In this section, we recall the traditional definition of randomized encodings with simulation secu-
rity [IK02, AIK06].

Definition 8 (Randomized encoding scheme for circuits). A randomized encoding scheme RE consists
of two PPT algorithms,

• Ĉx
$← REnc(1λ, C, x): On input a security parameter 1λ, circuit C, and input x, REnc generates an

encoding Ĉx.

• y = REval(Ĉx): On input Ĉx produced by REnc, REval outputs y.

Correctness: The two algorithms REnc and REval satisfy the following correctness condition: For all
security parameters λ ∈ N, circuit C, input x, it holds that,

Pr[Ĉx
$← REnc(1λ, C, x) : Eval(Ĉx) = C(x)] = 1

µ-Simulation Security: There exists a PPT algorithm RSim, such that, for every ensemble {Cλ, xλ}λ
where |Cλ|, |xλ| ≤ poly(λ), the following ensembles are µ-indistinguishable for all λ ∈ N .{

Ĉx
$← REnc(1λ, C, x) : Ĉx

}
λ∈N{

Ĉx
$← RSim(1λ, C(x), 1|C|, 1|x|) : Ĉx

}
λ∈N

where C = Cλ and x = xλ.

Furthermore, let C be a complexity class, we say that randomized encoding scheme RE is in C, if the
encoding algorithm REnc can be implemented in that complexity class.

8

2.5 Functional Encryption

We provide the definition of a public-key functional encryption (FE) scheme with indistinguishability-
based security which originally appeared in [BSW12, O’N10]. Below we define public key FE first,
and then note the difference with secret key FE.

2.5.1 Public-Key Functional Encryption

Syntax Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles of sets. Let F = {Fλ}λ∈N, where every
function in the set Fλ maps inputs in Xλ to outputs in Yλ.

A public-key functional encryption scheme FE for {Fλ}λ∈N consists of four PPT algorithms
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

• Setup: FE.Setup(1λ, pp) is an algorithm that on input a security parameter and some public
parameter (e.g., description of bilinear pairing groups) outputs a master public key and a
master secret key (MPK,MSK).

• Key Generation: FE.KeyGen(MSK, f) on input the master secret key MSK and the description
of a function f ∈ Fλ, outputs a secret key SKf .

• Encryption: FE.Enc(MPK, x) on input the master public key MPK and a message x ∈ Xλ,
outputs an encryption CT of x.

• Decryption: FE.Dec(SK,CT) on input the secret key associated with f and an encryption of
x, outputs y ∈ Yλ.

Correctness: We define perfect correctness here. For every λ, f ∈ Fλ, x ∈ Xλ, it holds that,

Pr

 (MPK,MSK)
$← FE.Setup(1λ, pp)

CT
$← FE.Enc(MPK, x)

SK
$← FE.KeyGen(MSK, f)

: f(x) = FE.Dec(SK,CT)

 = 1

Indistinguishability Security. Indistinguishability security of a functional encryption requires
that no adversary can distinguish the FE encryption of one input x0 from that of another x1, if
the adversary only obtains secret keys for functions that yield the same outputs on x0 and x1,
that is, for every secret key SKf , it holds that f(x0) = f(x1). In the adaptive setting, the two
challenge inputs (x0, x1) and all functions f are chosen adaptively by the adversary. In the weaker
fully-selective setting, the adversary is restricted to choose (x0, x1) and all functions f statically.

Definition 9 (Adap-security). A public-key FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
for {Fλ}λ∈N is µ-Adap-secure, if for every PPT adversary A, and every sufficiently large security param-
eter λ ∈ N, the adversary’s advantage in the following games is bounded by µ(λ)

AdvtFE
A =

∣∣∣Pr[AdapFE
A (1λ, 0) = 1]− Pr[AdapFE

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ)

AdapFE
A (1λ, b) proceeds as follows:

1. Key Generation. The challenger CH samples (MPK,MSK)
$← FE.Setup(1λ, pp) and sends MPK

to the adversary.

9

2. Function Queries I. Repeat the following for an arbitrary number of times determined by A: Upon
A choosing a function query f ∈ Fλ, CH sends A a function key SKf

$← FE.KeyGen(MSK, f).

3. Message Queries. Upon A choosing a pair of messages (x0, x1), CH sends A a ciphertext CT $←
FE.Enc(MPK, xb).

4. Function Queries II. Repeat the second step, for an arbitrary number of times determined by A.

5. Finally A outputs a bit b′ which is also the output of the experiment.

Restriction: Every function query f must satisfy that f(x0) = f(x1).

Definition 10 (Full-Sel-security). We say that FE is µ-Full-Sel-secure if the condition in Definition 9
holds for modified experiments Full-SelFE

A (1λ, b) that proceeds identically to AdapFE
A (1λ, b) except that

the adversaries choose challenge messages (x0, x1) and all function queries {f} at the beginning of the
experiment.

Note that our notion of fully-selective security is weaker than the notion of selective security
in some papers in the literature (e.g., [GKP+13, ABSV15]), which only requires the adversaries to
choose challenge inputs x0, x1 statically, but allows the adversaries to choose challenge function
inputs adaptively. Intuitively, the notion of fully-selective security is sufficient for applications
that are non-interactive, for instance, building IO from FE as in [BV15, AJ15].

Definition 11 (1-key FE). We say that FE is a µ-Adap-secure (or µ-Full-Sel-secure) 1-key FE scheme if it
satisfies the security requirements in Definition 9 (or, respectively, Definition 10) against adversaries that
ask for at most one function key query.

2.5.2 FE for P/poly, NC1 and Compactness

Definition 12 (FE schemes for families of function classes). Let F = {FI}I∈I be a family of function
classes. We say that FE = {FEI}I∈I is a family of (1-key) FE schemes for F with µ-Adap-security or
µ-Full-Sel-security if for every function class FI = {FIλ}λ∈N, FEI is a (1-key) FE scheme for FI with
µ-Adap-security or µ-Full-Sel-security.

Moreover, define the following special cases:

• FE for P/poly is a family of FE schemes for F = {FN,D,S}N∈N ,D∈D,S∈S , whereN ,D,S are the sets
of all polynomials and FN,D,S is the class of binary functions that can be computed by circuits with
N(λ)-bit inputs, S(λ) size, and D(λ) depth.

• FE for NC1 is a family of FE schemes for F = {FN,D,S}N∈N ,D∈D,S∈S as defined above but with D
the set of all logarithmic functions.

Compactness In the above definition of families of FE schemes, algorithms in scheme FEN,D,S

could run in polynomial time depending on polynomials N,D, S. In the literature, stronger ef-
ficiency requirements have been considered. In particular, the works of [AJ15, BV15] defined
compact FE schemes for NC1, which requires the encryption time to be independent of the circuit
size S of the functions.

Definition 13 (Compactness of FE schemes for NC1). Let FE = {FEN,D,S} be a family of FE schemes
for NC1.

10

Compactness: We say that the functional encryption scheme FE is compact if for every logarithmic func-
tion D, there is a polynomial p, such that, for every polynomials N,S, the encryption algorithm of
FEN,D,S runs in time p(λ,N(λ), logS(λ)).

(1− ε)-Sublinear Compactness (a.k.a. (1− ε)-Weakly Compactness): We say that FE is (1 − ε)-
sublinearly compact, if for every logarithmic function D, there is a polynomial p, such that, for every
polynomials N,S, the encryption algorithm of FEN,D,S runs in time p(λ,N(λ)) · S(λ)1−ε.

2.6 Zero-Testing FE for Arithmetic Functions

For any ring R, we refer to functions mapping from R∗ to R∗ as arithmetic functions in R. Many
previous works (e.g. [ABCP15, BJK15]) constructed FE schemes for classes of arithmetic functions
inRwith a relaxed correctness guarantee, namely, decryption does not reveal the output (inR) en-
tirely, but only reveals whether the output is zero or not. We refer to this relaxed correctness guar-
antee as zero-testing correctness, and FE schemes with such relaxed correctness as zero-testing FE.
We stress that though the correctness requirement is relaxed, the security requirements, namely
IND-security and function hiding, remain the same. Therefore, zero-testing FE is strictly weaker
than standard FE.

Definition 14 (Zero-testing FE). Let R = {Rλ} be an ensemble of rings, and {Fλ} a class of functions
where Fλ maps from Xλ ⊆ R∗λ to Yλ ⊆ R∗λ. We say that FE is a (1-key) zero-testing FE scheme for {Fλ}
with µ-Adap-security or µ-Full-Sel-security, if it is a FE scheme for {Fλ} with the same security guarantee
as in Definition 9 or 10 respectively, and the following relaxed correctness guarantee.

• Zero-Testing Correctness: For every λ, f ∈ Fλ, x ∈ Xλ, it holds that,

Pr

 (MPK,MSK)
$← FE.Setup(1λ, pp)

CT
$← FE.Enc(MPK, x)

SK
$← FE.KeyGen(MSK, f)

: ZT(f(x)) = FE.Dec(SK,CT)

 = 1

where ZT is a predicate that outputs 1 iff its input is the zero element inRλ, and in the case of secret
key FE, MPK = MSK.

Zero-Testing FE for Degree-d Polynomials

Definition 15 (Zero-testing FE schemes for families of arithmetic function classes). Let F = {FI}I∈I
be a family of arithmetic function classes. A family FE = {FEI}I∈I of (1-key) zero-testing FE schemes for
F is defined identically as in Definition 12 except that every scheme FEI has zero-testing correctness.

Moreover, define the following special cases:

• Zero-testing FE for degree-d polynomials inR is a family of zero-testing FE schemes for F =

{FN} where where FN is the set of degree-d polynomials mapping fromRN(λ)
λ toRλ.

Definition 16 (Linear efficiency). Let FE = {FEN} be a family of FE schemes for degree-d polynomials
or inner products inR. We say that FE has linear efficiency if there exists a polynomial function p, such
that, for every polynomial N , the encryption algorithm of FEN runs in time N(λ) poly(λ).

In the rest of the paper, whenever we talk about FE for arithmetic functions, in particular, FEs
for degree-d polynomials, over a family of non-binary ring R, we mean by default a zero-testing
FE.

11

2.7 Degree-D Asymmetric Multilinear Maps with SXDH Assumption

Introduced by Boneh and Silverberg [BS02], asymmetric Multilinear Maps (MMaps) naturally
generalize asymmetric bilinear maps to higher degree. Let G denote a group generator that on
input 1λ outputs (p,G1, · · · , GD,
GD+1,pair), where G1, · · · , GD, GD+1 are cyclic groups with order p (prime or composite). G1

to GD are referred to as the source groups and GD+1 the target group. Assume without loss of
generality that the description of the source groups contain generators g1, · · · , gD of G1, · · · , GD.
In addition, the following properties hold.

• Admissible: pair : G1×· · ·×GD → GD+1 is efficiently computable and gD+1 = pair(g1 · · · , gD)
generates GD+1.

• Multilinear: For any a1, · · · , aD ∈ Zp, pair(ga1
1 , · · · , gaDD) = pair(g1, · · · , gD)a1a2···aD = ga1a2···aD

D+1 .

We denote by Rλ = (Zp,+,×) the ring corresponding to the exponent space of these multilinear
pairing groups.

The Bracket Notation For clarity of notions, we use the following bracket notations to denote
group elements.

∀l ∈ [D + 1], [a]l = gal

We refer to [a]l as an encoding of a in group Gl, or with label l. Under this notation, the generator
in group l ∈ [D + 1] is represented as [1]l = gl. We also use the following vector notation to
represent vectors of group elements succinctly: For any v = (v1, · · · , vm) ∈ Zmp , and l ∈ {0, 1, T}:

[v]l = [v1]l · · · [vm]l

The SXDH Assumption The SXDH assumption states that the standard DDH assumption holds
in each of the source groups. Formally, for every source group Gl for l ∈ [D], the following two
ensembles are µ-indistinguishable.{

pp = (p,G1, · · ·GD, GD+1,pair)
$← G(1λ), a, b

$← Zp : (pp, [a]l, [b]l, [ab]l)
}
λ{

pp = (p,G1, · · · , GD, GD+1,pair)
$← G(1λ), a, b, r

$← Zp : (pp, [a]l, [b]l, [r]l)
}
λ

3 Block-Wise Local PRGs

In this section, we introduce the notion of a block-wise local PRG. We start with formal definitions,
in Section 3.1, which we refer to throughout the rest of the paper. Then, the remaining sub-sections
will discuss a graph-based framework for block-wise local functions, and discuss candidates.

3.1 Pseudorandom Generators, Locality, and Block-Wise Locality

Definition 17 (Family of Pseudo-Random Generators (PRGs)). Let n andm be polynomials. A family
of (n(λ),m(λ))-PRG is an ensemble of distributions PRG = {PRGλ} satisfying the following properties:

Syntax: For every λ ∈ N, every PRG in the support of PRGλ defines a function mapping n(λ) bits to
m(λ) bits.

12

Efficiency: There is a uniform Turning machine M satisfying that for every λ ∈ N, every PRG in the
support of PRGλ, and every x ∈ {0, 1}n(λ), M(PRG, x) = PRG(x).

µ-Indistinguishability: The following ensembles are µ-indistinguishable{
PRG

$← PRGλ; s
$← {0, 1}n(λ) : (PRG,PRG(s)

}
λ∈N

≈µ
{

PRG
$← PRGλ; r

$← {0, 1}m(λ) : (PRG, r)
}
λ∈N

Definition 18 (Locality of PRGs). Let n, m, and L be polynomials. We say that a family of PRGs PRG
has locality L if for every λ ∈ N and every PRG in the support of PRGλ, every output bit of PRG depends
on at most L(λ) input bits.

Definition 19 (Block-Wise Locality of PRGs). Let n, m, L, and ` be polynomials. We say that a family
of (n(λ)`(λ),m(λ))-PRGs has block-wise locality-(L(λ), `(λ)) if for every λ and every PRG in the support
of PRGλ, inputs of PRG are viewed as n(λ)× `(λ) matrices of bits, and every output bit of PRG depends
on input bits contained in at most L(λ) columns.

In this work, we consider PRGs with constant locality and constant block-wise locality; we
generally refer to them as local PRGs or block-wise local PRGs respectively.

3.2 Graph-Based Block-Wise local Functions

In this section, we discuss candidate PRGs with block-wise locality d, where d can be as small
as two. Here, we start with the notational framework and then move on to discussing concrete
assumptions on them in Section 3.3.

Goldreich’s function We will consider local functions based on Goldreich’s construction [Gol00],
which have been the subject for extensive study (cf. e.g. Applebaum’s survey [App15]).

Recall first that an [n,m, d]-hypergraph is a collection G = (S1, . . . , Sm) where the hyerpedges
Si are elements of [n]d, i.e., Si = (i1, . . . , id), where ij ∈ [n] (note that we allow for potential
repetitions, merely for notational convenience). We use hypergraphs to build functions as follows.

Definition 20 (Goldreich’s function). Let G = {Gλ}λ∈N be an ensemble such that Gλ is a distri-
bution on [n(λ),m(λ), d(λ)]-hypergraphs, for polynomial functions m,n, d. Also let P = {Pλ}λ∈Nq
be a family of predicates, where Pλ operates on d(λ)-bit strings. Then, define the function ensemble

GFG,P = {GFG,Pλ }λ∈N, where GFG,Pλ samples first a graph G = (S1, . . . , Sm)
$← Gλ, and then out-

puts the function GFG,P : {0, 1}n → {0, 1}m such that for all n-bit x,

GFG,P (x) = (y1, . . . , ym) , yi = P (x[Si]) ,

where x[S] denotes the d-bit sub-string obtained by concatenating the bits at positions indexed by S.1

1The notion could be block-wise to the cases where predicates are drawn by a distribution, and possibly differ from
each output bit. We are going to dispense with such extensions, which are straightforward but easily lead to notational
overhead.

13

Functions with block-wise locality We want to extend the notation used above to consider the
case where an edge of G does not solely give a pointer to individual bits to be injected in the
computation, but rather, to “chunks” consisting of `-bit strings, and the predicate is applied to the
concatenation of these bits. The resulting function clearly then satisfies block-wise locality d with
block size `.

Definition 21 (Block-wise local graph-based function). Let G = {Gλ}λ∈N be such that Gλ is a
distribution on [n(λ),m(λ), d(λ)]-hypergraphs, for polynomial functions m,n, d. Also let `(λ) be a poly-
nomial function, and P = {Pλ}λ∈N a family of predicates, where Pλ operates on (d(λ)× `(λ))-bit strings.
Then, define the function ensamble GFG,P,` = {GFG,P,`λ }λ∈N, where GFG,P,`λ samples first a graph

G = (S1, . . . , Sm)
$← Gλ, and then outputs the function GFG,P,` : {0, 1}n·` → {0, 1}m such that for

all (n× `)-bit inputs x = (x[1], . . . ,x[n]), where x[1], . . . ,x[n] ∈ {0, 1}`,

GFG,P,`(x) = (y1, . . . , ym) , yi = P (x[Si]) ,

where x[S] denotes the d · `-bit sub-string obtained by concatenating `-bit input chunks indexed by S.

We typically refer to the graph G describing GFG,P,` as the base graph. This is because GFG,P,`
can be seen as a special case of Goldreich’s function defined above, for a suitable graph. Namely,
the base graph G can be extended to an [n · `,m, d`]-hypergraph G naturally, where each edge
Si = (i1, . . . , id) from G is mapped into a new hyper-edge Si with d · ` elements such that

Si = ((i1 − 1) · `+ 1, . . . , i1 · `, · · · , (id − 1) · `+ 1, . . . , id · `) ,

then clearly GFG,P,` = GFG,P,1 = GFG,P . This view will be convenient to connect back to the
body of work on studying the security of Goldreich’s function on suitable graphs, for which our
block-wise local designs serve as a special case.

Expansion properties In general, we will want to instantiate our framework with functions
where the base graph G is a good expander graph. Recall the following.

Definition 22. G = (S1, . . . , Sm) is a (k, c)-expander (or, equivalently, is (k, c)-expanding) if for all sets
J ⊆ [m] with |J | ≤ k, we have

∣∣∣⋃j∈J Sj

∣∣∣ ≥ c · |J |.
Ideally, we will want in fact G to be a good expander (in order to resort to large body of

analyses for such functions). This will follow by making the base graph a good expander. In
particular, the following simple fact stems from the observation that when going from G to G, we
have

∣∣Sj∣∣ = ` |Sj |, and hence the (relative) expansion factors of G and G are identical.

Lemma 1. Let G be an [n,m, d]-hypergraph which is (k, (1− γ)d)-expanding. Then, for any block-size `,
the resulting [n · `,m, d`]-hypergraph G is (k, (1− γ)d`)-expanding.

In general, if we have high degree (say O(log λ)), we can prove the existence (at least proba-
bilistically) of very good expanders with expansion rate very close to the degree. Unfortunately,
our construction of G imposes some structure, and the actual expansion factor is dictated by the
graph G with much lower degree d. The following lemma establishes the existence of good ex-
pander graphs, which we summarize below in a corollary with more useful parameters. While
the proof of the lemma is folklore (we take notational inspiration from the one in [ABR16]), we
give a more careful analysis tailored at a tight characterization for low degrees, including d = 2.

14

Lemma 2 (Strong expansion lemma). Let d ≥ 2, and let γ ∈ (0, 1) and β ∈ (0, 1/2) be such that
dγ = 1 + β. Further, let 1 ≤ ∆ ≤ nβ/ log(n). Then, there exists a constant α > 0 such that a random
[n,m = ∆n, d]-hypergraph G is a (k = αn/∆1/β, d(1− γ))-expander with probability 1− o(1).

Proof. We pick a random [n,∆n, d]-hypergraph G = (S1, . . . , Sm). Then, by a standard argument,
with c = (1− γ)d, the probability that G is not (k, c)-expanding is upper bounded by

k∑
r=1

(
∆n

r

)(
n

c · r

)(cr
n

)d·r
≤

k∑
r=1

(
e∆n

r

)r (en
c · r

)cr (cr
n

)d·r
=

k∑
r=1

(
ec+1∆n

r

)r (cr
n

)γdr
=

k∑
r=1

(
ec+1∆cγd

(n/r)γd−1

)r
=

k∑
r=1

(
C ·∆

(n/r)γd−1

)r
,

where C = Cγ,d = ec+1cγd is a constant which only depends on γ and d. Now, with pr =(
C·∆

(n/r)γd−1

)
, note that because 1 ≤ ∆ ≤ nβ/ log(n) and γd− 1 = β,

pr ≤
(
C∆rβ

nβ

)r
≤
(
Crβ

log(n)

)r
.

To compute
∑k

r=1 pr, we partition its summands into three different sets:

• For r = 1, . . . , b1/βc, we have that the sum of the pr’s in this range is o(1), because b1/βc ≥ 1
is constant.

• For b1/βc ≤ r ≤ 10 log(n), then we have

pr ≤
(
C10β log(n)β

log(n)

)1/β

≤ O

(
1

log
1
β
−1

(n)

)
,

and because 1/β − 1 > 1, the sum of the pr’s in this range is also o(1).

• For 10 log(n) ≤ r ≤ n/(2C ·∆)1/β , we have pr ≤ (1
2)10 log(n) ≤ O(n−10). However, note that

the number of r’s in this range is at most O(n), and thus the sum of the pr’s in this range is
also o(1).

This concludes the proof.

Corollary 1. For every γ and d such that 1 < γd < 1.5, and every η ∈ (0, 1), there exists a [n, n1+ζ , d]-
hypergraph (for some ζ > 0) which is a (n1−η, (1− γ)d)-expander.

Proof. With β = γd − 1, set ∆ = nηβ/ log(n). Then, ∆1/β < nη for large enough n, and thus
k > n1−η.

3.3 Pseudorandom and Unpredictability Generators

We are interested in the question of finding [n,m, d]-hypergraphs for m = n1+α and a constant
d ≥ 2 such that GFG,P,` is a good PRG, for ` = O(log λ). We consider a parameterized assump-
tion on such functions (in terms of unpredictability), and discuss it briefly. Below, in Sections 3.5
and 3.6, we are then going to show how strong indistinguishability follows from (potentially)
weaker versions of this assumption.

15

Unpredictability generator and assumptions Let UG = {UGλ}λ∈N be a function ensemble,
where UGλ is a distribution on functions from n(λ) to m(λ) bits, for some polynomial functions
m and n.

Definition 23 (Unpredictability generator). We say that UG is an (s, δ)-unpredictability generator
(or (s, δ)-UG, for short) if for all (non-uniform) adversaries A = {Aλ}λ∈N with size at most s(λ) and all
sequences of indices i(λ) ∈ {0, . . . , i(λ)− 1}, we have

Pr

[
x

$← {0, 1}n(λ)

UG
$← UGλ

: Aλ(UG,UG≤i(λ)(x)) = UGi(λ)+1(x)

]
≤ 1

2
+ δ(λ) ,

where UG≤j(x) and UGj(x) denote the first j bits and the j-th bit of UG(x), respectively.

Note that by a standard argument, being a (s, δ)-UG implies being a (family of) (s,O(m · δ))-
PRGs. We now consider the following assumption, which parametrizes the fact that GFG,P,` is a
good PRG.

Definition 24 (BLUG-assumption). Let n, `, s : N → N, and let d ≥ 2 and α > 0 be constants. Also,
let δ : N → [0, 1]. Then, the (d, `)-BLUG(n, α, s, δ) assumption is the assumption that there exists a
family G = {Gλ}λ∈N of [n(λ), n(λ)1+α, d] hypergraphs, and a family P = {Pλ}λ∈N of predicates on
(d(λ)× `(λ))-bit strings such that GFG,P,` is an (s, δ)-UG.

We are being a bit informal here, in the sense that obviously we would like GFG,P,` to addi-
tionally be efficiently computable in a uniform sense. Our candidates will not have this property,
as we are only able to infer the existence of suitable G’s probabilistically. There are two ways of
thinking about the resulting ensemble: Either non-uniformly – the graph Gλ is given as advice
for security parameter λ – but usually we actually show that a 1− o(1) fraction of the [n, n1+α, d]-
hypergraphs are good choices. In that case, we replace G with G where Gλ chooses a random
[n(λ), n(λ)1+α, d(λ)]-hypergraph G, which is bad with vanishing probability o(1). This is of course
not good enough, yet the problem can often be by-passed in an application-dependent way, by
considering the fact that the end scheme using GFG,P,` will also be insecure with probability o(1).
One can then consider ω(1)-instances of this scheme, each using an independent instance from
GFG,P,`, and then combine them with a combiner, if it exists.

Our constructions below require (d,O(log(λ)))-BLUG(n, α, poly(λ), 2−ω(log λ)) to be true for
some n(λ) = poly(λ) and α > 0. For stronger results, we are going to replace 2−ω(log λ) with
2−λ

ε
for some ε > 0. Below, in Sections 3.5 and 3.6, we will discuss whether this assumption can

be implied by (qualitatively) weaker properties. We will show in particular that (d,O(log1−ε(λ)))-
BLUG(n, α, 2ω(log λ), 1/λΩ(1)) implies (d,O(log(λ)))-BLUG(n, α, poly(λ), 2−ω(log λ)).

Here, we briefly discuss what can be expected to start with.

The case d ≥ 3. For the case d ≥ 3, a good candidate to study is the case where ` = O(log(λ)) and
G = {Gλ}λ∈N is such that Gλ is an [n(λ), n(λ)1+α, d]-hypergraph which is a good (n1−γ , (1− γ)d)-
expander where γ < 1

2 , which exists (for some suitable α > 0) by Corollary 1. The corresponding
Gλ are then in turn also (n1−γ , (1− γ)d`)-expanders by Lemma 1.

Applebaum and Raykov [AR16] recently justify the assmption that for suitable predicates, P ,
the function family GFG,P is one way and a PRG against adversary running in time 2n

1−γ
, which

cannot succeed with probability larger than 2−n
1−γ

. In the same paper, they also give a decision-
to-search reduction for such functions, which however applies only for degrees where we can

16

accommodate some γ with 3γ < 1. In particular, such functions withstand existing attacks, such
as myopic inversion attacks [CEMT09]. Also, the degree of P can be high, e.g., O(log(λ)), and this
prevents a number of attacks exploiting weakness of the predicate [CM01, BQ12].

Also, as we show in the next section, it is possible to adopt the techniques from [ABR16] to
show that we can get good ε-biased genertors (for a sub-exponential ε) with block-wise locality
(3, 2). This has been the main technique in validating PRG assumptions on graph-based local
functions [MST03, ABR16, OW14].

The special case d = 2. The case d = 2 is particularly important, as it does allow instantiations
from bilinear maps in our applications. Note that algebraic attacks are mitigated here – in contrast
to the case of plain locality, i.e., ` = 1, we can set ` = O(log λ) and achieve sufficiently high
algebraic degree of the predicate P . However, we cannot hope to build a base graph G with
expansion at least d/2 (however, note that for appropriate m = n1+α, we can get arbitrarily close
by Corollary 1, e.g., 0.499d expansion). Consequently, this implies that G also has expansion less
than d`/2 = `.

This breaks so-called unique vertex expansion, i.e., the property that for every subset of at most
k edges, there exists an element which appears in exactly one of these edges. As a consequence
of this, existing results and techniques to prove security against limited classes of attacks (e.g.,
[CEMT09, ABR16]) fail here, with the exception of the original attack presented in [Gol00], which
only requires additive expansion, i.e.,

∣∣∣∑j∈J Sj

∣∣∣−|J | = Ω(λ) for all sufficiently large |J |. However,
this does not mean that some attack from such classes succeed – indeed, we leave investigating
attacks as an open question.

3.4 Block-Wise local Small-Bias Generators

Several works [CM01, MST03, AL16, ABR16] have focused on studying weaker properties achieved
by local generators. In particular, a standard statement towards validating their security is that of
showing that the meet the definition of being a small-bias generator.

Definition 25. We say SB : {0, 1}n → {0, 1}m is an ε-small biased generator if maxJ⊆[n],J 6=∅
∣∣Pr[x

$←
{0, 1}n :

⊕
j∈J SBj(x) = 1]− 1

2

∣∣ ≤ ε, where SBj(x) denotes the j-th bit of SB(x).

We show that GFG,Q,2 is a good small-biased generator for a sub-exponential ε, where G is
an [n,m, 3]-hypergraph, and Q is the predicate which given three 2-bit blocks x1,x2,x3 where
xi = (xli, x

h
i), outputs

Q(x1,x2,x3) = xl1 ⊕ xl2 ⊕ xl3 ⊕ (xh1 ∧ xh2) .

Another convenient way to think about GFG,Q,2 is as

GFG,Q,2((xl1, x
h
1), . . . , (xln, x

h
n)) = GFG,Ql(x

l
1, . . . , x

l
n)⊕GFG,Qh(xh1 , . . . , x

j
n) ,

where Ql(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 and Qh(x1, x2, x3) = x1 ∧ x2. To show that GFG,Q,2 has
small bias, the main idea is fairly straightforward. Indeed, current analyses of local small-biased
generators give two separate analyses for so called “light tests” and “heavy tests”, where the
“weight” of a test amounts to the cardinality of |J |. For standard locality, withstanding both at
the same time forces the graph degree to be at least five, since the predicate needs to be “non-
degenerate” for the construction to withstand tests (and the theorem of [ABR16] to apply), and
all predicates up to d = 4 are degenerate (cf. e.g. [CM01]). This will not be a problem here, as

17

we only target block-wise locality, and thus effectively the predicate can be non-degenerate. The
proof will in fact show that for most graphs G, GFG,Ql resists light tests, whereas GFG,Qh resists
heavy tests, and thus their xor resists all tests for most graphs. The proof easily extends to any Ql

and Qh which resist light and heavy tests, respectively.

Lemma 3. For all δ > 0 and α < 1−δ
4 , for a fraction of 1− o(1) of all [n, n1+α, 3]-hypergraphs G, and Q

as defined above, GFG,Q,2 is an
(
e−

nδ

4

)
-biased generator.

Proof. Our proof relies on the machinery introduced by [ABR16]. In particular, we will distinguish
between light and heavy tests, depending on whether the set |J | indexing the bits to be xored is
large or not. Then, for a random x, denote y = GFG,Q,2(x) = yh ⊕ yl, where yh = GFG,Qh(x) and
yl = GFG,Ql(x). We have ⊕

j∈J
yj =

⊕
j∈J

yhj

⊕
⊕
j∈J

ylj

 ,

and since
⊕

j∈J y
h
j is independent from

⊕
j∈J y

l
j , with bv(J) =

∣∣∣Pr
[
x

$← {0, 1}n :
⊕

j∈J y
v
j = 1

]
− 1

2

∣∣∣
for v ∈ {l, h}, we have

b(J) :=

∣∣∣∣∣∣Pr

x $← {0, 1}n :
⊕
j∈J

yj = 1

− 1

2

∣∣∣∣∣∣ ≤ 2bl(J) · bh(J) ≤ 2 min{bl(J), bh(J)} . (1)

We are going to show that for a suitable G, bl(J) is small for light tests, i.e., small J , whereas bh(J)
will be shown to be small for heavy tests. Let us start discussing the former case.

Let ∆ = nα ≤
√
n/ log(n). First, assume we pick G = (S1, . . . , Sm) as a random [n,∆n, 3]

hypergraph. We say that G is k-linear if for all sets J ⊆ [m] with |J | ≤ k, the incidence vectors
{vj}j∈J of the sets {Sj}j∈J (which are in particular vectors in Fn2) are linearly independent. Then,
[ABR16] show that G is k-linear with probability 1 − o(1), for k = k(n,∆) = Ω(n/∆2). Then,
[ABR16] also show in particular that in this case, because the predicateQl(x1, x2, x3) = x1⊕x2⊕x3

is 2-resilient (i.e., its Fourier coefficients with weight ≤ 2 are all 0) the bits yl1, . . . , y
l
m are k-wise

independent. In particular, this means that for every J ⊆ [m] with |J | ≤ k, we have bl(J) = 0, and
therefore b(J) = 0 by (1).

Now, we bound bh(J) for a sufficiently large J . In particular, again assume that G is a random
[n, n∆, 3]-graph. Then, because Qh has algebraic degree 2, for every δ > 0, [ABR16] show that
with probability 1− o(1) over the choice of G, for every J such that |J | ≥ ∆2nδ, we have

bh(J) ≤ 1

2
e−n

δ/2/4 ,

and thus also b(J) ≤ e−nδ/2/4 for such J ’s.
Now, note that with probability 1 − o(1), we also must have a graph G for which both light

and heavy tests have small biases. To conclude, we only need to verify that all cardinalities of
J are covered, which is certainly true if ∆2nδ ≤ k = Ω(n/∆2). This equivalently means that
n4α ≤ Ω(n1−δ), which holds whenever α < 1−δ

4 , as assumed in the theorem statement.

18

3.5 Hardness Amplification via the XOR Construction

In this paper, we rely on the assumption that GFG,P,` is a good PRG for an appropriate family
G of expanders. However, we want to add additional justification to our assumptions. Here, in
particular, we discuss how weak unpredictability for graph-based block-wise local functions can
be amplified to super-polynomially small unpredictability generically. This means in particular
that block-wise local PRGs have strong self-amplifying properties, and that for any G and P , in
order to invalidate our assumption, we need to find an attack which succeeds in predicting the
next bit with large (i.e., polynomial) advantage over 1

2 . For otherwise, the lack of such an attack
would imply that for the same G and (a related) P ′ and `′, GFG,P

′,`′ is a strong PRG.
To this end, we use a simple construction xoring the outputs of generators, which has al-

ready been studied to amplify PRG security [DIJK09, MT10] . Our analysis resembles the one
from [DIJK09], but is given for completeness. Also, a more general construction, with xoring re-
placed by a general extractor, was considered by Applebaum [App12]. The use of xor, however,
is instrumental to preserve block-wise locality. The main drawback of this construction is that it
can at best ensure 2−Ω(log1+θ λ) distinguishing gap for some θ ∈ (0, 1] while retaining block size
` = O(log λ). In Section 3.6, we explain a different approach which relies on a different assump-
tion and only works for block-wise locality ≥ 3, but potentially guarantees 2−λ

Ω(1)
distinguishing

gap.

The XOR construction and its amplifying properties Let UG = {UGλ}λ∈N be an (s, δ)-UG,
where UGλ is a distribution on functions {0, 1}n(λ) → {0, 1}m(λ). For an additional parame-
ter k = k(λ) ≥ 1, we define the ensemble UGk = {UGk

λ}λ∈N, where UGk
λ samples functions

UG1, . . . ,UGk
$← UGλ and output the description of a function UGk : {0, 1}n×k → {0, 1}m which,

on input x = x1 ‖ · · · ‖ xk, where xi ∈ {0, 1}n(λ), outputs

UGk(x) = UG1(x1)⊕ · · · ⊕UGk(x
k) .

We show the following theorem, whose proof relies on Yao’s XOR Lemma [Yao82, GNW11].

Theorem 5 (Security of the XOR Construction). If UG is a (s, δ)-UG and k = k(λ) is polynomial in
λ, then UGk is a (s′, ε)-PRG, where

ε(λ) ≤ (2δ(λ))k(λ) , s′(λ) = Θ

(
δ(λ)2k · s(r)
k log(k/δ(λ))

)
.

Proof. Let A = {Aλ}λ be a predictor family size s′ such that for some i = i(λ) guesses with
probability

πA,i(λ) = Pr

[
x

$← {0, 1}n×k

UGk $← UGk
λ

: Aλ(UGk,UGk
≤i(x)) = UGk

i (x)

]
.

Now, we can build another adversary family B = {Bλ}λ∈N which takes as input UG1, . . . ,UGk

from the range of UGλ, as well as y1 = UG1,≤i(x
1), . . . , yk = UGk,≤i(x

k) for x1, . . . , xk
$← {0, 1}n,

and outputs a bit

Bλ(UG1, . . . ,UGk, y1, . . . , yk) = Aλ(UGk = (UG1, . . . ,UGk), y1 ⊕ · · · ⊕ yk) ,

19

and thus, by construction,

πA,i(λ) = Pr

UG1, . . .UGk

$← UGλ

x1, . . . , xr
$← {0, 1}n

yj = UGj,≤i(x
j) for j = 1, . . . , k

b = UG1,i+1(x1)⊕ · · · ⊕UGk,i+1(xk)

: Bλ(UG1, . . . ,UGk, y1, . . . , yk) = b

 .

To continue, we rely on a (concrete) version of Yao’s XOR Lemma, which we state here, with
parameters obtained from Levin’s proof. See [GNW11] for further details. (Note that g is not
sampled from a distribution in the following statement, but this can be simulated by making g
part of the randomness x. Also, for the uniform setting, there are no efficiency requirements on g
and P .)

Theorem 6 (XOR Lemma). Let g : {0, 1}r → {0, 1}∗ and P : {0, 1}r → {0, 1} such that for all
adversaries A with size s(r) we have

Pr
[
x

$← {0, 1}r : A(g(x)) = P (x)
]
≤ 1

2
+ δ(r) .

Then, for all k = k(r), all γ = γ(r) and all adversaries B with size s′(r),

Pr
[
x1, . . . , xr

$← {0, 1}r : B(g(x1), . . . , g(xr)) = P (x1)⊕ · · · ⊕ P (xr)
]
≤ 1

2
+ 2k−1δk + γ(r) , (2)

where s′(r) = Θ
(

γ2·s(r)
k·log(k/γ)

)
.

Therefore, by the assumption in the theorem statement that UG is (s, δ)-UG, the statement
follows by setting γ = δk and noting that 2k−1 + 1 ≤ 2k for all k ≥ 1.

Block-wise local instantiation We instantiate the construction with parameter k when UG =
GFG,P,` for a family of [n,m, d]-hypergraphs G = {Gλ}λ∈N, some ` = `(λ), and a family P of (d×
`)-bit predicates. Since the resulting function UGk

λ uses k instances of the same function GFGλ,Pλ,`,
it can equivalently be thought as having the form (up to re-arranging the order of the input bits)
GFGλ,Pkλ ,`(λ)·k(λ), where the predicate P k on input d (k · `)-bit blocks x1, . . . ,xd, it interprets each
of them as k `-bit blocks xi = xi,1 ‖ · · · ‖ xi,k and outputs

P k(x1, . . . ,xd) = P (x1,1, . . . ,xd,1)⊕ · · · ⊕ P (xk,1, . . . ,xk,d) .

To instantiate our transformation, we assume that for some `(λ) = Ω(log1−θ(λ)) and a family
of [n(λ),m(λ), d]-hypergraphs G = {Gλ}λ∈N, the function family UG = GFG,P,` is a (s(λ) =

2log3(λ), δ(λ) = λ−Ω(1))-UG. Now, set k(λ) = logθ(λ). Then, UGk is by the above (d,O(log(λ)))-
block-wise local, and it is also (s′, ε)-UG for s′(λ) = poly(λ), and

ε(λ) = (2δ(λ))k(λ) = 2−Ω(log1+θ(λ)) .

In other words, we have just established the following corollary.

Corollary 2. For any β > 0, d ≥ 2, and θ ∈ (0, 1], if the (d,O(log1−θ(λ)))-BLUG(n, β, 2log3(λ), 1/λΩ(1))

assumption holds, then the assumption (d,O(log(λ)))-BLUG(n, β, poly(λ), 2−Ω(log1+θ(λ))) also holds true.

20

3.6 The Extraction Construction

The XOR construction guarantees that finding a graph and predicate for which GFG,P,` is even
only mildly unpredictable (for slightly super-polynomial predictors) implies already a block-wise
local with block size O(log(λ)) and inverse super-polynomial distinguishing gap. However, note
that sub-exponential distinguishing advantage while being (d,O(log(λ)))-block-wise local is out
of reach, as this require k = O(log(λ)), which in turns can only gives us (even assuming an “ideal”
version of the XOR Lemma) distinguishing advantage δO(log(λ)) = 2−O(log2 λ), since δ = 1/λO(1).

Here, we give a second construction of a block-wise local PRG with polynomial stretch m =
n1+α that uses an instantiation of GFG,P,` which merely ensures its output has a (sufficient)
amount of pseudo-min-entropy. We stress that we have no reason to focus on such an assump-
tion other than the fact that this may appear easier to reach for a given graph and predicate. A
drawback of our approach is that it requires the underlying base graph to have degree d ≥ 3.

The extraction construction The following assumption is a weakening of the notion of a PRG,
to a pseudo-min-entropy generator (PMEG). Recall that a random variable X has min-entropy k if
every value is taken with probability at most 2−k.

Definition 26 (Family of Pseudo-Min-Entropy Generators (PMEGs)). Let n and ∆ ≤ m be polyno-
mials, and µ : N → [0, 1] be a function. A family of (n(λ),m(λ), µ(λ),∆(λ))-PMEGs is an ensemble of
distributions PMEG = {PMEGλ} satisfying the same syntax and efficiency requirements as a PRG,
but moreover:

µ-Indistinguishability: There exists a family of distributions {Xλ}λ∈N such thatXλ is over them(λ)-bit
strings, {

PMEG
$← PMEGλ; s

$← {0, 1}n(λ) : (PMEG,PMEG(s)
}
λ∈N

≈µ
{

PMEG
$← PMEGλ; r

$← Xλ : (PRG, r)
}
λ∈N

and moreover, Xλ has min-entropy m(λ)−∆(λ).

We use the following lemma by Dodis and Smith [DS05], which shows that xoring a sufficiently
high-min-entropy source with the output of a small-bias generator yields uniform randomness.

Lemma 4. Let SB : {0, 1}n → {0, 1}m be an ε-biased generator and let X be a random variable taking
values in {0, 1}m with min-entropy at least m−∆ for some ∆ ≥ 0. Then,

SD((SB(Un)⊕X), Um) ≤ ε√
2
· 2∆/2 ,

where Uk denotes the uniform distribution on k-bit strings, and SD denotes statistical distance.

If we use the instantiation of an ε-biased generator guaranteed to exist by Lemma 3 as GFG,Q,2,
we see that for m = n1+α, with a small loss allowing notational simplifications, we can have
δ = 2−n

1−5α/4. In particular, the statistical distance in Lemma 4 remains sub-exponential as long
as the entropy loss is h = o(n1−5α). In the following, for n and α, we denote by Gn,α,d the set
of [n, n1+α, d]-hypergraphs G for which GFG,Q,2 is a 2−n

1−5α/4-biased generator. (Lemma 3 needs
d = 3, but we can trivially extend the result to d ≥ 4 by ignoring any extra input.) Lemma 3
implies that Gn,α,d includes a 1− o(1) fraction of [n, n1+α, d]-hypergraphs.

21

Now, let G = {Gλ}λ∈N be a family of [n(λ), n(λ)1+α, d]-hypergraphs, with d ≥ 3, and let
`(λ) = O(log(λ)). Moreover, let P = {Pλ}λ∈N be a family of predicates on (d × `)-bit strings.
Also, for the predicate Q defines as above, we consider the family of predicates P ⊕Q = {Rλ}λ∈N,
where the corresponding predicateRλ for security parameter λ ∈ N outputs, on input d (`(λ)+2)-
bit strings x1, . . . ,xd,

Pλ(x1[1 . . . `], . . . ,xd[1 . . . `])⊕Q(x1[`+ 1, `+ 2],x2[`+ 1, `+ 2],x3[`+ 1, `+ 2]) .

Then, note that evaluating GFGλ,Rλ,`(λ)+2 on a random input, is the same as evaluating GFGλ,Pλ,`(λ)

and GFGλ,Q,2 on independent random inputs, and xoring the results. This means in particular that
by Lemma 4, if the graph familyG yields a small-bias generator, and GFG,P,`’s output has enough
computational min-entropy, then we obtain a good PRG. This is summarized by the following
lemma.

Lemma 5. Let d ≥ 3, let n(λ) be a polynomial, `(λ) = O(log(λ)), and let α > 0. If there exists a family
G = {Gλ}λ∈N of [n(λ), n(λ)1+α, d]-hypergraphs, and a family P = {Pλ}λ∈N of predicates on (d · `)-bit
strings such that:

1. Gλ ∈ Gn(λ),α,d, and

2. GFG,P,` is a (n(λ), n(λ)1+α, ν(λ),∆(λ))-PMEG for ∆(λ) = o(n(λ)1−5α).

Then, GFG,P⊕Q,`+2 is a PRG with sub-exponential distinguishing gap.

4 IO from Block-Wise Locality-(L, log λ) PRG and L-Linear Maps

In this section, we prove the following bootstrapping theorem.

Theorem 7 (Bootstrapping via block-wise local PRGs). Let R = {Rλ} be any family of rings, ε be any
positive constant, L any positive integer, n any sufficiently large polynomial, and i` and κ any polynomials.
There is a construction of i`(λ)-bit-input IO for P/poly, from the following primitives:

• A family of (n(λ)× log λ, n(λ)1+ε)-PRGs with block-wise locality (L, log λ).

• A public-key FE for degree-L polynomials inR, with linear efficiency and Full-Sel-security; or with
a secret-key FE with the same properties, assuming additionally the (2−i`(λ)+κ(λ) negl(λ))-hardness
of LWE with subexponential modulo-to-noise ratio.

If the PRG and FE schemes are (2−i`(λ)+κ(λ) negl(λ))-secure, then the resulting IO scheme is (2−κ(λ) negl(λ))-
secure.

Theorem 7 follows the same approach as Lin’s recent bootstrapping theorem [Lin16b], but
modifies it in two ways. First, it uses block-wise local PRGs to replace local PRGs. Second, it
makes explicit the relation between the security level (more precisely, the maximal distinguishing
gap) of the underlying PRG and FE, and the input-length and security level of the resulting IO — if
the underlying primitives are 2−i`+κ negl-secure, then the resulting IO scheme is for i`-bit-input cir-
cuits and 2κ negl-security. Such relations are implicit in previous works, and more importantly, not
as tight as shown here. In particular, to obtain the same IO scheme, previous works require the un-
derlying primitives to be 2−O(i`2)+κ negl-secure [AJ15, BV15] or 2−O(log λ)i`+κ negl-secure [LPST16].

22

Overview of Proof of Theorem 7 To show the theorem, similar to previous works [LV16, Lin16b],
we take two steps:

Step 1 Construct a single-key public-key FE schemes CFE = {CFEN,D,S} for P/poly, with (1− ε)-
sublinear compactness and 2−i`+κ negl-Full-Sel-security, starting from a FE for degree-L polynomi-
als inR, with linear efficiency and Full-Sel-security.

Previously, the work of [LV16] showed how to achieve this transformation from a locality-L
PRGs and FE for computing degree 3L + 2 polynomials. Following that, the two recent works
of [Lin16b, AS16] used a pre-processing technique to relax the requirement on the underlying FE to
supporting only degree-L polynomials. In this work, we extend their pre-processing technique even
further, in order to relax the requirement on the underlying PRGs from having locality L to having
block-wise locality (L, log λ).

In particular, our approach is a fairly straightforward extension of [Lin16b], albeit notationally
tedious, once we make the following observation. For any block-wise locality L function PRG(x)
with input x of dimension `× n, one can compute the PRG as a degree L function in an arbitrary
ring, provided all the monomials defined on the variables of each `-bit column are pre-computed.

More concretely, let PRGi denote the function that computes the ith output bit of PRG. We
know that PRGi depends on L input columns, xi1 , · · ·xiL , each of size ` bits. We can arithmetize
PRGi and write it as a sum of multilinear monomials over the bits in these input columns (recall
that all computations are taking place in a corresponding ring, so all expressions are within this
ring) – in particular, withMi being the set of monomials appearing in the computation of PRGi,

PRGi(x) =
∑

M∈Mi

M(xi1 , · · ·xiL) .

Furthermore, every monomial M(xi1 , · · · ,xiL) can be written as the product of L monomials
M1, . . . ,ML, defined over each of the columns,

PRGi(x) =
∑

M∈Mi

M1(xi1)× · · · ×ML(xiL)

Now suppose that we have pre-computed all possible monomials over every column. In particular,
let Mnml(xi) denote the set of all 2` multilinear monomials over bits in xi. Then PRGi(x) can be
computed in degree L, because there exists a degree-L function PRG′i such that

PRG′i(Mnml(x1), · · · ,Mnml(xn)) = PRGi(x) .

Given this, we can have a way of computing PRG′i using the underlying FE for degree L polyno-
mials. Also, because we have `(λ) = O(log λ), the domain size of PRG has now increased only
by a poly(λ) multiplicative factor when transforming it into PRG′. While this is the main idea,
some care must be taken to ensure that this trick fits together with the rest of the preprocessing
in [Lin16b]. We describe this step in full detail in Section 4.1 below.

In the case that the underlying FE scheme is a secret-key one, rather than a public-key one, we
can follow the same approach obtain first a single-key weakly-compact secret-key FE scheme for
P/poly with the same security level as described above. Then, we invoke the result of [BNPW16]
that shows such secret-key FE schemes can be transformed into public key FE schemes with the
same properties, assuming the existence of single-key fully-compact public-key FE schemes for
Boolean NC1 (i.e., NC1 circuits with a single output bit). As shown by [GKP+13], the latter can be

23

constructed assuming the hardness of LWE where the modulus-to-noise ratio is subexponential.2

We note that our transformation from FE for low-degree computations to weakly-compact FE
for P/poly in Section 4.1 incurs only a polynoimal security loss, and so does the transformation
of [BNPW16]. Therefore, the resulting weakly-compact FE has essentially the same level of secu-
rity as that of underlying primitives.

Step 2. Apply an FE-to-IO transformation to obtain i`-bit-input IO for P/poly, with 2−κ negl-security.
The literature already offers three FE-to-IO transformations [BV15, AJ15, LPST16] that start

from a public key FE scheme CFE = {CFEN,D,S} as described above w.r.t. any positive con-
stant ε. However, none of their analysis is sufficiently tight for our purpose: The transformations
of [BV15, AJ15] need the underlying FE scheme to be 2−O(i`2)+κ negl-secure, and that of [LPST16]
need the underlying FE scheme to be 2−O(log λ)i`+κ negl-secure.

In contrast, here, we want to start with 2−i`+κ negl-secure FE. To do so, we present a new FE-
to-IO transformation inspired by that of [LPST16] and present a tight analysis. We describe this
step below in Section 4.2.

4.1 Step 1: Constructing Weakly-Compact FE

Proposition 1. Let R, ε, L, and n be defined as in Theorem 7, and κ̄ be any polynomial. There is a
construction of 1-key weakly-compact public-key FE for P/poly from the following primitives:

• A family of (n(λ)× log λ, n(λ)1+ε)-PRGs with block-wise locality (L, log λ).

• Public-key FE for degree-L polynomials inR, with linear efficiency and Full-Sel-security.

If the underlying PRG and FE are (2−κ̄(λ) negl(λ))-secure, then, the resulting weakly-compact FE is
(2−κ̄(λ) negl(λ))-Full-Sel-secure.

Moreover, the public-key FE for degree-L polynomials can be replaced with secret-key FE with the same
properties, assuming additionally the (2−κ̄(λ) negl(λ))-hardness of LWE with subexponential modolus-to-
noise ratio.

It was shown in [Lin16b] that 1-key weakly-compact FE for P/poly can be constructed from
locality-L PRG and (unbounded collusion) FE for degree-L polynomials. Their construction of
weakly-compact FE follows from the blue-print of previous works [Lin16a, LV16], which uses
FE for low degree polynomials to compute a randomized encoding of a computation in P/poly,
with pseudo-randomness generated through a local PRG. The locality of RE and PRG ensures that
their composition can be computed in low degree. However, the straightforward composition
of RE and PRG leads to a computation with degree 3L + 2. The key idea in [Lin16b] and the
concurrent work of [AS16] is that part of the RE computation can already be done at encryption
time, that is, by asking the encryptor to pre-process the inputs (of the computation in P/poly)
and seeds of PRG, and encrypt the pre-processed values, the composition of RE and PRG can be
computed in just degree L from the pre-processed values, at decryption time — This is called the
preprocessing technique. We take this technique one step further: By also performing part of the
PRG comptuation at encryption time, we can replace local PRG with block-wise local PRG (with
appropriate parameters) at “no cost”. This might help us to circumvent the lowerbound on the
locality of PRGs (i.e., locality-4 PRG does not exist).

2More precisely, the work of [GKP+13] constructed a single-key fully-compact public-key FE scheme for Boolean
depth-d circuits, assuming the hardness of LWE where the modulus to noise ratio is λO(d). Since we only need such FE
schemes for Boolean NC1 circuits, it, in fact, suffices to assume the hardness of LWE with quasipolynomial modulus-
to-noise ratio, which is clearly implied by the hardness of LWE with subexponential modulus-to-noise ratio.

24

Below, we first briefly review the blueprint of [LV16], then describe the pre-processing idea
of [Lin16b] and how to use it to accommodate PRG with block-wise locality.

The General Blueprint of [LV16] To construct 1-key weakly-compact FE for P/poly, Lin and
Vaikuntanathan [LV16] (LV) first observed that, using the Trojan Method [CIJ+13], it suffices to
construct 1-key weakly-compact FE for NC1 functions with some fixed depth D(λ) = O(log λ);
denote this class of functions as NC1

D.
Next, to bootstrap a low-degree FE scheme to FE for NC1

D, the idea is using randomized en-
coding to “compress” any function h(x) ∈ NC1

D into a function g(x, s) = REnc(f,x ; PRG(s))
with small degree in R. The reason that local PRG is used is that the locality of a Boolean func-
tion bounds the degree of computing this function in any ring. Then, plugging-in randomized
encodings with small locality like that of [AIK04] the overall degree of g is small.

Below, we formally describe the LV construction of FE for NC1
D. We focus on the public key

case. (The secret key case is handled in the same way, with an additional step of applying the
transformation of [BNPW16] in the end; see the discussion in paragraph “Step 1” above.) Their
FE scheme CFEN,D,S for NC1 circuits with input-length N = N(λ), depth D = D(λ), and size
S = S(λ), uses the following tools: LetR be a family of rings.

• A (n, n1+α)-pseudorandom generator PRG with locality L, for a sufficiently large polyno-
mial input length n = n(λ) and any positive constant α.

• Full-Sel-secure (collusion resistant) FE schemes for degree-(3L+2) polynomials inR, {FEN ′ =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)}, with linear efficiency.

• The AIK randomized encoding scheme in NC0 [AIK04]; denote the encoding algorithm as
AIK(f,x ; r).

The scheme CFEN,D,S = (CFE.Setup,CFE.KeyGen,CFE.Enc,CFE.Dec) is described in Figure 2.
We refer the reader to [LV16] for the correctness and security of the scheme. The compactness

of the scheme CFE follows from the following two facts:

1. The length of the input (x, s, s′, 0) encrypted using FE isN+2Γ+1 = N+S(λ)1/(1+α) poly(λ).

2. FE has linear efficiency.

Putting them together, we have,

TimeCFE.Enc(MPK,x) = TimeFE.Enc(MPK, (x, s, s′, 0))

= poly(λ)|(x, s, s′, 0)| = S(λ)1/(1+α) poly(λ,N)

which is sublinear in the function size as desired. Furthermore, to see why degree-(3L + 2) FE
suffices for the construction, note that the construction uses the underlying FE to generate keys
computing the function g in Figure 2, and hence it suffices to argue that g can be computed in
degree 3L + 2. By definition of g, when b = 1, the output can be computed in degree L as the
PRG can be computed in degree L in R (XOR with CT does not incur additional degree as CT
are constants hardwired in the function g); when b = 0, the output can be computed in degree
3L+ 1, since the AIK randomized encoding has degree 3 in the random bits (i.e. PRG output) and
1 in the input x. Therefore, g has exactly degree 3L + 2, as selection by b can be done with one
multiplication.

25

Single-key Compact FE Scheme CFE by [LV16]

SETUP: CFE.Setup(1λ) samples (MPK,MSK)
$← FE.Setup(1λ).

ENCRYPTION: CFE.Enc(MPK,x) samples s, s′ $← {0, 1}Γ for Γ = S1/1+α poly(λ), and generates

CT
$← FE.Enc(MPK, (x, s, s′, 0))

KEY GENERATION: CFE.KeyGen(MSK, h) does the following:

• Sample CT
$← {0, 1}`, where ` is set below.

• Define function g as follows: On input x of length N , two PRG seeds s, s′ each of length Γ,
and a bit b,

g(x, s, s′, b) does the following:

– For every i ∈ [S], let hi(x) denote the function that computes the ith output bit of
h(x). Since h ∈ NC1

D, hi has depth D(λ) = O(log λ) and size 2D(λ) = poly(λ).

– If b = 0, compute r = PRG(s), whose output has length Γ1+α = S poly(λ); divide the
output into S equally long portions and denote by r[i] the ith portion.
For every i ∈ [S], compute the AIK encoding Π[i] of computation (hi,x) as follows:

∀ i ∈ [S], Π[i] = AIK(hi, x ; r[i]) .

Output Π = {Π[i]}i; set ` = |Π|.

– If b = 1, output Π = CT⊕ PRG(s′).

• For every l ∈ [`], generate a secret key SKl
$← FE.KeyGen(MSK, gl) for gl that computes the

lth output bit of g.

Output SK = {SKl}l∈[`].

DECRYPTION: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[`], parses Π = {Π[i]}, and
decodes every Π[i] using the AIK decoding algorithm to obtain the output h(x).

Figure 2: Single-key Compact FE CFE by [LV16]

26

The Idea of Preprocessing in [Lin16b] Towards reducing the degree of the underlying FE and
accommodating PRGs with block-wise locality-(L, log λ), the idea is letting the encryptor pre-
process the input (x, s, s′, b) to produce certain intermediate values, from which the output of
function g can be computed in exactly degree L. To see this, the output of g is viewed as cor-
responding to S AIK randomized encodings for functions {hi}i∈[S]. If the lth output bit belongs
to the ith randomized encoding for hi with random tape r[i], the function gl computing it can be
written as a sum of monomials as follows:

gl(x, s, s
′, b) = (1− b)gl0(x, s) + bgl1(s′)

= (1− b)
∑

i0,i1,i2,i3

ci0,i1,i2,i3xi0r[i]i1r[i]i2r[i]i3 + b
∑
j

cjr
′
j (3)

where r[i] is the ith portion in r = PRG(s), and r′ = PRG(s′). This is because in the case of b = 0,
the output is a bit in the AIK encoding of hi and hence has degree 1 in the input x and degree 3 in
r[i], while in the case of b = 1, the output has degree 1 in r′.

When PRG has localityL, the straightforward way of computing a degree-3 monomial r[i]i1r[i]i2r[i]i3
from the seed s requires degree 3L. The works of [Lin16b, AS16] showed how to reduce the degree
to just L. First, they use a different way to compute each r[i]. View the seed s as a Q × Γ′ matrix
with Q = Q(λ) = poly(λ) rows and Γ′ = S1/1+α columns; apply PRG on each row of s to expand
the seed matrix into a Q× S matrix r of pseudo-random bits. That is, denote the qth row of s and
r as sq and rq; rq = PRG(sq). Finally, set the random tape for computing the ith AIK encoding to
be the ith column r[i] of r.

In [Lin16b], they used PRGs with locality L. Let PRG[i] denote the function computing the
ith output bit of PRG, and let Nbr(i) = {γ1, · · · , γL} be the indexes of the L seed bits that the ith

output bit depends on. Therefore,

r[i]i1r[i]i2r[i]i3 = PRG[i](si1) PRG[i](si2) PRG[i](si3)

=
∑

Monomials
X,Y,Z in PRG[i]

 X(si1,γ1 , · · · , si1,γL)
× Y (si2,γ1 , · · · , si2,γL)
× Z(si3,γ1 , · · · , si3,γL)

 . (4)

Suppose that one has pre-computed all degree ≤ 3 monomials over bits in each column s[γ] of s.

Define Mnml≤3(A) := {aiajak | ai, aj , ak ∈ A ∪ {1}}

Given Mnml≤3(s[γ]) for every γ ∈ Nbr(i), one can compute r[i]i1r[i]i2r[i]i3 in Equation (4) using just
degree L. Similarly, given Mnml≤3(s[γ]) for all γ ∈ [Γ′], one can compute any degree 3 monomials
over bits in r[i] for any i, sufficient for the computation of g.

Furthermore, the size of each set Mnml≤3(s[γ]) is bounded by (Q+ 1)3 = poly(λ), and thus the
size of their union for all γ is bounded by Γ′ poly(λ) = S1/1+α poly(λ) — only a polynomial factor
(in λ) larger than the original seed s itself. Therefore the encryptor can afford to precompute all
these monomials and encrypt them, without compromising the weak-compactness of the resulting
FE for NC1

D scheme.

This Work: Handling Block-Wise Local PRG. Our new observation is that the above tech-
nique naturally extends to accommodate block-wise local PRGs. Consider a family of (n(λ) ×
log λ, n(λ)1+α)-PRGs with block-wise locality-(L, log λ). For ease of exposition, we think of the

27

seed of such PRGs as a vector t of length n, where every element ti is, instead of a single bit, a
block of log λ bits; each output bit PRG[i](t) thus depends on at most L blocks.

Correspondingly, think of the seed matrix s described above as consisting of Q × Γ′ blocks of
log λ bits. When r[i] is computed using block-wise local PRGs, the degree-3 monomial r[i]i1r[i]i2r[i]i3
in Equation (4) now depends on a set of blocks {sit,γs}t∈[3],s∈[L]. Though the actual locality of the
PRG is L log λ, due to its special structure, we can still pre-process the seed s to enable computing
any degree-3 monomial over r[i] for any i using degree L.

• First, precompute all multilinear monomials over bits in each block sq,γ in s.

Define Mnml(A) :=
{
ai1ai2 · · · aiq | q ≤ |A| and ∀j, k aij 6= aik ∈ A

}
.

More precisely, precompute Mnml(sq,γ) for all q ∈ [Q] and γ ∈ [Γ′]. Note that each set
Mnml(sq,γ) has exactly size λ.

• Second, for every column γ ∈ [Γ′], take the union of monomials over blocks in column γ,
that is, ∪qMnml(sq,γ). Then, precompute all degree-≤ 3 monomials over this union, that is,
Mnml≤3(∪qMnml(sq,γ)), for each γ. Observe that from

{
Mnml≤3(∪qMnml(sq,γ))

}
γ∈[Γ′]

, one
can again compute any degree-3 monomial in r[i] for any i in just degree L.

Furthermore, since |Mnml(sq,γ)| = λ for any q, γ, the number of monomials in Mnml≤3(∪qMnml(sq,γ))
is bounded by (Qλ+ 1)3 = poly(λ). Therefore, the total size of pre-computed monomials is∣∣∣ {Mnml≤3(∪qMnml(sq,γ))

}
γ∈[Γ′]

∣∣∣ ≤ Γ′ poly(λ) = S1/1+α poly(λ) , (5)

which is still sublinear in the circuit size S and does not compromise the weak-compactness of the
resulting FE for NC1

D scheme.

Putting Things Together So far, we showed how to “compress” the computation of degree 3
monomials over r[i], for any i, into a degree-L computation. To compute function g in Equation (3)
in degree L, we need to additionally pre-compute multiplications with x and b. As described
in [Lin16b], this can be done easily by pre-computing the following:

V1 =
{
Mnml≤3 (∪qMnml(sq,γ))

}
γ∈[Γ′]

⊗ (x||b||1)

(where the sets of monomials are first interpreted as a vector before taking tensor product.) Given
the tensor product, one can compute any monomial with degree ≤ 3 in r[i] for any i, degree ≤ 1 in
x, and degree ≤ 1 in b, in just degree L, which is sufficient for computing the first additive term in
gl in Equation (3). Similarly, to compute the second additive term in gl, it suffices to precompute
all multilinear monomials over every block in s′ (of length Γ), and compute their tensor product
with b||1, that is,

V2 =
{
Mnml(s′γ)

}
γ∈[Γ]

⊗ (b||1)

In summary, for every l ∈ [`], there exists a degree-L polynomial Pl that on input (V1,V2) outputs
gl(x, s, s

′, b).

Define Pl := the degree-L polynomial s.t. Pl(V1,V2) = gl(x, s, s
′, b) (6)

28

Moreover, we show that both V1 and V2 have length sublinear in the circuit size. First, com-
bining Equation (5) with the fact that |(x||b||1)| = N + 2, we have that

|V1| ≤ S1/1+α poly(λ)× (N + 2) = S1/1+α poly(λ,N) . (7)

The size of V2 is

|V2| = λ× Γ× 2 ≤ S1/1+α poly(λ) . (8)

Finally, to construct a 1-key weakly-compact FE scheme for NC1
D from FE for just degree L

polynomials. We modify the LV construction as follows: 1) Instead of encrypting (x, s, s′, b), the
encryptor pre-computes and encrypts V1||V2 as described above, and 2) instead of generating se-
cret keys for functions {gl}l∈[`] which have degree 3L + 2, generate secret keys for {Pl}l∈[`] which
have only degree L. This way, at decryption time, the decryptor computes the correct output
{Pl(V1||V2) = gl(x, s, s

′, b)}. The resulting new compact FE scheme CFE is described in Figure 3
(with key difference from the LV scheme highlighted). The compactness of the new scheme fol-
lows directly from the fact that the encrypted input V1,V2 have length sublinear in S(λ), and that
the degree-L FE scheme has linear efficiency. Moreover, its correctness and security follows from
the same proof as that in [LV16]; since their security proof incur only a polynomial security loss,
we conclude Theorem 7.

4.2 Step 2: Tight Construction of IO from Weakly-Compact FE

Proposition 2. Let i` and κ be defined as in Theorem 7. Assume the existence of 1-key weakly-compact
public-key FE for P/poly, with 2−i`(λ)+κ(λ) negl(λ)-security. Then, there exists i`(λ)-bit-input IO for
P/poly, with 2−κ(λ) negl(λ)-security.

Using weakly-compact public key FE for P/poly, we construct IO for P/poly using induction
over the input-length of the circuits that can be obfuscated. That is, in the i`th induction step, we
define the behavior of the scheme when obfuscating circuits with input-length i`, by recusively in-
voking the scheme itself for obfuscating circuits with input length i`− 1 and utilizing the weakly
compact FE scheme. In fact, for the induction to work out, we need to use a different “interface”
for the induction hypothesis, namely, instead of inductively defining an indistinguishability ob-
fuscator in the plain model, we inductively define an indistinguishability obfuscator in the CRS
model. Below, we start with defining this notion.

4.2.1 IO in the CRS model

Definition 27. An indistinguishability obfuscator in the CRS model for a class of circuits {Cλ}λ∈N is a
tuple of uniform PPT machines (SetupIO, iO,EvalIO) satisfying the following conditions.

Syntax: The algorithms runs as follows:

• Setup: SetupIO on input a security parameter 1λ, outputs a reference string σ, and a public
parameter pp.

• Obfuscation with public parameter: iO on input a public parameter pp and a circuit C ∈ Cλ,
outputs an obfuscated circuit Ĉ.

• Evaluation with the reference string: EvalIO on input an obfuscated circuit Ĉ, an input x, and
the reference string σ, outputs a string y.

29

Single-key Compact FE Scheme CFE from block-wise locality-L PRG and degree-L FE

SETUP: CFE.Setup(1λ) samples (MPK,MSK)
$← FE.Setup(1λ), and PRG

$← PRGλ.

ENCRYPTION: CFE.Enc(MPK,x) samples

• a PRG seed s viewed as a Q × Γ′ matrix for Q = poly(λ) and Γ′ = S1/1+α, where each
element sq,γ in s is a block of log λ bits, and

• another PRG seed s′ viewed as a vector of length Γ = S1/1+α poly(λ), where again each
element s′γ in s′ is a block of log λ bits.

Pre-Compute the following for b = 0:

V1 =
{
Mnml≤3 (∪qMnml(sq,γ))

}
γ∈[Γ′]

⊗ (x||b||1) (9)

V2 =
{
Mnml(s′γ)

}
γ∈[Γ]

⊗ (b||1) (10)

Finally generate:
CT

$← FE.Enc(MPK, (V1,V2))

KEY GENERATION: CFE.KeyGen(MSK, h) does the following:

• Sample CT
$← {0, 1}`, where ` is set below.

• Define function g as follows: On input x of length N , PRG seeds s and s′ of dimensions
described above, and a bit b.

g(x, s, s′, b) does the following:

– For every i ∈ [S], let hi(x) denote the function that computes the ith output bit of
h(x). Since h ∈ NC1

D, hi has depth D(λ) = O(log λ) and size 2D(λ) = poly(λ).

– If b = 0, do:
Expand each row of s using PRG to obtain a Q× S matrix r of pseudo-random bits.
That is, let si denote the ith row of s; the ith row ri of r is PRG(si). Denote by r[i] the
ith column of matrix r, which has length Q = poly(λ).
For every i ∈ [S], compute the AIK encoding Π[i] of computation (hi,x) as follows:

∀ i ∈ [S], Π[i] = AIK(hi, x ; r[i]) .

Output Π = {Π[i]}i; set ` = |Π|.

– If b = 1, output Π = CT⊕ PRG(s′).

• For every l ∈ [`], let Pl be the degree-L polynomial that on input (V1,V2) in Equations (9)
and (10) computes the lth output bit of g(x, s, s′, b).

For every l, generate a secret key SKl
$← FE.KeyGen(MSK, Pl) for Pl.

Output SK = {SKl}l∈[`].

DECRYPTION: CFE.Dec(SK,CT) computes Π = {FE.Dec(SKl,CT)}l∈[`], parses Π = {Π[i]}, and
decodes every Π[i] using the AIK decoding algorithm to obtain the output h(x).

Figure 3: Single-key Compact FE CFE from block-wise locality-L PRG and degree-L FE

30

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every input x, we have that

Pr[(σ, pp)
$← SetupIO(1λ), Ĉ ← iO(pp, C) : EvalIO(σ, Ĉ, x) = C(x)] = 1

µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ∈N satisfying thatCb,λ ∈ Cλ,
C0,λ and C1,λ have the same size, input-length, and truth table, the following ensembles of distribu-
tions are µ-indistinguishable:{

(σ, pp)
$← SetupIO(1λ) : σ, pp, C0,λ, C1,λ, iO(pp, C0,λ)

}
λ∈N{

(σ, pp)
$← SetupIO(1λ) : σ, pp, C0,λ, C1,λ, iO(pp, C1,λ)

}
λ∈N

Toward proving Proposition 2 for constructing i`-bit-input IO for P/poly in the plain model,
we first construct i`-bit-input IO for P/poly in the CRS model as defined below. We say that a
polynomial p is upper bounded by another q, if it holds that for all λ ∈ N, p(λ) ≤ q(λ).

Definition 28. Let i` be any polynomial upper bounded by λ. An i`-bit-input indistinguishability obfus-
cator in the CRS model for P/poly is a tuple of uniform PPT machines (SetupIO, iO,EvalIO) satisfying
the following condition: SetupIO takes two inputs (1λ, 1l), and for every polynomial l upper bounded by i`,
(SetupIOl(1λ) = SetupIO(1λ, 1l(λ)), iO,EvalIO) is an IO scheme in the CRS model for the class of circuits
Cl =

{
Clλ
}
λ∈N containing all circuits with size at most λ and input-length at most l(λ).

When i`(λ) = λ, we say that the scheme is a bounded-input indistinguishability obfuscator for P/poly
in the CRS model.

It follows from a very simple argument that i`-bit-input IO for P/poly in the CRS model actually
implies that in the plain model.

Claim 1. Let i` be any polynomial upper bounded by λ. An i`-bit-input indistinguishability obfuscator for
P/poly in the CRS model (SetupIO, iO,EvalIO) with µ-security, implies an i`-bit-input indistinguishabil-
ity obfuscator for P/poly in the plain model iO′ with µ-security.

Proof. The obfuscator iO′ on input 1λ and a circuit C with size |C| < λ and input-length l works
as follows: It samples a fresh reference string and a public parameter (σ, pp)

$← SetupIO(1λ, 1l)

using the input-length of C as the input-length bound, obfuscate C to obtain Ĉ $← iO(pp, C), and
outputs C̃ = (σ, pp, Ĉ) as the new obfuscated circuit. The correctness and security of the new
obfuscator follows directly from that of the obfuscator in the CRS model.

4.2.2 IO in the CRS Model from Weakly-Compact FE

We now construct an i`-bit-input indistinguishability obfuscator for P/poly in the CRS model
(SetupIO, iO,EvalIO), from a public-key weakly-compact FE scheme. To do so, we define the be-
havior of SetupIO, iO, EvalIO and analyze their correctness, efficiency and security, by induction
over the input-length i` the algorithms are executed with. More precisely, the construction makes
use of the following building blocks:

• Public key FE schemes CFE = {CFEN,D,S} for P/poly with (1−ε)-sublinear compact for ar-
bitrary constant ε > 0, where the scheme CFEN,D,S = (CFE.Setup,CFE.KeyGen,CFE.Enc,CFE.Dec)
is a scheme that handles circuits with input-length N = N(λ), depth D = D(λ), and size
S = S(λ). Such FE schemes for any polynomials N,D, S are constructed in Section 4.1.

31

• Two PRGs PRG1, PRG2 mapping λ-bit inputs to sufficiently long outputs, of m1(λ)-bit and
m2(λ)-bit respectively. The mapping takes time poly(λ)m1(λ) and poly(λ)m2(λ) respec-
tively. (Such PRGs can be implemented for example using a PRF.)

For any λ ∈ N, we define the behavior of SetupIO, iO, EvalIO when executed with security
parameter 1λ, by induction on the input-length i` they are executed with (more precisely, when
SetupIO is invoked with input (1λ, 1i`), and iO and EvalIO are executed with the produced public
parameter and reference string). The scheme is described in Figure 4, which recursively calls
itself. Observe that scheme is well-defined, since when it is executed with an input length i` + 1,
it recursively invokes itself with input length i`; in the base case when i` = 1, the IO scheme is
trivially defined, by letting the obfuscator outputs the only two possible outputs C(0), C(1).

Next, we analyze the correctness, efficiency, and security of the IO scheme in the CRS model
defined in Figure 4 by induction, in Lemma 6, 7, and 8.

Lemma 6 (Induction on Correctness). For any λ ∈ N and any i` ∈ N, if the IO scheme (SetupIO, iO,EvalIO)
in Figure 4 satisfy correctness when executed with security parameter 1λ and input-length 1i`, for any cir-
cuit C with size at most λ and input-length i`, then the scheme also satisfies correctness when executed
with 1λ and 1i`+1, for any circuit C with size at most λ and input-length i`+ 1.

Proof. When executed with 1λ, 1i`+1, the setup algorithm SetupIO recursively calls itself with input
(1λ, 1i`) to obtain (σi`, ppi`). Moreover, it also calls the setup algorithm of the FE scheme to obtain
(MPK,MSK), and generates a secret key SK for a function f , which on input (C, s0, s1, 0

λ, 0) obfus-
cates the circuitC with the first input-bit fixed to 0 and 1, namelyC(0) = C(0, ?) andC(1) = C(1, ?),
using ppi` (and pseudorandomness generated by a PRG). Finally, the reference string and public
parameter are set to σi`+1 = (σi`, SK) and ppi`+1 = (ppi`,MPK).

The obfuscation of a circuit C with size at most λ and input-length i`+1 generated with public
parameter ppi`+1 is simply a FE ciphertext CT of (C, s0, s1, 0

λ, 0) with fresh random PRG seeds.
Evaluation decrypts the ciphertext CT using SK in σi`+1. By the correctness of the FE scheme,

decryption outputs f(C, s0, s1, 0
λ, 0) = (Ĉ(0), Ĉ(1)), where Ĉ(d) is an obfuscation of C(d) generated

using ppi`. Thus, by the correctness of the IO scheme when executed with input length i`, for any
x ∈ {0, 1}i`+1, evaluation outputs the right output Cx1(x≥2) = C(x), which concludes the proof of
the lemma.

Lemma 7 (Induction on Efficiency). There exists sufficiently large universal polynomials P , Q, and
T , such that, the following holds for the IO scheme (SetupIO, iO,EvalIO) in Figure 4: For every λ and
input-length i`,

• Suppose that the scheme when executed with 1λ, 1i` for arbitrary circuit C with size at most λ and
input-length i`, and input x ∈ {0, 1}i`, satisfy the following efficiency

(σi`, ppi`)
$← SetupIO(1λ, 1i`) TimeSetupIO(1λ, 1i`) ≤ i`×Q(λ) ,

Ĉ
$← iO(ppi`, C) TimeiO(ppi`, C) ≤ P (λ) ,

y = EvalIO(σi`, Ĉ, x) TimeEvalIO(σi`, Ĉ, x) ≤ i`× T (λ) .

• Then, they satisfy the following efficiency when executed with 1λ, 1i`+1 for arbitrary circuit C with
size at most λ and input-length i`+ 1, and input x ∈ {0, 1}i`+1,

(σi`+1, ppi`+1)
$← SetupIO(1λ, 1i`+1) TimeSetupIO(1λ, 1i`+1) ≤ (i`+ 1)×Q(λ) ,

Ĉ
$← iO(ppi`+1, C) TimeiO(ppi`+1, C) ≤ P (λ) ,

y = EvalIO(σi`+1, Ĉ, x) TimeEvalIO(σi`+1, Ĉ, x) ≤ (i`+ 1)× T (λ) .

32

An IO scheme (SetupIO, iO,EvalIO) in the CRS model

Base Case — Input-length i` = 1

• SetupIO(1λ, 1) outputs (σ1, pp1) = (base, base).

• iO(pp1 = base, C) outputs (C(0), C(1)).

• iO(σ1 = base, (y0, y1), x) outputs ⊥ if x is not a single bit, and otherwise outputs yx.

Induction — From Input-length i` to i`+ 1

• SetupIO(1λ, 1i`+1) does:

– Recursively setup the scheme for input-length i` to obtain
(σi`, ppi`)

$← SetupIO(1λ, 1i`).

– Sample a random string CT
$← {0, 1}` of length ` set below.

– Sample master keys of the weakly-compact FE scheme (MPK,MSK)
$←

CFE.Setup(1λ).

– Generate a FE secret key SKf
$← CFE.KeyGen(MSK, f) for function f defined as fol-

lows:

f(C, s0, s1, s
′, b) does the following, on input a circuit C of size at most S and input

length at most l + 1, PRG seeds s0, s1, s
′ of length λ, and a bit b.

∗ If b = 0, let C(d) = C(d, ?) denote the circuit C with the first input bit fixed to d
Recursively call the IO scheme to obfuscate C(0) and C(1), which have `-bit in-
put, using pseudo-randomness generated through a PRG,{

Ĉ(d) = iO(ppi`, C(d) ; PRG1(sd))
}
d∈{0,1}

.

Output z = (Ĉ(0), Ĉ(1)); set ` = |z|.
∗ If b = 1, output z = CT⊕ PRG2(s′).

– Output σi`+1 = (σi`,SKf) and ppi`+1 = (ppi`,MPK).

• iO(ppi`+1 = (ppi`,MPK), C) does:

Sample two PRG seeds s0, s1
$← {0, 1}λ, and encrypt (C, s0, s1, 0

λ, 0) using FE,

CT
$← CFE.Enc(MPK, (C, s0, s1, 0

λ, 0))

Output the ciphertext Ĉ = CT as the obfuscated circuit.

• EvalIO(σi`+1 = (σi`,SK), Ĉ = CT, x) does:

– Decrypt the FE ciphertext and secret key z = CFE.Dec(SK,CT); parse z as (Ĉ(0), Ĉ(1)).

– Recursively call the IO scheme to evaluate y = EvalIO(σi`, Ĉx1 , x≥2), where x≥2 are
the last l bits of x.

Figure 4: An IO scheme (SetupIO, iO,EvalIO) in the CRS model from weakly-compact public-key FE.

33

Proof. To analyze the efficiency of the IO scheme in an execution with 1λ, 1i`+1, circuitC, and input
x as specified in the lemma statement, we start with analyzing the size S and input-length N of
the circuit that computes the function f for which the FE secret key is generated. The function f
takes input of form (C̄, s0, s1, s

′, b) for any circuit with size |C̄| ≤ λ and input-length i` + 1, and
PRG seeds of length λ. Thus, its input-length is

N = N(λ) = 4λ+ 1 .

If the input bit b = 0, f obfuscates C̄(0) and C̄(1) using the IO scheme with a public parameter ppi`

generated for input-length i` and pesudorandomness produced by PRG1(s0),PRG1(s1). By our
hypothesis on the efficiency of the IO scheme for input-length i`, and the efficiency of PRG1, this
step takes at most time poly(λ)×P (λ). If b = 1, f “decrypts” a hardwired one-time-pad ciphertext
CT using pseudorandom pad generated by PRG2(s′). The length of the ciphertext CT is the same
as the length of the obfuscation of C̄(0) and C̄(1), and hence is bounded by 2P (λ). Thus, by the
efficiency of PRG2, this step takes at most time poly(λ) × P (λ). In summary, f can be computed
by a circuit with size

S ≤ poly(λ)× P (λ) .

We now analyze the runtime of SetupIO, iO, and EvalIO, when executed with 1λ, 1i`+1, C with
input-length i`+ 1, and x ∈ {0, 1}i`+1.

TimeSetupIO(1λ, 1i`+1) = TimeSetupIO(1λ, 1i`) + TimeCFE.Setup(1λ) + TimeCFE.KeyGen(MSK, f) + poly(λ)

= i`×Q(λ) + poly(λ) + poly(λ, S) + poly(λ)

≤ i`×Q(λ) + poly(λ,poly(λ)P (λ)) + poly(λ)

≤ (i`+ 1)×Q(λ)

where the second equality follows form the hypothesis on the runtime of SetupIO with input-
length i` and the efficiency of the FE scheme, the first inequality follows from plugging in the
bound on S, and the last inequality follows if Q(λ) is sufficiently large (comparing to P).

TimeiO(ppi`+1, C) = TimeCFE.Enc(MPK, (C, s0, s1, 0
λ, 0)) + poly(λ)

= poly(λ,N)S1−ε + poly(λ)

≤ poly(λ)(poly(λ)P (λ))1−ε + poly(λ)

≤ P (λ)

where the second equality follows from the (1 − ε)-sublinear compactness of the FE scheme, the
first inequality follows from plugging the bound on S, and the last inequality holds when P is
sufficiently large.

TimeEvalIO(σi`+1, Ĉ, x) = TimeCFE.Dec(SK,CT) + TimeEvalIO(σi`, Ĉx1 , x≥2) + poly(λ)

= poly(λ, S) + i`× T (λ) + poly(λ)

≤ poly(λ,poly(λ)P (λ)) + i`× T (λ) + poly(λ)

≤ (i`+ 1)× T (λ)

where the second equality follows from the efficiency of FE decryption, and the hypothesis on the
runtime of EvalIO for evaluating obfuscated circuits with i`-bit inputs, the first inequality follows

34

from plugging in the bound on S, and last inequality holds when T is sufficiently large (comparing
to P).

We conclude the proof.

Lemma 8 (Induction on Security). Let µ, µFE, µPRG be any functions from N to [0, 1]. Suppose that the
following holds:

• The FE scheme CFE is µFE-Full-Sel-secure.

• The PRGs PRG1 and PRG2 are both µPRG-indistinguishable.

• For every efficient distinguisher D, every λ ∈ N, i` < λ ∈ N, C0, C1 with size |C0| = |C1| ≤ λ,
input-length i`, and identical truth table, the following holds.∣∣∣ Pr[(σi`, ppi`)

$← SetupIO(1λ, 1i`) : D(σi`, ppi`, C0, C1, iO(ppi`, C0)) = 1]

= Pr[(σi`, ppi`)
$← SetupIO(1λ, 1i`) : D(σi`, ppi`, C0, C1, iO(ppi`, C1)) = 1]

∣∣∣ ≤ µ(λ)

Then, for every efficient distinguisher D, λ ∈ N, i` + 1 < λ ∈ N, C0, C1 with size |C0| = |C1| ≤ λ,
input-length i`+ 1, and identical truth table, the following holds.∣∣∣ Pr[(σi`+1, ppi`+1)

$← SetupIO(1λ, 1i`+1) : D(σi`+1, ppi`+1, C0, C1, iO(ppi`+1, C0)) = 1]

− Pr[(σi`+1, ppi`+1)
$← SetupIO(1λ, 1i`+1) : D(σi`+1, ppi`+1, C0, C1, iO(ppi`+1, C1)) = 1]

∣∣∣
≤ 2µ(λ) + 2µFE(λ) + 6µPRG(λ)

Proof. Fix any efficient distinguisherD, λ, i`+1 < λ, C0, C1 with size |C0| = |C1| ≤ λ, input-length
i`+ 1, and identical truth table, we prove the lemma through a sequence of hybrids.

Hybrid Distribution Db0: Sample (σi`+1ppi`+1, Ĉ) using the IO scheme honestly, obfuscating the
circuit Cb, that is,

Db0 : (σi`+1, ppi`+1)
$← SetupIO(1λ, 1i`+1); Ĉ

$← iO(ppi`+1, Cb) .

Parse σi`+1 = (σi`, SK), ppi`+1 = (ppi`,MPK), and Ĉ = CT.

Hybrid Distribution Db1: Sample (σi`+1ppi`+1, Ĉ) identically to Db0, except that the secret key SK
in σi`+1 is generated differently.

In Db0, the SK is associated with a function f that is hardwired with a random string CT,
and the obfuscated circuit Ĉ is a ciphertext CT encrypting input (Cb, s0, s1, 0

λ, 0). During
evaluation, CT is decrypted by SK producing f(Cb, s0, s1, 0

λ, 0), which by definition of f is

f(Cb, s0, s1, 0
λ, 0) =

(
Ĉ(d) = iO(ppi`, C

(d)
b ; PRG1(sd))

)
d∈{0,1}

. (11)

In Db1, CT is no longer a random string, and instead is set to a one-time-pad ciphertext
encrypting (Ĉ(0), Ĉ(1)) as described above using pad PRG2(s′), that is,

CT = (Ĉ(0), Ĉ(1))⊕ PRG2(s′) .

35

The only difference between Db0 and Db1 is whether CT is a random string or a one-time-pad
ciphertext with pad PRG2(s′). Since the seed s′ is not used anywhere else in Db0 and Db1, by
the µPRG-indistinguishability of PRG2, we have that the distinguisher D distinguishes these
two distributions with advantage at most µPRG(λ), that is,∣∣∣ Pr[(σi`+1, ppi`+1, Ĉ)

$← Db0 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

− Pr[(σi`+1, ppi`+1, Ĉ)
$← Db1 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

∣∣∣ ≤ µPRG(λ) .

Hybrid Db2 : Sample (σi`+1ppi`+1, Ĉ) identically to Db1, except that the obfuscated circuit Ĉ is gen-
erated differently.

In Db1, Ĉ is a FE ciphertext CT encrypting (Cb, s0, s1, 0
λ, 0),

Ĉ = CT
$← CFE.Enc(MPK, (Cb, s0, s1, 0

λ, 0)) .

In Db2, Ĉ becomes a ciphertext CT of (Cb, 0
λ, 0λ, s′, 1),

Ĉ = CT
$← CFE.Enc(MPK, (Cb, 0

λ, 0λ, s′, 1)) .

Note that in bothDb1 andDb2, CT is set to (Ĉ(0), Ĉ(1))⊕PRG2(s′). With such CT, by definition
of f ,

f(Cb, s0, s1, 0
λ, 0) = f(Cb, 0

λ, 0λ, s′, 1) .

Therefore, by the µFE-Full-Sel-security of CFE, we have that the distinguisher D distin-
guishes distributions Db1 and Db2 with advantage at most µFE(λ), that is,∣∣∣ Pr[(σi`+1, ppi`+1, Ĉ)

$← Db1 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

− Pr[(σi`+1, ppi`+1, Ĉ)
$← Db2 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

∣∣∣ ≤ µFE(λ) .

Hybrid Db3 : Sample (σi`+1ppi`+1, Ĉ) identically to Db2, except that again the string CT hardwired
in the function f associated with the FE secret key SK in σi`+1 is generated differently.

In Db2, CT is the one-time-pad encryption of the obfuscation (Ĉ(0), Ĉ(1)) of (C
(0)
b , C

(1)
b) using

pseudorandomness generated by PRG1(s0) and PRG1(s1), as described in Equation (11).

In Db3, CT is the one-time-pad encryption of still obfuscation (C̃(0), C̃(1)) of (C
(0)
b , C

(1)
b), but

generated with truly random coins r0, r1,(
C̃(d) = iO(ppi`, C

(d)
b ; rd)

)
d∈{0,1}

, CT = (C̃(0), C̃(1))⊕ PRG2(s′) .

The only difference between Db2 and Db3 is whether the encrypted obfuscation are generated
using pseudorandomness PRG1(s0),PRG1(s1) or using true randomness r0, r1. Since in
both distributions s0, s1 are not used anywhere else, it follows from the µPRG-indistinguishability
of the PRGs that∣∣∣ Pr[(σi`+1, ppi`+1, Ĉ)

$← Db2 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

− Pr[(σi`+1, ppi`+1, Ĉ)
$← Db3 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

∣∣∣ ≤ 2µPRG(λ) .

36

Next, observe that the only difference betweenD0
3 andD1

3 lies in that in the former, (C̃(0), C̃(1))

obfuscate (C
(0)
0 , C

(1)
0), whereas in the latter they obfuscate (C

(0)
1 , C

(1)
1). By the fact thatC0 and

C1 are equivalent (in the sense of having the same size, input-length, and truth table), so are
C

(d)
0 andC(d)

1 for any d ∈ {0, 1}. Therefore, for any d, by our hypothesis on the security of the
IO scheme for circuits with i`-bit inputs, the obfuscation of C(d)

0 and C
(d)
1 with input-length

i` is µ(λ) indistinguishable. Hence,∣∣∣ Pr[(σi`+1, ppi`+1, Ĉ)
$← D0

3 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

− Pr[(σi`+1, ppi`+1, Ĉ)
$← D1

3 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]
∣∣∣ ≤ 2µ(λ)

Finally, it follows from a hybrid argument that∣∣∣ Pr[(σi`+1, ppi`+1, Ĉ)
$← D0

0 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]

− Pr[(σi`+1, ppi`+1, Ĉ)
$← D1

0 : D(σi`+1, ppi`+1, C0, C1, Ĉ) = 1]
∣∣∣ ≤ 2µ(λ) + 2µFE(λ) + 6µPRG(λ)

This concludes the proof of the lemma.

With Lemma 6, 7, and 8, we now prove Proposition 2.

Proof of Proposition 2. Assume the existence of 1-key weakly-compact public-key FE for P/poly,
with 2−i`(λ)+κ(λ) negl(λ)-security. This implies the existence of PRGs with 2−i`(λ)+κ(λ) negl(λ)-
indistinguishability. That is,

µFE(λ) = µPRG(λ) = δ = 2−i`(λ)+κ(λ) negl(λ)

To show that there exists i`(λ)-bit-input IO for P/poly, with 2−κ(λ) negl(λ)-security, by Claim 1,
it suffices to show that there exists i`(λ)-bit-input IO for P/poly in the CRS model with 2−κ(λ) negl(λ)-
security. We argue that the construction in Figure 4 is such a scheme.

First observe that in the base case, when (SetupIO, iO,EvalIO) are executed with (1λ, 1), the
scheme is correct and efficient (for any circuit with size ≤ λ and single-bit inputs and any input
bit x), and perfectly secure with distinguishing gap 0 (for any two single-bit-input circuits with
the same size ≤ λ and truth tables). In other words, when i` = 1, the scheme satisfy the premises
of Lemma 6, 7, and 8.

Therefore, applying these lemmas, we have that for every λ and every l ≤ i`(λ), when (SetupIO, iO,EvalIO)
are executed with (1λ, 1l), the scheme is still correct, efficient, and has distinguishing gap µl
bounded as below.

µl ≤ 2µl−1 + 2µFE + 6µPRG = 2µl−1 + 8δ

≤ 2(2µl−2 + 8δ) + 8δ ≤ · · · ≤ 2l−1µ1 +

(
l−2∑
i=0

2i

)
8δ

≤ 2l+2δ = 2l+22−i`+κ negl(λ) = 2−(i`−l+κ) negl(λ)

The fifth inequality follows from the fact that µ1 = 0. Thus, µi` = 2−κ negl(λ), which concludes
the proposition.

37

5 FE from ω(log λ)-Bit-Input IO for P/poly

In this section, we show Theorem 4, i.e., we prove via a new transformation that adaptively-
secure collusion-resistant public-key functional encryption for P/poly is implied by IO for circuits
with short, ω(log λ)-bit, inputs and public key encryption, both with slightly super-polynomial
security. Note that, in contrast, previous constructions of collusion-resistant FE for P/poly either
rely on multilinear maps [GGHZ16], or require IO for all P/poly, including circuits with long
(polynomial) inputs [GGH+13b].

Our proof generically transforms any 1-key (public key) FE scheme for any circuit class C into
a collusion-resistant (public key) FE scheme for the same circuit class, using IO for circuits with
ω(λ)-bit inputs. The encryption time of the resulting FE schemes is polynomial in the encryption
time of the original schemes, and hence if the original scheme is (non-)compact, so is the resulting
FE scheme. The transformation also preserves the same type of security — namely Full-Sel- or
Adap-security— but incurs a 2ω(λ) security loss.

More precisely, we prove the following below in Section 5.1.

Proposition 3. Let C be any circuit class, τ be any polynomial, and i` be any polynomial such that
i`(λ) = ω(log λ) ≤ λ. Assume the existence of an i`(λ)-bit-input indistinguishability obfuscator iO for
P/poly. Then, any 1-key public-key FE schemes OFE for C can be generically transformed into collusion-
resistant FE schemes CRFE for C, with the following properties:

• The encryption time of CRFE is polynomial in the encryption time of OFE.

• If iO is 2−(i`(λ)+τ(λ)) negl(λ)-secure and OFE is 2−(i`(λ)+τ(λ)) negl(λ)-(Adap or Full-Sel)-secure,
then CRFE is 2−τ(λ) negl(λ)-(Adap or Full-Sel)-secure.

We now can combine this with the following result from [GVW12].

Theorem 8 (1-Key Adap-Secure Public-Key FE for P/poly [GVW12]). Let µ be any function from N to
[0, 1]. Assuming public key encryption with µ(λ) negl(λ)-security, there exist µ(λ) negl(λ)-Adap-secure
1-key non-compact public-key FE schemes for P/poly.

Now, applying the transformation of Proposition 3 to the µnegl-Adap-secure 1-key FE schemes
for P/poly with µ = 2−(i`+τ), yields 2−τ negl-Adap-secure collusion-resistant (non-compact public-
key) FE for P/poly. Finally, note that it follows from [AJS15] that collusion-resistant non-compact
FE schemes implies collusion-resistant compact FE schemes with the same level of security, which
yields Theorem 4.

5.1 From 1-key to Collusion-Resistant FE, Generically

In this section, we prove Proposition 3, and give in particular an explicit transformation. Let us
fix in particular any circuit class C, any i` such that i`(λ) = ω(log λ) ≤ λ. The resulting collusion-
resistant FE scheme for C, denoted CRFE = (CRFE.Setup,CRFE.KeyGen,CRFE.Enc,CRFE.Dec),
then relies on the following building blocks.

• An i`-bit-input indistinguishability obfuscator iO for P/poly.

• A 1-key FE scheme OFE = (OFE.Setup,OFE.KeyGen,OFE.Enc,OFE.Dec) for C.

• A puncturable PRF scheme PPRF = (PRF.Gen,PRF.Punc,F).

38

Given the above building blocks, to construct collusion resistant FE CRFE for C, we start with
the following intuition. If efficiency were not a problem, we could trivially construct a FE scheme that
support releasing any polynomial number of secret keys, essentially by using a super-polynomial
number of instances of OFE. Concretely, we would proceed as follows:

• Setup: Genenerate a super-polynomial number, M = 2i`(λ) = 2ω(λ), of OFE instances with

master keys {(OMPKi,OMSKi)
$← OFE.Setup(1λ)}i∈[M].

• Key Generation: To generate a key for a function f , sample an index at random if
$← [M]

and generate a secret key using the ithf master secret key OSKif
$← OFE.KeyGen(OMSKif , f).

Since there are at most a polynomial number of secret keys ever generated, the probability
that every OFE instance is used to generate at most one secret key is overwhelming.

• Encryption: To encrypt any input x, simply encrypt the input x under all master public keys,

{OCTi
$← OFE.Enc(OMPKi, x)}i∈[M]. Given the set of ciphertexts, one can compute the out-

put f(x) of any function f for which a secret key OSKif has been generated, by decrypting
the appropriated ciphertext OCTif using the secret key OSKif .

Of course, the only problem with this FE scheme is that its setup and encryption algorithms run
in super-polynomial time. To address this, we follow the previously adopted idea (e.g. [BGL+15,
CLTV15]) of using IO to “compress” these super-polynomially many OFE instances into “polyno-
mial size”. More precisely, instead of having the setup algorithm publish allM master public keys,
let it generate an obfuscated circuit that on input i ∈ [M] outputs the ith master public key. Similarly,
instead of having the encryption algorithm publish M ciphertexts, let it generate an obfuscated
circuit that on input i ∈ [M] outputs the ith ciphertext under the ith master public key. Since the
inputs to the obfuscated circuits are indexes from the range [M], which could be represented in i`
bits, it suffices to use i`-bit-input IO. Furthermore, for “compression” to the possible, all M master
public and secret keys, as well as allM ciphertexts, need to be sampled using pseudo-randomness
generated by puncturable PRFs. The resulting obfuscated circuits have polynomial size, since gen-
erating individual master public keys and ciphertexts using pseudorandomness is efficient, and
hence the new FE scheme becomes efficient. Finally, the security of the new FE scheme follows
from the common “one-input-at-a-time” argument, which incurs a 2−|i| = 2−i` security loss. We
formally describe the collusion-resistant FE scheme CRFE for C in Figure 5.

Next, we proceed to analyzing the correctness, efficiency, and security of the CRFE schemes.

Claim 2. The scheme CRFE in Figure 5 is correct.

Proof. The correctness of CRFE follows from the correctness of the underlying FE scheme OFE
and the IO scheme iO. Fix any λ, any function f ∈ C, and any input x of f . Consider executing
the algorithms of CRFE with f and x.

• Setup: An honestly generated master public key of CRFE is an obfuscated circuit of the
program Psetup. By construction in Figure 6, Psetup on input any i ∈ [M] outputs an honestly
generated master public key OMPKi of the underlying OFE scheme. Let MPK = P̂setup.
Then, by the correctness of the IO scheme, we have that P̂setup(i) produces the master secret
key OMPKi.

• Encryption: A CRFE ciphertext CT of x is another obfuscated circuit of the program Penc.
By construction in Figure 7, Penc on input any i ∈ [M] outputs an honestly generated OFE

39

Collusion Resistant FE Scheme CRFE for C

SETUP: CRFE.Setup(1λ) does:

• Sample a PPRF key Ks $← PRF.Gen(1λ).

• Obfuscate the program Psetup[0,Ks,⊥] described in Figure 6

P̂setup
$← iO(1κ, Psetup[0,Ks,⊥,⊥]) ,

where the IO scheme is invoked with a security parameter κ = max(λ, |Psetup|). (As shown
in Claim 3 below, |Psetup| = poly(λ).)

• Output MPK = P̂setup and MSK = Ks.

ENCRYPTION: CRFE.Enc(MPK = P̂setup, x) does the following to encrypt an input x ∈ {0, 1}N :

• Sample a PPRF key Ke $← PRF.Gen(1λ).

• Obfuscate the program Penc[P̂setup, 0,K
e, x,⊥,⊥] described in Figure 7,

CT = P̂enc
$← iO(1κ

′
, Penc[P̂setup, 0,K

e, x,⊥,⊥,⊥]) ,

where the IO scheme is invoked with a security parameter κ′ = max(λ, |Penc|). (As shown
in Claim 3 below, |Penc| = poly(λ,N).)

• Output the obfuscated circuit as the ciphertext CT = P̂enc.

KEY GENERATION: CRFE.KeyGen(MSK = Ks, f) a key for function f ∈ C as follows:

• Sample at random an index if
$← [M].

• Generate a secret key of f under the ithf master secret key,

(OMPKif ,OMSKif) = OFE.Setup(1λ ; F(Ks, if)) ,

OSKif
$← OFE.KeyGen(OMSKif , f) .

• Output SK = (if ,OSKif).

DECRYPTION: CRFE.Dec(SK = (if ,OSKif),CT = P̂enc) does:

• Compute the ciphertext of x under the ithf master public key,

OCTif = P̂enc(if) .

• Decrypt the obtained ciphertext using OSKif ,

y = OFE.Dec(OSKif ,OCTif) .

• Output y.

Figure 5: Collusion Resistant FE Scheme CRFE for C from i`(λ) = ω(λ)-bit-input IO

40

Circuit Psetup[i∗,Ks,OMPK∗]

Constants: i∗ ∈ {0, · · · ,M + 1} is an index, for M = 2i`(λ) and i` = ω(log λ), Ks is a PPRF key,
and OMPK∗ is a master public key of the OFE scheme.

Input: Index i ∈ [M].

Procedure:

1. If i 6= i∗, compute (OMPKi,OMSKi) = OFE.Setup(1λ ; F(Ks, i)).

2. If i = i∗, output OMPKi∗ = OMPK∗.

Output OMPKi.

Figure 6: Circuit Psetup in the construction and analysis of CRFE

Circuit Penc[P̂setup, i
∗,Ke, x0, x1,OCT

∗]

Constants: P̂setup is an obfuscated program, i∗ ∈ {0, · · · ,M + 1} is an index, for M = 2i`(λ) and
i` = ω(log λ), Ks is a PPRF key, x0, x1 ∈ {0, 1}N are two inputs, and OCT∗ is a ciphertext
of OFE.

Input: Index i ∈ [M].

Procedure:

1. If i < i∗, compute OMPKi = P̂setup(i) and OCTi = OFE.Enc(OMPKi, x1; F(Ke, i)).

2. If i = i∗, output OCTi∗ = OCT∗.

3. If i > i∗, compute OMPKi = P̂setup(i) and OCTi = OFE.Enc(OMPKi, x0; F(Ke, i)).

Output OCTi.

Figure 7: Circuit Penc in the construction and analysis of CRFE

ciphertext OCTi of x under the key output by MPK(i) = P̂setup(i), which is OMPKi as argued
above. Let CT = P̂enc. Then, by the correctness of the IO scheme, P̂enc(i) produces the
ciphertext OCTi.

• Key Generation: A CRFE secret key SK of f contains a randomly chosen index if
$← [M],

and an OFE secret key OSKif for f under the ithf master secret key MSKif .

• Decryption: When decrypting CT using SK, the decryptor first evaluates P̂enc(if) to obtain
OCTif as argued above. Next, the decryptor decrypts OCTif using the secret key OSKif
contained in SK. By the correctness of the OFE scheme, the output is f(x).

Therefore the scheme CRFE is correct.

Next, we show that algorithms of the new scheme CRFE is only polynomially slower than
that of OFE.

Claim 3. There exists a universal polynomial p (independent of C), such that, algorithms of CRFE in

41

Figure 5 run in time,

tCRFE.Setup(λ,N,D, S) ≤ p(λ, tOFE.Setup(λ,N,D, S))

tCRFE.KeyGen(λ,N,D, S) ≤ p(λ, tOFE.KeyGen(λ,N,D, S))

tCRFE.Enc(λ,N,D, S) ≤ p(λ, tOFE.Setup(λ,N,D, S), tOFE.Enc(λ,N,D, S))

tCRFE.Dec(λ,N,D, S) ≤ p(λ, tOFE.Setup(λ,N,D, S), tOFE.Enc(λ,N,D, S), tOFE.Dec(λ,N,D, S)) ,

where t?(λ,N, S) denotes the runtime of algorithm ?, and N = N(λ), D = D(λ), S = S(λ) are polyno-
mial upper-bounds on the input-length, depth, and size of circuits that compute functions in Cλ.

In particular, according the above claim, if the original FE scheme OFE is compact: There
exists a polynomial q, such that, tOFE.Setup(λ,N,D, S) ≤ q(λ), tOFE.Enc(λ,N,D, S) ≤ q(λ,N),
tOFE.KeyGen(λ,N,D, S) ≤ q(λ, S), and tOFE.Dec(λ,N,D, S) ≤ q(λ, S). Then the new FE scheme
CRFE is also compact w.r.t. a different polynomial q′.

Proof. We first analyze the size of the programs Psetup and Penc, which are obfuscated in CRFE.
Observe thatPsetup(i) basically either invokes the setup algorithm of OFE with pseudo-randomness,
or outputs a hardwired value. By the efficiency of the PPRF, we have that

|Psetup| = poly(tOFE.Setup(λ,N,D, S)) .

Furthermore, by the efficiency of the IO scheme, an obfuscation P̂setup of Psetup has size

|P̂setup| ≤ TimeiO(1κ, Psetup)

= poly(κ, |Psetup|)
= poly(max(λ, |Psetup|), |Psetup|)
= poly(tOFE.Setup(λ,N,D, S)) .

Next, observe that Penc(i) in figure 6 basically either evaluates OMPKi = P̂setup(i) and gener-
ates a ciphertext of the input x under OMPKi, or outputs a hardwired ciphertext. By the above
analysis of the size of P̂setup, and the efficiency of PPRF, we have that

|Penc| = poly(tOFE.Setup(λ,N,D, S), tOFE.Enc(λ,N,D, S)) .

Next, we analyze the efficiency of the algorithms of CRFE.

• Setup: The runtime of the setup algorithm is dominated by the step of obfuscating the pro-
gram Psetup, that is,

tCRFE.Setup(λ,N,D, S) = TimeiO(1κ, Psetup) + poly(λ)

= poly(κ, |Psetup|) + poly(λ)

= poly(max(λ, |Psetup|), |Psetup|) + poly(λ)

≤ p(λ, tOFE.Setup(λ,N,D, S)) ,

where the second equality follows from the efficiency of the IO scheme (and the last inequal-
ity holds when p is sufficiently large).

42

• Encryption: The runtime of the encryption algorithm is dominated by obfuscating the pro-
gram Penc, that is,

tCRFE.Enc(MPK, x) = TimeiO(1κ
′
, Penc) + poly(λ)

= poly(κ′, |Penc|) + poly(λ)

= poly(max(λ, |Penc|), |Penc|) + poly(λ)

≤ p(λ, λ, tOFE.Setup(λ), tOFE.Enc(λ,N, S)) .

• Key Generation: The runtime of the key generation algorithm is dominated by generating a
secret key of the OFE scheme. More precisely,

tCRFE.KeyGen(MSK, f) = tOFE.KeyGen(λ,N, S) + poly(λ)

≤ p(λ, tOFE.KeyGen(λ,N, S)) .

• Decryption: The decryption algorithm involves evaluating the obfuscated circuit P̂enc con-
tained in the ciphertext CT on input if , and decrypting the obtained OFE ciphertext OCTif
using the OFE secret key OSKif contained in the secret key SK. Therefore,

tCRFE.Dec(CT,SK) = |P̂enc|+ tOFE.Dec(λ,N, S) + poly(λ)

≤ p(λ, tOFE.Setup(λ), tOFE.Enc(λ,N, S), tOFE.Dec(λ,N, S))

This concludes the claim.

Lemma 9. If iO and PPRF are 2−(i`(λ)+τ(λ)) negl(λ)-indistinguishable, and OFE is 2−(i`(λ)+τ(λ)) negl(λ)-
(Adap or Full-Sel)-secure, then, CRFE in Figure 5 is 2−τ(λ) negl(λ)-(Adap or Full-Sel)-secure.

Proof. We prove the theorem for the case of Adap-security; the proof for the case of Full-Sel-security
are syntactically identical.

Fix any PPT attacker A, we need to show that the advantage of A in games INDCRFE
A (1λ, 0)

and INDCRFE
A (1λ, 1) is bounded by 2−τ negl.

AdvtCRFE
A =

∣∣∣Pr[INDCRFE
A (1λ, 0) = 1]− Pr[INDCRFE

A (1λ, 1) = 1]
∣∣∣ ≤ 2−τ(λ) negl(λ)

Recall that the game INDCRFE
A (1λ, b) proceeds in four stages: 1) The challenger samples a pair of

master keys (MPK,MSK)
$← CRFE.Setup(1λ) and sends MPK to A; 2) A can obtain an arbitrary

number of secret keys {SKi} for functions {fi} it chooses adaptively; 3) A chooses two challenge
messages (x0, x1) and receives the ciphertext CT of xb; 4) A again obtains secret keys of functions
of its choice.

To bound the advantage of A, we define hybrids
{
H0
i∗ , · · · , H3

i∗
}
i∗∈[M+1]

, and show that the

advantage of A in distinguishing Hj
i∗ from Hj+1

i∗ for any 0 ≤ j ≤ 2, as well as in distinguishing
H3
i∗ and H0

i∗+1, is bounded by µ(λ) = 2−(i`(λ)+τ(λ)) negl(λ). Furthermore, the advantage of A in
distinguishing H0

0 from INDCRFE
A (1λ, 0), and H0

M+1 from INDCRFE
A (1λ, 1) is also bounded by µ.

Next, we formally describe the hybrids.

Hybrid H0
i∗ : This hybrid proceeds identically to INDCRFE

A (1λ, b), except that, the master public
key MPK and ciphertext CT are generated differently. Recall that by construction of CRFE,

43

the master public key and ciphertext are obfuscated circuits of programs Psetup and Penc

respectively.

MPK = P̂setup
$← iO(1κ, Psetup)

CT = P̂enc
$← iO(1κ

′
, Penc)

In INDCRFE
A (1λ, b), the two programs arePsetup = Psetup[0,Ks,⊥] andPenc = Penc[P̂setup, 0,K

e, xb,⊥,⊥],
where P̂setup is the obfuscation of Psetup.

InH0
i∗ , the master public key and ciphertext contain obfuscation of Psetup and Penc hardwired

with different constants as described below (recall that K{i} denotes a PPRF key punctured
at point i).

Psetup = Psetup[i∗,Ks{i∗},OMPKi∗] ,

where (OMPKi∗ ,OMSKi∗)
$← OFE.Setup(1λ ; F(Ks , i∗)) , and (12)

Penc = Penc[P̂setup, i
∗,Ke{i∗}, x0, x1,OCTi∗] ,

where OCTi∗
$← OFE.Enc(OMPKi∗ , x0 ; F(Ke , i∗)) . (13)

The rest of the experiment proceeds identically to INDCRFE
A (1λ, b). Finally, H0

i∗ outputs the
bit that A outputs.

Below, we show that

Claim 4. If iO is µ-secure, then the outputs of INDCRFE
A (1λ, 0) andH0

0 , and the outputs of INDCRFE
A (1λ, 1)

and H0
M+1, are µ-close.

Proof. By definition of Psetup[?] and Penc[?] in Figure 6 and 7 and the correctness of PPRF,
we have that the programs obfuscated in INDCRFE

A (1λ, 0) are functionally equivalent to that
obfuscated in H0

0 , that is,

Psetup[0,Ks,⊥] ≡ Psetup[0,Ks{0},OMPK0]

Penc[P̂setup, 0,K
e, x0,⊥,⊥] ≡ Penc[P̂setup, 0,K

e{0}, x0, x1,OCT0]

where OMSK0 and OCT0 are generated as in Equation (12) and (13). Therefore, if iO is µ-
indistinguishable, the outputs of INDCRFE

A (1λ, 0) and H0
0 are µ-close.

Similarly, the outputs of INDCRFE
A (1λ, 1) and H0

M+1 are also µ-close, following from the fact
that the programs obfuscated in them are functionally equivalent.

Psetup[0,Ks,⊥] ≡ Psetup[M + 1,Ks{M + 1},OMPKM+1]

Penc[P̂setup, 0,K
e, x1,⊥,⊥] ≡ Penc[P̂setup,M + 1,Ke{M + 1}, x0, x1,OCTM+1]

Hybrid H1
i∗ : This hybrid proceed identically toH0

i∗ except that the master public key OMPKi∗ and
ciphertext OCTi∗ hardwired in Psetup and Penc are generated using true randomness, instead
of pseudorandomness generated by PPRF.

(OMPKi∗ ,OMSKi∗)
$← OFE.Setup(1λ ; Upoly(λ)) , and

OCTi∗
$← OFE.Enc(OMPKi∗ , x0 ; Upoly(λ)) .

44

The rest of the experiment proceeds identically to H0
i∗ .

Since the only difference between H0
i∗ and H1

i∗ lies in whether OMPKi∗ and OCTi∗ are gen-
erated by pseudorandomness or true randomness, it follows from the µ-indistinguishability
of PPRF that the outputs of H0

i∗ and H0
i∗ are µ-close.

Claim 5. If PPRF is µ(λ)-secure, then the outputs of H0
i∗ and H0

i∗ are µ(λ)-close.

Hybrid H2
i∗ : This hybrid proceeds identically to H1

i∗ except that the ciphertext OCTi∗ hardwired
Penc encrypts x1, instead of x0.

(OMPKi∗ ,OMSKi∗)
$← OFE.Setup(1λ ; Upoly(λ)) , and

OCTi∗
$← OFE.Enc(OMPKi∗ , x1 ; Upoly(λ)) .

Note that the only difference between H1
i∗ and H2

i∗ lies in whether OCTi∗ encrypts x0 or x1.
In both hybrids, the (i∗)th master keys (OMPKi∗ ,OMSKi∗) and OCTi∗ are generated honestly
using true randomness. By construction of CRFE, the secret key SK of a function f contains
an OFE secret key OSKif of f under a randomly chosen master secret key OMPKif from a

super-polynomial number M of master secret keys if
$← [M]. Since the attacker A obtains

at most a polynomial number of secret keys, the probability that OMSKi∗ is used to generate
two secret key is negligible. Conditioned on this event happening, it follows from the µ-
Adap-security of OFE that the ciphertext OCTi∗ in H1

i∗ encrypting x0 is indistinguishable to
that in H2

i∗ encrypting x1. Therefore,

Claim 6. If OFE is µ(λ)-Adap-secure, then the outputs of H1
i∗ and H2

i∗ are µ(λ)-close.

Hybrid H3
i∗ : This hybrid proceeds identically to H2

i∗ except that the master public key OMPKi∗

and ciphertext OCTi∗ hardwired in Psetup and Penc are generated using pseudorandomness
generated by PPRF, instead of true randomness.

(OMPKi∗ ,OMSKi∗)
$← OFE.Setup(1λ ; PPRF(Ks , i∗)) , and (14)

OCTi∗
$← OFE.Enc(OMPKi∗ , x1 ; PPRF(Ke , i∗)) . (15)

It again follows from the µ-indistinguishability of PPRF that

Claim 7. If PPRF is µ(λ)-indistinguishable, then the outputs of H2
i∗ and H3

i∗ are µ(λ)-close.

Furthermore, we note that for every i∗ ∈ [M], the programs Psetup and Penc obfuscated in
hybrids H3

i∗ and H0
i∗+1 are functionally equivalent.

Psetup[i∗,Ks{i∗},OMPKi∗] ≡ Psetup[i∗ + 1,Ks{i∗ + 1},OMPKi∗+1]

Penc[P̂setup, i
∗,Ke{i∗}, x0, x1,OCTi∗] ≡ Penc[P̂setup, i

∗ + 1,Ke{i∗ + 1}, x0, x1,OCTi∗+1]

where on the left hand side of the equations, the hardwired master public key OMPKi∗ and
ciphertext OCTi∗ are generated as in Equation (14) and (15), while on the right hand side,
the mater public key OMPKi∗+1 and ciphertext OCTi∗+1 are generated as in Equation (12)
and (13). By definition of Psetup[?], the Psetup programs with different hardwired constants
described above are functionally equivalent because for any input i ∈ [M], they both output

45

OMPKi generated honestly using OFE.Setup with pseudorandomness F(Ks, i). By defini-
tion of Penc[?], the Penc programs above are also functionally equivalent because for any
input i ∈ [M] and i ≤ i∗, they both produce OCTi encrypting x1 using pseudorandomness
F(Ke, i), and for any i ∈ [M] and i > i∗, they both produce OCTi encrypting x0 using pseu-
dorandomness F(Ke, i). Therefore, if follows from the µ-indistinguishability of iO that the
outputs of H3

i∗ and H0
i∗+1 are µ-close.

Claim 8. If iO is µ-secure, then the outputs of H3
i∗ and H0

i∗+1 are µ-close.

Using the above hybrids, we now conclude the lemma. Since there are in total O(M) hybrids,
it then follows from a hybrid argument that the advantage of A in distinguishing INDCRFE

A (1λ, 0)
and INDCRFE

A (1λ, 1) is bounded by O(M)× µ = 2−τ(λ) negl(λ).

Acknowledgements

The authors thank Benny Applebaum and Vinod Vaikuntanathan for many helpful discussions
and insights.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order
graded encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 528–556, Warsaw, Poland, March 23–25, 2015.
Springer, Heidelberg, Germany.

[ABCP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In Jonathan Katz, editor, Public-
Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceed-
ings, volume 9020 of Lecture Notes in Computer Science, pages 733–751. Springer, 2015.

[ABR16] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. Journal of Cryptology, 29(3):577–596, July 2016.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
657–677, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Ger-
many.

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimiz-
ing obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and
Ninghui Li, editors, ACM CCS 14, pages 646–658, Scottsdale, AZ, USA, November 3–
7, 2014. ACM Press.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In
FOCS, pages 166–175, 2004.

46

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness gener-
ically: Indistinguishability obfuscation from non-compact functional encryption.
IACR Cryptology ePrint Archive, 2015:730, 2015.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 1087–1100, Cambridge, MA, USA, June 18–21, 2016. ACM Press.

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 805–816, New York, NY, USA, May 19–22, 2012. ACM
Press.

[App15] Benny Applebaum. The cryptographic hardness of random local functions – survey.
Cryptology ePrint Archive, Report 2015/165, 2015. http://eprint.iacr.org/
2015/165.

[AR16] Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on ex-
pander graphs. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part I, vol-
ume 9985 of LNCS, pages 27–56, Beijing, China, October 31 – November 3, 2016.
Springer, Heidelberg, Germany.

[AS16] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. Cryptology ePrint
Archive, Report 2016/1097, 2016. http://eprint.iacr.org/2016/1097.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Prac-
tical functional encryption for quadratic functions with applications to predicate en-
cryption. Cryptology ePrint Archive, Report 2017/151, 2017. http://eprint.
iacr.org/2017/151.

[BGI+01a] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances
in Cryptology CRYPTO 2001, pages 1–18. Springer, 2001.

[BGI+01b] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18, Santa Barbara, CA, USA,
August 19–23, 2001. Springer, Heidelberg, Germany.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In PKC, pages 501–519, 2014.

47

http://eprint.iacr.org/2015/165
http://eprint.iacr.org/2015/165
http://eprint.iacr.org/2016/1097
http://eprint.iacr.org/2017/151
http://eprint.iacr.org/2017/151

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protect-
ing obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238, Copenhagen, Den-
mark, May 11–15, 2014. Springer, Heidelberg, Germany.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 439–448. ACM,
2015.

[BJK15] Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner prod-
uct encryption. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryp-
tology and Information Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part I, volume 9452 of Lecture Notes in Computer Science, pages 470–491.
Springer, 2015.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From crypto-
mania to obfustopia through secret-key functional encryption. In Martin Hirt and
Adam D. Smith, editors, Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part II, volume 9986
of Lecture Notes in Computer Science, pages 391–418, 2016.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of find-
ing a nash equilibrium. In Guruswami [Gur15], pages 1480–1498.

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way func-
tion. Computational Complexity, 21(1):83–127, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 1–25, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg,
Germany.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
IACR Cryptology ePrint Archive, 2002:80, 2002.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor trac-
ing with short ciphertexts and private keys. In Serge Vaudenay, editor, EURO-
CRYPT 2006, volume 4004 of LNCS, pages 573–592, St. Petersburg, Russia, May 28 –
June 1, 2006. Springer, Heidelberg, Germany.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new vision for
public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 171–190, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In ASIACRYPT (2), pages 280–300, 2013.

48

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way
function candidate and myopic backtracking algorithms. In Omer Reingold, edi-
tor, TCC 2009, volume 5444 of LNCS, pages 521–538. Springer, Heidelberg, Germany,
March 15–17, 2009.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, edi-
tor, CRYPTO’94, volume 839 of LNCS, pages 257–270, Santa Barbara, CA, USA, Au-
gust 21–25, 1994. Springer, Heidelberg, Germany.

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji,
Eric Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without
low-level zeroes: New MMAP attacks and their limitations. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS,
pages 247–266, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg,
Germany.

[CGH16] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. Cryptology ePrint Archive, Report 2016/998, 2016. http:
//eprint.iacr.org/2016/998.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12,
Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages 519–535,
2013.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 476–493, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear
maps over the integers. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 267–286, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of Lecture Notes
in Computer Science, pages 468–497. Springer, 2015.

[CM01] M. Cryan and P. B. Miltersen. On pseudorandom generators in nc0. In Proc. 26th
MFCS, 2001.

49

http://eprint.iacr.org/2016/998
http://eprint.iacr.org/2016/998

[DIJK09] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Se-
curity amplification for interactive cryptographic primitives. In Omer Reingold, edi-
tor, TCC 2009, volume 5444 of LNCS, pages 128–145. Springer, Heidelberg, Germany,
March 15–17, 2009.

[DNR+09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vad-
han. On the complexity of differentially private data release: efficient algorithms and
hardness results. In Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 381–390, 2009.

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial infor-
mation. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
654–663, Baltimore, MA, USA, May 22–24, 2005. ACM Press.

[Gay16] Romain Gay. Functional encryption for quadratic functions, and applications to
predicate encryption. Cryptology ePrint Archive, Report 2016/1106, 2016. http:
//eprint.iacr.org/2016/1106.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881
of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 498–527, Warsaw, Poland, March 23–25, 2015. Springer,
Heidelberg, Germany.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II,
volume 9563 of LNCS, pages 480–511, Tel Aviv, Israel, January 10–13, 2016. Springer,
Heidelberg, Germany.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 555–564, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[GLSW15] Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguisha-
bility obfuscation from the multilinear subgroup elimination assumption. In Gu-
ruswami [Gur15], pages 151–170.

50

http://eprint.iacr.org/2016/1106
http://eprint.iacr.org/2016/1106

[GMS16] Sanjam Garg, Pratyay Mukherjee, and Akshayaram Srinivasan. Obfuscation without
the vulnerabilities of multilinear maps. IACR Cryptology ePrint Archive, 2016:390,
2016.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-Lemma, pages 273–
301. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[Gol01] Oded Goldreich. Foundations of Cryptography — Basic Tools. Cambridge University
Press, 2001.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604, Santa Bar-
bara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[GPSZ16] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Break-
ing the sub-exponential barrier in obfustopia. Cryptology ePrint Archive, Report
2016/102, 2016. http://eprint.iacr.org/2016/102.

[Gur15] Venkatesan Guruswami, editor. IEEE 56th Annual Symposium on Foundations of Com-
puter Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015. IEEE Computer So-
ciety, 2015.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179, Santa Bar-
bara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In CCS, pages
669–684, 2013.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key
functional encryption. Cryptology ePrint Archive, Report 2017/080, 2017. http:
//eprint.iacr.org/2017/080.

[Lin16a] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany.

[Lin16b] Huijia Lin. Indistinguishability obfuscation from ddh on 5-linear maps and locality-5
prgs. Cryptology ePrint Archive, Report 2016/1096, 2016. http://eprint.iacr.
org/2016/1096.

51

http://eprint.iacr.org/2016/102
http://eprint.iacr.org/2017/080
http://eprint.iacr.org/2017/080
http://eprint.iacr.org/2016/1096
http://eprint.iacr.org/2016/1096

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing ran-
domized encodings and applications. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 96–124, Tel Aviv, Israel, January 10–
13, 2016. Springer, Heidelberg, Germany.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. Gghlite: More efficient multi-
linear maps from ideal lattices. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-
15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 239–256.
Springer, 2014.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-
like assumptions on constant-degree graded encodings. In IEEE 57th Annual Sym-
posium on Foundations of Computer Science, FOCS 2016, New Brunswick, NJ, USA, 9-11
October, 2016, 2016.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0.
In 44th FOCS, pages 136–145, Cambridge, MA, USA, October 11–14, 2003. IEEE Com-
puter Society Press.

[MSZ16a] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. IACR Cryp-
tology ePrint Archive, 2016:147, 2016.

[MSZ16b] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear
maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS,
pages 629–658, Santa Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg,
Germany.

[MT10] Ueli M. Maurer and Stefano Tessaro. A hardcore lemma for computational in-
distinguishability: Security amplification for arbitrarily weak PRGs with optimal
stretch. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 237–
254, Zurich, Switzerland, February 9–11, 2010. Springer, Heidelberg, Germany.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12, 2014.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Ronald
Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 422–439, Taormina, Sicily,
Italy, March 19–21, 2012. Springer, Heidelberg, Germany.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

52

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Proc. of STOC 2014, 2014.

[Ull13] Jonathan Ullman. Answering n2+o(1) counting queries with differential privacy is
hard. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 361–370, 2013.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd FOCS, pages 80–91, Chicago, Illinois, November 3–5, 1982. IEEE
Computer Society Press.

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467,
Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

53

	Introduction
	Block-Wise Locality
	From Block-Wise Locality to IO and FE

	Preliminaries
	-Hardness and -Indistinguishability
	Indistinguishability Obfuscation
	i-bit-Input IO

	Puncturable Pseudo-Random Functions
	Randomized Encodings
	Functional Encryption
	Public-Key Functional Encryption
	FE for P/poly, NC 1 and Compactness

	Zero-Testing FE for Arithmetic Functions
	Degree-D Asymmetric Multilinear Maps with SXDH Assumption

	Block-Wise Local PRGs
	Pseudorandom Generators, Locality, and Block-Wise Locality
	Graph-Based Block-Wise local Functions
	Pseudorandom and Unpredictability Generators
	Block-Wise local Small-Bias Generators
	Hardness Amplification via the XOR Construction
	The Extraction Construction

	IO from Block-Wise Locality-(L, log) PRG and L-Linear Maps
	Step 1: Constructing Weakly-Compact FE
	Step 2: Tight Construction of IO from Weakly-Compact FE
	IO in the CRS model
	IO in the CRS Model from Weakly-Compact FE

	FE from (log)-Bit-Input IO for P/poly
	From 1-key to Collusion-Resistant FE, Generically

