
A Lattice-Based Universal Thresholdizer for Cryptographic Systems

Dan Boneh∗ Rosario Gennaro† Steven Goldfeder‡ Sam Kim§

Abstract

We develop a general approach to thresholdizing a large class of (non-threshold) cryptographic schemes.
We show how to add threshold functionality to CCA-secure public-key encryption (PKE), signature
schemes, pseudorandom functions, and others primitives. To do so, we introduce a general tool, called a
universal thresholdizer, from which many threshold systems are possible. The tool builds upon a lattice-
based fully-homomorphic encryption (FHE) system. Applying the tool to a (non-threshold) lattice-based
signature, gives the first single-round threshold signature from the learning with errors problem (LWE).
Applying the tool to a (non-threshold) lattice-base CCA-secure PKE, gives a single-round lattice-based
threshold CCA-secure PKE.

1 Introduction

Threshold cryptography [DF89, Fra89, DDFY94] is a general technique used to protect a cryptographic secret
by splitting it into N shares and storing each share on a different server. Any subset of t servers can use the
secret, without re-constructing it. Two examples of threshold tasks are:

• Threshold signatures: distribute the signing key of a signature system among N servers, so that any
t servers can generate a signature. The scheme must provide anonymity and succinctness. Anonymity
means that the same signature is produced, no matter which subset of t servers is used. Succinctness
means that the signature size can depend on the security parameter, but must be independent of N
and t.

• Threshold decryption: distribute the decryption key of a CCA-secure public-key encryption scheme
among N servers, so that any t servers can decrypt. The scheme must be succinct, meaning that
ciphertext size must be independent of N and t.

Moreover, the time to verify signatures or encrypt messages should be independent of N and t. In Section 6
we review the precise security properties that such systems must satisfy. Other threshold tasks include
threshold (H)IBE key generation, threshold ABE key generation, threshold pseudorandom functions, and
many others (see Section 1.2). All have similar anonymity, succinctness, and efficiency requirements.

A common goal for threshold systems is to minimize the amount of interaction in the system, and in
particular, construct one-round schemes. For example, in the case of signatures, an entity called a combiner
wishes to sign a message m. The combiner sends m to all N servers, and some t of them reply. The combiner
combines the t replies, and obtains the signature. No other interaction is allowed. In particular, the servers
may not communicate with one another, or interact further with the combiner. Similarly, for threshold
decryption, the combiner sends the ciphertext to all N servers, some t servers reply, and the combiner
combines the replies to obtain the plaintext. No other interaction is allowed. For now, we assume that the
system is setup by a trusted entity that generates the secret key, and hands the key shares to the servers. We
will often refer to the servers as partial signers or partial decryptors.

∗Stanford University. Email: dabo@cs.stanford.edu.
†City College of New York. Email: rosario@cs.ccny.cuny.edu.
‡Princeton University. Email: stevenag@cs.princeton.edu.
§Stanford University. Email: skim13@cs.stanford.edu.

1

Many signature and encryption schemes have been thresholdized. For example, RSA signatures and
encryption [Fra89, DDFY94, GRJK07, Sho00], Schnorr signatures [SS01], (EC)DSA signatures [GJKR01,
GGN16], BLS signatures [BLS04, Bol03], Cramer-Shoup encryption [CG99], Regev encryption [BD10], and
many more [SG02, BBH06].

Despite this great success, it is still an open problem to construct one-round threshold signatures from
hard lattice problems, as discussed in the related work section (Section 1.2).

Our contributions. We present a general framework for universally thresholdizing many (non-threshold)
cryptographic schemes. Specifically, we define a new primitive called a universal thresholdizer, which is a
cryptographic scheme that can be composed with different types of systems to thresholdize them (Section 4).
For example, we can take any signature or encryption scheme as a black box and construct from it a one-round
threshold system. Similarly, we can thresholdize IBE key generation, ABE key generation, pseudorandom
functions, and others. We demonstrate how to use the primitive by showing in detail how to apply the
technique to any non-threshold signature and CCA-secure public key encryption schemes to obtain one-round
threshold signatures and one-round CCA-secure threshold encryption (Section 6).

Our universal thresholdizer is built from a fully-homomorphic encryption (FHE) system, such as [GSW13].
Because this FHE is proven secure based on the learning with errors (LWE) problem, and because there are
known secure (non-threshold) signature schemes based on LWE [GPV08, Boy10, Lyu12], we obtain the first
one-round threshold signature scheme based on LWE that is both succinct and anonymous. This resolves a
long-standing open problem in lattice-based cryptography.

Beyond signatures, our universal thresholdizer can be composed with an existing CCA-secure public
key encryption (PKE) scheme [PW11, GPV08, Pei09, ABB10a, MP12] to obtain the first lattice-based
(one-round) threshold CCA-secure PKE where the public key size and encryption time are independent
of the number of servers. Similarly, we can compose the universal thresholdizer with an existing IBE
scheme [GPV08, ABB10b, ABB10c, CHKP10] to obtain the first lattice-based IBE system with (one-round)
threshold key generation. More generally, composing the universal thresholdizer with a functional encryption
scheme gives a system with threshold key generation.

Threshold systems should also be robust [GRJK07]: a misbehaving server who sends an invalid partial
signature or partial decryption, should be detected by the combiner. We construct our universal thresholdizer
to provide robustness, thereby ensuring that all the derived threshold schemes are robust. Robustness is often
achieved using non-interactive zero-knowledge (NIZK). However, because there are no known standard-model
NIZKs from LWE, we instead show how to provide robustness using an LWE-based fully homomorphic
signature scheme [GVW15]. In summary, we obtain a robust one-round LWE-based threshold signature,
CCA-secure PKE, and other threshold primitives in the standard model.

1.1 Overview of the Main Construction

We begin with an overview of the main construction. While our approach gives a universal thresholdizer,
in this section we give a concrete example showing how to apply our techniques to construct a threshold
signature scheme. In Section 5 we proceed differently by first constructing universal thresholdizer scheme,
and then presenting a threshold signature scheme as one of its immediate applications (Section 6).

MPC from FHE. Our starting point is the recent development of low-round multiparty computation (MPC)
from LWE ([AJLA+12, MW16, BP16, PS16]). For example, in [AJLA+12] the N parties first generate a fully
homomorphic encryption (FHE) public-key pk, where the secret key sk is shared among the parties in an
N -out-of-N fashion. Next, every party encrypts its input using the FHE public-key pk, and broadcasts the
ciphertext to all other parties. Each party receives the FHE encrypted inputs from its peers, and does the
following: first, it locally and homomorphically computes the MPC function on the FHE encrypted inputs;
second, it partially decrypts the resulting ciphertext using its share of sk; and third, it broadcasts the result
to all other parties. The partial decryptions can then be combined into a full decryption so that all parties
learn the result of the computation. Nothing else is revealed about the original inputs.

A threshold signature scheme can be viewed as a two-round MPC, but without a broadcast channel. Given
a message to sign, every partial signer computes the partial signature individually without any interaction

2

with the other parties, and provides the partial signatures to the combiner. From this point of view, it is
unclear how to extend the FHE technique above to the setting of threshold signatures, since the technique
crucially relies on a broadcast channel to ensure that every party supplies the same encrypted input to all
other parties. We bypass this limitation by observing that in the context of threshold signatures, all parties
compute on a single input, namely the signature signing key, that can be provided to all parties at setup.

More precisely, the partial signers compute the public function fm(k) = Sign(k,m), where k is a signing
key and m is a message to be signed. Here the input k remains fixed, while the public function fm to be
computed changes for every signature. Our idea, then, is to provide each party at setup time with an FHE
ciphertext ctk which is an encryption of the signing key k, and also provide the party with one share of the
FHE decryption key. Then, to sign, each party locally and homomorphically computes the signing function
fm on the shared ciphertext ctk, to obtain an FHE encrypted signature. The party then partially decrypts
this FHE ciphertext, and sends this partial decryption to the combiner. The combiner combines the partial
decryptions, and obtains the signature Sign(k,m) in the clear.

Thresholdizing decryption. The construction described above gives an N -out-of-N threshold signature
scheme where N valid partial signatures can be combined to produce a final signature. Our goal is to construct
a scheme that supports arbitrary thresholds. To do this, we must delve into the specific properties of the
LWE-based FHE constructions.

Recall that a ciphertext ct of an LWE-based FHE scheme (such as [GSW13]) is a matrix in Zn×mq . A
secret key sk is a vector in Znq for appropriately chosen LWE parameters n,m, q. To decrypt a ciphertext
ct, the decryptor takes a particular column ctm of the ciphertext, and computes its inner product with the
secret key sk. That is, the decryptor computes 〈ctm, sk〉 ∈ Zq. If the resulting value is small, the underlying
plaintext is interpreted as 0; otherwise, it is interpreted as 1.

Since inner product is linear, one might try to thresholdize FHE decryption by applying Shamir t-out-of-N
secret sharing to sk. This will produce N keys sk1, ..., skN , one for each user. Then, to sign, user i runs
the signing function fm on the FHE encryption of sk, to produce ct∗ and then provides the inner product
〈ct∗, ski〉 to the combiner. The combiner can then compute the Lagrange coefficients λSi for any set S of size
t and recombine the shares as ∑

i∈S
λSi · 〈ct∗, ski〉 = 〈ct∗,

∑
i∈S

λSi ski〉 = 〈ct∗, sk〉 .

Accounting for noise. Unfortunately, the construction described above is insecure. Every time a signer
computes a partial decryption, it leaks information about its share of the decryption key ski by publishing
its inner product with a publicly known vector ct∗. One way to resolve this issue is by adding some small
additive noise term on the inner product

〈ct∗, ski〉+ noise.

However, for a t-out-of-N threshold scheme, this additive error prevents correct reconstruction of the signature.
Namely the Lagrange coefficients, when interpreted as elements in Zq are large, and therefore blow up the
noise when multiplied to the partial decryptions.

To resolve this, we use the technique of “clearing out the denominators” that was previously used in the
works of [Sho00, ABV+12]. The idea is that since the Lagrange coefficients are rational numbers, we can scale
them to be integers. In particular, for a t-out-of-N secret sharing, for any set S of size t and i ∈ S, the term
(N !)2 · λSi is an integer. Therefore, we can modify the construction so that every signer first scales the noise
that it adds by (N !)2, so that when multiplied by the Lagrange coefficient, the quantity remains bounded as
an integer. Now, with an upper bound on the FHE noise growth, and an upper bound on the scaled Lagrange
coefficients, we can choose the FHE modulus to be large enough to preserve correct reconstruction. This has
no impact on the final signature size, since the final combiner output is always just Sign(k,m).

Smudging out original noise. To prove the scheme secure, some additional complications arise. For
instance, the noise produced by the FHE decryption (after computing the inner product 〈ct∗, sk〉) contains
information about the underlying plaintext. In particular, every time a combiner reconstructs the final

3

signature, it learns some additional information about the underlying signing key. To prevent this, each
signer must add on a large enough noise to overwhelm or “smudge out” the decryption noise. However, the
noise that the signers add on are scaled by (N !)2 and therefore, cannot be used to smudge out the decryption
noise. To resolve this, we scale the noise in the FHE ciphertext appropriately such that the decryption noise
is always a multiple of (N !)2. In Appendix B, we show that this modification still preserves security of the
underlying FHE constructions over a prime modulus.

Verifiability from homomorphic signatures. The final piece of the puzzle is enforcing robustness of the
threshold signature scheme. Robustness means that a malicious partial signer cannot send an improperly
generated partial signature without being caught. A natural approach to enforcing robustness is for the
signers to include a non-interactive zero knowledge (NIZK) proof as part of the partial signatures. However, a
NIZK construction based on LWE is not (yet) known. Therefore, to enforce robustness, we rely on the recent
developments in homomorphic signature schemes [BF11b, GVW15] from LWE (more precisely based on the
Short Integer Solutions problem). The idea of a homomorphic signature scheme is that given some data and
a signature of this data, one can homomorphically compute on the data, and at the same time operate on the
signatures to provide a proof of validity of the output of a computation. By providing each signer with a
signature of their share of the decryption key, as well as a PRF key for generating the randomness in the
protocol using a homomorphic signature scheme, we achieve robustness for our final construction.

1.2 Related Work

We survey some of the works on threshold cryptosystems based on lattices.

Threshold public-key encryption. Bendlin and Damg̊ard [BD10] gave a threshold version of Regev’s
CPA-secure encryption scheme [Reg09], and Myers et al. [MSS11] applied the technique to fully homomorphic
encryption. Xie et al. [XXZ11] gave a threshold CCA secure PKE scheme from lossy trapdoor functions,
which can be instantiated from LWE [PW11] although the size of the public key and the ciphertext is at
least linear in the number of decryptors. Finally, the threshold Gaussian sampling of Bendlin et al. [BKP13]
gives a threshold (H)IBE, which can be converted to a CCA threshold PKE where the size of the public key
and ciphertext is independent of the number of decryptors in the system. A limitation of this system is that
the decrypting servers can only carry out an a priori bounded number of online non-interactive decryptions
before they must perform an offline interactive phase.

Threshold Signatures. In the signatures front, there have been fewer works. Cayrel et al. [CLRS10] gave a
lattice-based threshold ring signature scheme, in which at least t signers are needed to create an anonymous
signature. In this system, each signers has its own public key, and verification time grows linearly with the
number of signers. The threshold Gaussian sampling construction of [BKP13] gives a threshold signature
where the public key and the size of the signatures are all independent of the number of signers. However, as
in the encryption setting, the signers can only sign a bounded number of signatures non-interactively, before
they must perform an interactive protocol.

Other Threshold Cryptosystems. Several other works construct threshold systems from lattices. Boneh
et al. [BLMR13] give a threshold distributed PRF from key-homomorphic PRFs, where the key sizes are
independent of the number of evaluators and the evaluation process is also non-interactive. Additional
lattice-based threshold PRFs include [BP14, BV15].

2 Preliminaries

Basic Notations. For an integer n, we write [n] to denote the set {1, ..., n}. We use bold lowercase letters
(e.g.,v,w) to denote vectors and bold uppercase letters (e.g. A,B) to denote matrices. Throughout this
work, we will always use the infinity norm for vectors. This means that for a vector x, the norm ‖x‖ is the
maximal absolute value of an element in x.

4

We write λ for the security parameter. We say that a function ε(λ) is negligible in λ if ε(λ) = o(1/λc)
for every c ∈ N, and we write negl(λ) to denote a negligible function in λ. We say that an event occurs
with negligible probability if the probability of the event is negl(λ), and an event occurs with overwhelming
probability if its complement occurs with negligible probability.

Statistical Distance. For two distributions X,Y over a finite domain Ω, the statistical distance between X

and Y is defined by ∆(X,Y)
def
= 1

2

∑
ω∈Ω |X(ω)− Y (ω)|. If X,Y are distribution ensembles parameterized by

the security parameters, we write X
stat
≈ Y if the quantity ∆(X,Y) is negligible. Similarly, we write X

comp
≈ Y

if they are computationally indistinguishable. We write ω ← X to denote that ω is sampled at random

according to distribution X. For a finite domain Ω, we write ω
$← Ω to denote that ω is sampled uniformly

from Ω. For a distribution ensemble χ = χ(λ) over the integers, and integer bounds B = B(λ), we say that χ
is B-bounded if Prx←χ(λ)[|x| ≤ B(λ)] = 1.

For the proof of security of our main construction, we rely on the following lemma, which says that adding
large noise “smudges out” any small values.

Lemma 2.1 ([AJLA+12, MW16]). Let B1 = B1(λ), and B2 = B2(λ) be positive integers and let e1 ∈
[−B1, B1] be a fixed integer. Let e2

$← [−B2, B2] be chosen uniformly at random. Then the distribution of e2

is statistically indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).

2.1 Average-case Lattice Problems

Learning with Errors. Let n,m, q be positive integers and χ be some noise distribution over Zq. In the
LWE(n,m, q, χ) problem, the adversary’s goal is to distinguish between the two distributions:

(A,AT s + e) and (A,u)

where A
$← Zn×mq , s

$← Znq , e ← χm, and u
$← Zmq . For certain B-bounded error distributions χ, the

LWE(n,m, q, χ) problem is as hard as approximating certain worst-case lattice problems such as GapSVP and
SIVP on n-dimensional lattices to within Õ(n · q/B) factor [Reg09, Pei09, ACPS09, MM11, MP12, BLP+13].

Short Integer Solutions. Let n,m, q, β be positive integers. In the SIS(n,m, q, β) problem, the adversary
is given a uniformly random matrix A ∈ Zn×mq and its goal is to find a vector u ∈ Zmq with u 6= 0 and
‖u‖ ≤ β such that A · u = 0.

For any m = poly(n), any β > 0, and any sufficiently large q ≥ β · poly(n), solving SIS(n,m, q, β) problem
is as hard as approximating certain worst-case lattice problems such as GapSVP and SIVP on n-dimensional
lattices to within β · poly(n) factor [Ajt96, Mic04, MR07, MP13].

2.2 Threshold Secret Sharing

In this work, we work with a (t,N)-threshold secret sharing scheme [Sha79] over a secret k0 in Zq. In such a
scheme, one constructs key-shares by sampling a uniformly random polynomial p(z) ∈ Zq[x] of degree t− 1
such that p(0) = k0, and the remaining coefficients are sampled uniformly at random from Zq. We then define
shares ki = p(i) for i ∈ [N]. For secret shares constructed in this manner, it holds that for any S ⊂ [N] ∪ {0}
of size t, we have that p(j) =

∑
i∈S λ

S
i,j · ki, where λSi,j ∈ Zq are efficiently computable Lagrange coefficients

defined as follows:

λSi,j =
∏
m∈S
m6=i

j −m
i−m

.

Furthermore, for any set S′ with |S′| < t, the set of shares {ki}i∈S′ is distributed identically to a uniformly

generated set {k′i}i∈S′ where k′i
$← Zq for all i ∈ S′.

For our purposes, we want the Lagrange coefficients to be “low-norm” values. However, interpreted as
elements in Zq, there cannot be a bound on its norm. Therefore, for our construction, we use the technique

5

of “clearing out the denominator” [Sho00, ABV+12] where we use the fact that the term (N !)2 · λSi,j is an
integer. The following lemma follows from a simple combinatorial argument.

Lemma 2.2. For any set S ⊂ [N]∪{0} of size t, and for any i, j ∈ [N], the product (N !)2 ·λSi,j is an integer,

and |(N !)2 · λSi,j | ≤ (N !)3.

Proof. Note that λSi,j has denominator of the form∏
m∈S
m6=i

(i−m).

The numbers (i−m) lie in the interval [−(`− 1), ..., (`− 1)], and a single number in [−(`− 1), ..., (`− 1)] can
repeat at most twice. Therefore, the denominator divides (N !)2. For the upper bound, we note that

|(N !)2 · λSi,j | ≤ (N !)2|
∏
m∈S
m6=i

(j −m)| ≤ (N !)3.

2.3 Basic Cryptographic Primitives

As building blocks for the constructions in this work, we use basic cryptographic primitives like PRFs,
signature schemes, and public key encryption (PKE) schemes. For completeness, we provide precise definitions
of these notions in Appendix A.

3 HE and HS fron LWE

In this section, we review the notion of homomorphic encryption scheme and homomorphic signature scheme
from LWE.

3.1 Homomorphic Encryption

In this subsection, we recall the definition of a homomorphic encryption scheme (HE). A (leveled) homomorphic
encryption scheme is a tuple of polynomial-time algorithms ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec)
defined as follows:

• HE.KeyGen(1λ, 1d, 1k)→ sk: On input the security parameter λ, a depth bound d, and a message length
k, the key generation algorithm outputs a secret key sk.

• HE.Enc(sk, µ) → ct: On input a secret key sk and a message µ ∈ {0, 1}k, the encryption algorithm
outputs a ciphertext ct.

• HE.Eval(C, ct) → ct′: On input a circuit C : {0, 1}k → {0, 1} of depth d and a ciphertext ct, the
homomorphic evaluation algorithm outputs another ciphertext ct′.

• HE.Dec(sk, ct′)→ b: On input a secret key sk and a ciphertext ct′, the decryption algorithm outputs a
bit b.

Correctness. We require that for all λ, d, k ∈ N, sk ← HE.KeyGen(1λ, 1d, 1k), µ ∈ {0, 1}k, and boolean
circuits C : {0, 1}k → {0, 1} of depth at most d, we have that

Pr [HE.Dec(sk,HE.Eval(C,HE.Enc(sk, µ))) = C(µ)] = 1

6

where the probability is taken over HE.Enc and HE.KeyGen.

Security. For security, we require standard semantic security. For any PPT adversary A = (A1,A2), and
for all d, k = poly(λ), there exists a negligible function negl such that

Pr

b = b′ :

sk← HE.KeyGen(1λ, 1d, 1k);
(µ0, µ1, st1)← A1(1λ, 1d, 1k);

b
$← {0, 1};

ctb ← HE.Enc(sk, µb);
b′ ← A2(ctb, st1)

− 1

2
≤ negl(λ).

There are a number of FHE constructions from LWE in the literature [BV14a, BGV12, GSW13, BV14b,
ASP14, CM15, MW16, BP16, PS16]. Instead of focusing on a specific construction, we abstract out much of
the specific details and work with properties that most of these constructions satisfy. However, for technical
reasons in the security proof (Lemma 5.4), we do a simple modification on the existing constructions such that
the noise in the FHE ciphertext is a multiple of some integer γ that the key generation algorithm HE.KeyGen
takes in as an additional parameter. We give a high level description of a sample modification of the [GSW13]
FHE construction in Appendix B and show that this modification does not break security. We summarize
the properties that we need for our main construction in the following theorem.

Theorem 3.1 (HE from LWE). Fix the security parameter λ, depth bound d(λ) and an integer γ ∈ N. Let

n,m, q, χ be LWE parameters with q > 2Õ(d). Then there is an HE scheme ΠHE = (HE.KeyGen,HE.Enc,

HE.Eval,HE.Dec) for circuits of depth d such that 2Õ(d) < q with the following properties:

• HE.KeyGen takes in an extra parameter γ and outputs a secret key sk ∈ Ztq where t = poly(λ).

• HE.Enc takes in a message µ ∈ {0, 1}k and outputs a ciphertext ct ∈ {0, 1}z where z = poly(k, λ, log q).
• HE.Eval takes in a circuit C and a ciphertext ct ∈ Zzq and outputs a ciphertext ct′ ∈ Ztq.
• HE.Dec on input sk and ct, we have that

〈sk, ct〉 ∈ [(q/2) · µ− E, (q/2) · µ+ E]

for some E = γ · 2Õ(d) and 〈sk, ct〉 is an integer multiple of γ.
• Security relies on LWE(n,m, q, χ).

3.2 Homomorphic Signatures

In this section, we recall the definition of homomorphic signature (HS) scheme. We present a simplified
definition compared to the full definition as presented in [BF11a, GVW15], which is sufficient for this work.1 A
leveled homomorphic signature scheme is a tuple of polynomial-time algorithms ΠHS = (HS.KeyGen,HS.Sign,
HS.SignEval,HS.Verify) defined as follows:

• HS.KeyGen(1λ, 1d, 1N)→ (sk, vk): On input the security parameter λ, a depth bound d, and a date set
bound N , the key generation algorithm outputs a signing key sk and a verification key vk.

• HS.Sign(sk,m)→ σ: On input the signing key sk and a message m ∈ {0, 1}N , the signing algorithm
outputs a signature σ.

• HS.SignEval(C, σ)→ σ∗: On input a circuit C : {0, 1}N → {0, 1}, the signature evaluation algorithm
outputs a homomorphically computed signature σ∗.

1One omission is the compactness requirement, which states that the size of a homomorphically evaluated signature is independent
of the size of the original data set. We note that homomorphic signatures without the compactness requirement and just the
unforgeability security requirement is trivial to construct. However, we also require context-hiding security requirement, so our
definition is not trivial to achieve. Nevertheless, the construction of [GVW15] achieves all of compactness, unforgeability, and
context-hiding, and we leave out the compactness requirement just for simplicity and brevity of the definition.

7

• HS.Verify(vk, C, y, σ∗) → 0/1: On input a verification key vk, a circuit C, an output value y and a
signature σ∗, the verification algorithm accepts (outputs 1) or rejects (outputs 0).

Correctness. We require that for all λ,N ∈ N, (sk, vk) ← HS.KeyGen(1λ, 1N), m ∈ {0, 1}N , σ ←
HS.Sign(sk,m), C : {0, 1}N → {0, 1} of depth at most d, y ← C(m),

Pr[HS.Verify(vk, C, y,HS.SignEval(C, σ)) = 1] = 1

Security. We require two security properties for homomorphic signatures. The first property is the
unforgeability requirement, which roughly says that given a homomorphically signed data m, the adversary
cannot produce a circuit C and a valid signature σy′ for which C(m) 6= y′.

Definition 3.2 (Unforgeability). We say that a homomorphic signature scheme ΠHS = (HS.KeyGen,HS.Sign,
HS.SignEval,HS.Verify) satisfies unforgebability if for any PPT adversary A = (A1,A2), there exists a
negligible function negl(λ) such that

AdvufΠHS,A(λ) = Pr[ExptufΠHS,A(λ) = 1] ≤ negl(λ)

where the experiment ExptufΠHS,A(λ) is defined as follows

1. (sk, vk)← HS.KeyGen(1λ, 1N , 1d).

2. (m∗, st1)← A1(vk).

3. σ ← HS.Sign(sk,m∗).

4. (C∗, y∗, σ∗)← A2(σ, st1).

5. Output Verify∗(vk, C∗, y∗, σ∗).

where verification algorithm Verify∗(vk, C∗, y∗, σ∗) accepts if all of the following conditions hold:

• C∗ is a circuit of depth at most d.

• C∗(m∗) 6= y∗.

• HS.Verify(vk, C∗, y∗, σ∗) accepts.

The second security property that we require is the context-hiding requirement, which roughly says that
given a homomorphically computed signature σ∗, an adversary does not learn any information about the
original message m that was signed other than what is already implied by the output C(m) = y.

Definition 3.3 (Context-Hiding). We say that a homomorphic signature scheme ΠHS = (HS.KeyGen,HS.Sign,
HS.SignEval,HS.Verify) satisfies context-hiding if there exists a simulator Sch such that, for any choice of
(sk, vk)← HS.KeyGen(1λ, 1d, 1N), m ∈ {0, 1}N , σ ← HS.Sign(sk,m), and circuit C, we have that

HS.SignEval(C, σ)
stat
≈ Sch(sk, C, C(x)).

where the randomness is over the random coins of the simulator and the HS.SignEval procedure.

Constructions. There are a number of constructions on homomorphic signatures in the literature for various
classes of functions that can be supported [BFKW09, GKKR10, BF11b, BF11a, CFW14, GVW15, FMNP16].
In particular, the construction of Gorbunov et al. [GVW15] supports the class of bounded depth circuits
from the SIS problem, which is reducible to LWE.

Theorem 3.4 ([GVW15]). Fix a securityu parameters λ and depth bound d(λ). Let n,m, q be lattice

parameters such that q > 2Õ(d). There is an HS scheme ΠHS = (HS.KeyGen,HS.Sign,HS.SignEval,HS.Verify)

whose security reduces to SIS(n,m, q, β) for β = 2Õ(d).

8

4 Universal Thresholdizer

In this section, we define the notion of a universal thresholdizer scheme. At a high level, the setup of a
universal thresholdizer scheme takes in some secret data x and splits it into a number of user shares. A
computation can be performed on the secret value x only if enough users in the system compute their own
share of the computation. Otherwise, the value x remains hidden. We define our notion to support bounded
depth computation, which means that the setup algorithm takes in a bound on the maximum depth on the
computation that can be performed on this secret value.

The secret data x can be an encoding of any type of private data in the form of a message, a canonical
representation of a Turing machine, etc. and is left unspecified for generality. For intuition, however, the
secret value x can be thought of as a key k for some cryptographic function, such as a signature scheme. The
evaluation algorithm can be thought of as the evaluation of a cryptographic function Fm(k) = F (k,m) with
an input m hardwired inside the circuit. In fact, this will be how we use universal thresholdizers for our
applications in Section 6.

Definition 4.1. Fix a security parameter λ and a data space X . A universal thresholdizer scheme is a tuple
of algorithms ΠUT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) defined as follows:

• UT.Setup(1λ, 1N , 1t, 1d, x)→ (pp, {ski}i∈[N]): On input the security parameter λ, a number of users in
the system N , a threshold t ∈ [N], a bound on the depth d, and a secret x ∈ X , the setup algorithm
generates the public parameters pp and a set of secret keys sk1, ..., skN for each user in the system.

• UT.Eval(pp, ski, C) → yi: On input the public parameters pp, a secret key ski, and a circuit C, the
evaluation algorithm outputs a partial evaluation yi.

• UT.Verify(pp, C, yi)→ 0/1: On input the public parameters pp, a circuit C, and a partial evaluation yi,
the verification algorithm accepts (output 1) or rejects (output 0).

• UT.Combine(pp, {yi}i∈S) → y: On input the public parameters pp, and a set of partial evaluations
{yi}i∈S , the combining algorithm outputs the final evalaution y.

Evaluation Correctness. We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,
UT.Verify,UT.Combine) satisfies evaluation correctness if the following conditions are true. For all λ,N, t, d ∈
N, x ∈ X , (pp, {ski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, x), S ⊆ [N] of size |S| = t, and circuit C : X → {0, 1}
of depth at most d, we have that

Pr
[
UT.Combine(pp, {UT.Eval(pp, ski, C)}i∈S) = C(x)

]
= 1− negl(λ).

Verification Correctness. We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,
UT.Verify,UT.Combine) satisfies verification correctness if the following conditions are true. For all λ,N, t, d ∈
N, x ∈ X , (pp, {ski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, x), and circuit C : X → {0, 1} of depth at most d, we
have that

Pr[UT.Verify(pp, C,UT.Eval(pp, ski, C)) = 1] = 1− negl(λ)

for all i ∈ [N].

Security. We require two security properties for a universal thresholdizer scheme. The first property is
privacy, which states that any colluding set of corrupt users below the threshold cannot learn any information
about the underlying secret value x. Furthermore, we require that even when given valid partial evaluations
of f from the honest parties, the set of corrupt users below the threshold cannot learn information about x
other than what is implied by the output y = f(x).

We capture this intuition formally by requiring that there exists a simulator that can simulate all the
partial evaluations of the honest users without given access to the actual data x, but given only the output
values f(x). Any adversary, given the set of secret keys of corrupt users below the threshold should not be
able to distinguish the simulated partial evaluations from the real partial evaluations.

9

Definition 4.2 (Privacy). We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,UT.Verify,
UT.Combine) satisfies privacy if there exists a PPT simulator S such that for all PPT adversary A =
(A1,A2,A3), there exists a negligible function negl(λ) such that

AdvΠUT,A(λ) =
∣∣∣Pr[ExptRealΠUT,A(λ) = 1]− Pr[ExptRandΠUT,A(λ) = 1]

∣∣∣ ≤ negl(λ)

where the experiments ExptRealΠUT,A(λ) and ExptRandΠUT,A(λ) are defined as follows:

ExptREALΠUT,A(λ):

1. (x∗, st1)← A1(1λ).
2. (pp, {ski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, x∗).
3. (S∗, st2)← A2(pp, st1) where |S∗| = t− 1.

4. b← A
OEval({ski}i∈[N],·,·)
3 ({ski}i∈S∗ , st2).

5. Output b.

ExptRANDΠUT,A(λ):

1. (x∗, st1)← A1(1λ).
2. (pp, {ski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, 0|x

∗|).
3. (S∗, st2)← A2(pp, st1) where |S∗| = t− 1.

4. b← A
SOSim(·)({ski}i∈S∗ ,·,·)
3 ({ski}i∈S∗ , st2).

5. Output b.

where the oracles OEval({ski}i∈[N], ·, ·) and OSim(·) are defined as follows

• OEval({ski}i∈[N], C, j): On input the set of key {ski}i∈[N], circuit C, and an index j ∈ [N]\S∗, outputs
UT.Eval(pp, skj , C).

• OSim(C): On input a circuit C, if there exists a query (C, j) for some j ∈ [N]\S∗ previously made by
A3, the algorithm outputs C(x∗). Otherwise, it outputs ⊥.

We note that for the privacy notion, we restricted the set of corrupt set S∗ to be size t− 1. This is without
loss of generality since the challenger itself can choose additional users to corrupt and bring the set of corrupt
users to size t− 1.

The second security property that we require is robustness, which states that any user in the system
cannot convince a verifier with an improperly generated partial decryption.

Definition 4.3 (Robustness). We say that a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,
UT.Verify,UT.Combine) satisfies robustness if for any PPT adversary A = (A1,A2), there exists a negligible
function negl(λ) such that

AdvrbΠHS,A(λ) = Pr[ExptrbΠHS,A(λ) = 1] ≤ negl(λ)

where the experiment ExptrbΠHS,A(λ) is defined as follows

1. (x, st1)← A1(1λ).

2. (pp, {ski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, x).

3. (C∗, y∗i , i)← A2(pp, {ski}i∈[N], st1).

4. Output Verify∗(pp, C∗, y∗i , i).

where the verification algorithm Verify∗(pp, C, yi, i) accepts if the following conditions hold

• yi 6= UT.Eval(ski, C).

• UT.Verify(pp, C, yi) = 1.

Remarks. We note that for the definition above, we restricted the circuit C that the evaluation algorithm
takes in to be a boolean function of binary output. We do this mainly for simplicity in the next section. This
is, of course, without loss of generality because any circuit with output space {0, 1}α can be represented with
α boolean circuits and α partial evaluations can be done in parallel. Our applications in Section 6 assumes a
universal thresholdizer scheme that supports multiple bit outputs.

10

5 Main Construction

Here, we describe our main construction. As building blocks, we use a homomorphic encryption HE
scheme ΠHE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) and a homomorphic signature HS scheme ΠHS =
(HS.KeyGen,HS.Sign,HS.SignEval,HS.Verify). In addition, we use a PRF Fk : {0, 1}∗ → [−R,R] for some
bound R to be specified in Section 5.1.

Fix a security parameter λ. We fix the data space X to be {0, 1}∗. For simplicity of notation, we denote
η = (N !)2. We construct a universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine)
as follows:

• UT.Setup(1λ, 1N , 1t, 1d,x) → (pp, {ski}i∈[N]): On input the security parameter λ, a number of users
N , a threshold t ∈ [N], a depth bound d and data x, the setup algorithm generates the HE secret key
hesk0 ← HE.KeyGen(1λ, 1dHE , 1k, η2)2 and the HS key (hsvk, hssk)← HS.KeyGen(1λ, 1dHS , 1N). Then, it
encrypts x with the HE scheme ct← HE.Enc(hesk0,x).

Then, the setup algorithm divides the HE secret key hssk0 ∈ Znq into N shares hesk1, ..., heskN using a
(t,N)-threshold secret sharing scheme by secret sharing each components of the vector hssk0 separately.
It also samples N independently sampled PRF keys prfk1, ..., prfkN . Finally, for each i = 1, ..., N , the
setup algorithm signs the tuple mi = (heski, prfki) using the HS scheme σi ← HS.Sign(hssk,mi). It sets

pp = (ct, hsvk) ski = (heski, prfki, σi) ∀i ∈ [N].

• UT.Eval(pp, ski, C) → yi: On input the public parameter pp, a secret key ski, and a circuit C, the
evaluation algorithm homomorphically evaluates C on the ciphertext ct′ ← HE.Eval(C, ct). Then, it
evaluates the PRF on the circuit C, producing ei ← Fprfki(C), and computes

ỹi = 〈ct′, heski〉+ η · ei.

Then, using the homomorphic signature scheme, the evaluation algorithm homomorphically evaluates
the signature σi ← HS.SignEval(gC,ct′ , σi) where the circuit gC,ct′ is defined as follows:

gC,ct′(heski, prfki) = 〈ct′, heski〉+ η · Fprfki(C).

It outputs yi = (ỹi, σi) as the partial evaluation.

• UT.Verify(pp, C, yi) → 0/1: On input the public parameters pp = (ct, hsvk), a function C, and a
partial evaluation yi = (ỹi, σi), the verification algorithm outputs HS.Verify(hsvk, gC,ct′ , ỹi, σi) where
ct′ ← HE.Eval(C, ct).

• UT.Combine(pp, {yi}i∈S) → y: On input the public parameters pp, and a set of partial evaluations
{yi = (ỹi, σi)}i∈S , the combining algorithm computes the Lagrange coefficients λSi,0 for all i ∈ S and
then computes

ỹ =
∑
i∈S

λSi,0 · ỹi.

It outputs 0 if ỹ ∈ [−q/4, q/4] and outputs 1 otherwise.

5.1 Parameters

Let d be the bound on the depth that the scheme supports. First, we set the PRF range R to be big enough
to “smudge out” any information that is contained in the HE noise. For this, we note that for a circuit of

depth d, the noise from HE decryption is at most η2 · 2Õ(d) (Theorem 3.1). We set R = η1.5 · 2Õ(d)+ω(log λ).
Next, we set the HE parameter dHE so that the HE modulus is at least 8N · η1.5 ·R for it to handle the growth

2Recall that the last parameter denotes the scalar multiplied to the noise (see Section 3.1).

11

of the noise. Finally, we set the homomorphic signatures dHS to support the depth of the circuit gC,ct, which
includes the inner product of the ciphertext ct∗ with the secret keys heski, as well as the depth of the PRF
evaluation Fprfki .

Approximation Factors. The approximation factors for worst-case lattice problems that the parameters
above translates to largely depends on the depth bound d on the circuit and the depth of the PRF used.3

For most of the interesting applications of universal thresholdizers, the depth d is poly(λ) which results

in subexponential approximation factors (2O(n1/c) for some constant c) due to the approximation factor
implied by HE. For logarithmic depth (NC1 circuits), we can base our construction on super polynomial
approximation factors (nω(1)). This is done by using the HE construction of [BV14b], which results in
polynomial approximation factor and the PRF constructions of [BPR12, BP14], which relies on super
polynomial approxmation factors.4 Note that a lattice-based GGM based PRF ([GGM86]) can be used, which
relies on polynomial approximation factors, but now, since the depth of the PRF increases, the homomorphic
signatures must be based on subexponential approximation factors.

5.2 Correctness

We now show correctness of the scheme above.

Theorem 5.1. The universal thresholdizer scheme above with parameters instantiated as in Section 5.1
satisfies the evaluation correctness as defined in Section 4.

Proof. The combining algorithm computes ỹ as follows

ỹ =
∑
i∈S

λSi,0 · ỹi

=
∑
i∈S

λSi,0 · (〈ct∗, heski〉+ η · ei)

= 〈ct∗, hesk0〉+
∑
i∈S

η · λSi,0 · ei

= (q/2) · C(x) + ẽC +
∑
i∈S

η · λSi,0 · ei

where the last equality follows from the correctness of the FHE scheme. Now, it is sufficient to show that the
error term |ẽC +

∑
i∈S η · λSi,0 · ei| ≤ 2 ·N · η1.5 · R is at most q/4. The parameters in Section 5.1, are set

precisely to satisfy this bound and the theorem follows.

The verification correctness follows immediately from the correctness of the homomorphic signature scheme.

Theorem 5.2. The universal thresholdizer scheme above with parameters instantiated as in Section 5.1
satisfies the verification correctness as defined in Section 4.

5.3 Security

In this section, we show security of the construction above.

Theorem 5.3. The construction above with parameters instantiated as in Section 5.1 satisfies privacy as
defined in Definition 4.2.

Proof. We proceed through a series of hybrids. The first hybrid experiment H0 represents the real experiment
ExptREALΠUT,A(λ) and the hybrid experiment H1 represents the ideal experiment ExptRANDΠUT,A(λ) in Definition 4.2.

3This is assuming that we base the security of the construction solely on lattice assumptions.
4Note that these PRF constructions are conjectured to be hard even for polynomial approximation factors.

12

• Hybrid H0: This is the real security game. Upon receiving the secret data x∗ from the adversary, the
challenger generates the public parameters pp and the secret keys {ski}i∈[N] using UT.Setup and sends
pp to the adversary. Upon the adversary’s commitment to the corrupt set of users S∗, the challenger
sends the secret keys {ski}i∈S∗ . Then, for each query (C, j) that the adversary makes, the challenger
computes the partial decryptions UT.Eval(skj , C) and feeds it to the adversary.

• Hybrid H1: This hybrid game is the same as H0 except that now, the challenger simulates the
homomorphic signatures instead of honestly evaluating on the original signatures. Specifically, for each
query (C, j) that the adversary makes, the challenger computes the partial decryption of FHE honestly
by computing

ỹi = 〈ct′, heski〉+ η · Fprfki(C)

as in the real evaluation UT.Eval(skj , C), but to create the homomorphic signatures σi, the challenger
runs the context-hiding simulator Sch of the homomorphic signature scheme (Definition 3.3) by computing
σ∗i ← Sch(hssk, gC,ct′ , ỹi).
We note that by the context-hiding property of the underlying homomorphic signature scheme, the
hybrids H0 and H1 are statistically indistinguishable. We note that in H1, the challenger does not use
the PRF keys prfki or heski to answer the adversary.

• Hybrid H2: This hybrid game is the same as H1 except that now, to answer the partial evaluation

queries by the adversary the challenger samples a uniformly random value ui
$← [−R,R] and computes

the partial evaluation as
ỹi = 〈ct′, ski〉+ η · ui

instead of evaluating the PRF Fprfki . By the security of the underlying PRF Fprfki , we have that the
hybrid experiments H1 and H2 are indistinguishable.

• Hybrid H3: This hybrid game is the same as H2 except that now, the challenger simulates the
partial evaluations knowing only the t − 1 FHE decryption keys {heski}i∈S∗ . Specifically, instead
of generating the FHE secret key hesk0 ← HE.KeyGen(1λ, 1dHS , 1k) and dividing it using a (t,N)-
threshold secret sharing scheme, the challenger generates t − 1 independently sampled secret keys
heski ← HS.KeyGen(1λ, 1dHS , 1N) for i ∈ S∗ and presents them to the adversary.

Then, for each of the queries (C, j) that the adversary makes, the challenger answers the adversary as

follows. The challenger first computes the coefficients λS̃
∗

i,j for i ∈ S̃∗ where S̃∗ = S∗ ∪ {0}. Then, it
samples a uniformly random value uj ← [−R,R] and computes

ỹj = λS̃
∗

0,j ·
q

2
· C(x) +

∑
i∈S∗

(λS̃
∗

i,j · 〈ct′, heski〉) + η · uj .

In Lemma 5.4 below, we show that the view of the adversary in hybrid experiments H2 and H3 are
statistically instistinguishable. We note that in H3, the challenger does not use decryption key hesk0 in
any of the simulation.

• Hybrid H4: This hybrid game is the same as H3, but the challenger runs the setup with respect to the
all zeros string 0|x| instead of x.

Note that the challenger in both H3 and H4 does not use hesk0 in any part of the simulation. The key
shares {heski}i∈S∗ are also sampled independently from hesk0. Therefore, by semantic security of the
HE scheme, the games H3 and H4 are computationally indistinguishable.

What remains to show is that the hybrid experiments H2 and H3 are indistinguishable.

Lemma 5.4. The hybrid experiments H2 and H3 above are statistically indistinguishable.

13

Proof. In H3, the challenger answers an adversary’s query (C, j) by computing

ỹj = λS̃
∗

0,j ·
q

2
· C(x) +

∑
i∈S∗

(λS̃
∗

i,j · 〈ct′, heski〉) + η · uj

= λS̃
∗

0,j · (〈ct′, hesk0〉+ ẽ) +
∑
i∈S∗

(λS̃
∗

i,j · 〈ct′, heski〉) + η · uj

= 〈ct′, heskj〉+ λS̃
∗

0,j · ẽ+ η · uj
= 〈ct′, heskj〉+ λS̃

∗

0,j · (η2 · ẽ′) + η · uj

= 〈ct′, heskj〉+ η

η · λS̃∗0,j · ẽ′ + uj︸ ︷︷ ︸
ũj

 .

The second equality follows from the correctness of the HE scheme; namely, that 〈ct′, hesk0〉 = q
2 ·C(x)− ẽ for

some decryption error ẽ. We use the fact that this decryption error is an integer multiple of η2 (Theorem 3.1)
for the second last equality, where we denote ẽ = η2 · ẽ′. Now, the HE decryption noise ẽ′ is bounded by

2Õ(d) and therefore, by Lemma 2.2, the term η · λS∗0,j · ẽ′ is at most η1.5 · 2Õ(d). Since the term uj is sampled

uniformly from [−R,R] where R = η1.5 · 2Õ(d)+ω(log λ), by Lemma 2.1, the component η · λS∗0,j · ẽ′ is “smudged
out” by uj and therefore, ũj is statistically indistinguishable from uniform in [−R,R]. We note that this
is precisely the distribution of ỹj in H2. Therefore, H2 and H3 are statistically indistinguishable and this
concludes the proof of the lemma.

This concludes of the proof of Theorem 5.3.

Theorem 5.5. The construction above with parameters instantiated as in Section 5.1 satisfies robustness as
defined in Definition 4.3.

Proof. The robustness property follows from the unforgeability of the underlying homomorphic signatures in
a very straightforward way. For an adversary A that breaks the robustness game of Definition 4.3, we build a
simulator B that interacts with a homomorphic signatures challenger and breaks the unforgeability game of
Definition 3.2.

The simulator B first receives the verification key hsvk from the HS challenger. Then, on the value x∗ that
the adversary A chooses to attack, the simulator B runs the thresholdizer setup UT.Setup(1λ, 1N , 1t, 1d,x∗)
honestly and generates hesk1, ..., heskN and PRF keys prfk1, ..., prfkN . However, to generate the signatures
σ1, ..., σN , B queries the homomorphic signatures challenger on the message (hesk1, prfk1)|...|(heskN , prfkN)
to get (σ1, ..., σN). Now, when A outputs a fake partial decryption (C∗, y∗i), the simulator B parses
y∗i = (ỹ∗i , σ

∗
i) and submits (gC∗,ct∗ , ỹ

∗
i , σ
∗
i) as the forgery to the homomorphic signatures challenger where

ct∗ ← HE.Eval(ct, C∗).
We note that ifA wins the robustness game, then we have that ỹ∗i 6= gC∗,ct∗(heski, prfki), but UT.Verify(pp, C∗, ỹ∗i)

accepts. Since UT.Verify simply checks the signature HS.Verify(hsvk, gC,ct∗ , y
∗
i , σ
∗
i) this is a valid forgery of the

homomorphic signature scheme. Therefore, the simulator B breaks the unforgebability game of homomorphic
signatures with the same advantage as A.

6 Applications

In this section, we describe our applications of a universal thresholdizer scheme. We describe just two of
the applications: threshold signatures and CCA secure threshold PKE. However, these applications, despite
having been open in the lattice setting, serve only as proof of concept on how to use a universal thresholdizer
scheme.5 In fact, the concept of a universal thresholdizer is very general and can be used as a tool to construct

5By open, we mean constructions that are compact and non-interactive. For comparisons to previous works, we refer the readers
to Section 1.2.

14

a variety of additional notions in threshold cryptography like distributed PRFs and threshold identity based
encryption (IBE), and even thresholdize the key generation mechanisms of attribute based encryption, predicate
encryption, and functional encryption. We note that a threshold IBE that satisfies verifiable key generation
(robustness) implies both threshold signatures and CCA secure threshold PKE. However, we choose to
describe threshold signatures and CCA secure threshold PKE separately for concreteness and for proof of
concept.

For each subsection, we start by first defining the notion that we are constructing, followed by the
description of the construction using a universal thresholdizer and then the security proof. We note that
since the majority of the work is already done in proving the security of the universal thresholdizer scheme,
the security proofs in each of the constructions can be made very simple. For precise definitions of basic
primitives like PRFs, signature schemes, and PKEs, we refer the readers to Appendix A.

6.1 Threshold Signatures

In this section, we construct threshold signatures from universal thresholdizers. In a threshold signature
scheme, the signing key of a signer is divided into different key shares and is distributed to multiple of signers.
When signing a given message, each of the signers creates a partial signature with its own share of the signing
key. Then, a combining algorithm combines the partial signatures into a full signature.

6.1.1 Definition

A threshold signature (TS) scheme for a message space M, is a tuple of efficient algorithms ΠTS =
(TS.Setup,TS.PartSign,TS.PartSignVerify,TS.Combine,TS.Verify) defined as follows:

• TS.Setup(1λ, 1N , 1t)→ (pp, vkver, {ski}i∈[N]): On input the security parameters λ, the number of signing
authorities N , and a threshold t ∈ [N], the setup algorithm outputs the public parameters pp, a signature
verification key vk, and a set of partial signing keys {ski}i∈[N].

• TS.PartSign(pp, ski,m) → σi: On input the public parameters pp, a partial signing key ski, and a
message m ∈M, the partial signing algorithm outputs a partial signature σi.

• TS.PartSignVerify(pp,m, σi) → 0/1: On input the public parameters pp, a message m, and a partial
signature σi, the partial signature verification algorithm accepts or rejects.

• TS.Combine(pp, {σi}i∈S)→ σ: On input the public parameters pp, a set of partial signatures {σi}i∈S ,
the signature combining algorithm outputs a full signature σ.

• TS.Verify(vkver,m, σ) → 0/1: On input a signature verification key vkver, a message m ∈ M, and a
signature σ, the verification algorithm accepts or rejects.

In the definition above, we decouple the public parameters pp and the signature verification key vkver.
The public parameters pp is to be shared among the partial signers of the system and is not needed to verify
the final signature. We do this mainly for compactness. In our construction in Section 6.1.2, the size of pp
scales linearly in the number of partial signers while the size of the vk remains independent of the number of
signers.

Combining Correctness. We require that for any λ,N, t ∈ N such that t ≤ N , S ⊂ [N], (pp, vkver, {ski}i∈[N])←
TS.Setup(1λ, 1N , 1t), m ∈M, σi ← TS.PartSign(pp, ski,m) for i = 1, ..., N , we have that

Pr[TS.Verify(vkver,m,TS.Combine(pp, {σi}i∈S)) = 1] = 1− negl(λ).

Partial Verification Correctness. We require that for any λ,N, t ∈ N such that t ≤ N , (pp, vkut, {ski}i∈[N])←
TS.Setup(1λ, 1N , 1t), any m ∈M, we have that

Pr[TS.PartSignVerify(pp,m,TS.PartSign(pp, ski,m)) = 1] = 1− negl(λ)

15

for all i ∈ [N].

Security. There are three security requirements for a threshold signature scheme. The first is the standard
unforgeability notion, which states that an adversary who holds less than t signing keys cannot forge a valid
signature.

Definition 6.1 (Unforgeability). Fix a security parameter λ. We say that a threshold signature scheme
ΠTS = (TS.Setup,TS.PartSign,TS.PartSignVerify,TS.Combine,TS.Verify) satisfies unforgeability if for any
adversary A = (A1,A2), there exists a negligible function negl(λ) such that

AdvufΠTS,A(λ) = Pr[ExptufΠTS,A(λ) = 1] ≤ negl(λ)

where the experiment ExptufΠTS,A(λ) is defined as follows:

1. (pp, vkver, {ski}i∈[N])← TS.Setup(1λ, 1N , 1t).

2. (S∗, st1)← A1(pp, vkver) where |S∗| = t− 1.

3. (m∗, σ∗)← AOSign(pp,{ski}i∈[N],·,·)
2 ({ski}i∈S∗ , st1).

4. Output Verify∗(vkver,m
∗, σ∗).

where the algorithms OSign and Verify∗ are defined as follows:

• OSign(pp, {ski}i∈[N],m, i): On input the set of signing keys {ski}i∈[N], a message m and an index
i ∈ [N]\S∗, it outputs the partial signature σi ← TS.PartSign(pp, ski,m).

• Verify∗(vkver,m, σ): On input the signature verification key vkver, message m, and a signature σ, it
accepts if the following conditions are true:

– TS.Verify(vkver,m, σ) = 1.

– m was not previously queried to OSign.

The second security property is robustness, which says that an adversary cannot forge an improperly generated
partial signature.

Definition 6.2 (Robustness). Fix a security parameter λ. We say that a threshold signature scheme
ΠTS = (TS.Setup,TS.PartSign,TS.PartSignVerify,TS.Combine,TS.Verify) satisfies robustness if for any efficient
adversary A, there exists a negligible function negl(λ) such that

AdvrbΠTS,A = Pr[ExptrbΠTS,A(λ) = 1] ≤ negl(λ)

where the experiment ExptrbΠTS,A(λ) is defined as follows:

1. (pp, vkver, {ski}i∈[N])← TS.Setup(1λ, 1N , 1t).

2. (m∗, σ∗i , i)← A(pp, vkver, {ski}i∈[N]).

3. Output PartSignVerify∗(pp, {ski}i∈[N],m
∗, σ∗i , i).

where the algorithm PartSignVerify∗ is defined as follows:

• PartSignVerify∗(pp, {ski}i∈[N],m, σi, i): On input the public parameters pp, message m, a partial
signature σi, and an index i, it accepts if the following conditions hold:

– TS.PartSignVerify(pp,m, σi) = 1.

– σi 6= TS.PartSign(pp, ski,m).

16

The last security property that we require is the notion of anonymity, which says that a combined signature
does not reveal any information about the set of signers that were involved in creating the final signature.

Definition 6.3 (Anonymity). We say that a threshold signature scheme ΠTS = (TS.Setup,TS.PartSign,
TS.PartSignVerify,TS.Combine,TS.Verify) satisfies anonymity if for all λ,N, t ∈ N such that t ≤ N , (pp, vkver,
{ski}i∈[N])← TS.Setup(1λ, N, t), m ∈M, S0, S1 ⊆ [N] such that |S0| = |S1| = t, we have that

Pr

[
TS.Combine(pp, {TS.PartSign(pp, ski,m)}i∈S0) 6=
TS.Combine(pp, {TS.PartSign(pp, ski,m)}i∈S1

)

]
≤ negl(λ)

Compactness. In addition to correctness and security, we require an additional property of compactness to
threshold signatures. This means that the size of the verification key as well as the final signature produced
by the combining algorithm is polynomial only in the security parameter and is independent of the number
of users N or the threshold t.

Definition 6.4 (Compactness). We say that a threshold signature scheme ΠTS = (TS.Setup,TS.PartSign,
TS.PartSignVerify,TS.Combine,TS.Verify) satisfies compactness if there exist polynomials s1(·) and s2(·)
such that for every λ,N, t ∈ N such that t ≤ N , (pp, vkver, {ski}i∈[N]) ← TS.Setup(1λ, 1N , 1t), m ∈ M,
σi ← TS.PartSign(pp, ski,m) for i = 1, ..., N , S ⊂ [N] of size t, σ ← TS.Combine(pp, {σi}i∈S), we have that
|σ| ≤ s1(λ) and |vkver| ≤ s2(λ).

6.1.2 Construction

Here, we describe our construction for a threshold signature scheme. As building blocks, we use a universal
thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) and a regular signature scheme
ΠS = (S.KeyGen,S.Sign,S.Verify). For the construction, we assume that the signing algorithm S.Sign is
deterministic. This is without loss of generality since any randomized signature scheme can be derandomized
(i.e. using PRFs).

Fix a security parameter λ. We construct a threshold signature scheme ΠTS = (TS.Setup,TS.PartSign,
TS.PartSignVerify,TS.Combine,TS.Verify) as follows:

• TS.Setup(1λ, 1N , 1t)→ (pp, vkver, {ski}i∈[N]): On input the security parameter λ, the number of signing
authorities N , and a threshold t ∈ [N], the setup algorithm first generates the keys for the signature
scheme (ssk, svk)← S.KeyGen(1λ). Then, it instantiates a universal thresholdizer scheme with respect
to the signing key ssk, (utpp, {utski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, ssk) where d is the depth of the
signing algorithm S.Sign. Then, it sets

pp = utpp, vkver = svk, ski = utski ∀i ∈ [N]

• TS.PartSign(pp, ski,m) → σi: On input the public parameters pp = utpp, a partial signing key
ski = utski, and a message m ∈M, the partial signing algorithm outputs σi ← UT.Eval(utpp, utski, Cm)
where the circuit Cm is defined as follows

Cm(ssk) = S.Sign(ssk,m).

• TS.PartSignVerify(pp,m, σi) → 0/1: On input the public parameters pp = utpp, a message m, and a
partial signature σi, the partial signature verification algorithm outputs UT.Verify(utpp, Cm, σi).

• TS.Combine(pp, {σi}i∈S) → σ: On input the public parameters pp = utpp, and a set of signatures
{σi}i∈S , the signature combining algorithm outputs σ ← UT.Combine(utpp, {σi}i∈S).

• TS.Verify(vkver,m, σ)→ 0/1: On input a signature verification key vkver = svk, a message m ∈M, and
a signature σ, the verification algorithm outputs S.Verify(svk,m, σ).

Correctness. The combining correctness of the scheme ΠTS above follows directly from the evaluation
correctness of the universal thresholdizer scheme ΠUT and the correctness of the underlying signature scheme
ΠS. The partial verification correctness of ΠTS follows directly from the verification correctness of ΠUT.

17

6.1.3 Security

We now show security of the threshold signature scheme above.

Theorem 6.5. The threshold signature scheme above satisfies the unforgeability notions as defined in Defini-
tion 6.1 assuming that the underlying universal thresholdizer scheme ΠUT satisfies privacy (Definition 4.2)
and the signature scheme ΠS satisfies unforgeability.

Proof. We start with the real game Hybrid H0 and proceed to an altered game Hybrid H1 where we use
the simulator S for the universal thresholdizer scheme (Definition 4.2) to answer the adversary’s queries. We
first show that the hybrid experiments H0 and H1 are indistinguishable to an adversary, which shows that
the difference in the adversary’s advantage in producing a valid forgery in the two experiments is negligible.
Then, in Hybrid H1, we show that a forgery by the adversary can be translated directly to a forgery of
the underlying signature scheme and therefore, is negligible. This shows that the adversary’s advantage in
producing a valid forgery in the real game Hybrid H0 is also negligible.

• Hybrid H0: This is the real unforgeability game instantiated with the ΠTS scheme above. The challenger
runs setup with TS.Setup, and provides pp, vkver to the adversary. The adversary then commits to the
set of signers S∗ of size t− 1 to corrupt. The challenger provides the partial signing keys corresponding
to S∗ to the adversary. For each of the signing queries to OSign that the adversary makes, the challenger
computes the partial signatures honestly using TS.PartSign and provides it to the adversary. At the
end of the game, the adversary returns an attempted forgery.

• Hybrid H1: In this hybrid, the challenger simulates the partial signatures without the signing key ssk
using the simulator S of the universal thresholdizer scheme (Definition 4.2). We first change the way
the challenger runs the setup TS.Setup. Namely, the challenger still generates the signature scheme
honestly (ssk, svk)← S.KeyGen(1λ), but now, instead of instantiating the universal thresholdizer with
respect to ssk, the challenger instantiates the universal signature scheme with respect to the all zeros
string (utpp, {utski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, 0|ssk|). Then, for each of the partial signing query
that the adversary makes, the challenger answers by running the simulator S. It provides the simulator
with the signing keys {utski}i∈S∗ and for each call to OSim that S makes, the challenger feeds S with
σ ← S.Sign(ssk,m).

It is easy to see that the view of the adversary in H0 is exactly the view of the adversary in ExptRealΠUT,A
(restricted to the signing circuit) and the view of the adversary in H1 is exactly the view of the
adversary in ExptRANDΠUT,A (Definition 4.2). Therefore, by the privacy security of ΠUT, the two hybrids are
indistinguishable.

To conclude the proof, we show that a forgery in H1 leads to a forgery in the underlying signature scheme.
For an adversary A, denote by H1(A) the indicator random variable that A returns a valid forgery at the end
of the hybrid experiment H1. Then we have the following lemma.

Lemma 6.6. For any efficient adversary A, we have that

Pr[H1(A) = 1] ≤ negl(λ)

assuming that ΠS is unforgeable.

Proof. Since the signing key of the signature scheme ssk is not used by the challenger in H1 other than
generating the signatures σ to feed to S, we can construct a straightforward reduction to the underlying
signature scheme.

Formally, for adversary A, we construct a simulator B that interacts with the unforgeability challenger
of ΠS. B first receives a verification key svk from the signatures challenger for ΠS. Then it generates
the thresholdizer parameters and keys (utpp, {utski}i∈[N]) ← UT.Setup(1λ, 1N , 1t, 1d, 0|ssk|) and provides
pp = utpp, vkver = svk to the adversary. Upon receiving the challenge set S∗ from A, the simulator B provides

18

{utski}i∈S∗ to the adversary. Then, for each partial signing query (m, i) that A makes, B answers by running
the thresholdizer simulator σi ← SOSim(·)(m, i). For each S’s oracle call to OSim(Cm),6 B submits m to the
ΠS signatures challenger to receive σm and feeds it to S. We note that by definition of the challenger, we
have that σm = Cm(ssk).

Now, the adversary A submits a forgery (m∗, σ∗). If this is a valid forgery, then m∗ was not previously
queried to OSign, which means that the simulator B did not submit m∗ as a signing query to the ΠS challenger.
Furthermore, if (m∗, σ∗) is a valid forgery, then S.Verify(m∗, σ∗) accepts and therefore B can submit (m∗, σ∗)
as its own valid forgery to the ΠS challenger. Therefore, with the winning advantage of A, the simulator B
can construct a valid forgery and break the security of ΠS. This concludes the proof of the lemma.

We now show that our threshold signatures scheme above is robust.

Theorem 6.7. The threshold signature scheme above satisfies robustness as defined in Definition 6.2 assuming
that the underlying universal thresholdizer scheme ΠUT satisfies robustness (Definition 4.3).

Outline. The robustness property of the scheme follows very directly from the robustness property of the
universal thresholdizer and we provide just an outline of the proof.

In the robustness security game of threshold signatures, an adversary wins if it can generate a message,
a partial signature pair (m∗, σ∗i), and an index i such that the partial signature verification algorithm
accepts TS.PartSignVerify(pp,m, σi) = 1 and the partial signature σ∗i is different from an honestly generated
partial signature σ∗i 6= TS.PartSign(pp, ski,m). We note, however, that TS.PartSign(pp, ski,m) is exactly the
universal thresholdizer partial evaluation algorithm UT.Eval(utpp, ski, Cm) where Cm(ssk) = S.Sign(ssk,m),
and the partial signature verification algorithm is exactly the universal thresholdizer verification algorithm
UT.Verify(utpp, Cm, σi). Therefore, an improperly generated partial signature for which the partial signature
verification algorithm accepts directly violates the robustness property of the underlying universal thresholdizer.
This concludes the proof outline.

Finally, we show that the construction satisfies anonymity, which follows from the evaluation correctness
of the underlying universal thresholdizer scheme in a straightforward way.

Theorem 6.8. The threshold signature scheme above satisfies anonymity as defined in Definition 6.3 assuming
that the underlying universal thresholdizer scheme ΠUT satisfies evaluation correctness.

Outline. We note that the evaluation correctness of the universal thresholdizer scheme states that for any set
S ⊂ [N] of size |S| = t and an admissible circuit C, we have that

Pr[UT.Combine(utpp, {UT.Eval(utski, C)}i∈[S]) = C(x)] = 1− negl(λ).

For the construction, the signers evaluate the circuit Cm(ssk) = S.Sign(ssk,m). Therefore for any set S, the
combined signature equals S.Sign(ssk,m) for any message m with overwhelming probability, which shows
that any two combined signatures signed by two distinct sets of signers must be equal with overwhelming
probability.

Compactness. In the construction above, the combined signature is equal to a signature generated by a
single authority signature scheme ΠS by evaluation correctness. Therefore, the size of the combined signature
is independent of t and N . Furthermore, the signature verification key vkver is defined to be svk, which has
size independent of t and N . Therefore, the compactness of the construction easily follows.

6Recall that Cm(ssk) = S.Sign(ssk,m).

19

6.2 CCA Threshold PKE

In this section, we construct a CCA secure threshold PKE from universal thresholdizers. In a threshold PKE
scheme, the decryption key is divided into different key shares and is distributed to multiple of decryption
servers. When decrypting a message, each of the decryption server creates its own decryption share, and the
decryption shares can be publicly combined to result in a full decryption.

Definition 6.9. A threshold PKE (TPKE) scheme for a message space M is a tuple of efficient algorithms
ΠTPKE = (TPKE.Setup,TPKE.Enc,TPKE.PartDec,TPKE.PartDecVerify,TPKE.Combine) defined as follows:

• TPKE.Setup(1λ, 1N , 1t) → (pp, pkenc, {ski}i∈[N]): On input the security parameter λ, the number of
decryption servers N , and a threshold t ∈ [N], the setup algorithm outputs the public parameters pp,
public encryption key pkenc, and a set of partial decryption keys {ski}i∈[N].

• TPKE.Enc(pkenc,m)→ ct: On input the encryption key pkenc, and a message m ∈M, the encryption
algorithm outputs a ciphertext ct.

• TPKE.PartDec(pp, ski, ct)→ cti: On input the public parameters pp, a partial decryption key ski, and
a ciphertext ct, the partial decryption algorithm outputs a decryption share cti.

• TPKE.PartDecVerify(pp, ct, cti) → {0, 1}: On input the public parameters pp, a ciphertext ct, and a
decryption share cti, the decryption verification algorithm accepts or rejects.

• TPKE.Combine(pp, {cti}i∈S)→m′: On input the public parameters pp, and a set of decryption shares
{cti}i∈S , the combining algorithm outputs a message m′.

Decryption Correctness. We require that for any λ,N, t ∈ N such that t ≤ N , (pp, pkenc, {ski}i∈[N]) ←
TPKE.Setup(1λ, 1N , 1t), m ∈M, ct← TPKE.Enc(pkenc,m), cti ← TPKE.PartDec(pp, ski, ct) for i = 1, ..., N ,
S ⊂ [N] of size t, we have that

Pr[TPKE.Combine(pp, {cti}i∈S) = m] = 1− negl(λ).

Partial Decryption Verification Correctness. We require that for any λ,N, t ∈ N such that t ≤ N ,
(pp, pkenc, {ski}i∈[N])← TPKE.Setup(1λ, 1N , 1t), m ∈M, ct← TPKE.Enc(pkenc,m) we have that

Pr[TPKE.PartDecVerify(pp,TPKE.PartDec(pp, ct, ski)) = 1] = 1− negl(λ)

for all i ∈ [N].

Security. There are two security requirements for a threshold PKE scheme. The first is the threshold CCA
security, which states that an adversary who holds less than t shares of the decryption key cannot learn any
information about the encrypted message.

Definition 6.10 (CCA Security). We say that a threshold PKE scheme ΠTPKE = (TPKE.Setup,TPKE.PartDec,
TPKE.PartDecVerify,TPKE.Combine) satisfies CCA security if for any adversary A = (A1,A2), there exists a
negligible function negl(λ) such that

AdvccaΠTPKE,A =
∣∣∣Pr[Expt

cca,(0)
ΠTPKE,A(λ)]− Pr[Expt

cca,(1)
ΠTPKE,A(λ)]

∣∣∣ ≤ negl(λ)

where the experiment Expt
cca,(b)
ΠTPKE,A(λ) is defined as follows:

1. (pp, pkenc, {ski}i∈[N])← TPKE.Setup(1λ, 1N , 1t).

2. (S∗, st1)← A1(pp, pkenc) where |S∗| = t− 1.

3. (m0,m1, st2)← AODec(pp,{ski}i∈[N],·,·)
2 ({ski}i∈S∗ , st1).

20

4. ctb ← TPKE.Enc(pkenc,mb).

5. Output AODec(pp,{ski}i∈[N],·,·)
3 (ctb, st2).

where the algorithms ODec is defined as follows:

• ODec(pp, {ski}i∈[N], ct, i): On input the public parameters pp, a set of signing keys {ski}i∈[N], a ciphertext
ct, and an index i ∈ [N]\S∗, it outputs the decryption share cti ← TPKE.PartDec(pp, ski, ct).

For the admissibility condition, we require that the adversary cannot query the challenge ciphertext ctb to
the partial decryption oracle ODec to prevent the adversary from trivially winning the game.

As in the setting of threshold signatures, the second security property that we require is robustness, which says
that an adversary cannot convince the partial decryption verifier with an improperly generated decryption
share.

Definition 6.11 (Robustness). We say that a threshold PKE scheme ΠTPKE = (TPKE.Setup,TPKE.PartDec,
TPKE.PartDecVerify,TPKE.Combine) satisfies robustness if for any efficient adversary A, there exists a
negligible function negl(λ) such that

AdvrbΠTPKE,A = Pr[ExptrbΠTPKE,A(λ) = 1] ≤ negl(λ)

where the experiment ExptrbΠTPKE,A(λ) is defined as follows:

1. (pp, pkenc, {ski}i∈[N])← TPKE.Setup(1λ, 1N , 1t).

2. (ct∗, ct∗i , i)← A1(pp, pkenc, {ski}i∈[N]).

3. Output Verify∗(pp, ct∗, ct∗i , i).

where the algorithm Verify∗(pkver, ct, cti, i) is defined as follows:

• Verify∗(pp, ct, cti, i): On input the public parameters pp, a ciphertext ct, a decryption share cti, and an
index i, it accepts if the following conditions hold:

– TPKE.PartDecVerify(pp, ct, cti) = 1.

– cti 6= TPKE.PartDec(pp, ski,m).

Compactness. As in the case of threshold signatures, we require an additional property of compactness
for threshold PKE’s. Namely, we require that the size of the ciphertext and the public encryption key pkenc
to be polynomial in the security parameters and independent of the number of decryption servers N or the
threshold t.

Definition 6.12 (Compactness). We say that a threshold PKE scheme ΠTPKE = (TPKE.Setup,TPKE.PartDec,
TPKE.PartDecVerify,TPKE.Combine) satisfies compactness if there exist polynomials s1(·), s2(·) such that
for every λ,N, t ∈ N such that t ≤ N , any (pp, pkenc, {ski}i∈[N]) ← TPKE.Setup(1λ, 1N , 1t), m ∈ M,
ct← TPKE.Enc(pkenc,m) we have that |ct| ≤ s1(λ), |pkenc| ≤ s2(λ).

6.2.1 Construction

In this section, we describe our construction for a threshold PKE scheme. As building blocks, we use a
universal thresholdizer scheme ΠUT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) and a CCA secure PKE
scheme ΠPKE = (PKE.KeyGen,PKE.Enc,PKE.Dec).

Fix a security parameter λ. We construct a threshold PKE scheme ΠTPKE = (TPKE.Setup,TPKE.Enc,
TPKE.PartDec,TPKE.PartDecVerify,TPKE.Combine) as follows:

21

• TPKE.Setup(1λ, 1N , 1t)→ (pk, {ski}i∈[N]): On input the security parameter λ, the number of signing
authorities N , and a threshold t ∈ [N], the setup algorithm first generates the keys for the PKE
(pkepk, pkesk)← PKE.KeyGen(1λ). Then, it instantiates a universal thresholdizer scheme with respect
to the secret key pkesk, (utpp, {utski}i∈[N]) ← UT.Setup(1λ, 1N , 1t, 1d, pkesk) where d is the depth of
the decryption algorithm PKE.Dec. Then, it sets

pp = utpp, pkenc = pkepk, ski = utski ∀i ∈ [N]

• TPKE.Enc(pkenc,m)→ ct: On input the public key pkenc = pkepk, and a message m, the the encryption
algorithm outputs ct← PKE.Enc(pkepk,m).

• TPKE.PartDec(pp, ski, ct)→ cti: On input the public parameters pp = utpp, a partial decryption key
ski = utski, and a ciphertext ct, the partial decryption algorithm outputs cti ← UT.Eval(utpp, utski, Cct)
where the circuit Cct is defined as follows

Cct(sk) = PKE.Dec(sk, ct).

• TPKE.PartDecVerify(pp, ct, cti) → {0, 1}: On input the public parameters pp = utpp, a ciphertext ct,
and a decryption share cti, the decryption verification algorithm outputs UT.Verify(utpp, Cct, cti).

• TPKE.Combine(pp, {cti}i∈S)→m′: On input the public parameters pp = utpp, and a set of decryption
shares {cti}i∈S , the combining algorithm outputs UT.Combine(utpp, {cti}i∈S).

Correctness. The combining correctness of the scheme ΠPKE above follows directly from the evaluation
correctness of the universal thresholdizer scheme ΠUT and the correctness of the underlying PKE scheme
ΠPKE. The partial decryption verification correctness follows directly from the verification correctness of ΠUT.

6.2.2 Security

We now show security of the threshold PKE scheme above.

Theorem 6.13. The threshold PKE scheme above satisfies the CCA security notion as defined in Defini-
tion 6.10 assuming that the underlying universal thresholdizer scheme ΠUT satisfies privacy (Definition 4.2)
and the PKE scheme ΠPKE satisfies CCA security.

Theorem 6.13. We proceed through a series of hybrid experiments where the experiment H0 corresponds to

Expt
cca,(0)
ΠTPKE,A and the experiment H3 corresponds to Expt

cca,(1)
ΠTPKE,A in Definition 6.10.

• Hybrid H0: This experiment corresponds to the experiment Expt
cca,(0)
ΠTPKE,A. The challenger runs the

honest TPKE.Setup, and provides the keys pp, pkenc to the adversary. The adversary then commits to
the set of decryptors S∗ of size t− 1 to corrupt. The challenger provides the partial decryption keys
to the adversary. For each partial decryption queries ODec that the adversary makes, the challenger
computes the decryption shares honestly using TPKE.PartDec and provides it to the adversary. On the
challenge (m0,m1) that the adversary submits, the challenger encrypts m0, ct∗ ← PKE.Enc(pkenc,m0)
and sends it to the adversary.

• Hybrid H1: In this hybrid experiment, the challenger simulates the decryption shares without the de-
cryption key pkesk using the simulator S of the universal thresholdizer scheme. We first change
the way the challenger runs the setup UT.Setup. The challenger still generates the PKE keys
honestly (pkepk, pkesk) ← PKE.KeyGen(1λ), but now, instead of instantiating the universal thresh-
oldizer scheme with respect to pkesk, the challenger instantiates it with respect to the all zeros string
(utpp, {utski}i∈[N])← UT.Setup(1λ, 1N , 1t, 1d, 0|pkesk|). Then, for each of the partial decryption queries
that the adversary makes, the challenger answers by running the simulator S. It provides the simulator
with the signing keys {ski}i∈S∗ and for each call to OSim that S makes, the challenger feeds S with

22

m ← PKE.Dec(pkesk, ct). For the challenge (m0,m1) that the adversary submits, the challenger
encrypts m0, ct∗ ← PKE.Enc(pkepk,m0) and sends it to adversary.

We note that the view of the adversary in H0 is exactly the view of the adversary in ExptRealΠUT,A and

the view of the adversary in H1 is exactly the view of the adversary in ExptRandΠUT,A in Definition 4.2.
Therefore, by the privacy security of ΠUT, the two hybrids are indistinguishable. We note that in H1,
the challenger does not use the decryption key pkesk other than to feed the simulator S with the correct
decryption of ciphertexts that the adversary sends for partial decryption.

• Hybrid H2: This hybrid experiment is the same as H1 except that now, the challenger changes the
way it generates the challenge ciphertext. Specifically, upon receiving the challenge messages (m0,m1),
the challenger encrypts m1, ct∗ ← PKE.Enc(pkepk,m1) instead of m0, and sends ct∗ to the adversary.

We note that by the CCA security of the underlying PKE scheme ΠPKE, the adversary cannot distinguish
H1 and H2. This follows from the fact that the challenger does not use the decryption key pkesk other
than computing the full decryptions to answer the partial decryption queries, which a simulator can
simulate using the decryption oracle for CCA security of PKE.

• Hybrid H3: This hybrid experiment corresponds to the experiment Expt
cca,(1)
ΠTPKE,A. This experiment is

identical to H2 except that now, the challenger provides the honest partial decryptions instead of the
simulated partial decryptions for the decryption queries that the adversary makes.

By the same indistinguishability argument for the experiments H0 and H1, we can argue that the
experiments H2 and H3 are indistinguishable by the privacy security of ΠUT.

The robustness of the threshold PKE scheme above follows very directly from the robustness of the
underlying universal thresholdizer. The proof of the following theorem follows from the same proof outline of
Theorem 6.7.

Theorem 6.14. The threshold PKE scheme above satisfies robustness as defined in Definition 6.11 assuming
that the underlying universal thresholdizer scheme ΠUT satisfies robustness (Definition 4.3).

Compactness. As in the case of threshold signatures, the ciphertexts and public encryption keys correspond
to the regular ciphertexts and public keys for the underlying PKE scheme ΠPKE. Therefore, it is easy to see
that the threshold PKE construction above satisfies the notion of compactness.

7 Conclusion and open problems

We introduced a framework for thresholdizing a variety of cryptographic tasks using a new primitive we call
a universal thresholdizer. We show that this primitive can be constructed from standard lattice assumptions.
By composing a universal thresholdizer with existing cryptographic constructions, such as digital signatures,
CCA-secure PKE, and pseudorandom functions, we obtain threshold equivalents of these notions. In particular,
our construction gives rise to a one-round lattice-based threshold signatures, threshold CCA-secure PKE, and
thresholdized functional encryption, all of which were long standing open problems from lattices.

Open problems. Our work gives rise to a number of open problems. Although our framework is very general,
and proves feasibility for a variety of primitives, our reliance on fully homomorphic encryption causes the
resulting schemes to be slow in practice. Constructing practical one-round threshold cryptosystems, such as
threshold signatures, that are resistant to quantum attacks is an important area for future work. In addition,
our construction from universal thresholdizer assumes a trusted setup, where a trusted authority provides
each user in the system with a share of the FHE decryption key. Is there a universal thresholdizer without
trusted setup? Finally, can we construct universal thresholdizers from other standard assumptions? Even
for more restricted functionalities, such a construction may provide new insights for constructing threshold
systems.

23

Acknowledgements

D. Boneh and S. Kim are supported by NSF, DARPA, the Simons foundation, and a grant from ONR. R.
Gennaro is supported by NSF grant 1545759. S. Goldfeder is supported by NSF Graduate Research Fellowship
under grant number DGE 1148900. Opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of DARPA.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.
In EUROCRYPT, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model.
In EUROCRYPT, 2010.

[ABB10c] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed dimension and
shorter ciphertext hierarchical ibe. In CRYPTO, 2010.

[ABV+12] Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and Hoeteck Wee.
Functional encryption for threshold functions (or fuzzy ibe) from lattices. In PKC, 2012.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO. 2009.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold fhe. In EUROCRYPT, 2012.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.

[ASP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In CRYPTO,
2014.

[BBH06] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public key threshold
encryption without random oracles. In CT-RSA, 2006.

[BD10] Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-knowledge proofs for lattice-
based cryptosystems. In TCC, 2010.

[BF11a] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In
EUROCRYPT, 2011.

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In PKC, 2011.

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace:
Signature schemes for network coding. In PKC, 2009.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryp-
tion without bootstrapping. In ITCS, 2012.

[BKP13] Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice trapdoor: threshold
protocols for signatures and (h) ibe. In ACNS, 2013.

[BLMR13] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key homomorphic prfs
and their applications. In CRYPTO. 2013.

24

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, 2013.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. J. Cryptology,
17(4):297–319, September 2004.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-diffie-hellman-group signature scheme. In PKC, 2003.

[Boy10] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short
signatures and more. In PKC, 2010.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudorandom
functions. In CRYPTO, 2014.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key fhe with short
ciphertexts. CRYPTO, 2016.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
EUROCRYPT, 2012.

[BV14a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing, 43(2):831–871, 2014.

[BV14b] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based fhe as secure as pke. In ITCS, 2014.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from standard
lattice assumptions - or: How to secretly embed a circuit in your PRF. In TCC, 2015.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with efficient
verification for polynomial functions. In CRYPTO, 2014.

[CG99] Ran Canetti and Shafi Goldwasser. An efficient Threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In EUROCRYPT, 1999.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a
lattice basis. In EUROCRYPT, 2010.

[CLRS10] Pierre-Louis Cayrel, Richard Lindner, Markus Rückert, and Rosemberg Silva. A lattice-based
threshold ring signature scheme. In LATINCRYPT, 2010.

[CM15] Michael Clear and Ciarán McGoldrick. Multi-identity and multi-key leveled fhe from learning
with errors. In CRYPTO, 2015.

[DDFY94] Alfredo DeSantis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function securely.
In STOC, 1994.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO, 1989.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homomorphic
authenticators. In ASIACRYPT, 2016.

[Fra89] Yair Frankel. A practical protocol for large group oriented networks. In EUROCRYPT, 1989.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the ACM (JACM), 33(4):792–807, 1986.

25

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In ACNS, 2016.

[GJKR01] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS
signatures. Inf. Comput., 164(1):54–84, 2001.

[GKKR10] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding over
the integers. In PKC, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, 2008.

[GRJK07] Rosario Gennaro, Tal Rabin, Stanislaw Jarecki, and Hugo Krawczyk. Robust and efficient sharing
of RSA functions. J. Cryptology, 20(3):393, 2007.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO. 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic
signatures from standard lattices. In STOC, 2015.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, 2012.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applications to
ajtai’s connection factor. SIAM Journal on Computing, 34(1):118–169, 2004.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of lwe
search-to-decision reductions. In CRYPTO. 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT. 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of sis and lwe with small parameters. In
CRYPTO. 2013.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM Journal on Computing, 37(1):267–302, 2007.

[MSS11] Steven Myers, Mona Sergi, and Abhi Shelat. Threshold fully homomorphic encryption and secure
computation. IACR Cryptology ePrint Archive, 2011:454, 2011.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key fhe. In
EUROCRYPT, 2016.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
2009.

[PS16] Chris Peikert and Sina Shiehian. Multi-key fhe from lwe, revisited. In TCC, 2016.

[PW11] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM Journal
on Computing, 40(6):1803–1844, 2011.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM (JACM), 56(6):34, 2009.

[SG02] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext
attack. J. Cryptology, 15(2):75–96, 2002.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

26

[Sho00] Victor Shoup. Practical threshold signatures. In EUROCRYPT, 2000.

[SS01] Douglas R. Stinson and Reto Strobl. Provably secure distributed schnorr signatures and a (t, n)
threshold scheme for implicit certificates. In ACISP, 2001.

[XXZ11] Xiang Xie, Rui Xue, and Rui Zhang. Efficient threshold encryption from lossy trapdoor functions.
In PQCrypto, 2011.

27

A Basic Cryptographic Primitives

In this section, we recall the definitions of basic cryptographic primitives that we use throughout the paper.

A.1 Pseudorandom Functions

We recall the definition of pseudorandom functions (PRF) [GGM86].

Definition A.1 (PRF). Fix the security parameter λ. A PRF F : K × {0, 1}n → {0, 1}m with key space K,
domain X , and range Y is secure if for all efficient algorithms A,∣∣∣Pr

[
k ← K : AF (k,·)(1λ) = 1

]
− Pr

[
f

$← Funcs(X ,Y) : Af(·)(1λ) = 1
]∣∣∣ = negl(λ)

where Funcs(X ,Y) denotes the set of all functions with domain X and range Y.

A.2 Signature Scheme

Fix a security parameter λ. A signature scheme ΠS = (S.KeyGen,S.Sign,S.Verify) with message space M
consists of the following algorithms

• S.KeyGen(1λ)→ (sk, vk): On input the security parameter λ, the key generation algorithm outputs a
signing key sk and a verification key vk.

• S.Sign(sk,m)→ σ: On input a signing key sk, and a message m ∈M, the signing algorithm outputs a
signature σ.

• S.Verify(vk,m, σ) → {0, 1}: On input a verification key vk, a message m and a signature σ, the
verification algorithm accepts or rejects.

Correctness. For correctness, we require that for all λ ∈ N, m ∈M (sk, vk)← S.KeyGen(1λ), we have that

Pr[S.Verify(vk,S.Sign(sk,m)) = 1] = 1.

Security. For security, we require that the signature scheme is unforgeable.

Definition A.2 (Unforgebability). We say that a signature scheme ΠS = (S.KeyGen,S.Sign,S.Verify) satisfies
unforgeability if for any PPT adversary A, there exists a negligible function negl(λ) such that

AdvufΠS,A(λ) = Pr[ExptufΠS,A(λ) = 1] ≤ negl(λ)

where the experiment ExptufΠS,A(λ) is defined as follows:

1. (sk, vk)← S.KeyGen(1λ).

2. (m∗, σ∗)← AS.Sign(sk,·)(vk).

3. Output Verify∗(vk,m∗, σ∗).

where the algorithm Verify∗(·, ·, ·) accepts if the following conditions hold:

• S.Verify(vk,m∗, σ∗) = 1.

• m∗ was not previously queried to the S.Sign(sk, ·) oracle.

28

A.3 Public Key Encryptions

Fix a security parameter λ. A public key encryption (PKE) scheme ΠPKE = (PKE.KeyGen,PKE.Enc,PKE.Dec)
with message space M consists of the following algorithms

• PKE.KeyGen(1λ)→ (sk, pk): On input the security parameter λ, the key generation algorithm outputs
a secret key sk and a public key pk.

• PKE.Enc(pk,m) → ct: On input a public key pk, and a message m ∈ M, the encryption algorithm
outputs a ciphertext ct.

• PKE.Dec(sk, ct)→ m′: On input a secret key sk, and a ciphertext ct, the decryption algorithm outputs
a message m′.

Correctness. For correctness, we require that for all λ ∈ N, m ∈M, (sk, pk)← PKE.KeyGen(1λ), we have
that

Pr[PKE.Dec(sk,PKE.Enc(pk,m)) = 1] = 1.

Security. For this work, we deal with the standard chosen ciphertext attack (CCA) security of PKEs.
Formally, we define the following security definition

Definition A.3 (CCA Security). We say that a PKE scheme ΠPKE = (PKE.KeyGen,PKE.Enc,PKE.Dec)
satisfies CCA security if for any PPT adversary A = (A1,A2), there exists a negligible function negl(λ) such
that

AdvccaΠPKE,A(λ) =
∣∣∣Pr[Expt

cca,(0)
ΠPKE,A(λ) = 1]− Pr[Expt

cca,(1)
ΠPKE,A = 1]

∣∣∣ ≤ negl(λ)

where the experiments Expt
cca,(b)
ΠPKE,A(λ) is defined as follows:

• (sk, pk)← PKE.KeyGen(1λ).

• (m0,m1, st1)← APKE.Dec(sk,·)
1 (pk).

• ct∗ ← PKE.Enc(pk,mb).

• Output APKE.Dec(sk,·)
2 (ct∗, st1).

where we require that A never queries the decryption oracle PKE.Dec(sk, ·) on the challenge ciphertext ct∗.

B FHE Modification

We briefly recall the GSW construction. We describe the construction ignoring the precise parameters, and
the specifics of the “gadget matrix.” More formal description can be found in [GSW13].

Fix a security parameters λ, and let n,m, q and χ be an appropriately chosen LWE parameters where q is
a prime. Also, let the matrix G ∈ Zn×mq be the standard gadget matrix and let w ∈ Zmq be a vector with
entry 1 in the mth component and 0 elsewhere. We have the property that G ·w = q/2.

We define the GSW encryption scheme as follows:

• HE.KeyGen(1λ, 1d, 1k) → sk: The key generation algorithm generates a uniformly random matrix
A ∈ Zn×mq . It also samples a uniformly random vector s← Znq and an error vector e← χ and defines

Ã =

(
A

sTA + eT

)
. Then, it sets

pp = Ã sk =
(
−s 1

)

29

• HE.Enc(sk, µ)→ ct: The encryption algorithm generates a uniform matrix R← {0, 1}m×m and outputs

ct = Ã ·R + µ ·G.

• HE.Dec(sk, ct′) → b: The decryption algorithm computes y = 〈sk, ct′ ·wm〉 and outputs 0 if y ∈
[−q/4, q/4] and outputs 1 otherwise.

Given messages µ1, µ2 ∈ Zq, we can homomorphically add and multiply on the ciphertexts as follows:

ct1 ADD ct2 = ct1 + ct2

=
(
Ã ·R1 + µ1 ·G

)
+
(
Ã ·R2 + µ2 ·G

)
= Ã · (R1 + R2) + (µ1 + µ2) ·G

ct1 MULT ct2 = ct1 ·G−1(ct2)

=
(
ÃR1 + µ1 ·G

)
·G−1(ct2)

= ÃR1 ·G−1(ct2) + µ1 · ct2
= Ã(R1 ·G−1(ct2) + µ1(ÃR2 + µ2 ·G)

= Ã
(
R1 ·G−1(ct2) + µ1 ·R2

)
+ µ1µ2 ·G

For a ciphertext ct′ = ÃR∗ + µ∗ ·G, decryption procedure can be described as computing the inner product

〈sk, ct′ ·wm〉 = (q/2) · µ∗ + eT ·R∗ ·wm.

Here, the decryption noise is of the form eT · r∗ for some low-norm integer vector r∗ = R∗ ·wm.

Tweak: We modify the construction by simply multiplying the error vector e by γ. Namely, given 1γ as part
of the input, the key generation algorithm defines

Ã =

(
A

sTA + γ · eT
)
.

Now, for any homomorphic computation, the decryption noise is the inner product γ · eT · r∗, which is an
integer multiple of γ.

The security of the GSW scheme relies on the public parameter matrix Ã being computationally

indistinguishable from a uniformly random matrix in Z(n+1)×m
q by LWE. It is easy to see that multiplying the

error vector e by γ does not effect the reduction. In particular, given an LWE sample (A,u), the challenger
can define the public matrix

Ã =

(
A

γ · uT
)
.

If u = sTA + eT , then this is the correct distribution as in the real scheme as a scalar multiplication by
a nonzero integer over a prime modulus is bijective. If u is a uniformly random vector in Zmq , then again,

since we are working over a prime modulus, the matrix Ã is a uniformly random matrix in Z(n+1)×m
q . Now,

applying the leftover hash lemma, the ciphertext is statistically uniform and therefore, the message is hidden.

30

