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Abstract. Masking with random values is an effective countermeasure against side-channel attacks.
For cryptographic algorithms combining arithmetic and Boolean masking, it is necessary to switch from
arithmetic to Boolean masking and vice versa. Following a recent approach by Hutter and Tunstall, we
describe a high-order Boolean to arithmetic conversion algorithm whose complexity is independent of
the register size k. Our new algorithm is proven secure in the Ishai, Sahai and Wagner (ISW) framework
for private circuits. In practice, for small orders, our new countermeasure is one order of magnitude
faster than previous work.
We also describe a 3rd-order attack against the 3rd-order Hutter-Tunstall algorithm, and a constant,
4th-order attack against the t-th order Hutter-Tunstall algorithms, for any t ≥ 4.

1 Introduction

The masking countermeasure. Masking is a very common countermeasure against side channel
attacks, first suggested in [CJRR99,GP99]. It consists in masking every variable x into x′ = x⊕ r,
where r is a randomly generated value. The two shares x′ and r are then manipulated separately, so
that a first-order attack that processes intermediate variables separately cannot succeed. However
first-order masking is vulnerable to a second-order attack combining information on the two shares
x′ and r; see [OMHT06] for a practical attack. Boolean masking can naturally be extended to n
shares, with x = x1 ⊕ · · · ⊕ xn; in that case an implementation should be resistant against t-th
order attacks, in which the adversary combines leakage information from at most t < n variables.
It was shown in [CJRR99,PR13,DDF14] that under a reasonable noisy model, the number of noisy
samples required to recover a secret x from its shares xi grows exponentially with the number of
shares.

Security model. The theoretical study of securing circuits against side-channel attacks was initi-
ated by Ishai, Sahai and Wagner (ISW) [ISW03]. In this model, the adversary can probe at most t
wires in the circuit, but he should not learn anything about the secret key. The authors show that
any circuit C can be transformed into a new circuit C ′ of size O(t2 · |C|) that is resistant against
such an adversary. The construction is based on secret-sharing every variable x into n shares with
x = x1 ⊕ · · · ⊕ xn, and processing the shares in a way that prevents a t-limited adversary from
leaning any information about the initial variable x, for n ≥ 2t+ 1.

The approach for proving security is based on simulation: instead of considering all possible t-
uples of probes, which would be unfeasible since this grows exponentially with t, the authors show
how to simulate any set of t wires probed by the adversary, from a proper subset of the input shares
of the transformed circuit C ′. Since any proper subset of the input shares can be simulated without
knowledge of the input variables of the original circuit (simply by generating random values), one
can then obtain a perfect simulation of the t probes. This shows that the t probes do not bring any
additional information to the attacker, since he could simulate those t probes by himself, without
knowing the secret key.

In this paper, all our constructions are proven secure in the ISW model. More precisely, we use
the refined t-SNI security notion introduced in [BBD+16]. This enables to show that a particular



gadget can be used in a full construction with n ≥ t+ 1 shares, instead of n ≥ 2t+ 1 for the weaker
definition of t-NI security (as used in the original ISW security proof). The t-SNI security notion is
a very practical definition that enables modular proofs; this is done by first considering the t-SNI
security of individual gadgets and then composing them inside a more complex construction.

Boolean vs arithmetic masking. Boolean masking consists in splitting every variable x into n
shares xi such that x = x1 ⊕ x2 ⊕ · · · ⊕ xn, and the shares are then processed separately. However
some algorithms use arithmetic operations, for example IDEA [LM90], RC6 [CRRY99], XTEA
[NW97], SPECK [BSS+13] and SHA-1 [NIS95]. In that case it can be advantageous to use arithmetic
masking. For example, if the variable z = x + y mod 2k must be computed securely for some
parameter k, a first-order countermeasure with arithmetic shares consists in writing x = A1 + A2

and y = B1+B2 for arithmetic shares A1, A2, B1, B2. Then instead of computing z = x+y directly,
which would leak information on x and y, one can add the shares separately, letting C1 ← A1 +B1

and C2 ← A2 +B2; this gives the two arithmetic shares for z = C1 +C2. Note that throughout the
paper all additions and subtractions are performed modulo 2k for some k; for example for SHA-1
we have k = 32.

When combining Boolean and arithmetic masking, one must be able to convert between the
two types of masking; obviously the conversion algorithm itself must be secure against side-channel
attacks. More precisely, a Boolean to arithmetic conversion algorithm takes as input n shares xi
such that:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

and one must compute n arithmetic shares Ai such that:

x = A1 +A2 + · · ·+An (mod 2k)

without leaking information about x.

Prior work. The first Boolean to arithmetic conversion algorithms were described by Goubin
in [Gou01], with security against first-order attacks only. Goubin’s Boolean to arithmetic algorithm
is quite elegant and has complexity O(1), that is independent of the register size k. The arithmetic
to Boolean conversion is more complex and has complexityO(k); this was later improved toO(log k)
in [CGTV15]; however in practice for k = 32 the number of operations is similar.

The first conversion algorithms secure against high-order attacks were described in [CGV14],
with complexity O(n2 ·k) for n shares and k-bit addition in both directions, with a proof of security
in the ISW model.1 The authors of [CGV14] also describe an alternative approach that use Boolean
masking only and employ secure algorithms to perform the arithmetic operations directly on the
Boolean shares, with the same asymptotic complexity; they show that for HMAC-SHA-1 this leads
to an efficient implementation.

Recently, Hutter and Tunstall have described in [HT16] a high-order Boolean to arithmetic
conversion algorithm with complexity independent of the register size k (as in Goubin’s original al-
gorithm). However no proof of security is provided, except for second-order and third-order attacks.
The complexity of the algorithm for n shares is O(2n/2), but for small values of n the algorithm is
much more efficient than [CGV14,CGTV15], at least by one order of magnitude.2

1 This can also be improved to O(n2 · log k) using [CGTV15].
2 In [HT16] the authors claim that the complexity of their algorithm is O(n2), but it is actually O(2n/2), because it

makes 2 recursive calls to the same algorithm with n− 2 shares.
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Our contributions. In this paper our contributions are as follows:

• We describe a high-order Boolean to arithmetic conversion algorithm with complexity indepen-
dent of the register size k, using a similar approach as in [HT16], but with a proof of security in
the ISW model. Our algorithm achieves security against attacks of order n− 1 for n shares, for
any n ≥ 3. Our conversion algorithm has complexity O(2n), instead of O(n2 · k) in [CGV14],
but for small values of n it is one order of magnitude more efficient. In Section 6 we report the
execution times we achieved for both algorithms, using 32-bit registers.

• We describe a 4th order attack against the t-th order Hutter-Tunstall algorithm (with n = t+ 1
shares), for any t ≥ 4. We also describe a 3rd order attack for t = 3. This implies that the
conversion algorithm in [HT16] cannot offer more than second-order security.

Source code. A proof-of-concept implementation of our high-order conversion algorithm, using
the C language, is available at:

http://pastebin.com/CSn67PxQ

2 Security Definitions

In this section we recall the t-NI and t-SNI security definitions from [BBD+16]. For simplicity we
only provide the definitions for a simple gadget taking as input a single variable x (given by n
shares xi) and outputting a single variable y (given by n shares yi). Given a vector of n shares
(xi)1≤i≤n, we denote by x|I := (xi)i∈I the sub-vector of shares xi with i ∈ I.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting the
vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set of t intermediate variables, there
exists a subset I of input indices with |I| ≤ t, such that the t intermediate variables can be perfectly
simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)1≤i≤n and outputting
(yi)1≤i≤n. The gadget G is said t-SNI secure if for any set of t intermediate variables and any
subset O of output indices such that t + |O| < n, there exists a subset I of input indices with
|I| ≤ t, such that the t intermediate variables and the output variables y|O can be perfectly simu-
lated from x|I .

The t-NI security notion corresponds to the original security definition in the ISW probing
model; based on the ISW multiplication gadget, it allows to prove the security of a transformed
circuit with n ≥ 2t+1 shares. The stronger t-SNI notion allows to prove the security with n ≥ t+1
shares only [BBD+16]. The difference between the two notions is as follows: in the stronger t-SNI
notion, the size of the input shares subset I can only depend on the number of probes t and is
independent of the number of output variables |O| that must be simulated (as long as the condition
t+ |O| < n is satisfied). For a complex construction involving many gadgets (as the one considered
in this paper), this enables to easily prove that the full construction is t-SNI secure, based on the
t-SNI security of its components.

3 Goubin’s First-order Conversion and Previous Works

3.1 Goubin’s Algorithm

We first recall Goubin’s first-order algorithm for conversion from Boolean to arithmetic masking
[Gou01]. The algorithm is based on the affine property of the function Ψ(x1, r) : F2k × F2k→ F2k

Ψ(x1, r) = (x1 ⊕ r)− r (mod 2k)
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As mentioned previously, all additions and subtractions are performed modulo 2k for some param-
eter k, so in the following we omit the mod 2k. Moreover we grant higher precedence to xor than
addition, so we simply write Ψ(x1, r) = x1 ⊕ r − r.

Theorem 1 (Goubin [Gou01]). The function Ψ(x1, r) is affine with respect to r over F2.

Thanks to the affine property of Ψ , the conversion from Boolean to arithmetic masking is
relatively straightforward. Namely given as input the two Boolean shares x1, x2 such that

x = x1 ⊕ x2
we can write:

x = x1 ⊕ x2 − x2 + x2

= Ψ(x1, x2) + x2

=
[(
x1 ⊕ Ψ(x1, r ⊕ x2)

)
⊕ Ψ(x1, r)

]
+ x2

for random r ← {0, 1}k. Therefore one can compute

A←
(
x1 ⊕ Ψ(x1, r ⊕ x2)

)
⊕ Ψ(x1, r)

and get the two arithmetic shares A and x2 of

x = A+ x2 (mod 2k)

The conversion algorithm is clearly secure against first-order attacks, because the left term Ψ(x1, r⊕
x2) is independent of x2 (thanks to the mask r), and the right term Ψ(x1, r) is also independent from
x2. The algorithm is quite efficient as it requires only a constant number of operations, independent
of k.

3.2 t-SNI variant of Goubin’s algorithm

In this paper our goal is to describe a high-order conversion algorithm from Boolean to arithmetic
masking, with complexity independent of the register size k, as in Goubin’s first-order algorithm
above. Moreover we will use Goubin’s first-order algorithm as a subroutine, for which the stronger
t-SNI property recalled in Section 2 is needed. However it is easy to see that Goubin’s algorithm
recalled above does not achieve the t-SNI security notion. This is because by definition the output
share x2 in x = A + x2 is the same as the input share in x = x1 ⊕ x2; then if we take O = {2}
in Definition 2, we need to set I = {2} to properly simulate x2; this contradicts the t-SNI bound
|I| ≤ t, since in that case for t = 0 we should have I = ∅.

However, it is straightforward to modify Goubin’s algorithm to make it t-SNI: it suffices to first
refresh the 2 input shares x1, x2 with a random s. We obtain the following first-order t-SNI Boolean
to arithmetic algorithm (Algorithm 1).

Lemma 1 (GoubinSNI). Let x1, x2 be the inputs of Goubin’s algorithm (Algorithm 1) and let A1

and A2 be the outputs. Let t be the number of probed variables and let O ⊂ {1, 2}, with t+ |O| < 2.
There exists a subset I ⊂ {1, 2}, such that all probed variables and A|O can be perfectly simulated
from x|I , with |I| ≤ t

Proof. We distinguish two cases. If t = 0, then the variable s is not probed by the adversary, and
therefore both A2 = a2 = x2 ⊕ s and A1 = x − A2 = x − x2 ⊕ s have the uniform distribution
separately; therefore any of those 2 output variables can be perfectly simulated with I = ∅.

If t = 1, then we must have O = ∅. It is easy to see that any single intermediate variable can
be perfectly simulated from the knowledge of either x1 or x2, as in Goubin’s original conversion
algorithm, which gives |I| ≤ t as required.
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Algorithm 1 GoubinSNI: Boolean to arithmetic conversion, t-SNI variant
Input: x1, x2 such that x = x1 ⊕ x2
Output: A1, A2 such that x = A1 +A2

1: s← {0, 1}k
2: a1 ← x1 ⊕ s
3: a2 ← x2 ⊕ s
4: r ← {0, 1}k
5: u← a1 ⊕ Ψ(a1, r ⊕ a2)
6: A1 ← u⊕ Ψ(a1, r)
7: A2 ← a2
8: return A1, A2

3.3 High-order conversion between Boolean and arithmetic masking

The first conversion algorithms secure against high-order attacks were described in [CGV14], with
complexity O(n2 · k) for n shares and k-bit addition in both directions. The algorithms in [CGV14]
are proven secure in the ISW probing model [ISW03], with n ≥ 2t+ 1 shares for security against t
probes. The arithmetic to Boolean conversion proceeds by recursively applying a n/2 arithmetic to
Boolean conversion on both halves, and then performing a Boolean-protected arithmetic addition:

A = A1 + · · ·+An/2 +An/2+1 + · · ·+An

= x1 ⊕ · · · ⊕ xn/2 + y1 ⊕ · · · ⊕ yn/2
= z1 ⊕ · · · ⊕ zn

The arithmetic addition can be based on Goubin’s recursion formula [Gou01] with complexity
O(k) for k-bit register. This can be improved to O(log k) by using a recursion formula based on the
Kogge-Stone carry look-ahead adder (see [CGTV15]); however for k = 32 the number of operations
is similar. In both cases the recursion formula only uses Boolean operation, so it can be protected
with n shares with complexity O(n2 · k) or O(n2 · log k). For the other direction, i.e. Boolean to
arithmetic, it is based on the above arithmetic to Boolean conversion, and it has also complexity
O(n2 · k) (and O(n2 · log k) with Kogge-Stone).

Recently, Hutter and Tunstall have described in [HT16] a different technique for high-order
Boolean to arithmetic conversion, with complexity independent of the register size k (as in Goubin’s
original algorithm). However no proof of security is provided, except for second-order and third-
order attacks. The complexity of their algorithm for n shares is O(2n/2), but for small values of n
the algorithm is much more efficient than [CGV14,CGTV15], at least by one order of magnitude.
In [HT16] the authors claim that the complexity of their algorithm is O(n2), but it is easy to see
that it must be O(2n/2), because it makes 2 recursive calls to the same algorithm with n−2 shares.

However, in this paper we describe a 4th order attack against the t-th order Hutter-Tunstall
algorithm (with n = t + 1 shares), for any t ≥ 4; we also describe a 3rd order attack for t = 3;
see Section 5. This implies that the conversion algorithm in [HT16] cannot offer more than second-
order security. In particular, we have not found any attack against the second-order Boolean to
arithmetic conversion specified in [HT16, Algorithm 2].

4 High-order Conversion from Boolean to Arithmetic Masking

In this section, we describe our main contribution: a high-order conversion algorithm from Boolean
to arithmetic masking, with complexity independent of the register size k, with a proof of security
in the ISW model for n ≥ t+ 1 shares against t probes (t-SNI security).
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4.1 A simple but insecure algorithm

To illustrate our approach, we first describe a simple but insecure algorithm; namely we explain
why it fails to achieve the t-SNI security property. We start from the n shares xi such that

x = x1 ⊕ · · · ⊕ xn
and we must output n shares Ai such that

x = A1 + · · ·+An (mod 2k)

Our tentative conversion algorithm Cn is defined recursively, using a similar approach as in [HT16],
and works as follows:

1. We write
x = x2 ⊕ · · · ⊕ xn + (x1 ⊕ x2 ⊕ · · · ⊕ xn − x2 ⊕ · · · ⊕ xn)

which gives using Ψ(x1, u) = x1 ⊕ u− u:

x = x2 ⊕ · · · ⊕ xn + Ψ(x1, x2 ⊕ · · · ⊕ xn)

From the affine property of the Ψ function, we obtain:

x = x2 ⊕ · · · ⊕ xn + (n ∧ 1) · x1 ⊕ Ψ(x1, x2)⊕ · · · ⊕ Ψ(x1, xn)

Therefore we let z1 ← (n ∧ 1) · x1 ⊕ Ψ(x1, x2) and zi ← Ψ(x1, xi+1) for all 2 ≤ i ≤ n − 1. This
gives:

x = x2 ⊕ · · · ⊕ xn + z1 ⊕ · · · ⊕ zn−1
2. We then perform two recursive calls to the Boolean to arithmetic conversion algorithm Cn−1,

with n− 1 shares. This gives:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

3. We reduce the number of arithmetic shares from 2n− 2 to n by some additive grouping, letting
Di ← Ai +Bi for 1 ≤ i ≤ n− 2, and Dn−1 ← An−1 and Dn ← Bn−1. This gives as required:

x = D1 + · · ·+Dn

This terminates the description of our tentative algorithm. We explain why this simple algorithm
is insecure. Namely if the adversary probes the n− 1 variables zi, since each zi reveals information
about both x1 and xi+1, those n− 1 variables reveal information about x. More precisely, from the
probed zi’s the adversary can compute:

z1 ⊕ · · · ⊕ zn−1 = Ψ(x1, x2 ⊕ · · · ⊕ xn)

Letting u = x2 ⊕ · · · ⊕ xn and v = xn, for n ≥ 3 we can assume that the two variables u and v are
uniformly and independently distributed. Therefore the adversary obtains the two variables:

Ψ(x1, u) = x1 ⊕ u− u, Ψ(x1, v) = x1 ⊕ v − v

and one can check that the distribution of (Ψ(x1, u), Ψ(x1, v)) depends on x = x1 ⊕ u. Therefore,
the n − 1 probes leak information about x. Moreover, due to the recursive definition of the above
algorithm, the number of required probes can be decreased by probing within the recursive calls,
instead of the zi’s. Namely if the adversary probes only n − 2 variables within Cn−1, this reveals
information about the n− 1 variables zi’s, which in turn reveals information about x, as explained
above.

The attack can be applied recursively down to a single probe. Namely one can check experimen-
tally (for small k and n) that for randomly distributed x1, . . . , xn, some intermediate variables in
the recursion have a distribution that depends on x = x1⊕· · ·⊕xn; hence the algorithm is actually
vulnerable to a first-order attack.
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4.2 Mask Refreshing

To prevent the above attack (and any other attack), we must perform some mask refreshing on the
intermediate shares. We use the same RefreshMasks procedure as in [RP10]; see Algorithm 2, and
Figure 1 for an illustration.

x1 · · · xi · · · xn−1 xn

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

Fig. 1. The RefreshMasks algorithm, with the randoms ri accumulated on the last column.

Algorithm 2 RefreshMasks
Input: x1, . . . , xn
Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn
1: yn ← xn
2: for i = 1 to n− 1 do
3: ri ← {0, 1}k
4: yi ← xi ⊕ ri
5: yn ← yn ⊕ ri . yn,i = xn ⊕

⊕i
i=1 ri

6: end for
7: return y1, . . . , yn

More precisely, we add 3 applications of RefreshMasks in the previous conversion algorithm. The
first application is to first expand the n input shares xi into n+ 1 shares, so that there are now n
variables of the form zi = Ψ(x1, xi+1) instead of only n − 1; this is to prevent the adversary from
recovering all variables zi’s. However, one must still compress to n − 1 variables for the recursive
application of the conversion algorithm with n− 1 shares. This is done by using two RefreshMasks
(one for each recursive application) followed by xoring the last two shares into one, to get n − 1
shares. As will be seen in the next sections, we obtain a t-SNI conversion algorithm, based on a
careful analysis of the security properties of RefreshMasks.

4.3 Secure Conversion From Boolean to Arithmetic Masking

We are now ready to describe our new high-order conversion algorithm from Boolean to arithmetic
masking; as previously, our algorithm Cn is defined recursively. We start from the n shares:

x = x1 ⊕ · · · ⊕ xn

If n = 2, we apply the t-SNI variant of Goubin’s first order algorithm, as described in Algorithm
1. For n ≥ 3, we proceed as follows.
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1. We first perform a (n + 1)-RefreshMasks of the n shares xi’s and xn+1 = 0, so that we obtain
the following n+ 1 shares:

a1, . . . , an+1 ← RefreshMasksn+1(x1, . . . , xn, 0)

Therefore we still have x = a1⊕· · ·⊕an+1. We can write as previously using Ψ(a1, u) = a1⊕u−u:

x = a2 ⊕ · · · ⊕ an+1 + (a1 ⊕ · · · ⊕ an+1 − a2 ⊕ · · · ⊕ an+1)

= a2 ⊕ · · · ⊕ an+1 + Ψ(a1, a2 ⊕ · · · ⊕ an+1)

2. Thanks to the affine property of Ψ , this gives as previously:

x = a2 ⊕ · · · ⊕ an+1 + (n ∧ 1) · a1 ⊕ Ψ(a1, a2)⊕ · · · ⊕ Ψ(a1, an+1)

Therefore, we let b1 ← (n ∧ 1) · a1⊕Ψ(a1, a2) and bi ← Ψ(a1, ai+1) for all 2 ≤ i ≤ n. This gives:

x = a2 ⊕ · · · ⊕ an+1 + b1 ⊕ · · · ⊕ bn

3. We perform a RefreshMasks of the ai’s and of the bi’s, letting:

c1, . . . , cn ← RefreshMasks(a2, . . . , an+1)

d1, . . . , dn ← RefreshMasks(b1, . . . , bn)

Therefore we still have:

x = c1 ⊕ · · · ⊕ cn + d1 ⊕ · · · ⊕ dn

4. We compress from n shares to n − 1 shares, by xoring the last two shares of the ci’s and di’s.
More precisely we let ei ← ci and fi ← di for all 1 ≤ i ≤ n − 2, and en−1 ← cn−1 ⊕ cn and
fn−1 ← dn−1 ⊕ dn. Therefore we still have:

x = e1 ⊕ · · · ⊕ en−1 + f1 ⊕ · · · ⊕ fn−1

5. We perform two recursive calls to the Boolean to arithmetic conversion algorithm Cn−1:

A1, . . . , An−1 ← Cn−1
(
e1, . . . , en−1

)
B1, . . . , Bn−1 ← Cn−1

(
f1, . . . , fn−1

)
This gives:

x = A1 + · · ·+An−1 +B1 + · · ·+Bn−1

6. We reduce the number of arithmetic shares from 2n− 2 to n by some additive grouping, letting
Di ← Ai +Bi for 1 ≤ i ≤ n− 2, and Dn−1 ← An−1 and Dn ← Bn−1. This gives as required:

x = D1 + · · ·+Dn (mod 2k)

This completes the description of the algorithm. For clarity we also provide a formal description in
Appendix A.

Theorem 2 (Completeness). The Cn Boolean to arithmetic conversion algorithm, when taking
x1, . . . , xn as input, outputs D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn = D1 + · · ·+Dn (mod 2k).
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Proof. The proof is straightforward from the above description. The completeness property holds
for n = 2 with Goubin’s conversion algorithm. Assuming that completeness holds for n− 1 shares,
we obtain:

n∑
i=1

Di =
n−1∑
i=1

Ai +
n−1∑
i=1

Bi =
n−1⊕
i=1

ei +
n−1⊕
i=1

fi =
n⊕

i=1

ci +
n⊕

i=1

di =
n+1⊕
i=2

ai +
n⊕

i=1

bi

=
n+1⊕
i=2

ai + Ψ

(
a1,

n+1⊕
i=2

ai

)
=

n+1⊕
i=1

ai =
n⊕

i=1

xi

and therefore completeness holds for n shares.

Complexity analysis. We denote by Tn the number of operations for n shares. We assume
that random generation takes unit time. We have T2 = 11; namely, the t-SNI variant of Goubin’s
technique (Algorithm 1) requires 2 random generations, 2 computations of Ψ , and 5 xors. The
complexity of RefreshMasks with n shares is 3n− 3 operations. From the recursive definition of our
algorithm, we obtain:

Tn = [3 · (n+ 1)− 3] + [2 · n+ 3] + [2 · (3n− 3)] + 2 + 2 · Tn−1 + [n− 2]

= 2 · Tn−1 + 12 · n− 3

This gives:
Tn = 14 · 2n − 12 · n− 21

Therefore, the complexity of our algorithm is exponential in n, namely O(2n), instead of O(n2 · k)
in [CGV14]; however for small values of n our conversion algorithm is one order of magnitude more
efficient; see Section 6 for implementation results.

Security. The following theorem shows that our conversion algorithm achieves the t-SNI property.
This means that our conversion algorithm is secure against any adversary with at most n−1 probes
in the circuit. Moreover thanks to the t-SNI property, our conversion algorithm can be used within
a larger construction (for example a block-cipher, or HMAC-SHA-1), so that the larger construction
also achieves the t-SNI property.

Theorem 3 (t-SNI of Cn). Let (xi)1≤i≤n be the input and let (Di)1≤i≤n be the output of the
Boolean to arithmetic conversion algorithm Cn. For any set of t intermediate variables and any
subset O ⊂ [1, n], there exists a subset I of input indices such that the t intermediate variables as
well as D|O can be perfectly simulated from x|I , with |I| ≤ t.

The rest of the section is devoted to the proof of Theorem 3. The proof is based on a careful
analysis of the properties of the RefreshMasks algorithm. In the next section, we start with three
well known, basic properties of RefreshMasks.

4.4 Basic properties of RefreshMasks

The lemma below shows that RefreshMasks achieves the t-NI property in a straightforward way.

Lemma 2 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of RefreshMasks and let (yi)1≤i≤n
be the output. For any set of t intermediate variables, there exists a subset I of input indices such
that the t intermediate variables can be perfectly simulated from x|I , with |I| ≤ t.
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Proof. The set I is constructed as follows. If for some 1 ≤ i ≤ n− 1, any of the variables xi, ri or
yi is probed, we add i to I. If xn or yn or any intermediate variable yn,j is probed, we add n to I.
Since we add at most one index to I per probe, we must have |I| ≤ t.

The simulation of the probed variable is straightforward. All the randoms ri for 1 ≤ i ≤ n− 1
can be simulated as in the real algorithm, by generating a random element from {0, 1}k. If yi is
probed, then we must have i ∈ I, so it can be perfectly simulated from yi = xi ⊕ ri from the
knowledge of xi. Similarly, if any intermediate variable yn,j is probed, then n ∈ I, so it can be
perfectly simulated from xn. Therefore all probes can be perfectly simulated from x|I .

The following lemma shows that any subset of n−1 output shares yi of RefreshMasks is uniformly
and independently distributed, when the algorithm is not probed.

Lemma 3. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks. Any subset
of n− 1 output shares yi is uniformly and independently distributed.

Proof. Let S ( [1, n] be the corresponding subset. We distinguish two cases. If n /∈ S, we have
yi = xi ⊕ ri for all i ∈ S, and therefore those yi’s are uniformly and independently distributed. If
n ∈ S, let i∗ /∈ S. We have yi = xi ⊕ ri for all i ∈ S \ {n}. Moreover:

yn =

xn ⊕ n⊕
i=1,i 6=i∗

ri

⊕ ri∗
where ri∗ is not used in another yi for i ∈ S. Therefore the n − 1 output yi’s are uniformly and
independently distributed.

The following lemma, whose proof is also straightforward, shows that when RefreshMasks is not
probed, the distribution of the n output shares yi’s can be perfectly simulated from the knowledge
of x1 ⊕ · · · ⊕ xn only; that is, the knowledge of the individual shares xi’s is not required.

Lemma 4. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of RefreshMasks. The distri-
bution of (yi)1≤i≤n can be perfectly simulated from x1 ⊕ · · · ⊕ xn.

Proof. We have yi = xi ⊕ ri for all 1 ≤ i ≤ n− 1 and:

yn = xn ⊕
n−1⊕
i=1

ri =

(
n⊕

i=1

xi

)
⊕

(
n−1⊕
i=1

yi

)

Therefore we can perfectly simulate the output (yi)1≤i≤n by letting yi ← {0, 1}k for all 1 ≤ i ≤ n−1

and yn ←
(

n⊕
i=1

xi

)
⊕
(

n−1⊕
i=1

yi

)
.

4.5 Property of the initial RefreshMasks

The lemma below gives the first non-trivial property of RefreshMasks. As in the initial RefreshMasks
of our conversion algorithm, we consider n + 1 shares as input (instead of n), with xn+1 = 0 by
definition. The lemma shows that if at least one of the output variables yj is probed, then it can
be simulated “for free”, that is without increasing the size of the input index I. More precisely,
we get the bound |I| ≤ t − 1 under that condition, instead of |I| ≤ t in Lemma 2. This stronger
bound will be used for the security proof of our conversion algorithm; namely at Step 2 in Section
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4.3 the adversary can probe t of the variables bi = Ψ(a1, ai+1), whose simulation then requires the
knowledge of t+ 1 variables ai. Thanks to the stronger bound, this requires the knowledge of only
t input shares xi (instead of t+ 1), as required for the t-SNI bound.

Lemma 5. Let x1, . . . , xn be n inputs shares, and let xn+1 = 0. Consider the circuit y1, . . . , yn+1 ←
RefreshMasksn+1(x1, . . . , xn, xn+1), where the randoms are accumulated on xn+1. Let t be the number
of probed variables. If one of the output yj’s is among the probed variables, there exists a subset I
such that all probed variables can be perfectly simulated from x|I , with |I| ≤ t− 1.

x1 · · · xi · · · xn 0

r1

...

ri

...

rn

y1 · · · yi · · · yn yn+1

x1 · · · xj · · · xn 0

r1

...

rj

...

rn

y1 · · · yj · · · yn yn+1

Fig. 2. Illustration of Lemma 5. Case 1 (left): the adversary has spent at least one probe on the last column for which
xn+1 = 0, therefore we can have |I| ≤ t − 1. Case 2 (right): no intermediate variable is probed on the last column;
therefore rj can play the role of a one-time pad for the simulation of the probed yj , hence xj is not required and
again |I| ≤ t− 1.

Proof. As illustrated in Figure 2, we distinguish two cases. If xn+1 or yn+1 or any intermediate
variable yn+1,j has been probed, we construct the set I as follows. If for some 1 ≤ i ≤ n, any of the
variables xi, yi or ri is probed, we add i to I. In the construction of I we have omitted at least one
probed variable (on the column of index n+ 1), and therefore we must have |I| ≤ t− 1 as required.
The simulation is then straightforward and proceeds as in Lemma 2. Namely all the randoms ri are
simulated as in the actual algorithm, and all probed variables xi and yi can be perfectly simulated
from xi, since i ∈ I. The only difference is that n+ 1 need not be in I since xn+1 = 0 by definition.

We now consider the second case. If neither xn+1 nor yn+1 nor any intermediate variable yn+1,i

has been probed, we construct the set I as follows. By assumption, there exists an index j such that
yj has been probed, with 1 ≤ j ≤ n. For all 1 ≤ i ≤ n and i 6= j, if xi or ri or yi has been probed,
we add i to I. Moreover if xj or rj has been probed, we add j to I. Since we have not considered
the probed yj in the construction of I, we must have |I| ≤ t − 1 as required. The simulation of
probed xi, ri or yi is straightforward for i 6= j, from the knowledge of xi. If j ∈ I, the simulation of
xj , rj and yj is also straightforward. If j /∈ I, it remains to show how to simulate the probed yj . We
have yj = xj⊕rj and moreover rj does not appear in the computation of any other probed variable
(since rj has not been probed, nor any intermediate variable yn+1,i); therefore we can simulate yj as
a random value in {0, 1}k. Therefore all probed variables can be perfectly simulated from x|I .

Remark 1. The lemma does not necessarily hold if we don’t assume that xn+1 = 0, or if we only
assume that xi = 0 for some i 6= n + 1. For example, assuming that x2 = 0, the adversary can
probe both y1 = x1 ⊕ r1 and yn+1,1 = xn+1 ⊕ r1, which gives y1 ⊕ yn+1 = x1 ⊕ xn+1. Hence the
knowledge of 2 input shares is required to simulate the 2 probes (including the output variable y1),
which contradicts the bound |I| ≤ t− 1.
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4.6 More Results on RefreshMasks

In this section we consider the properties of RefreshMasks required for the compression from n shares
to n−1 shares performed at steps 3 and 4 of our conversion algorithm in Section 4.3. Namely if the
adversary probes t of the variables fi’s, including fn−1 = dn−1 ⊕ dn, this requires the knowledge of
t+ 1 of the variables di’s; without RefreshMasks the knowledge of t+ 1 of the variables bi’s would
be required, and eventually t + 1 of the input shares xi’s. In this section, we show that thanks to
RefreshMasks we can still get the bound |I| ≤ t instead of |I| ≤ t+ 1.

We first prove two preliminary lemmas. The first lemma below is analogous to Lemma 5 and
shows that when the randoms in RefreshMasks are accumulated on xn, the corresponding output
variable yn can always be simulated “for free”, that is, without increasing the size of the input
index I; more precisely, if we require that yn is among the t probes, then we can have |I| ≤ t − 1
instead of |I| ≤ t in Lemma 2. This will enable to show that when a subsequent compression step
to n− 1 shares is performed with zn−1 ← yn−1 ⊕ yn, we can still keep the bound |I| ≤ t instead of
|I| ≤ t+ 1. Namely either the adversary does not probe zn−1 = yn−1 ⊕ yn and he does not benefit
from getting information on two variables with a single probe, or zn−1 is probed and we can apply
Lemma 6 below with probed yn; in both cases we get |I| ≤ t instead of |I| ≤ t+ 1.

Lemma 6. Let x1, . . . , xn be the input of a RefreshMasks where the randoms are accumulated on
xn, and let y1, . . . , yn be the output. Let t be the number of probed variables, with t < n. If yn
is among the probed variables, then there exists a subset I such that all probed variables can be
perfectly simulated from x|I , with |I| ≤ t− 1.

x1 · · · xi · · · xn−1 xn

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

x1 · · · xi∗ · · · xn−1 xn

r1

...

ri∗

...

rn−1

y1 · · · yi∗ · · · yn−1 yn

Fig. 3. Illustration of Lemma 6. Case 1 (left): the adversary has spent two probes on the column index n, and
therefore |I| ≤ t − 1. Case 2 (right): no intermediate variable is probed on the last column except yn; then ri∗ can
play the role of a one-time pad for the simulation of yn, hence xn is not required and again |I| ≤ t− 1.

Proof. We construct the subset I as follows. If ri or xi or yi is probed for any 1 ≤ i ≤ n − 1, we
add i to I. If xn or any intermediate variable yn,j (excluding yn) is probed, we add n to I. Since
by assumption yn has been probed, we only consider at most t− 1 probes in the construction of I,
and therefore |I| ≤ t− 1.

For the simulation we distinguish two cases. If n ∈ I, the simulation is straightforward and
proceeds as in the proof of Lemma 2. Namely all the randoms ri are simulated as in the actual
algorithm, and all probed variables xi and yi can be perfectly simulated from xi, since i ∈ I. This
is also the case for all intermediate variables yn,j and yn, which can be simulated from xn since
n ∈ I; see Figure 3 (left) for an illustration.

If n /∈ I, then by the construction of I neither xn nor any intermediate variable yn,j has been
probed, except yn. Since |I| ≤ t − 1 ≤ n − 2, there exists 1 ≤ i∗ ≤ n − 1 such that i∗ /∈ I. The
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simulation then proceed as follows. For i ∈ I, we let ri ← {0, 1}k and one can perfectly simulate
the probed variables ri, xi and yi. It remains to simulate yn. We can write:

yn = xn ⊕
n−1⊕
i=1

ri =

xn ⊕ n−1⊕
i=1, i 6=i∗

ri

⊕ ri∗
From the definition of i∗, the random ri∗ does not appear in the definition of any other probed
variable. Therefore it can play the role of a one-time pad in the above equation, and we can simulate
yn with a random value in {0, 1}k, without knowing xn; see Figure 3 (right) for an illustration.

Remark 2. The lemma does not hold for other output variables. For example the adversary can
probe both y1 = x1⊕ r1 and yn,1 = xn⊕ r1. Since y1⊕ yn,1 = x1⊕ xn, both x1 and xn are required
for the simulation, which contradicts the bound |I| ≤ t− 1.

In the previous lemma we have restricted ourselves to t < n probes (including yn). Namely
if t = n, the adversary can probe all yi’s and learn x1 ⊕ · · · ⊕ xn = y1 ⊕ · · · ⊕ yn; therefore the
simulation cannot be performed using a proper subset I of [1, n]. In Lemma 4 we have showed that
when no intermediate variables of RefreshMasks are probed, the n output shares yi can be simulated
from the knowledge of x1 ⊕ · · · ⊕ xn only. The lemma below shows that this is essentially the best
that the adversary can do: when the adversary has n probes, and if one of which must be yn, then
either all probes in the circuit can be simulated from x1 ⊕ · · · ⊕ xn only, or they can be simulated
from x|I with |I| ≤ n− 1. As previously this only holds if yn must be among the n probes; namely
without this restriction the attacker could probe the n input shares xi directly and learn the value
of the individual shares xi (and not only the xor of the xi’s); see also Remark 3 below.

As previously, this will enable to show that when a subsequent compression step is performed
with zn−1 ← yn−1 ⊕ yn, if the adversary has a total of n − 1 probes, then the simulation can be
performed from x1 ⊕ · · · ⊕ xn only, or from x|I with |I| ≤ n− 1. Namely either the adversary does
not probe zn−1 = yn−1 ⊕ yn and we can simulate from x|I with |I| ≤ n− 1, or zn−1 is probed and
we can apply Lemma 7 below with probed yn.

Lemma 7. Let x1, . . . , xn be the input of a RefreshMasks where the randoms are accumulated on xn,
and let y1, . . . , yn be the output. Let t be the number of probed variables, with t = n. If yn is among
the probed variables, then either all probed variables can be perfectly simulated from x1 ⊕ · · · ⊕ xn,
or there exists a subset I with |I| ≤ n− 1 such that they can be perfectly simulated from x|I .

Proof. We first construct a subset J as in the proof of Lemma 6. If ri or xi or yi is probed for any
1 ≤ i ≤ n − 1, we add i to J . If xn or any intermediate variable yn,j (excluding yn) is probed, we
add n to J . Since by assumption yn has been probed, we only consider at most n− 1 probes in the
construction of J ; therefore we must have |J | ≤ n− 1.

We now distinguish two cases.

• If n ∈ J or |J | < n − 1, we can perform the simulation of probed variables from x|I with
I = J ∪ {n}, which gives |I| ≤ n− 1, as in the proof of Lemma 2. Namely all probed variables
ri, xi or yi can be simulated from xi for 1 ≤ i ≤ n − 1, and any probed variable xn or yn,j or
yn can be simulated from xn.

• If n /∈ J and |J | = n− 1, we must have J = [1, n− 1]. Recall that in the construction of J , at
most n− 1 probes are considered. This implies that for every 1 ≤ i ≤ n− 1, exactly one of the
3 variables xi, yi and ri is probed. We again distinguish three cases:
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• If only the variables yi’s are probed (including yn), then as showed in Lemma 4 the simulation
of the probed variables can be performed from the knowledge of x1 ⊕ · · · ⊕ xn only.

• If ri has been probed for some i, then neither xi nor yi has been probed, and xi is not needed
for the simulation. Therefore the simulation of all probed variable can be performed from
x|I with I = (J ∪ {n}) \ {i}, and |I| ≤ n− 1 as required.

• If xi has been probed for some i, then neither ri nor yi has been probed. Moreover no
intermediate variable yn,j has been probed except yn (since n /∈ J). Therefore, as in the
proof of Lemma 6, the random ri can play the role of a one-time pad for the simulation of
yn, and xn is not required. Therefore all probed variables can be simulated from x|I , with
I = J and |I| ≤ n− 1 as required.

Remark 3. As previously, the lemma does not hold if any other output variable yi is required to be
probed instead of yn. Namely the adversary can probe the n variables y1 = x1 ⊕ r1, x2, . . . , xn−1
and yn,1 = xn ⊕ r1. The xor of these n variables gives x1 ⊕ · · · ⊕ xn, but the adversary also learns
the individual shares x2, . . . , xn−1. Whereas in Lemma 7, the adversary either learns x1 ⊕ · · · ⊕ xn
and nothing else, or at most n− 1 of the shares xi.

The lemma below is the main result of the section. As mentioned previously, it enables to show
that when we perform the compression from n shares to n − 1 shares at steps 3 and 4 of our
conversion algorithm from Section 4.3, we can still have the bound |I| ≤ t instead of |I| ≤ t + 1
when t < n; and for t = n− 1, the simulation can be performed either from x1 ⊕ · · · ⊕ xn, or from
x|I with |I| ≤ n− 1.

Lemma 8. Consider the circuit with y1, . . . , yn ← RefreshMasks(x1, . . . , xn), zi ← yi for all 1 ≤
i ≤ n− 2 and zn−1 ← yn−1⊕ yn. Let t be the number of probed variables. If t < n− 1, there exists a
subset I with |I| ≤ t such that all probed variables can be perfectly simulated from x|I . If t = n− 1,
then either all probed variables can be perfectly simulated from x1⊕· · ·⊕xn, or there exists a subset
I with |I| ≤ n− 1 such that they can be perfectly simulated from x|I .

x1 · · · xi · · · xn−1 xn

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

z1 · · · zi · · · zn−1

Fig. 4. Illustration of Lemma 8. If zn−1 is probed, then both yn−1 and yn must be simulated, so we can apply Lemma
6 or Lemma 7 with probed yn. If zn−1 is not probed, the simulation is straightforward, as in Lemma 2.
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Proof. The proof is a straightforward application of Lemma 6 and Lemma 7. We distinguish two
cases. If zn−1 is not probed, the simulation is straightforward since we can apply Lemma 2 directly;
we obtain that all probed variables can be simulated from x|I with |I| ≤ t. If zn−1 is probed, then
we must simulate both yn−1 and yn, which corresponds to a total of t′ = t+ 1 probes in the circuit
y1, . . . , yn ← RefreshMasks(x1, . . . , xn); see Figure 8 for an illustration. Since yn is included in this
set of t′ probes, we can apply Lemma 6 and Lemma 7 directly. More precisely, if t < n− 1, we can
apply Lemma 6 with t′ = t+ 1 < n; we obtain that all probed variables can be simulated from x|I ,
with |I| ≤ t′− 1 ≤ t as required. Similarly, if t = n− 1, we can apply Lemma 7 with t′ = t+ 1 = n.
As required, we obtain that either all probed variables can be perfectly simulated from x1⊕· · ·⊕xn,
or there exists a subset I with |I| ≤ n− 1 such that they can be perfectly simulated from x|I .

Remark 4. The lemma does not hold if the two xored output variables of RefreshMasks do not
include yn (when the randoms of RefreshMasks are accumulated on xn). For example, if we let
z1 ← y1 ⊕ y2 instead, the adversary could probe both z1 = y1 ⊕ y2 = (x1 ⊕ r1) ⊕ (x2 ⊕ r2) and
yn,2 = xn ⊕ r1 ⊕ r2, which gives z1 ⊕ yn,2 = x1 ⊕ x2 ⊕ xn. Hence to simulate those 2 probes the
knowledge of 3 shares is required, which contradicts the bound |I| ≤ t.

Note that the value x1 ⊕ · · · ⊕ xn in the above lemma corresponds to either a2 ⊕ · · · ⊕ an+1 or
b1 ⊕ · · · ⊕ bn at Step 3 of our conversion algorithm from Section 4.3. In that case, the adversary
has already spent n − 1 probes, and no other variable is probed. As shown in the next section,
this enables to prove that these values can be simulated without knowing the input shares. Namely
when the initial RefreshMasks is not probed, the distribution of a2 ⊕ · · · ⊕ an+1 is uniform because
of Lemma 3. Similarly we have:

b1 ⊕ · · · ⊕ bn = Ψ(a1, a2 ⊕ · · · ⊕ an+1) = x− x⊕ a1

where x = x1⊕· · ·⊕xn = a1⊕· · ·⊕an+1. Since the initial RefreshMasks is not probed, the variable
a1 has the uniform distribution, hence the value b1 ⊕ · · · ⊕ bn can also be simulated by a random
value.

4.7 Proof of Theorem 3

R ψ R F C +

R F C

x D
a

A

B Of

c e

db

I1

I2I4I5

I3I6I7I8I9
S12

S11
S2S4S5

S3S6S7S8I

Fig. 5. The sequence of gadgets in the Boolean to arithmetic conversion algorithm.

In this section we show recursively that our conversion algorithm Cn described in Section 4.3 is
t-SNI, based on the previous lemmas on RefreshMasks. We follow the same process as in [BBD+15,
Sect. 4.1], where the t-SNI security of a construction is deduced from the t-NI or t-SNI property of
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its component gadgets. The sequence of gadgets of our construction is illustrated in Figure 5. The
gadgets are numbered from 1 to 9, and we denote by Ii the set of probed variables in Gadget i.
Starting from Gadget 9, we denote by R the initial RefreshMasks at Step 1. Gadget 8 is denoted
by Ψ for the application of the Ψ function at Step 2. Gadgets 5 and 7 denote the two RefreshMasks
performed at Step 3. Gadgets 4 and 6 denote the compression to n − 1 shares performed at Step
4. Gadgets 2 and 3 denote the recursive application of the conversion algorithm at Step 5. Finally,
Gadget 1 denotes the additive grouping performed at Step 6.

From Lemma 1 the t-SNI condition is satisfied for n = 2. We now assume that Cn−1 is t-SNI,
and we must show that Cn is t-SNI. We denote by tc the total number of probes in the circuit. Let
O ⊂ [1, n] be a subset of output shares. We must show that under the condition:

tc + |O| < n

all tc probed variables in the circuit and all variables D|O can be perfectly simulated from x|I , for
some subset I satisfying |I| ≤ tc.

Gadget 1. We have Di = Ai + Bi for 1 ≤ i ≤ n − 2, and Dn−1 = An−1 and Dn = Bn−1. For
simplicity, to avoid a change of index, we denote the last wire of the Bi’s by Bn instead of Bn−1,
so that we can write Dn = Bn. We denote by P1 the set of probed indices in Gadget 1, with
|P1| ≤ |I1|. To simulate Di for 1 ≤ i ≤ n− 2, we must know both Ai and Bi; to simulate Dn−1
we must know An−1 and to simulate Dn we must know Bn. The simulation of Gadget 1 can
therefore be performed from the shares A|S11 and B|S12 , where the subsets S11 and S12 are defined
as follows:

S11 =
(
O ∪ P1

)
∩ [1, n− 1] (1)

S12 =
(
O ∪ P1

)
∩
(
[1, n− 2] ∪ {n}

)
(2)

Gadgets 2 and 3. The gadgets 2 and 3 are recursive applications of the Boolean to arithmetic
conversion, with n−1 shares. The t-SNI conditions for gadgets 2 and 3 are therefore respectively:

|S11 |+ |I2| < n− 1, |S12 |+ |I3| < n− 1 (3)

We stress that the two conditions in (3) are not necessarily satisfied; for example the adversary
could probe the n− 1 shares Ai’s directly which would give |S11 ] = n− 1. However, we show that at
least one of the two conditions in (3) must be satisfied. Namely we obtain from (1) and (2), using
|P1| ≤ |I1|:

|S11 |+ |S12 | = |S11 ∪ S12 |+ |S11 ∩ S12 | = |O ∪ P1|+ |(O ∪ P1) ∩ [1, n− 2]|
≤ |O|+ |I1|+ n− 2

This gives using |I1|+ |I2|+ |I3| ≤ tc and tc + |O| < n:

|S11 |+ |S12 |+ |I2|+ |I3| ≤ |I1|+ |I2|+ |I3|+ |O|+ n− 2 ≤ tc + |O|+ n− 2

< 2n− 2

Now if none of the two conditions in (3) is satisfied, we get |S11 |+ |I2| ≥ n−1 and |S12 |+ |I3| ≥ n−1,
hence |S11 |+ |S12 |+ |I2|+ |I3| ≥ 2n−2, which contradicts the previous inequality. Therefore at least
one of the t-SNI conditions for gadgets 2 and 3 must be satisfied. We can therefore distinguish 3
cases, depending on which of the two conditions in (3) are satisfied:
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• |S11 |+ |I2| < n− 1 and |S12 |+ |I3| ≥ n− 1. We obtain using |S12 | ≤ |O|+ |I1| from (2):

n− 1 ≤ |S12 |+ |I3| ≤ |O|+ |I1|+ |I3| ≤ |O|+ tc < n

and therefore we must have |O| + |I1| + |I3| = |O| + tc = n − 1, which gives |I1| + |I3| = tc,
which implies that there are no other probes in the circuit. In particular, we must have |I2| = 0,
and since the t-SNI condition for Gadget 2 is satisfied, we can simulate all outputs of Gadget 2
with |S2| ≤ |I2| = 0, hence we can take S2 = ∅. This implies that for gadgets 4 and 5, we can
take S4 = ∅ and S5 = ∅ (see Fig. 5).
However, since the t-SNI condition for Gadget 3 is not satisfied, we must take S3 = [1, n−1] and
therefore S6 = [1, n]. Since the RefreshMasks at Gadget 7 is not probed we can apply Lemma 4
and all the di’s can be perfectly simulated from the knowledge of

b1 ⊕ · · · ⊕ bn = Ψ(a1, a2 ⊕ . . .⊕ an+1) = a1 ⊕ · · · ⊕ an+1 − a2 ⊕ . . .⊕ an+1

only. Letting x = x1 ⊕ · · · ⊕ xn = a1 ⊕ · · · ⊕ an+1, we get:

b1 ⊕ · · · ⊕ bn = x− x⊕ a1

Thanks to the initial RefreshMasks (Gadget 9) which is not probed, this has the uniform dis-
tribution (from Lemma 2), and this can therefore be perfectly simulated by a random value.
Therefore we can take I = ∅ for the simulation of the entire circuit.

• |S11 |+ |I2| ≥ n− 1 and |S12 |+ |I3| < n− 1. The reasoning is similar to the previous case, with
|I1|+ |I2| = tc and the rest of the circuit is not probed. Since the t-SNI condition of Gadget 3 is
satisfied and Gadget 3 is not probed, we can simulate all outputs of Gadget 3 with S3 = ∅, and
therefore we can take S6 = S7 = S8 = ∅. Since the t-SNI condition for Gadget 2 is not satisfied
we must take S2 = [1, n−1] and therefore S4 = [1, n]. Since the RefreshMasks at Gadget 5 is not
probed, we can apply Lemma 4 and all the variables ci can be simulated from the knowledge
of a2 ⊕ · · · ⊕ an+1 only. Since the initial RefreshMasks is not probed, applying Lemma 3 such
simulation can be performed without the knowledge of any of the input xi’s, that is with I = ∅.

• |S11 |+ |I2| < n− 1 and |S12 |+ |I3| < n− 1. This means that t-SNI condition for gadgets 2 and
3 is satisfied. Therefore, from the recursive hypothesis we have that the probed variables and
output variables A|S11 and B|S12 of gadgets 2 and 3 can be perfectly simulated from the input
variables e|S2 and f|S3 respectively, where:

|S2| ≤ |I2| and |S3| ≤ |I3| (4)

For the rest of the proof, we can therefore assume that (4) is satisfied, since in the two other cases
above the simulation of all probed variables and D|O can be performed with I = ∅.

Gadgets 4 and 5. From |S2| ≤ |I2| we must have |S2|+ |I4|+ |I5| ≤ |I2|+ |I4|+ |I5| ≤ n− 1.
We apply Lemma 8 to gadgets 4 and 5, where the number of probes in Lemma 8 is t =
|S2|+ |I4|+ |I5| ≤ n− 1. As in Lemma 8, we must therefore distinguish two cases:

• If |S2|+ |I4|+ |I5| < n− 1, then all probed intermediate variables and output variables in e|S2
can be perfectly simulated from a|S5 , where:

|S5| ≤ |S2|+ |I4|+ |I5| ≤ |I2|+ |I4|+ |I5|
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• If |S2|+ |I4|+ |I5| = n−1, from |S2| ≤ |I2| we must have |I2|+ |I4|+ |I5| = n−1, which implies
that the rest of the circuit is not probed. This implies as previously that S6 = S7 = S8 = ∅.
Applying Lemma 8, either all probed variables in gadgets 4 and 5 and output variables e|S2 can
be perfectly simulated from a2 ⊕ · · · ⊕ an+1, or there exists a subset S5 with |S5| ≤ n− 1 such
that they can be perfectly simulated from a|S5 .
In the first case, as previously we can apply Lemma 3 to the initial RefreshMasks which is not
probed (moreover S8 = ∅), and a2 ⊕ · · · ⊕ an+1 can be simulated by a random value. Hence
the full circuit can be simulated with I = ∅. In the second case, we still have as previously
|S5| ≤ |I2|+ |I4|+ |I5|.

For the rest of the proof, we can therefore assume that all probed variables in gadgets 4 and 5
and output variables e|S2 can be perfectly simulated from a|S5 .

|S5| ≤ |I2|+ |I4|+ |I5| (5)

since in the previous first case, all probed variables and output variables D|O can be perfectly
simulated with I = ∅.

Gadgets 6 and 7. The reasoning is essentially the same as for gadgets 4 and 5. Namely from
|S3| ≤ |I3| we must have |S3|+ |I6|+ |I7| ≤ |I3|+ |I6|+ |I7| ≤ n− 1. We apply Lemma 8 to
gadgets 6 and 7, where the number of probes in Lemma 8 is t = |S3|+ |I6|+ |I7| ≤ n− 1. As
previously, we distinguish two cases:

• If |S3|+ |I6|+ |I7| < n− 1, then all probed intermediate variables and output variables in f|S3
can be perfectly simulated from b|S7 , where:

|S7| ≤ |S3|+ |I6|+ |I7| ≤ |I3|+ |I6|+ |I7|

• If |S3|+ |I6|+ |I7| = n− 1, we must have |I3|+ |I6|+ |I7| = n− 1 and the rest of the circuit
is not probed. Applying Lemma 8, either all probed variables in gadgets 6 and 7 and output
variables f|S3 can be perfectly simulated from b1 ⊕ · · · ⊕ bn, or there exists a subset S7 with
|S7| ≤ n− 1 such that they can be perfectly simulated from b|S7 .
In the first case, as previously the simulation can be performed from the knowledge of b1⊕· · ·⊕
bn = x− a2 ⊕ · · · ⊕ an+1, which has the uniform distribution thanks to the initial RefreshMasks
which is not probed, with S5 = ∅. Hence the full circuit can be simulated with I = ∅. In the
second case, we still have as previously |S7| ≤ |I3|+ |I6|+ |I7|.

For the rest of the proof, we can therefore assume that:

|S7| ≤ |I3|+ |I6|+ |I7| (6)

Gadget 8. Since by definition we have b1 ← (n ∧ 1) · a1 ⊕ Ψ(a1, a2) and bi ← Ψ(a1, ai+1) for all
2 ≤ i ≤ n, the probed variables and output variables b|S7 can be simulated with the knowledge
of a|S8 , where:

|S8| ≤ |I8|+ |S7|+ 1 (7)

and we have 1 ∈ S8, since the a1 variable appears in the computation of all the bi’s.
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Gadget 9. We can apply Lemma 5, where the total number of probes is t′ = |S8| + |S5| + |I9|,
and moreover the output variable a1 is probed within Lemma 5, since 1 ∈ S8. We obtain that
all variables can be perfectly simulated from x|I , where from (7):

|I| ≤ t′ − 1 ≤ |S8|+ |S5|+ |I9| − 1

≤ |I8|+ |S7|+ 1 + |S5|+ |I9| − 1 ≤ |I8|+ |S7|+ |S5|+ |I9|

Eventually, using (5) and (6), we obtain:

|I| ≤ |I2|+ |I3|+ |I4|+ |I5|+ |I6|+ |I7|+ |I8|+ |I9|

which gives |I| ≤ tc as required. In summary all tc probed variables in the circuit and all output
variables D|O can be perfectly simulated from x|I with |I| ≤ tc. Hence the t-SNI condition is satisfied
for Cn. This terminates the proof of Theorem 3.

5 Cryptanalysis of the Hutter-Tunstall Boolean to Arithmetic Conversion
Algorithm

In this section, we describe two attacks against the high-order Hutter-Tunstall Boolean to arithmetic
conversion algorithm in [HT16], breaking all the conversion algorithms except the second-order
algorithm. For clarity we will use the same notations as in [HT16] and denote by n the maximum
number of probes in the circuit; therefore the conversion algorithm takes as input n + 1 shares
and outputs n + 1 shares, instead of n in the previous sections. Following [HT16], we say that a
countermeasures is of order n when it should be resistant against n probes (hence with n+1 shares
as input and output).

Our two attacks are as follows:

• An attack of order 4 against the n-th order countermeasure, for n ≥ 4.
• An attack of order n against the n-th order countermeasure, for n ≥ 3.

Therefore the second attack is only useful for n = 3, as for n ≥ 4 the first attack is of constant order
4. In the following we do not provide a full description of the conversion algorithm from [HT16];
for simplicity we only provide the relevant part leading to the attack; we refer to [HT16] for the
full description. Our two attacks imply that the conversion algorithm in [HT16] cannot offer more
than second-order security.

5.1 Attack of order 4 against n-th order countermeasure

We have as input the n+ 1 shares x′, r1, . . . rn, where:

x = x′ ⊕ r1 ⊕ · · · ⊕ rn

We copy Equation (24) from [HT16]:(
n−1⊕
i=1

κi

)
−

(
α⊕

n⊕
i=1

ri

)
= ((¬n ∧ 1)β)⊕

n−1⊕
i=1

Ψ(β, δi)⊕ Ψ

(
β, α⊕ rn ⊕

n−1⊕
i=1

δi ⊕ ri

)
The above equation means that the variable

X = ((¬n ∧ 1)β)⊕
n−1⊕
i=1

Ψ(β, δi)⊕ Ψ

(
β, α⊕ rn ⊕

n−1⊕
i=1

δi ⊕ ri

)
(8)
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is explicitly computed, using a certain sequence of operations following from the right-hand side of
the equation. From the affine property of the Ψ function, we have:

X = Ψ

(
β, α⊕

n⊕
i=1

ri

)

Letting u := α⊕
n⊕

i=1
ri, we can write:

X = Ψ(β, u) = β ⊕ u− u
x = x′ ⊕ α⊕ u

Therefore, if the variable β is explicitly computed when evaluating (8), our attack works by probing
the 4 variables β, X, α and x′. From β and X = β ⊕ u− u, we obtain information about u. From
α and x′, this reveals information about x = x′ ⊕ α⊕ u.

Alternatively, if the variable β is not explicitly computed3, the variable Y = Ψ(β, δ1) must still
be explicitly computed when evaluating X. Therefore our attack works by probing the 4 variables
Y , X, α and x′. We obtain the two variables:

X = Ψ(β, u), Y = Ψ(β, δ1)

and one can check that for randomly distributed β, δ1, the distribution of (X,Y ) leaks information
about u. Namely, the variable Y = Ψ(β, δ1) = β⊕δ1−δ1 leaks information about β, which combined
with X = Ψ(β, u) = β ⊕ u− u leaks information about u. From α and x′, this reveals information
about x = x′⊕α⊕u. Hence in both cases we obtain an attack of constant order 4 against the n-th
order countermeasures for any n ≥ 4.

5.2 Attack of order n against the n-th order countermeasure

As previously we have as input the n+ 1 shares:

x = x′ ⊕ r1 ⊕ · · · ⊕ rn

We copy Equation (22) from [HT16]:(
x+

(
α⊕

n⊕
i=1

ri

))
⊕

n−2⊕
i=1

µi = ((n ∧ 1)(x′ ⊕ α))⊕

(
n−2⊕
i=1

Ψ(x′ ⊕ α, γi)⊕ µi

)

⊕Ψ(x′ ⊕ α, γn−1)⊕ Ψ(x′ ⊕ α, γn)⊕ Ψ

(
x′ ⊕ α, α⊕

n⊕
i=1

γi ⊕ ri

)

where α, µ1, . . . , µn−2, γ1, . . . , γn are randomly generated values4. The previous equation means that
the intermediate variable:

X =

(
x+

(
α⊕

n⊕
i=1

ri

))
⊕

n−2⊕
i=1

µi

3 In the concrete description of the third-order conversion algorithm in [HT16, Algorithm 3], the variable β is not
explicitly computed when computing Ψ(β, δi) = β ⊕ δi − δi, by only computing β ⊕ δi instead.

4 Moreover in this equation one uses Ψ(x, u) = x ⊕ u + u instead of Ψ(x, u) = x ⊕ u − u, but this does not change
anything in the attack, so for simplicity we keep the same notation.
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is explicitly computed, where the computation is performed according to the right-hand side of the

equation. Letting as previously u := α⊕
n⊕

i=1
ri, we obtain:

X = (x+ u)⊕
n−2⊕
i=1

µi

x = (x′ ⊕ α)⊕ u

If the variable x′ ⊕ α is explicitly computed when computing the right-hand side of [HT16,
Equation (22)] recalled above, we can probe the following n variables: X, x′ ⊕ α and µ1, . . . , µn−2.
We can then compute:

Y = X ⊕
n−2⊕
i=1

µi = x+ u

From x′⊕α = x⊕u we also know x⊕u. It is easy to see that for randomly distributed u, the joint
variable (x′ ⊕ α, Y ) = (x⊕ u, x+ u) leaks information about x.

If the variable x′ ⊕ α is not explicitly computed when computing the right-hand side of [HT16,
Equation (22)], the variable Z = Ψ(x′⊕α, γn) must still be computed, which still leaks information
on x′⊕α. More precisely, our attack consists in probing the n variables X, µ1, . . . , µn−2 and Z. As
previously, we recover Y = x+u and from x′⊕α = x⊕u we can therefore obtain the two variables:

x+ u, Ψ(x⊕ u, γn)

One can check that for uniformly distributed u and γn, this still leaks information about x. Therefore
in both cases we have an attack of order n against the n-th order algorithm.

6 Operation Count and Implementation

As shown in Section 4.3, the number of operations of our Boolean to arithmetic conversion algorithm
is given by Tn = 14 · 2n − 12 · n − 21, so it has complexity O(2n) independent of the register size
k, while the conversion algorithm from [CGV14] has complexity O(k · n2). In Appendix B we
estimate the operation count of the conversion algorithm from [CGV14]; we obtain similar results
as the estimate provided in [HT16]. We summarize in Table 1 the operation count for [CGV14]
(for k = 32) and for our new algorithm from Section 4.3. We see that for small orders t, our new
countermeasure is at least one order of magnitude faster than previous work.

B → A conversion
Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 7

Hutter-Tunstall [HT16] 31

CGV, 32 bits [CGV14] 2 098 3 664 7 752 10 226 14 698 28 044 39 518 56 344

Our algorithm (Section 4.3) 55 155 367 803 1 687 7 039 28 519 114 511

Table 1. Operation count for Boolean to arithmetic conversion algorithms, up to security order t = 12, with n = t+1
shares.
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We have also implemented the algorithm in [CGV14] and our new algorithm, in C on a iMac
running a 3.2 GHz Intel processor. We summarize the execution times in Table 2, which are con-
sistent with the operation count from Table 1. This confirms that in practice for small orders, our
new countermeasure is at least one order of magnitude faster than previous work.

B → A conversion
Security order t

2 3 4 5 6 8 10 12

CGV, 32 bits [CGV14] 1 593 2 697 4 297 5 523 7 301 10 919 15 819 21 406

Our algorithm (Section 4.3) 45 119 281 611 1 270 5 673 22 192 87 322

Table 2. Running time in µs for Boolean to arithmetic conversion algorithms, up to security order t = 12, with
n = t+ 1 shares. The implementation was done in C on a iMac running a 3.2 GHz Intel processor.
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A Formal Description of the High-order Boolean to Arithmetic Conversion

Algorithm 3 Cn: high-order Boolean to Arithmetic Conversion
Input: x1, . . . , xn
Output: D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn = D1 + · · ·+Dn (mod 2k)
1: if n = 2 then
2: D1, D2 ← GoubinSNI(x1, x2)
3: return D1, D2

4: end if
5: a1, . . . , an+1 ← RefreshMasksn+1(x1, . . . , xn, 0)
6: b1 ← (n ∧ 1) · a1 ⊕ Ψ(a1, a2)
7: for i = 2 to n do
8: bi ← Ψ(a1, ai+1)
9: end for

10: c1, . . . , cn ← RefreshMasksn(a2, . . . , an+1)
11: d1, . . . , dn ← RefreshMasksn(b1, . . . , bn)
12: e1, . . . , en−2 ← c1, . . . , cn−2 and en−1 ← cn−1 ⊕ cn
13: f1, . . . , fn−2 ← d1, . . . , dn−2 and fn−1 ← dn−1 ⊕ dn
14: A1, . . . , An−1 ← Cn−1(e1, . . . , en−1)
15: B1, . . . , Bn−1 ← Cn−1(f1, . . . , fn−1)
16: for i = 1 to n− 2 do
17: Di ← Ai +Bi

18: end for
19: Dn−1 ← An−1

20: Dn ← Bn−1

21: return D1, . . . , Dn

B Operation Count of [CGV14]

In this section we estimate the number of operations for the Boolean to arithmetic conversion
algorithm from [CGV14].

The complexity of SecAnd algorithm in [CGV14, Algorithm 1] is the same as for the AND
gadget in [ISW03], and is given by:

An = 5 · n(n− 1)

2
+ n2 =

7n2

2
− 5n

2

For the SecAddGoubin algorithm in [CGV14, Algorithm 3], this gives:

Bn = An + n+ (k − 1) · (An + 2n) + 2n = k · (An + 2n) + n
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For the Arithmetic to Boolean conversion from [CGV14, Algorithm 4], we have the recursion:

Tn = 2 ·
(
Tn/2 +

3n

2

)
+Bn

and T1 = 1. For simplicity we assume that n is a power of 2; if this is not the case, the equation
becomes more complex with two recursive calls of Tbn/2c and Tdn/2e operations respectively. Finally,
for the Boolean to arithmetic conversion, we get:

T ′n = 2n+ Tn +An + 3 · n2 + n

As shown in [CGV14], the complexity of both conversion algorithms is O(k · n2). Based on the
above equations, we provide the operation count for small values of n and k = 32 in Section 6.
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